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Abstract 

Business-intelligence queries often involve SQL functions and algebraic expressions. 

There can be clear semantic relationships between a column's values and the values of a 

function over that column. A common property is monotonicity: as the column's values 

ascend, so do the function's values (or the other column's values). This we call an order 

dependency (OD). Queries can be evaluated more efficiently when the query optimizer 

uses order dependencies. They can be run even faster when the optimizer can also reason 

over known ODs to infer new ones. 

Order dependencies can be declared as integrity constraints, and they can be detected 

automatically for many types of SQL functions and algebraic expressions. We present 

optimization techniques using ODs for queries that involve join, order by, group by, par

tition by, and distinct. Essentially, ODs can further exploit interesting orders to eliminate 

or simplify potentially expensive sorts in the query plan. We evaluate these techniques 

over our prototype implementation in IBM® DB2® using the TPC-DS® benchmark 

schema and some customer inspired queries. Our experimental results demonstrate a 
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significant performance gain. 

Dependencies have played an important role in database theory. We study the theo

retical aspects of order dependencies-and unidirectional order dependencies (UODs ), 

a proper sub-class of ODs-which describe the relationships among lexicographical or

derings of sets of tuples. We investigate the inference problem for order dependencies. 

We establish the following: (i) a sound and complete axiomatization for UODs which 

is sound for ODs; (ii) a hierarchy of order dependency classes; (iii) a proof of co-NP

completeness of the inference problem for ODs and for the subclass of UODs; (iv) a 

proof of co-NP-completeness of the inference problem of functional dependencies (FDs) 

from ODs in general, but demonstrate linear time complexity for the inference of FDs 

from UODs; (v) a sound and complete elimination procedure for testing logical implica

tion over ODs; and (vi) a sound and complete polynomial inference algorithm for sets of 

UODs over natural domains. 
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1 Introduction 

Understanding the semantics of data is important, both for data quality analysis and 

knowledge discovery [7, 1 O]. While the relational data model is set based and does 

not concede the concept of order, ordered streams nonetheless play important roles in 

relational systems. SQL allows one to specify by its order-by clause that the answer 

"set" be returned in the specified order. Ordered streams are prevalent in query plans to 

provide efficient evaluation. A query optimizer must reason extensively over interesting 

orders while building efficient query plans [37]. 

Order for a tuple stream can be semantically specified via the attributes as by SQL's 

order-by clause. The order specification "order by year desc, name asc" requires 

that the tuple stream be sorted by year in descending order and, within each year group 

(with the same value for year), by name in ascending order. This is a lexicographical 

ordering, a nested sort. (Note there could be many ways to order the tuples that satisfy 

this specification: the tuples within any year-name partition may be ordered freely.) 

Order dependency (OD) then is the semantic relationship amongst order specifica-
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tions. An order dependency states a relationship between two order specifications. Say 

that we knew the OD that id asc orders year asc, name asc. Then we would be assured 

that any tuple stream ordered by id asc would also necessarily be ordered by year asc, 

name asc. (Note the converse is not necessarily assured: if the stream were ordered by 

year asc, name asc, it still might not be ordered by id asc. This is because the tuples 

within a given partition ofyear-name might fail to be ordered by id asc.) 

The concept of order dependency is closely related to that of functional dependency. 

Indeed, we shall show that order dependency subsumes functional dependency. If id asc 

orders year asc, name asc, then the functional dependency (FD) that id functionally 

determines year and name must hold. ODs convey additional semantic information, 

of course: that of order. (In fact, any OD is inherently also an FD, but not vice vers~.) 

Furthermore, working with ODs is more complex than working with FDs, because the 

sequence of the attributes in order specifications matters. ODs are specified with respect 

to lists of attributes, whereas FDs are specified with respect to sets of attributes. 

Order dependency has . been studied before with respect to lexicographical orders 

[34, 39], and with respect to other order definitions (pointwise) [16, 17]. Our focus is on 

lexicographical orders. In [39], we have established a sound and complete axiomatization 

for lexicographical ODs. The inference problem is to answer whether an OD is logically 

entailed by a set of ODs. While lexicographical order dependency has been studied 

before, it has not been well understood. (The complexity of the inference problem for 
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(lexicographical) order dependency has not been known. We address this in this work.) 

ODs can be declared as an integrity constraint and use to eliminate joins [40]. Even 

if a database has no declared ODs, OD-optimization techniques are still relevant. Lo

cal ODs can arise from aigebraic expressions and SQL functions, and can be used for· 

query optimization [41]. Our experimental results in [40] and [41] over the TPC-DS 

benchmark have shown the usefulness of (lexicographical) ODs for query optimization. 

Lexicographical ODs are specified with respect to lists of attributes, whereas (pointwise) 

ODs are specified with respect to sets of attributes. Working with (lexicographical) ODs 

as defined in this work is much more useful for query optimization than working with 

(pointwise) ODs [16, 17], because the sequence of the attributes in order specifications 

(interesting orders) [37] as in the order-by statement matters. 

As business-intelligence (Bl) applications have become more complex and data vol

umes grow [26, 45], so have the analytic queries needed to support them. The increas

ing complexity raises performance issues and numerous challenges for query optimiza

tion. Worse, traditional optimization methods often fail to apply when logical subtleties 

in database schemas and in queries circumvent them. For example, data-warehouse 

schemas will use surrogate keys, while predicates in analytic queries will use natural 

values (sale_date = '2010-07-01 '). Real world queries will use SQLfunctions (such as 

year(d_date)) and algebraic expressions (such as d_date + 30 days). 

These subtleties cause the optimizer to miss opportunities to use indexes, partition 
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elimination and pipeline operations, and to add potentially expensive operations, such 

as sort, even when the data is already sorted appropriately. This is because semantic 

relationships between the functions and expressions the queries use and the data in the 

database-and between data themselves in the schema, as between surrogate and natural 

keys-are opaque. If these relationships could be discovered and used, more efficient 

query plans would result. 

The relationship on which we focus in this work is order. If the rows of a table were 

ordered by its date column d_date, they would also necessarily be ordered by d_date 

+ 30 days. Indeed, the function (over d_date) of d_date + 30 days is monotonically 

increasing with respect to d_date. For this, we say d_date orders d_date + 30 days. 1 

If an index on d_date could be used to provide results ordered by d_date, then the same 

index would provide the results ordered by d_date + 30 days, since this is the same 

order. This semantic relationship of order is a type of dependency, and we call it an 

order dependency. 

While it will be readily obvious to any reader that d_date orders d_date + 30 days, 

this observation is not for free for the optimizer. It would need explicit techniques to 

recognize the dependency. While this particular order dependency rightfully seems triv-

ial, we shall see there are many that are not. Then "when" and "how" to exploit such 

1 In this case, d_date + 30 days orders d_date also. We then say the two are order equivalent. How
ever, "orders" is not inherently symmetric. Consider year(d_date) and d_date. In this case, d_date orders 
year(d_date), but year(d_date) does not order d_date. 
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dependencies in query planning is far from trivial too. This work is about this aspect of 

query optimization. 

Query 1 Plus thirty days. 

select D.d_date + 30 days, 

max(S.ws_ext_sales_price) as most 

from date_dim D, web_sales S 

wh~re S.ws sold date sk D.d date sk 

and 

D.d date between 

date('l998-0l-Oi') and 

date('2002-01-01') 

group by D.d date + 30 days 

order by D.d date + 30 days; 

Consider the SQL query in Query 1 over the TPC-DS2 schema. In the schema, 

date_dim is a dimension table with the primary key d_date_sk with one row per day. 

{The attribute d_date_sk is a sequential number.) The table has columns d_date, d_month, 

d_quarter, and d_day, and additional columns that qualify the day (such as whether it 

is the weekend, a holiday, and, if so, the name of the holiday). The table web_sales is 

a large fact table recording all individual sales, with ws_sold_date_sk as a foreign key 

referencing date_dim on d_date_sk. 

2http://www.tpc.org 
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Let there be a tree index for date_dim on d_date. The optimizer will miss that the 

index could be used in evaluating Query 1 to accomplish both the group-by and the 

order-by. How might the query be rewritten manually to resolve this? 

• group by d_date + 30 days and order by d_date: 

This is not legal SQL; the attribute in the order-by is not listed in the group-by (as 

such). 

• group by d_date and order by d_date + 30 days: 

This is accepted by DB2; derived attributes-functions and algebraic expressions 

derived over the attributes listed in the group-by (which may include derived at

tributes itself)--can be used in the select and order-by clauses. 

However, this does not resolve the inefficiency. The query plan still explicitly sorts 

to "satisfy" the order-by. 

• group by d_date and order by d_date: 

This does work! The index can now be employed to implement the group-by and 

to satisfy the order-by. 

Of course, it is not the responsibility of the SQL programmer to write queries painsta

kingly-or of an automated BI report system that generates SQL queries in the back

end-in such a way to assure the optimizer will handle it well. This would violate the 

declarative principle of SQL. Even if we tried to put the onus on programmers to be 

careful, they cannot be expe_cted to know what is problematic and what is not. While 
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a clever SQL programmer can sometimes skirt such pitfalls by careful composition (as 

here), more often it is not possible. So, we have to fix it. The optimizer needs to recognize 

that d_date and d_date + 30 days are semantically equivalent for order, thus skipping 

the superfluous sorting step, regardless of how the query is written. 

Query 2 Eliminating trimester and quarter. 

select D.year, D.trimester, D.quarter,. 

D.month, D.day, sum(S.sales) as total 

count(*) as quantity 

from date_dim D, sales S 

where S.date id = D.date id and 

D.year between 2001 and 2004 

and sum(S.sales) > 10000 

group by D.year, D.trimester, D.quarter, 

D.month, D.day 

order by D.year, D.trimester, D.quarter, 

D.month, D.day; 

Next consider the SQL query in Query 2 over a data warehouse schema as in [24]. 

The fact table sales has a foreign key S.date_id which references the dimension table 

date_dim. Date is captured in a hierarchical manner by attributes year~ quarter or 

trimester, month, and day. The values of the attribute quarter divide year into four 

three-month periods, while those of trimester divide it into three four-month periods. 
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.... 

Let there be a B+ tree index for date_dim on year, month, day. The query optimizer 

may not employ this index to evaluate either the group-by or the order-by for the query 

in Query 2, because their specifications do not match the index's search key. 

Of course, it is clear that month functionally determines quarter and trimester. So 

partitioning by year, trimester, quarter, month, day is the same as just by year, month, 

day. In fact, optimizers today would eliminate trimester and quarter from the group-by 

via reasoning over the relevant FDs [37], and then employ the index for the group-by 

operation.3 Note that primary and unique keys are usually declared; this provides much 

FD information to the optimizer. If the schema is normalized, most FDs will have been 

thus captured. This is exploited in [37] for optimization. 

The FD month --t quarter, trimester is not logically sufficient to optimize the order

by operation, however. One would need the additional semantic information of an OD 

that year, month, day orders year, trimester, quarter, month, day. This and similar 

subtleties cause the optimizer to miss opportunities to use indexes and to pipeline op

erations. Expensive operations as sort are added to a query plan, even when the data 

is already sorted properly. By incorporating reasoning over ODs into the optimizer-as 

has already been done for reasoning over FDs [3 7]-many new optimizations would be 

possible [40, 41]. The ordered stream by year, month, day then could satisfy both the 

group-by and the order-by operations on-the-fly. 

3IBM DB2 incorporates such rewrites. 

8 



Our axioms for ODs help us explore beneficial query rewrites. We show how ODs can 

be cast as a new type of integrity constraint to be used in query optimization. We derive 

theorems based on our axioms, which illustrate surprising inferences and equivalences 

over ODs, and which can provide for powerful query rewrites. Working with ODs is more 

involved than with FDs because the order of the attributes matters. Thus, we must work 

with lists of attributes instead of with sets. This necessarily complicates our axioms

compared with Armstrong's axioms for FDs-and the proofs of our theorems. 

In our work we pay special attention to time dimension. (However, we do not limit 

ourselves to time and consider other dimensions.) The time dimension is a significant 

aspect of data warehouses. Data warehouses are often designed to assist in analysis of 

business data over a historical period [24]. Tables often include attributes which refer 

to time. This makes it possible for business analysts to detect the existence of temporal 

patterns. For example, keeping the date of a sale enables analysis over different quarters 

or months of the year, and allows for the comparison of corresponding quarters or months 

over various years. 

The amount of historical data grows quickly. For example, consider an organization 

in the telecommunications industry tracking phone calls over different cities and coun

tries. Integration of data is a complex extract-load-transform (ETL) process that uses 

multiple sources [35]. In order to make the storage of data efficient for analysis, the data 

is often aggregated in a warehouse. It is important to balance the degree of aggregation 
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to support various types of drill down and roll up queries. OLAP functions such as sum, 

count, max, min and avg support the process of granulating data. As a warehouse con

tinually grows, it is important to design scalability from the very beginning, so query 

performance is not sacrificed. We present how the time dimension is modeled in the 

data warehouse, and describe optimization techniques of queries which involve the time 

dimension. 

The outline of the thesis is as follows. 

In Chapter 2 (Fundamentals), we introduce a theoretical framework for ODs. In 

Chapter 2.2, we introduce unidirectional order dependencies. We present a common 

multi-dimensional model in Chapter 2.4. We demonstrate how FDs can be used effec

tively in optimization in Chapter 2.3. This includes putting ODs into a canonical form to 

enable reasoning over ODs in the query optimizer. We discuss how ODs arise in Chapter 

2.5. 

The contributions of this thesis described in Chapters 3 through 4 are as follows. 

1. Optimizing with Order Dependencies. 

(a) In Chapter 3.1.1, we go into further depth how ODs are used to optimize 

queries. 

(b) In Chapter 3.1.2 we present two algorithms (Reduce Order OD and Homog

enize Order OD) and show where and how they are invoked in the optimizer. 

Reduce Order OD puts ODs into a canonical form for matching against inter-
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esting orders. Homogenize Order OD discovers equivalent columns, order

wise. We discuss the utility of these algorithms. 

2. Detecting Order Dependencies. In Chapter 3.2, we show how ODs between columns 

and functions over columns (SQL functions and algebraic expressions) can be au

tomatically detected by the optimizer [ 41 ]. 

(a) These techniques have been implemented within DB2. 

(b) We present a suite of real-world IBM customer queries over the TPC-DS 

benchmark that illustrate the issues, which are then used in Chapter 3.5 for 

an experimental performance evaluation. The optimizer automatically infers 

the associated OD information and uses it to produce the improved query 

plans. 

3. Declaring Order Dependencies. In Chapter 3.4, we consider how OD information 

can be declared, and what types of natural ODs occur in today's schemas [40]. 

(a) Order dependencies can be explicitly declared in our prototype implementa

tion in DB2 as a type of integrity constraint. 

(b) We demonstrate how ODs between surrogate and natural keys can be used 

for strong performance improvement. 

4. Axiomatization for UODs. 

A sound and complete axiomatization for UODs [39], analogous to Armstrong's 

axiomatization for FDs [2]. This provides a formal framework forreasoning about 
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ODs. There are two reasons for one to pursue an axiomatization: 

(a) The axioms provide insight into how dependencies behave - and patterns for 

how dependencies logically follow from others - that are not easily evident 

reasoning from first principles. 

(b) A sound and complete axiomatization is the first necessary step to designing 

an efficient inference procedure. 

5. A hierarchy of OD classes (Chapter 4.2) [43]. 

(a) Lexicographical ODs as defined in this thesis are a proper sub-class of point

wise ODs. (Chapter 4.2.2) The latter is defined in [16]. 

(b) UODs form a proper sub-class of ODs. (Chapter 4.2.3) 

(c) FDs form a proper sub-class ofUODs. (Chapter 4.2.4) 

6. Decidability of the inference problem for ODs. 

Decidability follows from that our class of ODs is a (proper) subclass of pointwise 

ODs (Chapter 4.2.2), for which a sound and complete axiomatization has been 

established [16], and also from the sound and complete elimination procedure for 

ODs. (Chapter 4.4.1) 

7. Complexity. (Chapter 4.3.) [42] 

(a) The inference problem for UODs is co-NP-complete. (The inference problem 

for OD is co-NP-complete too.) (Chapter 4.3.1) 

(b) The inference problem of inferring FDs from ODs is also co-NP-complete, 
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but that it is only linear for the case ofFDs over UODs. (Chapter 4.3.2) 

8. Inference Procedures. (Chapter 4.4.) 

(a) A sound and complete elimination procedure for inference over ODs, for 

which the complexity is exponential [ 42]. This complexity is with respect to 

schema (number of unique attribute in the set ·of prescribed ODs over rela-

tion), not with respect to data. Therefore, it can be used in practice. We have 

implemented elimination procedure in IBM DB2. (Chapter 4.4.1) 

(b) We present in Chapter 4.4.2 chase procedure for testing logical implication 

for ODs with exponential complexity [38]. This complexity is with respect 

to the size of relation R. (This is an alternative approach to elimination pro-

cedure.) 

( c) A restricted, natural domain, the order-compatible transitive domain, which 

makes reasoning over ODs simpler [42].4 (Chapter 4.4.3) 

( d) An efficient, polynomial time inference procedure for testing implication of 

ODs over the transitive domain that is sound and complete. We have imple-

mented this procedure in IBM DB2. (Chapter 4.4.4) 

In Chapter 6, we discuss related work. In Chapter 5, we conclude and consider future 

work. 

4 A domain is restricted if an additional order property is guaranteeed over the schema. The order
compatible transitive domain is quite natural in that it is intuitive, it holds for all real-world business 
domains that we have encountered, and it can easily be verified whether it holds. 
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This work, we believe, opens exciting venues for future work to develop a powerful 

new family of query optimization techniques in database systems. 
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2 Fundamentals 

First, we establish notational conventions and definitions for ODs and UODs. We demon

strate how ODs, similarly as FDs [37], can be used effectively in optimization. Next we 

describe a common multi-dimensional model based on a schema with fact and dimension 

tables. Finally, we discuss how ODs arise in the multi-dimensional model. 

2.1 Framework 

We adopt the notational conventions specified in Table 2.1. We consider a relation R 

with a schema set of attributes U. Let r be an arbitrary table instance over R; thus a 

set of tuples under R's schema with attributes U. We limit table instances to sets in our 

definitions~ to keep our definitions simpler and easier to follow. However, this could be 

changed to multi-sets easily, with no consequences to our axiomatization and inference 

problem results. 

Whenever it is necessary we assume a column(#) in R that takes a unique value per 

tuple, without loss of generality. This alleviates any need to work with a table instance as 
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Table 2.1: Notational conventions. 

• Relations. 

- A capital letter-in bold italics represents a relation: R. 

- A small letter in bold: r denotes a specific relation instance (a table). 

- We use capital letters to represent single attributes: A, B and C. 

- Additionally, s and t denote tuples and tA denotes the value of attribute A in 

tuple t. 

• Sets. 

- Calligraphic letters X, Y, and Z denote sets. 

- tx denotes the projection of tuple t on X. 

- XY is shorthand for X UY. 

• Lists 

- X, Y and Z denote lists. (Note X could represent the empty list,[].) 

- List [A, B, C] denotes an explicit list. 

- [A IT] denotes a list with head A and tail T, the remaining list with the first 

element removed. 

- XV is shorthand for X o Y (X concatenate Y). 

- Set X denotes the set of elements in list X. Anyplace a set is expected but a 

list appears, the list is cast to a set; e.g., tx denotes tx. 

- x' denotes some other permutation of elements of list X. 
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bags of tuples; we consider them as sets. It removes the possibility that we might "lose" 

a row from r when we modify the value of one of its columns (beside #), since # will still 

distinguish it from other tuples. 

We model order specification as provided by SQL's order-by clause for specifying 

lexicographical orderings. 

Definition 1 (order specification) 

An order specification is a list of directionality-marked attributes (or marked attributes, 

for short). 

There are two directionality operators: asc and desc, indicating ascending and 

descending, respectively. Each operator is unmy, applies over an attribute, and is written 

---+ ~ 

postfix; e.g., A asc and B desc. As shorthand notation, we write A and A for A asc 

and A desc, respectively. 

In any context an order specification is expected but a list of (unmarked) attributes 

appears, the list is cast to the order specification with each attribute marked as asc; e.g., 

---+ ---+ ---+ 5 
[A, B, C] is cast to [A, B, C ). 

The order specification X defines an algebraic relation '~x'. The operator '~x' de-

fines a weak total order over any set of tuples. 

5 Ascending is the default for SQL in order-by for any attributes for which directionality is not explicitly 
indicated. 
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Definition 2 (algebraic relation 'jx ') 

Let X be a list of marked attributes. For two tuples rands (over a schema containing 

the attributes in X), r jx s iff 

---+ 
• X = [A I 71 and rA < SA; or 

+---
• X = [A 171 and fA >SA; or 

---+ +---
• X= [A 171 orX= [A 171, rA =SA, andrjrs: or 

• X= []. 

Let r -<x s iff r jx s but s ~x r. 

We now define order dependencies. 

Definition 3 (order dependency) 

Let X and Y be lists of marked attributes. X f--t Y denotes an order dependency (OD), 

read as X orders Y. Let R be a relation (over a schema that contains the attributes that 

appear in X and Y), and let r be a relation instance of R Table r satisfies X f---+ Y 

(r f= X f--t Y) iff,for alls, t E r, r jx s implies r jy s. The OD X f---+ Y is said to hold 

for R (R f= X f---+ Y) iff, for each admissible relational instance r of R, table r satisfies 

X 1-+ Y. A dependency X 1-+ Y is trivial iff, for all r, r f= X 1-+ Y. (This is written as 

f= X 1-+ Y.) We write X +--+ Y, read as X and Y are order equivalent, iff X orders Y and 

YordersX 

18 



Table 2.2: Relational instance r. 

I # II A I B I c I D I E I 

I ~ II ~ I ~ I : I ~ I ! I 
Example 1 

Let r be a relation instance over R with attributes A, B, C, D, and E, as shown in Table 

--t --t --t --t --t --t --t --t --t --t 

2.2. Noter I= [A, C, D] rt [E, B], but r ~[A, C, D] rt [B, E]. Also noter I= 
f- f- --t f- f- f- f- --t --t f- --t --t 

[ C, A] rt [ B, D, E ], but r ~ [ C, A] rt [ E, B , D ]. Furthermore, r I= [ C] rt [ D ), 

--t --t 

but r ~ [ C] rt [ E] 

Order dependencies can be prescriptive statements on the relation, as can functional 

dependencies. That is, they can be used as a type of integrity constraint to prescribe 

which instances are admissible. 

There is a strong relationship between ODs and FDs. Any OD implies an FD, modulo 

lists and sets, but not vice versa. In fact, this remains true when we limit to UODs. 

Lemma 1 (relationship between ODs and FDs) 

For eve1y instance r of relation R. if a UOD X rt Y holds, then the FD X ---+ Y is true. 

Proof 

Let rows s and t E r. Assume that sx = tx. Hence, s ~x t and t ~x s. By definition of 

an OD, s ~v t and t ~vs. Therefore, sy = ty holds. 0 

We introduce one additional order relation, order compatibility. 
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Definition 4 (order compatible) 

Order specifications X and Y are order compatible (independently from an instance), 

denoted as X rv Y, iff XY +-t YX 

The empty order specification [], is order compatible with any order specification. 

Interestingly, order compatibility does not add expressiveness over order dependencies 

as already introduced. Indeed, we can define it directly as an OD of a specific form. 

Because the concept proves invaluable for our theoretical framework described in Section 

4, however, for reasoning about ODs, we introduce it explicitly (Definition 4) for this 

purpose. 

X and Y may be order compatible without either X ~ Y. At first glance, this might 

seem surprising. A degenerate case as we show in demonstrates this quickly, however. 

2.2 Unidirectional ODs 

We accommodate bidirectionality (asc and desc) in order specifications for generality's 

sake, and because SQL's order-by clause does. Of course, marking attributes adds com

plication. It is reasonable to ask whether this bidirectionality adds expressiveness and if 

so, whether the added expressiveness is useful. 

One can consider a simplified version of ODs for which we remove this bidirection

ality. Call a set of ODs unidirectional in which any given attribute appears in the ODs 
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either marked as all asc or all as desc, but not both. Without loss of generality, one 

can consider just sets of ODs in which all attribute occurrences are marked as asc. Call 

an individual OD in which all attributes are marked as asc a unidirectional order depen

dency (UOD). This restriction to just ascending has the advantage that one can verify that 

a set of ODs is unidirectional by verifying in isolation that each OD is unidirectional. 

Definition 5 (unidirectional order dependency) 

An order dependency is unidirectional when all attributes within it are marked asc. In 

contrast, call an order dependency which has both attributes marked as asc and as desc 

a bidirectional order dependency (BOD). 

UODs are a sub-class of ODs, by definition. 

2.3 Functional Dependencies 

That attribute Afunctionally determines attribute B (with respect to a relational instance 

r) means that knowing values are the same for two rows of A tells one the values for the 

same two rows for Balso has to be the same. That is, if A has the value V in tuple s E r 

and B has the value Wins, then for any other tuple t Er in which A has value V, B again 

has value W. 

This generalizes to sets of attributes easily. A set of attributes X functionally de

termines a set of attributes Y (with respect to a relational instance r) if any value for 
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X-that is, given values for each attribute in X-is associated with a single value for 

each attribute of Y in r. 

We write X -t Y to denote X functionally determines Y, and we refer to X -t Y 

as a functional dependency (FD). An FD can be prescriptive; that is, we posit it as an 

integrity constraint. Then, only instances r of R for which the FD is valid are permitted. 

This very simple notion, of course, came to have profound importance in databases, 

especially in schema design. Primary keys are functional dependencies. In design, rea

soning over functional dependencies is needed. Given a set of FDs prescribed on R- that 

is, guaranteed to be true with respect to any admissible instance r - will another given 

FD necessarily be true? 

While functional dependency is a very simple notion, reasoning over them (inference 

procedure) is, somewhat surprisingly, not nearly as simple [3, 22]. To gain insight into 

how sets of functional dependencies behave, and to simplify the reasoning process over 

them, Armstrong provided an axiomatization for them [2]. 

Armstrong proved soundness of his axioms, and his axiomatization has been proved 

complete for logical inference over functional dependencies. Armstrong's axioms sim

plified reasoning over FDs, which allowed for the evolution of database design theory 

and normalization. 

Beyond layout and indexes, FDs play additional important roles in query optimiza

tion. (This is exploited in [13].) Knowledge about prescribed FDs on the schema are 
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1. Reflexivity. 

x~y 

X--+ y 

2. Augmentation. 

xz--+ yz 

2. Transitivity. 

Figure 2.1: Axioms for FDs. 

-- ._.,. 

used in the query-rewrite phase of optimization potentially to eliminate predicates. They 

are used in the cost-based phase to do better cardinality estimation. They are also used 

to recognize partitioning equivalences of result streams within query plans. 

Functional dependency specifically aligns with the notion of partitioning, which 

manifests itself explicitly in SQL in group by. Lastly, FDs are pertinent to people when 

writing queries, as well. One must be familiar with the semantics of the database to be 

able to write queries that mean what is intended. 
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2.4 Multidimensional Model 

The TPC-DS benchmark is for decision-support, and its schema typifies that of data 

warehouses (DWs) designed to aid analysis of business over a historical period. 

The schema is a common multi-dimensional model based on a schema with fact and 

dimension tables. (See Appendix A for the details.) Fact tables will have many rows 

capturing measures or events over time [28], such as sales. Dimension tables model the 

entities such as the customers and products. Date is often made an explicit dimension 

table, because the designers need to keep specific data about given dates. Date dimension 

tables, apart from storing the date as a column, can also keep descriptions of the date 

which can be filtering fields and labels for business reporting. Columns in the date table 

can include, for example, day of week, the day number in a calendar month, the month 

number in year, month name, and fiscal periods. We can similarly include a holiday 

indicator, weekday indicator, the name of a holiday (Easter, Thanksgiving, Valentines 

Day), the name of special events (Back to School, Super Bowl), and so forth. In the 

TPC-DS schema, the date dimension has a granularity of day. (See Figure 2.3.) 

We distinguish date and time dimensions. A date dimension refers to a table that 

is granulated by day, whereas a time dimension represents the time of day. Such a di

mension is practically universal as it appears in any data warehouse that is a historical 

repository of data [24]. It is often recommended to separate the time of the day from 
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the date dimension in order to keep the date dimension small. As the time description is 

not usually required in a data warehouse, it is a good practice to keep the time attribute 

out of the date table in the. fact table. Time of day might be represented as the number 

of milliseconds, seconds or minutes since midnight. For optimization reasons, the gran

ularity of the date in the data dimension table is sometimes even further aggregated to 

the level of week or month. It is also a common practice to keep the data from previous 

years aggregated with higher granularity. The time dimension is traditionally used for 

tracking changes over measures. A model which allows a conceptual representation of 

time-varying levels, attributes and hierarchies is described in [30]. In that model, the 

time dimension can be used additionally to track changes in the other dimensions. In our 

work, we focus on the time dimension as the entry point (by join) to the fact table. 

Data kept about the entities is factored out into the dimension tables (and out of 

the fact table) based on good principles of design (normalization), but also for practical 

reasons. Because the fact table will be very large row-wise, it is important to keep the 

size of rows small. A measure is taken at the intersection of the fact table and dimensions 

such as date, item or location. All measurement rows in the fact table are at the same 

granularity. Fact measures are usually numeric and additive. Dimension tables are a 

fundamental part of a data warehouse that contain the description of the data [9]. The 

dimension tables are necessary to understand the data in the fact tables. The fact tables 

can have a very large number of records, but are compact in terms of the number of 
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columns. It is typical that the fact tables take about 90% of the entire space of the data 

warehouse. Conversely, the dimension tables are shallow in their number of records, but 

have many columns for the descriptive attributes. 

Designing date dimensions is a challenge. There are two main methods to represent 

the date in a data warehouse. The first approach is to keep the date dimension in the fact 

table, as shown in Figure 2.2. If the date attribute is explicitly in a fact table, we can 

make a direct SQL query involving date that will not necessitate a join. Filtering based 

on date can avoid a join with a date dimension table (which could be quite expensive), 

so that the query is evaluated solely over the fact table. The second technique is to create 

a separate date dimension table. There are good reasons why the second method is used 

more often. SQL date functions do not assist in filtering based on weekdays, weekends, 

holidays, major events and fiscal periods. Since there are no such built-in functions, it is 

better to store these as data in a dimensional table. Also, most database systems do not 

support index calculations using functions (e.g., month, day). 

Item Key (PK) 
category 
Class 
Current price 
Descritpion 
Item attributes ... 

Figure 2.2: Date in fact table. 

Designers sometimes replace a date dimension table by representing time via buckets 
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in the fact table [24]. This solution is not commonly used though, because it is not 

flexible. With a predefined number of buckets which represent month one, month two, 

and so on, at some point the table has to be altered in order to add a bucket for a new 

month, or to shift all the buckets. This may not be the best choice as the month first on the 

list will be lost. A second disadvantage of this approach is that it is not possible to keep 

the description of date as specified in Chapter 2.2 so there is no way to get information 

regarding what the date refers to. 

A common design question for DWs is whether to use surrogate keys [24]. Surrogate 

keys are unique identifiers usually generated as sequential integers. A join between the 

fact table and a dimension table is based on surrogate keys if we use surrogate keys 

for dimension tables. It is considered good practice to use surrogate keys instead of 

operational keys (derived from external names such as production codes) which may have 

built-in dependencies. Avoiding using an operational key as the primary key of the table 

is a good idea because our expectations might be invalidated over the time. In business 

organizations, op.erational codes such as product codes are reassigned after some period 

of time. Surrogate keys offer the data warehouse a mechanism to distinguish between 

two different instances of the same product with different operational codes. Developing 

the data warehouse with operational keys might be faster, but implementing surrogate 

keys can bring benefits in the long run. The main advantage of surrogate keys is that they 

enable keeping track of changes independently from the key. Even if the operational 
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key changes in the next ETL cycle, it can still stay in the data warehouse with the same 

surrogate key. Also, extracting data from multiple sources may be easier using surrogate 

keys as they allow integrating data from multiple source systems even if they do not have 

well-matched source keys. Using INTEGER (four bytes) for a surrogate key is adequate 

for a dimension table as it provides over two billion possible values (232- 1). 

SQL's date data type would be a good natural key in the date table. However, it used 

to be common in database systems-and still is in some-for the date data type to take 

eight bytes. (Note that DB2 uses a compact four byte DATE: two for year, one for month 

and one for the day.) Given a fact table with a billion rows, each additional byte per row 

is a gigabyte of storage. And this storage is not necessarily inexpensive. To achieve high 

performance, many providers of data warehouse systems require expensive, proprietary 

hardware. Because of the cost of the disk, which must be efficient and reliable, database 

schema designers must pay attention to saving space. More importantly, most queries 

scan rows from the fact table. By making the fact table more compact, this reduces the 

I/O expense of evaluating these queries. (Even though there is no space savings in DB2 as 

there might be in other database systems, designers often still use integer surrogate keys 

to be consistent with other dimension surrogate keys.) So instead, a four-byte integer 

could be used as a surrogate key in the date table; then, the fact table's foreign-key field 

referencing table date is smaller. This is the design choice in TPC-DS's schema. 

Furthermore, the date dimension table can be populated at the time the DW is created. 
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It does not undergo regular updates. Its surrogate key can be generated via increment, in 

the order of the date values. Therefore, there will be an order equivalence between the 

surrogate key and the date's day. 

While the use of the surrogate key helps reduce the size of the fact table, it does 

introduce costs at query time. Queries will often have predicates involving (natural) date 

values to access data from the fact table. This necessitates a potentially expensive join 

between the fact and date tables. 

Time dimension is often a central component of a data warehouse. Our observations 

with customer queries at IBM have shown that almost all queries involve time attributes. 

Therefore, being able to optimize queries with respect to data warehouse's time dimen

sions could offer large returns. We observe it to be quite common that the selectivity 

(filter factor) for the time predicates in queries to be the greatest filtering of all the pred

icates. This means the date dimension table is often joined first with the fact table in the 

query plan. We show that this blind join can be replaced with a pair of fast probes. 

Large fact tables are often partitioned to speed up evaluation and for easier roll-in 

and roll-out of data. The date surrogate key which is a date sequence number enables 

physical partitioning of the fact table on the date key (foreign key from the date dimen

sion). Partitioning the fact table on the date key is well-kept throughout the changes as 

date is normally unchanged. We have observed cases when the optimizer cannot exploit 

partition elimination in order to reduce 1/0. The entire fact table may need to be scanned 

29 



rather than just the relevant partitions for the query. We need to ensure that the optimizer 

can take advantage of the partitioning. We describe this problem and offer a solution in 

Chapter 3.4. 

Date Surrogate Key (PK) 
Date 
Date attributes ... 

Date Surrogate Key (FK) 
Customer Surrogate Key (FK) 
Other Surrogate Keys ... 
Measures ... 

~t~=~I 
Customer Surrogate Key (PK) 
Customer Attributes ... 

i~l~ 
... Surrogate Key (PK) 
Other Attrbutes ... 

Figure 2.3: Standard TPC-DS schema. 

IBM recommends to its business customers to use a natural key for the date table 

(using the date data type). IBM DB2 manages to store the date data type in a compact 

four bytes. The advantages of using a surrogate key in this case are nullified. For this 

reason, we consider also a variation of the TPC-DS schema as in Figure 2.4 which uses 

the natural date key in the date table and in the fact table for the foreign key. 

Date (PK) 

Date attributes ... 

'tli~EIEI 
Date (FK) 1---.i ... Surrogate Key (PK) 
Customer Surrogate Key (FK) Other Attrbutes .•. 
Other Surrogate Keys ••. 
Measures ... 

Customer Surrogate Key (PK) 

Customer Attributes ..• 

Figure 2.4: Alternative TPC-DS schema with natural date key. 

For our performance study (Chapter 3.5) of the technique described in Chapter 3.2, 
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Table 2.3: An instance of the table date_dim. 

I date_id I date I year I month I day I quarter I trimester I 
8300 20100830 2010 08 30 3 2 
8301 20100931 2010 09 31 3 3 
8302 20110105 2011 01 05 1 1 
8303 20110106 2011 01 06 1 1 
8304 20110401 2011 04 01 2 1 

we test six queries under the unmodified TPC-DS schema (Figure 2.3), and three queries 

under the alternative schema (Figure 2.4). The queries are motivated and presented in 

the next chapter. The two schemas allow us to illustrate different optimizations using 

ODs that can be accomplished by detecting monotonicity. It also shows that we achieve 

good performance improvements in both, so our technique do not require specific schema 

designs. 

2.5 Ordered Domains 

Example 2 and Table 2.3 refer to the date domain described in Chapter I and Chapter 

2.4. 

Example 2 (ODs over an instance of the date_dim.) 

Order dependencies 

[year, month, day] rt [date] and 

[date_id] rt [year, month, day] 

are satisfied in Table 2.3. However, order dependencies 
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[date_id] 1-+ [year, day, month] and 

[year, month] 1-+ [date] 

are falsified by Table 2.3. 

While order is not part of the relational model (Chapter 3.1), per se, ordered value 

domains are of key importance for most databases, and most queries. Many types of 

ODs are apparent in the semantics of databases (even though these ODs are not declared 

explicitly). Perhaps the most important of these ordered domains in practice is time. 

Time and date (time at a coarser granularity) are supported in the SQL standard in a rich 

manner. The popular TPC-DS benchmark consists of 99 queries. Of these, 85 involve 

date operators and predicates and five involve time operators and predicates. Even if the 

concept of ODs was only applied to date and time, it could still be of great use for query 

optimization, as shown in Query 2. However, ordered domains are not only limited 

to date and time. They arise in many other domains from business semantics, such as 

sequence numbers, surrogate keys, measured values such as sales, stock prices and taxes 

(Example 3). 

Figure 2.5 represents possible ODs, in which the left-hand side of a dependency is 

time and the right-hand side is one of the paths through the diagram. Each node is an 

equivalent class of the list of attributes leading up to it, with respect to the starting point. 

Theorem 12 proves that any list appearing on the left side can be suffixed by attributes 

appearing along an equivalent path. This is shown in Example 29. 
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Time 

Quarter 

Century Week 

Date 

Figure 2.5: Time diagram. 

As discussed earlier, order dependencies are not limited to date and time. They com

monly arise in many other domains. 

Example 3 (Taxes) Consider table taxes in Table 2. 4, which has columns for the taxable 

salary, tax group, tax subgroup, taxes on the salary, and the tax's percent of the 

sala1y. The tax groups are based on the level of sala7y and, therefore, increase with 

the salary. (The tax subgroup increases for the same group as the sala1y goes up, but 

oscillates within a group.) Assume that the taxes go up with income and are calculated 

by as a percentage. Thus, we can declare 

[salary) r--t [taxes], 

[salary) r--t [percent], and 

[salary) r--t [group, subgroup). 

It logically follows from these ODs that 
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Table 2.4: Table taxes. 

id I salary I percent I taxes I group I subgroup I 
100 5000 19% 950 A II 
101 6000 19% 1140 A III 
102 3000 19% 570 A I 
103 20000 30% 6000 B I 
104 50000 40% 20000 c I 

[salary] r--t [taxes, percent, group, subgroup]. 

This OD was derived automatically using our inference procedure for ODs described 

below. 

Let the table taxes in Table 2.4 have a clustered index on salary. A query with order 

by taxes, percentage, group, subgroup given the three ODs as declared in Example 3 

could then be evaluated using the index on salary, as the inference procedure could infer 

that 

[salary] r--t [taxes, percent, group, subgroup]. 

Obviously, the database administrator could have declared that OD too; but that is un-

likely. 

In Chapter 3.4, we had assumed that [date_sk] r--t [date]was declared. Instead, 

however, we may have had the following ODs: 

[date_sk] r--t [year, month, day], and 

[year, month, day] r--t [d_date]. 

From these, [date_sk] r--t [date] can be concluded. 
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The optimizer needs the means to discover ODs that logically follow from known 

ODs to benefit most from our techniques. We present an inference procedure as a formal 

means to do this. 

We are interested in ODs because asc and desc bidirectional lexicographical orders 

are part of SQL standard. Consider a modification of Query 2 with order by year asc, 

quarter asc, month asc, day asc, sum(S.sales) desc. A query plan could then also 

eliminate quarter from the order-by clause as 

-----+ -----+ --t +-----
[year, quarter, month, day, sum( sales)] t-t 

-----+ -----+ --t +-----
[year, month, day, sum(sales)] 

is satisfied. 
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3 Business-Intelligence Queries 

In Chapter 3.1, we discuss how current query optimizers can be extended to use ODs. In 

Chapter 3.1.1, we delve more in depth into how order is presently used in optimization, 

and how ODs extend the effectiveness of this. In Chapter 3.1.2 we present two algo

rithms, Reduce Order OD and Homogenize Order OD, that extend broadly two existing 

algorithms in DB2 for matching interesting orders [37] further to accommodate ODs. Of 

course, for these techniques to add benefit, ODs must exist and be known. ODs can arise 

from three sources: they can be detected in the context of the query, they may be de

clared for the database as integrity constraints (as SQL check constraint); and they may 

be inferred from known ODs. 

Local order dependencies can arise within a query's scope, due to the query's seman

tics and constructs. For instance, if there is a predicate A= Bin the where clause, then 

clearly the OD [A] t--t [B] is satisfied in the query's scope but is not necessarily satisfied 

generally in the database). (Local order dependencies can be also derived for views in 

this sense.) Local ODs also arise through a query's derived attributes via SQL func-
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tions and algebraic expressions, as motivated in Chapter 1. The optimizer must detect 

automatically local ODs to use them. In Chapter 3.2, we demonstrate the types of local 

ODs we have instrumented DB2 to detect and use, and we illustrate these with customer

motivated, real-world queries over the TPC-DS schema. (We generalize it in Algorithm 

1.) These queries are used in our performance study, presented in Chapter 3.5. 

In Chapter 3.3, we consider how to embed.information of the natural date value into 

the date surrogate key. This preserves most of the benefits of using surrogate keys, and it 

lets us rewrite the query for optimization. There are certain disadvantages to using em

bedded surrogate keys, however, so this does not offer a general solution. We introduce 

universal solution that considers ODs declared on a database as integrity constraints. In 

Chapter 3.4, we address this. 

Even with the ODs declared for the database and the local ODs deduced within the 

scope of the query, the optimizer might miss opportunities. There may be an OD that 

logically follows from the declared and local ODs that would allow for a better plan, 

while none of the declared or local ODs match directly. For instance, again assume there 

is a predicate A = B in the where clause. If we also knew the declared OD [A] f--t [Z], 

within the query's scope, OD [B] f--t [Z] is also satisfied (by transitivity of ODs [39]). 

Therefore, the optimizer has a need to infer ODs from others. In Chapter 4.4, we show 

when and where the optimizer would invoke OD-inference procedures (two of which 

were presented in Chapter 3.1.2 as algorithm, for canonicalization), and we develop such 
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procedures. We have demonstrated that dramatic gain in query performance can be had 

in business-intelligence queries in Chapter 3.5. 

To the best of our knowledge, we are the first to bring reasoning over order depen-

dencies into the query optimizer of a relational database system. 

3.1 Using ODs in the Optimizer 

We motivate ODs in analogy to FDs: FDs are to group-by as ODs are to order-by. Order 

is an additional property over a partition that plays important roles in databases.6 ODs 

can be used to great advantage in query processing, just as FDs have been [3 7]. 

3.1.1 Order in Optimization 

On the one hand, order is irrelevant in the relational model on the logical side. Relational 

instances are sets of attributes, and a schema is a set of attributes. So there is no notion 

of order. (For different data models such as XML, order is an integral part of the model 

itself.) SQL concedes a single order-by clause to be appended to a query to order the 

result set, as a convenience, given that people usually want to see the results organized 

in a given way. (The SQL extension of window aggregation provides this too.) 

6The group-by and order-by clauses in SQL are syntactically the same, excepting the optional sort
direction directives-ascending (asc) and descending (desc}-in order-by. Their meanings are quite sim
ilar too; order-by results in an ordered list (ordering) of the answer tuples, which matches the partitioning 
of the tuples with respect to an equivalent group-by. Of course, group-by's are over sets of attributes (as 
are FDs), while order-by's are over lists of attributes (as are ODs), as the order of attributes is important to 
specify the lexicographical order at the data. This difference makes working with ODs harder. 

38 



On the other hand, order plays an important role on the physical side, in storage, 

indexes, and optimization. 

• indexes. 

Data is often referenced by (clustered) tree indexes, which provides ordered access. 

• pipelining. 

In a query plan tree, pipelining is a prevalent technique. This is when a parent op

erator can pull its input streams from its child operators as they produce their (out

put) streams. The operator's procedure may need its input sorted in a given way, as 

does a merge join. An operator such as group-by or order-by can be handled very 

efficiently on-the-fly when its input stream is ordered appropriately. Pipelining 

between operators also saves processing and possibly 1/0 since the results of the 

child operator do not have to be fully materialized, spilled to disk with expensive 

1/0 overhead. 

• interesting orders. 

Some access paths and procedures will result in the operator's output stream being 

ordered. It may be that a procedure can be chosen for the parent operator which re

lies on this ordered stream for input and which is less expensive than the alternative 

choices. 

This enables pipelining between the operators, and may also be less expensive 

as it allows the optimizer to forgo inserting an expensive operation in between. 
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For example, the operator in the tree under a group-by might provide its output 

ordered in such a way the group-by's partitioning can be done on-the-fly. If not, an 

expensive partitioning or sort operation has to be inserted into the tree. Interesting 

orders can be effective forjoin, order-by, group-by, partition-by, and distinct. 

Say that we know the database satisfies X f-+ Y. Given a query with order by Y, we 

can rewrite it instead with order by X. Note that, unless X +--+ Y, the original and rewritten 

query are not "semantically" equivalent! This is an important property for query plans 

with ordered tuple streams. It means order equivalences are not required for valid query 

rewrites; directional order dependencies (that is, X f-+ Y instead of X +--+ Y) suffice. This 

provides us with much versatility for rewrites. The rewritten query satisfies the intent 

of the original (but, perhaps, not vice versa). Strengthening the order-by conditions is 

allowed, but weakening them is not. 

One does not need order equivalences then to accomplish useful query rewrites. Di

rectional order dependencies (e.g., X f-+ Y, but not Y f-+ X) suffice. This makes ODs 

that much more versatile for rewrites.· Notice this differs from the use of FDs for query 

rewrites, for instance, to simplify group-by's. To replace year, quarter, month by year, 

month in the group-by for the query in the example in Chapter 1, one should know 

the two are functionally equivalent. One could not replace it by year, month, day, for 

example, even though {year, month, day}--+ {year, quarter, month}. 

Sorting is an expensive operator. The key goal of our OD-optimization is to opti-
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mize or eliminate sorting operations in query plans whenever possible. Our techniques 

are built upon the seminal techniques for order optimization from [37] as described in 

Chapter 3.1.2. 

Query 3 Template of the query. 

select year(a.y), ... 

from a, b 

where a.x = b.x 

group by year(a.y) 

order by year(a.y); 

Figure 3 .1 : Query access plan. 

Query 3 is a query sketch of a common pattern seen in analytic queries. It employs 

the SQL function year. Figure 3.1 illustrates a query plan one would expect for the 

41 



query in Query 3. Let the index employed as the access path on table a be on its column 

y, a date type. A sort operator is placed under the group-by and order-by operators, 

regardless, as the optimizer does not recognize that a.y orders year(a.y). Our work is to 

recognize these order dependencies, to "remove" the sort operator from access plan. 

3.1.2 Canonical Form 

The critical role of interesting orders was recognized quite early [36]. Because we are in

terested in ordered streams between operators in the query plan (to allow for pipelining, 

selecting more efficient procedures, and eliminating intermediate sort and partitioning 

steps), the optimizer needs to track which stream orders are possible to generate by alter

native sub-plans. The ones that the optimizer tracks during query plan construction are 

called interesting orders. 

The optimizer needs to determine which orders that sub-plans can produce are "inter

esting"; an order is not interesting if it is of no potential benefit to any other operator. In 

DB2, interesting orders are generated in a top-down scan of the graph of the query prior 

to the planning phase. (This is called the order scan.) Interesting orders are considered 

for join, order-by, group-by, partition-by and distinct operators. They are represented as 

lists of attributes. Interesting orders are pushed down and DB2 optimizer tries to combine 

interesting orders whenever possible. As interesting orders are pushed down, they can 

tum into sort-ahead orders. (Sort-ahead allows a sort for something like order-by to be 
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pushed into a join tree.) This process enables multiple interesting orders to be satisfied 

by one sort. Different alternative plans are tried and the least expensive is chosen. 

Generating interesting orders (order specifications) is a complex task. Many different 

orders could apply for a given operation. For example, group by Ao, ... , An-i can be 

accommodated on-the-fly by an input stream ordered by [Ap
0

, ... , Apn_
1
], for any one of 

then! permutations of {p0 , ... , Pn-i} ~ {O, ... , n - 1 }. Matching order specifications 

is also a complex task. For instance, group by Ai, A2 , A3 can be done on-the-fly with an 

input stream ordered by [A3 , Ai, A2 , A4], but not by [A3 , Ai,~, A2]. 

On the one hand, the number of orders deemed "interesting" must be contained be

cause of the sheer number of possibilities. On the other hand, we want to label more of 

those orders as "interesting" which would offer more planning options. In particular, we 

should recognize any order that is order equivalent with, or that orders, any order already 

marked as interesting. 

One of the most basic operations used by order optimization is reduction [3 7]. Re

duction is the method of rewriting an order specification in a simple canonical form. 

This includes substituting each column in the specification by an equivalent one, and 

then removing all redundant columns. Reduction is fundamental for simplifying an or

der specification 0 = [Oo, Oi, ... , On-i]. 

In [37], the authors explored the important role of order for optimizing queries. They 

introduced query rewrites in IBM DB2 that could exchange one interesting order by 
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another, when it is known that the orders were order equivalent (as defined in this work). 

They employ functional dependencies for this very task. The group by A1 , A2 , A3 can 

Definition 6 (generated attribute) 

A generated attribute is an attribute computed from other column using algebraic ex-

press ions and SQL functions. 

Example 4 (attribute generated based on date and month) 

Let G = year(d_date)*100 + month(d_month). Thus, G is a generated attribute. 

We extend further the techniques of [37] by also employing order dependencies to 

recognize more order optimization techniques. (Their rewrites rely on FD information 

available to the optimizer, but do not use order dependencies.) 

They introduced an algorithm, Reduce Order, which traverses the interesting-order 

list of attributes from right to left, that checks to eliminate attributes. This is for putting 

interesting orders into a canonical form. 7 We extend this algorithm8 by iterating through 

the list, additionally checking following. 

7The main body of their Reduce Order algorithm are lines 4 and 9-10 from Algorithm 1. 

8In [39] we focused on order optimization techniques based on an axiomatization of ODs. In each 
iteration through the list, algorithm additionally checks whether any postfix list with respect to the current 
attribute - that is, a list of attributes to the right of the current - orders the current attribute. If so, the 
attribute is dropped from the list. In this work, we base the reduction on testing logical implication and 
algebraic expressions. This is more general and more efficient. 
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Algorithm 1 Reduce Order OD 

Input: A set of ODs M and 

order specification 0 = [Q0, Q 1, ... , Qn_1], where Qj is an attribute. 

Output: The reduced version ofO. 

1: for i ~ 0 ton - 1 do 

2: if Qi is a generated attribute from algebraic expression G and Qi +--+ G then 

3: 0 = [Qo, ... , Qi-1, G, Qi+i, ... , Qn-1] 

4: Rewrite 0 in terms of each column's equivalence class with a designated represen

tative (called the equivalence class head) [3 7]. 

5: for i ~ n - 1 to 0 do 

6: Let B = {Qo, ... , Qi-1} 

7: · if order specification is a single (0 = [Q0]), generated attribute from algebraic 

expression G and G f--7 Q0 then 

8: 0 = [G] 

9: else if B ---+ Qi then 

10: Remove Qi from 0 [3 7] 

11: else if [Qo, ... , Qi-i, Qi+1, ... , Qn-1] f--7 [Qo, ... , Qn-1] then 

12: Remove Oi from 0 

13: return 0 
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• Whether the currently considered attribute Qi is a generated attribute from G and 

Qi ~ G. If so, the attribute Qi is replaced by the attribute G in the list, 0 = 

• Whether the order specification is a single, generated attribute from an attribute G. 

(Call this attribute Q 0 .) If, G ~ Q 0 , the attribute Q 0 is replaced by the attribute 

G in the list, 0 = [G]. Detecting monotonicity property for generated attributes is 

described in detail in Chapter 3 .2. 

• Whether the list without the attribute being currently considered orders the full list. 

If so, the attribute is dropped from the current list. 

With this, we can optimize queries such as Query 2 in Chapter 1. We infer 

[d_year, d_month, d_day] ~ 

[d_year, d_quarter, d_month, d_day] 

from the set of declared ODs. Then, both the order-by and group-by can be reduced from 

d_year, d_month, d_quarter, d_day to just d_year, d_month, d_day. (Similarly, we can 

optimize Query 1 by detecting that d_date ~ d;._date + 30 days.) 

Example 5 (Canonical form with dependencies) 

Consider statement group by d_date + 30 days, d_year, d_month. The canonical form 

is necessa1y to recognize that this is equivalent to group by d_date, d_year, d_month. It 

is only after that could reductions by FDs - d_date ---+ d_year and d_date ---+ d_month 

- be applied to reduce this even further to group by d_date. 
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Reduce Order OD is correct for reducing an the order specification because removing 

Qi from the list using a FD B --+ Qi is part of Reduce Order algorithm described in [3 7] 

(Algorithm 1, lines 9-10). Given an order dependency X ~ Y, the clause order by Y, 

can be rewritten with order by X, as strengthening the order-by conditions is allowed as 

described in Chapter 3.1 (Algorithm 1, lines 7-8 and Algorithm 1, lines 11-12). It is also 

sound to replace order equivalent attributes (Qi +--+ G, Algorithm 1 lines 2-3). 

Note that, when sorting is required, the simplified version of 0 provides a reduced 

number of sorting columns. This is important for minimizing sort costs. It may also 

happen that because of a reduced 0, an index can be matched, eliminating the need for a 

sort operator altogether. 

In DB2, some columns might be substituted with equivalent columns. For instance, 

columns can be substituted with the ones on which an index is declared. This process is 

called homogenization. The Homogenize Order algorithm is described in [3 7]. It uses 

equivalent classes to substitute columns in an interesting order, 0 = [Q0 , Q 1 , ... , Qn_1], 

from a target order T. We extend the algorithm as Homogenize Order OD to account for 

ODs. 

The algorithm Homogenize Order OD is correct for substituing with equivalent columns 

because, given an OD A +--+ B, if the data are ordered by A, they are also ordered by B 

(and vice versa), so A can be substituted by B in an interesting order 0 (Algorithm 2 

lines 3--4 ). 
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Algorithm 2 Homogenize Order OD 

Input: A set of ODs M, 

an interesting order 0 = [00 , 01, ... , On-1), and 

a target order T = [To, T1, ... , T m-d 

Output: 

0 homogenized to T marked as OT or 

returned "false" indicating that OT cannot be found. 

1: Reduce 0 

2: Using the set of ODs M try to substitute each column in 0 from T 

3: if for each A in 0 there exists B in T such that A ~ B then 

4: return OT 

5: else 

6: return "false" 

3.2 Detecting Order Dependencies 

Analytic queries often use functions, algebraic expressions, and case expressions. Order 

dependencies can be derived from built-in SQL functions, and from case expressions 

[31]. For example, the SQL function year extracts the year component (the leading 

component) of the date. Thus, [date] 1--7 [year( date)]. Let the table date_dim have an 

index on its d_date column. If it could detect the OD that d_date orders year( d_date ), 
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the optimizer could accomplish order by year( d_date) in a query by using an index scan 

over the d_date index to provide a correct "interesting" order, with no need to employ 

sort operation. 

We describe our techniques using monotonicity properties. These techniques have 

been implemented in DB2. The following rewrites were performed via this implementa

tion. We describe how the monotonicity detection algorithm in IBM DB2 [31] allows for 

rewrites in the case of queries with order-by. We then show the value of this technique 

when combined with indexing in DB2. The algorithm detects monotonicity in algebraic 

expressions and SQL functions. It maintains a monotonicity state as the input expression 

is traversed. Given the parse tree of the expression to be checked, it answers whether 

the expression is monotonic (with respect to the attributes over which it is defined). It 

employs a transition table, scanning the left and right operands. For example, if the left 

side of the operand of the sum operator is monotonic and right operator is a constant, the 

result is is also monotonic. (See [31] for details.) 

In [31], they showed how to use this for predicate derivation which led to it being 

implemented in DB2. They offered no performance study, though. We demonstrate the 

value for SQL queries via interesting orders. In our implementation, the monotonicity 

detection algorithm is called during the query rewrite phase, when processing statements 

which involve join, order-by, group-by, partition by, and distinct (Reduce Order OD). 

This is useful for improving access methods and for improving cardinality estimation. 
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Monotonicity can be also detected for a variety of SQL built-in functions. Ones we 

demonstrate here include the following. Each is monotonic with respect to its input. 

• year(): Returns the year of the date. 

• substr(): Returns a sub-string of the string input. If the starting position of the 

requested substring in the string is one, the result is monotonic. For example sub

str(s_zip, 1, 2) is monotonic. 

• concat(): Returns the concatenation of two strings. (When the first string is always 

the same length and the second string is a constant, the function is monotonic.) 

Monotonicity is detected for a wide range of functions: functions that refer to time di

mensions, such as day() and hour(); mathematical functions, such as log(), ceil(), and 

sqrt(); and type conversions, such as int() and float(). 

Query 4 Substring with group-by. 

select substr(P.s_zip, 1, 2) as area, 

count(distinct P.s_zip) as cnt, 

sum(S.ss_net_profit) as net 

from store_sales S, store P 

where S.ss store sk = P.s store sk 

group by substr(P.s_zip, 1, 2); 

Query 4 employs the substring function in its group-by. Recall Query 1 in Chapter I. 

We saw that a clever programmer could recompose it to avoid the performance problem 
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that the use of the algebraic expression in the group-by and the order-by could cause. In 

this case, however, the programmer could not rewrite this to avoid the issue, since the 

substring changes the partition of the group-by. 

Let there be an index on s..zip in table store. It is obvious that the column s..zip 

orders the derived column substr(s..zip, 1, 2). Given the optimizer detects this OD, it 

can choose to do an index scan using the index on s..zip to accomplish the group-by 

on-the-fly, and no partitioning or sort operator would be needed. 

Query 5 With string conversion and concatenation. 

select I.i_item_desc, 

to_char(D.d_date,'YYYYMMDD') 

I I ' 12:00:00' as when, 

sum(W.ws_sales_price) as total 

from web_sales W, item I, date_dim D 

where W.ws item sk I.i item sk and 

I.i_category 'Children' and 

W.ws sold date sk D.d date sk 

group by I.i item_desc, 

to_char(D.d_date,'YYYYMMDD') 

I 1'12:00:00' 

order by to_char(D.d_date,'YYYYMMDD') 

I I '12:00:00'; 
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Let there be an index on d_date in the date_dim table. In Query 5, the data are or

dered by d_date converted to char and concatenated with a time constant, '12:00:00'. 

This is a type of query commonly used in business-intelligence reporting. The mono

tonicity detection algorithm works across the type conversion, and then over the string 

concatenation as the first string is known to be of a constant length. This makes the OD 

[d_date] H [to_char(d_date,'YYYYMMDD')ll'12:00:00'], visible to the optimizer. 

Query 6 can be effectively rewritten by the optimizer to the form in Query 7. An eval

uation of the rewritten query then uses the index on d_date. The two constants 1998 and 

2002 are used in Query 6 as a filter predicate in its where clause. The optimizer could 

not use the index on d_date, however, since the predicate is over year(D.d_date). In the 

query rewrite, the filter is set on d_date, to be on the range between date('1998-01-01 ') 

and date('2002-12-31 '). Then, the optimizer uses index on d_date in the query plan. 

The method above generalizes to a query rewrite technique. Note that this is not cap

tured by canonical form, as formed by Reduce Order OD algorithm. This demonstrates 

a need for rewrite techniques with ODs beyond those that the canonicalization provides. 

It can be used for SQL functions (besides year() of course) or user defined functions. 

For example, let there be an index on an attribute A. Assuming, there is known OD 

[A] ~ [sqUunction(A)] (or [A] ~ [user_defined_function(A)]), the predicate can be 

set accordingly over the attribute A instead of the calculated sqLfunction (or user_defined 

function) on A. 
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Query 6 With the predicate year. 

select I.i_item_desc, I.i_category, 

I.i_class, I.i_current_price, 

sum(W.ws_ext_sales_price) as revenue 

from web_sales W, item I, date_dim D 

where W.ws item sk = I.i item sk and 

W.ws sold date sk = D.d date sk and 

year(D.d_date) between 1998 and 2002 

group by I.i_item_id, I.i item_desc, 

I.i_category, I.i_class, 

I.i_current_price 

order by I.i_category, I.i_class, 

I.i item_id; 

Query 7 Rewrite of Query 6. 

select ... from ... where ... and 

d date between 

date('l998-01-01') and 

date('2002-12-31') 

group by ... order by ... ; 
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Query 8 is similar to Query 4, but with a filter predicate in its where clause. (This 

version does not contain a group-by clause, so the order-by could be rewritten manually. 

If a group-by were done on substr(H.w_warehouse_name, 1, 10) also, it could not be 

as substr function changes partitions. It illustrates our OD techniques the same, though, 

in either case.) 

Query 8 Substring variation with order-by. 

select substr(H.w warehouse_name,1,10) 

from web_sales W, warehouse H 

where W.ws warehouse sk H.w warehouse sk 

and W.ws_quantity > 90 

order by substr(H.w_warehouse_name,1,10); 

Query 9 OLAP query. 

select count(*) as count 

over (partition by 

year(S.ws_sold_date)*lOO 

+ month(S.ws_sold_date)) 

from web sales S; 

Query 9 is an OLAP query that uses a partition-by clause over modified TPC-DS 

schema as in Figure 2.4. The query plan can employ the index on ws_sold_date, if the 

optimizer detects via the monotonicity detection algorithm that OD 
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[ws_sold_date] ..--+ [year(ws_sold_date )* 100 

+ month(ws_sold_date )] 

holds, which effectively partitions by year concatenated with month. 

Query 10 year( d_date) variation with order-by. 

select year(D.d_date), M.sm_type, S.web_name, 

sum(case when 

(W.ws_ship_date_sk 

- W.ws sold date_sk <= 30) 

then 1 else O end) as "30 days", 

sum(case when 

(W.ws_ship_date_sk 

- W.ws sold date sk > 120) 

then 1 else 0 end) as ">120 days" 

from web sales W, warehouse H, ship_mode M, 

web_site S, date_dim D 

where W.ws_ship_date_sk = D.d date sk and ... group by 

year(D.d_date), M.sm_type, 

S.web name 

order by year(D.d_date), M.sm_type, 

S.web_name; 

Our work on order dependencies can be combined with notion of near-sortedness. 
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If a stream is sorted by A, it may be nearly sorted on, say, year(A), B, C. If there is an 

index on A and it is known that every partition of year( A) is small, the stream could be 

produced by an index scan, and thus be ordered by A. Given [A] H [year(A)] and that the 

year(A)- blocks are small, each year(A)-block can be re-sorted in main memoery on-

the-fly. This removes the need for an external so1t operator. This technique also extends 

beyond the canonicalization. 9 As an example, consider Query I 0 with a case expression. 

The monotonicity detection algorithm is triggered due to the order-by. It detects that 

[d_date] f-t [year(d_date)]. Hence, the optimizer can then take advantage of the index 

on d_date, speeding up the sort operator in the plan, to accomplish the order-by. 

3.3 Embedding the Information into the Key 

Our next consideration is to embed information about other attributes (from the same 

table as the surrogate key) into the surrogate key. While this would be problematic for 

surrogate keys generally, this can work for time because the date dimension table is static. 

The representation of the date does not change over time, so keys might be assigned in a 

meaningful way. By embedding information into the surrogate key, a query can directly 

filter over the fact table avoiding an expensive join (assuming all information for the 

9Similarly, ODs and near-sortedness can be used when using SQL functions such as concat(), when the 
first string is of fixed length and the second string is not constant. Without the second string a constant as 
in Query 5, we can still use the index on the first string to provide a prefix order and then use "mini-sorts" 
on-the-fly to avoid spilling to the disk. 
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query which is necessary is embedded in the key). A typical query with a join between 

a fact table and a dimension table taken from TPC-DS benchmark has a form like query 

Query 11 (Q12 from TPC-DS benchmark). 

A critical factor in making the technique efficient and useful is to find a good function 

which generates the key. A function which can be used is one converting the date into 

a number which consists of the year, month and day. The date 22th February 1999 

would be converted into the key of the date dimension table: 1999022. This is shown in 

the Query 12. A more sophisticated function can be established for generating the key. 

Assume the surrogate key is a 4-byte integer. The date takes eight digits so there are 

still free digits. These can be used for indicators for weekday, holiday, current day, or 

other fields which appear often. We can also use a binary representation to make the key 

with embedded information more compressed. With embedding information in the key, 

it is possible to keep historical information as well as some years into the future in the 

dimension table, because the function used is known in advance. One hundred fifty years 

of daily records is around 54,750 rows, which is a small table compared to fact tables 

which are counted in terabytes. An ETL process benefits from filling the date dimension 

table in advance. Whenever the records are inserted to the fact table, a join between the 

fact table and the date dimension table is not needed to find the surrogate key. 
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i-.,..- ----~ 

Query 11 With an expensive join. 

select I.i_item_desc, I.i_category, 

I.i_class, I.i_current_price, 

sum(W.ws_ext_sales_price) as itemrevenue, 

sum(W.ws_ext_sales_price)*lOO 

/sum(sum(W.ws_ext_sales_price)) over 

(partition by I.i_class) as revenueratio 

from web_sales W, item I, date dim D where W.ws item sk 

I.i item sk and 

I.i_category 

in ('Sports', 'Books', 'Home') and 

W.ws sold date sk D.d date sk and 

D.d date between 

cast('l999-02-22' as date) and 

(cast('l999-02-22' as date) 

+ 30 days) 

group by I.i item_id, I.i item_desc, I.i_category, 

I.i_class, I.i_current_price 

order by I.i_category, I.i_class, I.i_item_id 

I.i item_desc, revenueratio; 
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Query 12 Embedding the information. 

select ... 

from web sales W, item I, date_dim D, where ... and 

W.ws sold date sk between 

19990222 and 19990324; 

group by ... order by ... ; 

3.4 Declaring Order Dependencies 

In [40], we demonstrated that dramatic gains in query performance can be had in queries 

by recognizing ordering correspondences between attributes. Our techniques looked 

promising to generalize to many more types of the queries, which lead to the work here. 

As discussed in Chapter 2, there are often compelling reasons in a data warehouse to 

have an explicit dimension table for date, and, furthermore, one that uses surrogate keys. 

This is standard practice. There are disadvantages to this, however. A prevalent class of 

queries accesses a fact table, and has predicates on date that mention natural date values. 

Their evaluation will blindly join the fact table to the dimension table. This can be quite 

expensive. Often, a fact table will be partitioned over date. Data warehouse systems 

use partitioning to accommodate very large tables, making it easier to administer (back 

up data, re-organize data, roll-in new data, and roll-out old data) and to improve query 

performance. In this case, however, all partitions of the fact table will have to be scanned, 
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because the natural date values in the query cannot be used to establish a range to scan 

just the relevant partitions, which are partitioned on the surrogate keys. 

We seek to optimize such queries by avoiding the join to the date table, and selecting 

just the relevant partitions of the fact table. We introduce a query-rewrite technique that 

achieves this. We present a universal solution that rewrites the query within the optimizer 

considering order dependency. We note that in the implementation of almost all data 

warehouses that use surrogate keys for date, the order of surrogate keys is precisely the 

same as the order of the natural date values. That is to say, the surrogate keys and natural 

date values are monotone with respect to each other. We can use this order dependency 

to rewrite queries. 

Below, our technique using order dependencies is described. This technique was used 

in our prototype which has been implemented in DB2 V9. 7. The following rewrites were 

considered as part of developing the prototype within the optimizer. 

The surrogate (date) keys in the date dimension table are ordered in the same way 

as natural date values in the dimension table, however. So there is a known order de-

pendency between them. This can be declared as a check constraint in DB2. 10 This can 

be done whenever the database administrator knows of relevant order dependencies that 

are essentially a part of the semantics of the database. Declaring an OD as an integrity 

constraint (as SQL check constraint) gives a guarantee that the database will satisfy it. 

10In our prototype in DB2 in [40], we had a way to express ODs internally, whereas in this work we 
propose to declare such dependencies as formal integrity constraints. 
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If in the table there is order dependency between the surrogate key and another col

umn, a small number of lookups can be used as part of the query. Two probes can be 

made into the dimension table in order to calculate the range of the surrogate keys to be 

used as a filter over the fact table. 

Query 13 Rewrite of Query 11. 

select ... from web_sales W, item I, 

(select min(d_date sk) as mindate 

from date dim 

where d date >= 

cast('1999-02-22' as date)) 

as A, 

(select max(d_date sk) as maxdate 

from date dim 

where d date <= 

as Z 

where ... and 

cast('1999-02-22' as date) 

+ 30 days) 

W.ws sold date sk between 

A.mindate and Z.maxdate ... 

group by ... order by ... ; 

Query 11, with the observation of the order dependency between the date surrogate 

61 



key and the natural date values, can be rewritten to the form shown below (Query 13). 

The two probes are selected from date table: mindate and maxdate surrogate key. These 

two probes provide us with minimum and maximum surrogate values of the key which 

are used to set the filter in the where clause. 

In our first attempt, we have rewritten the query to use subqueries for these probes 

in the where clause. Based on our experiments and analyzing the access paths, we 

discovered that the optimizer does not treat it as a predicate on the same field, which 

meant it was not giving the optimal access plan. Our next try was to put the subqueries 

for the probes into the from clause. This is successful. The optimizer then guarantees 

the same access plans as it does for queries with constants in a between range predicate. 

The following conditions are required in order to implement an efficient automatic 

rewrite: 

1. Foreign key relationship (condition for optimization). The primary key from 

table A matches a surrogate foreign key from table B in ~e predicate (B.fk = 

A.pk) and relationship between table A (tpcds.date_dim in Query 11) and B 

(tpcds.web_sales in Query 11) is one to many. 

2. Partitioning or index key (condition for optimization). The foreign key B. fk is 

a range partitioning key, or there exists an index on it which can be used by the 

index manager for the subquery range predicate as a start and stop key. 

3. Local predicate (condition for optimization). Table A has a simple local pred-
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icate in the form of: A.col <relational operator> literal,where the relational op

erator is one of ~, ::;, <, >, = and A.col is not A.pk. In our implementation, 

we consider queries with a binary relationship predicate. This can be extended to 

queries with more complex expressions such as the in operator. This kind of query 

also exists in the TPC-DS benchmark. 

4. Monotonic dependency (semantically required condition). There exists an or

der dependency declaration between the primary key of table A, column A.pk, and 

A.col in the local predicate in the query. At present in our prototype in DB2, we 

have a way to express this increasing or decreasing order dependency. We imple

mented a mechanism to declare such dependencies as formal integrity constraints. 

Note that maintenance of such a dependency declaration is not expensive. When 

a new row is inserted in table A, only the rows with immediately preceding and 

succeeding values of A. pk by order need to be checked to ensure that the new 

A.col value maintains the monotone condition. Given there will be an index on the 

primary_ key of A, this check is inexpensive. The dependency between attributes 

d_date_sk and d_date is strict monotonic. 

5. No select on the A dimension table (condition for optimization). Table A is not 

involved in the select. The fact that A has no column output from the current select 

is optional. If there is no column output from A, the join is eliminated. Otherwise, 

we can still do the rewrite and take advantage of partitioning. 
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!ry, and the partition key based on the date surrogate key is used. 

~uery from the TPC-DS benchmark we considered is Query 14 (Q7 in 

aark) which joins the fact table with the date dimension and uses a de

date as a filter. In the TPC-DS schema, there is an additional column 
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which keeps the year ( d_year). In the Query 14, the filter is set to the year 2000. We 

chose this query because it selects over many more days (one year) whereas Query 11 

was only over 30 days. This query involves a select on a column in the date dimension ta

ble. We wanted to check how the proposed query rewrite behaves with a higher selection 

of data from the database. 

The rewrite can be done with the same technique as for Query 11, but this time with 

an equality operator (filtering for year 2000). The rewrite cannot be applied if instead 

of a predicate on d_date there is a predicate on d_month. Here the order dependency is 

only local and there is no order dependency between d_date_sk and d_month defined. 

On the other hand, if there is predicate on both columns: d_year and d_month then the 

suggested strategy to optimize the query can still be used. In Query 15 if we would be 

able to pass information that the fill rate is 100%, and assuming there is check constraint 

d_year = year(d_date), the rewritten query could have just used a filter on a d_date. At 

present, we have not addressed this. Therefore, we can use min and max in the same 

way we did for Query 1 l. 

The automatically rewritten query then with the filter on year is shown as in Query 

15. 

We performed experiments over TPC-DS in our implementation in DB2 to demon

strate the efficiency of the approach. Thirteen of TPC-DS 's queries matched for the 

rewrite. Each benefited, with an average performance gain of 48%. The details of the 
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Query 14 With filter set to the year. 
select I.i item_id, 

cast(avg(cast(S.ss_quantity as decfloat)) 

as decimal(l0,6)) aggl, 

cast( avg(S.ss_list_price) 

as decimal(l0,6)) agg2, 

cast(avg(S.ss_coupon_amt) 

as decimal(l0,6)) agg3, 

cast(avg(S.ss_sales_price) 

as decimal(l0,6)) agg4 

from store_sales S, customer_demographics C 

date_dim D, item I, promotion P 

where S.ss sold date sk = D.d date sk and 

S.ss item sk = I.i item sk and 

S.ss cdemo sk C.cd demo sk and 

S.ss_promo_sk P.p_promo_sk and 

C.cd_gender = 'M' and 

C.cd marital status = 'S' and 

C.cd education status = 'College' and 

(P.p_channel_email = 'N' or 

P.p_channel_event = 'N') and 

D.d_year = 2000 

group by I.i item id 

order by I.i_item_id; 
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Query 15 Rewrite of Query 14. 

select ... 

from store_sales S, customer_demographics C 

item I, promotion P 

(select min(d_date_sk) as mindate 

from date dim 

where d_year = 2000 

as A, 

(select max(d_date_sk) as maxdate 

from date dim 

where d date 

as z 

where ... and 

2000 

S.ss sold date sk between 

A.mindate and Z.maxdate ... 

group by . . . order by ... ; 

experimental results are in Chapter 3.5. Many more than 13 of the 99 queries in TPC-DS 

involve date predicates. 

We know that we can extend our rewrite rules to cover many more of the cases seen in 

TPC-DS queries (for instance, to cover the case of sub-queries in an IN predicate). This 

is a matter of further implementation. These techniques can be extended, we believe, 

to cover more dimensions in data warehouses. Order dependencies exist elsewhere too, 
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specifically with geo-spatial information. Thus, these techniques should extend well for 

other common data types. 

3.5 Experiments 

We demonstrate that dramatic gain in query performance can be had in business-intelligence 

queries by detecting (Chapter 3.5.1) and declaring (Chapter 3.5.2) order dependencies. 

All test queries show a significant performance gain using the OD-extended optimizer. 

Our techniques look promising to generalize many more types of queries that involve 

order dependencies. 

3.5.1 Detecting ODs in Algebraic Expressions 

We have implemented and tested in DB2 VI 0 the query rewrites described in Chapter 

3.2. This chapter reports the performance of the six queries described above. Three more 

queries were run against a corresponding alternative database, based on the alternative 

schema (with the natural date key in the date table) as shown in Figure 2.4. This in

cluded variations of Queries 1and5 (Ql' and Q5', respectively), modified to match the 

alternative schema, and Query 9. 

The experiments were performed on a performance testing machine with the operat-

ing system AIX 6.1 TL6 SP5 with four processors (Intel(R) Xeon(R) CPU) and 1 GB of 

memory. Results were obtained on a ten-GB TPC-DS database. 
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Figure 3.2 shows the execution times for the nine queries modified from the TPC-DS 

benchmark and expressing real world IBM customer scenarios, executed in two modes, 

with and without the OD-rewrites in the optimizer. Each query was run three times in 

both modes. (We repeat the tries in order to eliminate noise, including cold runs.) As 

shown in Figure 3.2, the results for the OD-optimized queries are significantly better. The 

performance improvement is, on average, a 30% improvement on elapsed time. Each of 

the nine queries benefited from the OD-rewrites. 

The improved efficiency is dependent on the precise nature of the database tables, 

the generated columns and the query itself. Our techniques eliminate and optimize ex-

pensive operations such as sort, which are super-linear, and which begin to dominate the 
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execution costs as the database size increases. 

3.5.2 Declaring ODs. 

The query transformations described in Chapter 3.4 have been implemented in IBM DB2 

V9. 7 The experiments were performed on a performance testing machine with operating 

system SUSE Linux Enterprise Server SP I with 4 processors (Intel(R) Xeon(R) CPU 

5160@3.00GHz), 22GB memory using TPC-DS benchmark with size IGB. 
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The performance test results are shown in bar chart Figure 3.3. In our experiments, 

we measured the performance of the 13 queries from the TPC-DS benchmark that use 

dates in predicates and that match our rewrite rules. Identifiers of the queries follow the 
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convention used in TPC-DS benchmark. 

As expected a significant reduction of the execution time is achieved. The optimiza

tion is achieved primarily by avoiding the join between the fact table and the date table by 

selecting two probes to calculate the range of surrogate keys from the dimension table. 

Also, as we have mentioned, the cardinality reduction due to the selection on the date 

table is greater than due to the selections on other tables, so the first join is done between 

the fact table and the dimension table. Eliminating this first join from the access plan 

brings significant benefits. An index on the date foreign key in the fact table is enough 

for efficient evaluation. Note that more substantial performance improvements could be 

achieved if the date foreign key in the fact table is also a partitioning key. 

Figure 3.3 shows the execution times for the 13 queries from the benchmark executed 

with and without our rewrite. The results demonstrate significant performance improve

ment, on average a reduction of 48% in elapsed time. The other queries in TPC-DS were 

not affected as they were not rewritten. (There is an additional optimization cost because 

of the additional rewrite rules, but it is marginal.) 

For the queries discussed in Chapter 3.4, the reduction was from 116.34 seconds to 

38.98 seconds (66%) for Query 14 (Query Q7 from TPC-DS benchmark) and for the 

query with smaller filter, Query 11 (Q12 from TPC-DS benchamrk), from 4.26 seconds 

to 2.11 seconds (50%). 
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4 Axiomatization and Complexity of OD Inference 

One of the key issues in dependency theory is the development of algorithms for testing 

logical implication [20, 29]. In addition to developing algorithms for determining logical 

implication, the second fundamental theme in dependency theory is the development of 

inference rules (axiomatization), which can be used to generate proofs of logical impli

cation. Although the inference rules do not typically yield the most efficient mechanisms 

for deciding logical implication, in many cases they capture concisely the essential prop

erties of the dependencies under s~dy. The study of inference rules of dependencies is 

especially intriguing because there are several classes of dependencies for which there is 

no finite set of inference rules that characterizes logical implication. 

Inference rules and algorithms for testing implication provide alternative approaches 

to showing logical implication between dependencies. In general, the existence of a finite 

set of inference rules for a class of dependencies is a stronger property than the existence 

of an algorithm for testing implication. 

1. The existence of a finite set of inference rules for a class of dependencies implies 
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the existence of an algorithm for testing logical implication; and 

2. There are dependencies for which there is no finite set of inference rules but for 

which there is an algorithm to test logical implication. 

The inference rules are used to form proofs about logical implication between UODs, 

in a manner analogous to the proofs found in mathematical logic. It will be shown that 

the resulting proof system is sound and complete for UODs. 

4.1 Axiomatization 

A key concern in dependency theory is developing the algorithms for testing logical im

plication. Developing inference rules is an approach to show logical implication between 

dependencies. 

4.1.1 Axioms 

Definition 7 (A proof of 8 from M) 

Let M be a set of prescribed UODs. A proof of UOD e from M with the set of inference 

rules I is a sequence e = ei, ... ,em where n ~ 1 such that fork E [l, n] either ek E 

M, or there exists a substitution for some rule e E I, such that ek is consequence of 

<p, and such that for each unidirectional order dependency in the predecessor of e the 

corresponding unidirectional order dependency is in the set { ei I 1 ~ i < k}. 
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OD 1. Reflexivity. 

xv f-t x 

OD 2. Prefix. 

OD 3. Normalization. 

WXYXV +-7 WXYV. 

OD 4. Transitivity. 

OD 5. Suffix. 

OD 6. Chain. 

XrvY1 

\fiE[l,n-1] Yi rv Yi+l 

Yn rv Z 
\fiE[l,n] YiX rv viz 

X rv Z 

Figure 4.1: Axioms for UODs. 
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The UOD e is provable from M using axioms I (relative to set of attributes U), 

denoted M ~I e' if there is a proof of e from M using I. 

We now introduce axioms (inference rules) for UODs. In [39], we studied UODs 

and provided a sound and complete axiomatization for them. The inference rules of the 

axiomatization are shown in Figure 4.1. 

Two of our axioms generate trivial dependencies: 

• Reflexivity. If the right side is a prefix of the left side, it forms dependency. 

• Normalization. Repetitive attributes following the ones already on the list can be 

removed. 

We define the closure of the set of UODs M, denoted M+, to be the set of UODs 

that are logically implied by M. 

Definition 8 (closure of M using I) 

Let I= ODJ-OD6, then M+ = {X ~YIM ~IX~ Y}. 

Definition 9 (equivalent sets of UODs) 

Let M and M' be sets of UODs. We say that M and M' are equivalent if! {X ~ Y I 

M I= x ~ Y} = {X ~ y I M' I= x ~ Y}, where M I= e denotes that an OD e is true 

with respect to set of ODs M. 

Example 6 (Axiomatization) 
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1. Reflexivity. 

[year, month, week] rt [year, month] 

2. Prefix. 

[month] f--+ [quarter] 

[day, month] f-t [day, quarter) 

3. Normalization. 

[year, month, day]~ [year, month, day, month]. 

4. Transitivity. 

[time] rt [date] 
[date] rt [century] 

[time] rt [century] 

5. Suffix. 

[date] f-t [year, month, day] 

[date] ~ [year, month, day, date] 

6. Chain. 

[time] rv [century] 
[century] rv [year] 
[year] rv [date] 
[year, time] rv [year, date] 
[century, time] rv [century, date] 

[time] rv [date] 
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4.1.2 Soundness 

In this chapter, we show that our UOD axioms are sound. 

Definition 10 (soundness of UOD axioms) 

Let I be a set of inference rules OD 1-0D6. Then I is sound for logical implication of 

UODs if X i-+ Y is deduced from M using axioms I ( M r-I X i-+ Y), then X i-+ Y is 

true in any relation in which the dependencies of M are true ( M I= X i-+ Y). 

Let r be a relation over R. The following lemmas are true. 

Lemma 2 (soundness of Reflexivity) 

Reflexivity is sound. 

Proof 

Lets and t E r, such thats ::Sxv t. From the definition of operator ::S it follows that (I) sx 

= tx ands ::Sv tor (2) s -<x t. (I) and (2) imply thats ::Sx t. 

Vr XV i-+ X. 

Lemma 3 (soundness of Prefix) 

Prefix is sound. 

Proof 

D 

Lets and t Er, such thats ::Szx t. This implies (I) s -<x tor (2) sz = tz ands ::Sx t. For 
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(1) s ::Szv t holds as s -<z t. In the second scenario (2), s ::Sx t implies s ::Sv t (X t-t Y is 

given.) Hence, as s z = t z it is true that s ::Szv t. 

V r X t-t Y implies ZX t-t ZY. D 

Lemma 4 (soundness of Normalization) 

Normalization is sound. 

Proof 

IF Lets and t E r, such thats ::Swxvv t. This implies that: (1) swxy = twxy ands ::Sv t 

or (2) s -<wxv t. In (1) sx = tx as swxy = twxy. Therefore, we can suffix WXY by list 

X and swxyx = twxyx holds. Hence, s ::Swxvxv t as we know thats ::Sv t. Scenario (2), 

ass -<wxv t implies that we can suffix list WXY by XVand s ::Swxvxv holds. t 

ONLY IF Lets and t Er, such thats ::Swxvxv t. This implies that: (1) swxy = twxy and 

s ::Sxv tor (2) s -<wxv t. In (1) sx = tx as swxy = twxy. Hence, s ::Sv t as we know that 

s ::Sxv t. Therefore, s ::Swxvv t. Scenario (2), as s -<wxv t implies that we can suffix list 

WXY by V ands ::Swxvv t holds. 

V r WXYXV ~ WXYV. D 

Lemma 5 (soundness of Transitivity) 

Transitivity is sound. 

Proof 

Lets and t E r, such thats ::Sx t. By X t-t Y, which is givens ::Sv t, which implies s ::Sz t 
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and it ends the proof. 

V r X r-? Y and Yr-? Z implies X f.-.-t Z. 

Lemma 6 (soundness of Suffix) 

Suffix is sound 

Proof 

- ·-,,.. 

D 

IF Lets and t Er, such thats :::Sx t. Therefore, s :::Sx t as X r-? Y is given, which implies 

thats :::Svx t (X r-? YX). 

ONLY IF Lets and t Er, such thats ::Svx t. Therefore, (1) sy = ty ands ::Sx tor (2) s -<v 

t is true. Scenario (1) directly implies that s ::Sx t (YX r-? X). Scenario (2) where s -<v t 

implies thats -<x t. This is because s -f.x t implies t -<x s which implies t -<vs. Hences 

-f.v t. This ends the proof as s :::Sx t (YX r-? X). 

V r X r-? Y implies X ~ YX. D 

Lemma 7 (soundness of Chain) 

Chain is sound 

Proof 

Without loss of generality, assume that the lists in the axiom are single attributes. Let X 

=A, Y1 = 8 1, ... , Y n = Bn and Z = C. This simplification makes it easier to extend the 

rule to lists. The proof is by contradiction. Assume that A and C are order incompatible. 

Then there are two tuples for which there is a swap of the values between A and C. Also 
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Table 4.1: Order incompatible attributes. 

the two tuples disagree on attribute Bi for all i. Otherwise condition number 4 would not 

be true. As A,...., B1 , the values for B1 follow A, so does the rest of attributes Bi because 

of the condition (2). This means the two rows look in the way shown in Figure 4.1. But 

then Bn is order incompatible with C, which we assumed not to be the case. We conclude 

with contradiction. 0 

Theorem 1 (soundness of axioms) 

ODJ-OD6 axioms are sound for logical implication of UODs. 

Proof 

In order to prove the soundness of I we have to prove that each of the rules is sound 

(Lemma 2-Lemma 7). 0 

Theorem 2 (soundness over ODs) 

The set of the axioms from Figure 4.1 is sound over ODs. 

Proof 

It is straightforward to show that inference rules in Figure 4.1 remain sound over (bidi-

rectional) ODs. 0 
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4.1.3 Additional Inference Rules 

We introduce additional inference r_ules as they will be used throughout the thesis. 

Union shows what can be inferred from two or more dependencies which have the 

same lists on the left side. 

Theorem 3 (Union) 

Proof 

1.X1-tY 
2. x 1-t z 
X 1-t YZ 

3. YX 1-t YZ [Prefix(2)] 

4. X ~ YX [Suffix(!] 

5. X 1-t YZ [Transitivity(3, 4)] 

Example 7 (Union) 

I. [time] 1-t [year, month, day] 
2. [time] 1-t [century] 

[time] 1-t [year, month, day, century] 

0 
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Theorem 4 states that we may augment the left side by any list of the attributes. 

Theorem 4 (Augmentation) 

Proof 

2. XZ ~ X [Reflexivity] 

3. XZ ~ Y [Transitivity(l,2)] 

Example 8 (Augmentation) 

1. [date] ~ [year, month, day] 

[date, minute] ~ [year, month, day] 

Example 9 (Augmentation) 

1. [date] ~ [year, month, day] 

(date, week] ~ [year, month, day] 

Example 10 (Augmentation) 

1. [time] ~ [century, year, quarter] 

[time, day] ~ [century, year, quarter] 

Example 11 (Augmentation) 

1. [time] ~ [century, year, quarter] 

[time, day, hour, minute] ~ [century, year, quarter] 
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The Shift rule is an extension of the Prefix rule. It tells us that equivalent lists of 

attributes can be shifted on the right side by X and Y if the order dependency between 

two lists holds. 

Theorem 5 (Shift) 

Proof 

1.Wf-+V 
2. x f--t y 
WX f--t VY 

3. VX f--t W [Augmentation( 1)] 

4. WX f--t VW [Prefix(3)] 

5. VX f-t VW [Normalization] 

6. WX f-t VX [Normalization] 

7. VX f--t VW [Transitivity(4,5)] 

8. VX f-t VWVX [Suffix(6)] 

9. VWX f-t VWVX [Normalization] 

10. VX f--t VWX [Transitivity(7 ,8)] 

11. WX f--t V [Augmentation(!)] 

12. WX f--t VWX [Suffix(IO)] 

13. WX f--t VX [Transitivity(9,l l)] 

14. VX f--t VY [Prefix(2)] 

15. WX f--t VY [Transitivity(l2, 13)] 

0 
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Example 12 (Shift) 

1. [year] +--+ [century, year] 
2. [time] 1-t [date] 

[year, time] 1-t [century, year, date] 

Example 13 (Shift) 

I. [date] +--+ [year, month, day] 
2. [month] 1-t [quarter] 

[date, month) 1-t [year, month, day, quarter] 

Example 14 (Shift) 

1. [date] +--+ [year, month, day] 
2. [month, day] 1-t [quarter] 

[date, month, day] 1-t [year, month, day, quarter] 

Example 15 (Shift) 

1. [time] +--+ [year, month, day, hour, minute, second] 
2. [year] 1-t [century] 

[time, year] 1-t [year, month, day, hour, minute, second, century] 

Example 16 (Shift) 

1. [time] +--+ [year, month, day, hour, minute, second] 
2. [year, quarter] 1-t [century] 

[time, year, quarter] 1-t [year, month, day, hour, minute, second, century] 
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Decomposition shows the method of decomposing an unidirectional order depen-

dency given the prefix of the left side of the dependency. 

Theorem 6 (Decomposition) 

Proof 

1. x~ ZY 

x~z 

2. ZY ~ Z [Reflexivity] 

3. X ~ Z [Transitivity(l,2)] 

Example 17 (Decomposition) 

1. [date] ~ [year, quarter] 

[date]~ [year] 

Example 18 (Decomposition) 

1. [date] ~ [year, quarter, month, week, day] 

[date] ~ [year, quarter, month] 

Example 19 (Decomposition) 

1. [date] ~ [year, quarter, month, week, day] 

[date] ~ [year, quarter] 
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The following theorem is helpful to prove Eliminate, Left Eliminate and Drop. 

Theorem 7 (Replace) 

1. M +-t N 

XMZ+-tXNZ 

Proof 

2. Z f-t Z [Reflexivity] 

3. MZ f-t NZ [Shift(l,2)] 

4. NZ f-t MZ [Shift(l,2)] 
D 

5. XMZ f-t XNZ [Prefix(3)] 

6. XNZ f-t XMZ [Prefix(4)] 

7. XMZ +-t XNZ [Transitivity(5,6)] 

Example 20 (Replace) 

1. [date] +-t [year, month, day] 

[century, date, week] +-t [century, year, month, day, week] 

Example 21 (Replace) 

1. [date] +-t [year, month, day] 

[century, date] +-t [century, year, month, day] 
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Theorem 8 (Eliminate) 

1. x f---+ y 
MXNYW rt MXNW 

Proof 

2. X f---+ YX [Suffix(l )] 

3. XX f---+ XYX [Prefix(2)] 

4. X f---+ XX [Normalization] 

5. XY rt XYX [Normalization] 

6. X rt XY [Transitivity(3-5)] D 

7. MXYNW rt MXNYW [Replace( 6)] 

8. MXYNYW rt MXYNW [Normalization] 

9. MXYNW rt MXNW [Replace(6)] 

10. MXNYW rt MXNW [Transitivity(7-9)] 

Example 22 (Eliminate) 

I. [month] f---+ [quarter] 

[date, month, quarter, day] f---+ [date, month, day] 

Example 23 (Eliminate) 

1. [month] f---+ [quarter] 

[date, month, day, quarter] f---+ [date, month, day] 
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Theorem 9 (Left Eliminate) 

1. x 1---t y 

vvxz~vxz 

Proof 

2. X ~ YX (Suffix(!)] 
0 

3. VYXZ 1---t VXZ [Replace(l,2)] 

Example 24 (Left Eliminate) 

1. [month] 1---t [quarter] 

[century, quarter, month, week] 1---t [century, month, week] 

Example 25 (Left Eliminate) 

1. [month] 1---t [quarter] 

[year, month, day] ~ [year, quarter, month, day] 

Example 26 (Left Eliminate) 

1. [month] 1---t [quarter] 

[year, month, day] 1---t [year, quarter, month, day] 

Example 27 (Left Eliminate) 

1. [year] 1---t [century] 

[year, month, day] 1---t [century, year, month, day] 
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Theorem 10 shows that dropping elements on the right side of the list in the depen-

dency is possible. 

Theorem 10 (Drop) 

Proof 

1. X r-t VYZW 
2.x~v 

x r-t vz 

3. VYZW r-t XYZW [Replace(2)] 

4. X r-t XYZW [Transitivity(l ,3)] 

5. X r-t XV [Decomposition(4)] 

6. XZW r-t XV [Augmentation(5)] 

7. XZW ~ XVXZW [Suffix(6)] 

8. XYXZW ~ XYZW [Normalization] 

9. XZW ~ XYZW [Transitivity(7,8)] 

10. X r-t XZW [Transitivity( 4,9)] 

11. XZW r-t VZW [Replace(2)] 

12. X r-t VZW [Transitivity(l0,11)] 

13. X r-t VZ [Decomposition(12)] 

Example 28 (Drop) 

1. [date] r-t [year, month, day, quarter, century] 
2. [date]~ [year, month, day] 

[date] r-t [year, month, day, century] 
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Theorem 11 (Path) 

1. X r--+ YV 
2. Y +-7 VMN 

X r--+ YMW 

Proof 

3. X r--+ Y [Decomposition(l)] 

4. X r--+ VMN [Transitivity(2,3)] 

5. X r--+ YVMN [Union(3,4)] 

6. YVMN r--+ YVMNM [Normalization] 

7. X r--+ YVMNM [Transitivity(5,6)] 0 

8. X r--+ YM [Elimination(2,7)] 

9. X r--+ YMYW [Union(l,8)] 

10. YMYW r--+ YMW [Normalization] 

11. X r--+ YMW [Transitivity(l,10)] 

Example 29 (Path) 

1. [time] r--+ [year, month, day, hour] 
2. [date] +-7 [year, month, day] 

[time] r--+ [date, hour] 
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Chain axiom is used to prove following two theorems. 

Theorem 12 (Partition) 

1.Xf-tY 
2. x f-t z 
3. set(Y) = set(Z) 

Y+-tZ 

Proof 

4. X +-t YX [Suffix(l)] 

5. X +-t X [Reflexivity] 

6. X f-t .XY [Union(l,5)] 

7. X +-t XYX [Suffix(6)] 

8. X +-t XY [Normalization(?)] 

9. XY +-t YX [Transitivity(4,8)] 

10. xz +-t zx [(2,4-9)] 
D 

11. X rv Y [(9)] 

12. X rv Z [(10)] 

13. XYZ +-t XYZ [Reflexivity] 

14. XY +-t XZ [Elimination(l,2,13)] 

15. Y rv Z [Chain(ll-14)] 

16. YZ +-t ZY [(15)] 

17. Y +-t Z [Normalization(3,16)] 
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Example 30 (Partition) 

1. [date] 1--t [year, month, quarter] 
2. [date] 1--t [year, quarter, month] 
3. {year, month, quarter, day}= {year, quarter, month, day} 

[year, month, quarter] ~ [year, quarter, month] 

Example 31 (Partition) 

1. [date] 1--t [year, month, quarter, day] 
2. [date] 1--t [year, quarter, month, day] 
3. {year, month, quarter, day} = {year, quarter, month, day} 

[year, month, quarter, day] ~ [year, quarter, month, day] 

Example 32 (Partition) 

1. [time] 1--t [date, year, month, day] 
2. [time] 1--t [year, month, day, date] 
3. {year, month, quarter, day}= {year, quarter, month, day} 

[year, month, day, date] ~ [date, year, month, day] 

Example 33 (Partition) 

1. [time] 1--t [date, century] 
2. [time] 1--t [century, date] 
3. {year, month, quarter, day}= {year, quarter, month, day} 

[century, date] ~ [date, century] 
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Theorem 13 (Downward Closure) 

Proof 

2. ZVXY f-+ Z [Reflexivity] 

3. XYXV f-+ Z [Transitivity(l,2)] 

4. XYZV f-+ X [Reflexivity] 

5. XYZV f-+ XZ [Union(3,4)] 

6. XYZV f-+ ZX [Union(3,4)] 

7. X,...., Z [Partition(5,6)] 

Example 34 (Downward Closure) 

1. [time, quarter] rv [date, month] 

[time] rv [date] 

Example 35 (Downward Closure) 

1. [time, quarter] rv [date, month] 

[time, quarter] rv [date] 

Example 36 (Downward Closure) 

1. [year, quarter, month] rv [year, month, quarter] 

[year, quarter] rv [year, month] 
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4.1.4 Sketch of Completeness Proof 

We sketch the important elements of the proof for completeness of our UOD axioma

tization. The formal proof for completeness appears in the following two subchapters 

(Chapter 4.1.5 and Chapter 4.1.6). Our proof is constructive. To prove the axiomatiza

tion is complete, it suffices to demonstrate, for any set of UODs M, a table t can be 

constructed that satisfies (Lemma 14) and is complete (Lemma 15) with respect to, M 

using I, the axiomatization. 

Definition 11 (tablet satisfies M) 

A tablet satisfies M iff no UOD that is derivable over M using I (thus, in M+) is 

falsified by the table t. 

Definition 12 (a tablet is complete with respect to M) 

A table t is complete with respect to M if! evety UOD that is constructible over the 

attributes that appear in M that is not derivable over Musing I (thus, is not in M+) is 

falsified by the table t. 

In Theorem I, we proved the soundness of I. Thus, any table that satisfies each UOD 

in M satisfies M+, and no table that satisfies M can falsify any UOD in M+. Any UOD 

X 1-+ Y can be falsified in just two ways by a table. We name these two ways split and 

swap (See Definition 13 and Definition 14 respectively). 
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Definition 13 (split) 

A split with respect to an OD X r--+ XY is a pair of tuples s and t such that sx = tx but 

Sy-=/:- ty. This says that X does not functionally determine Y. 

Definition 14 (swap) 

A swap with respect to an OD XY +--+ YX is a pair of tuples s and t such that s -<x 

t, butt -<y s; i.e., s comes before t in any stream satisfying order by X, but t comes 

before s in any stream satisfying order by Y Thus, the swap falsifies X ~ Y (Conse

quently, X r--+ Y is falsified, too.) 

The table t that we construct for the set of unidirectional order dependencies M will 

consist of two parts: split(M) and swap(M). We shall construct these two parts oft -

the first half of the table, split(M) and the second half, swap(M) - in such a way that t 

satisfies M. The purpose of split(M) will be to falsify every UOD of the form X r--+ XV 

not in M+. The purpose of swap(M) will be to falsify every UOD of the form X r--+ V, 

XV+--+ YX not in M+ but for which X r--+ XV is in M+. (So X r--+ Vis not in M+ by 

Theorem 18). 

Definition 15 (split(M)) 

Split( M) is a table that demonstrates for each X r--+ XY which is not in M+ that 

X r--+ XY is falsified by split (and so.falsifies X r--+ Y, too). 

Definition 16 (swap(M)) 
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Swap( M) is a table that demonstrates for each XY +--+ YX which is not in M+ that 

X 1-+ XY is falsified by split (and so, falsifies X 1-+ Y, too). 

In the tablet that we construct, we shall use integer values for the cells. (A cell is a 

given column entry of a given row.) We construct tablet by adding splits and swaps. We 

have to make sure that these pieces combined together do not interfere. That is why we 

formalize the notion append. When we append two tables ti and t2 , we shall ensure that 

the resulting table cannot introduce any splits (except [] 1-+ X) or swaps beyond those 

that appear in ti and in t2 alone (Lemma 9). 

Definition 17 (append) 

Appending two sub-tables ti and t2 is accomplished by following steps. 

1. Find the minimum value, x, over all cells of ti. Subtract xfrom all cells in ti. (Now 

its minimum value is zero.) 

2. Find the maximum value, y, over all cells of ti. Addy+ 1 to all cells in t2. The 

resulting table of the append is the union of ti andt2 as adjusted in steps 1and2. 

Table 4.2 is an example of an operation append. 

The tablet we construct will be split(M) and swap(M) (which we call split-swap 

form.) We shall construct split(M) in a way analogous to the construction in Ullman's 

proof of the completeness of Armstrong's axiomatization for FDs in [44]. This proves 

our axiomatization for UODs is sound and complete over FDs. 
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Table 4.2: Operation append. 

IAIBICIDI 

101010101 
I o I o I 1 I 1 I 

(a) Table ti. 

IAIBICIDI 

I o I 1 I o I o I 
I 1 I o I o I o I 

(b) Table t2. 

A B CID 
0 0 0 0 
0 0 1 

2 3 2 2 

3 2 2 2 

(c) Ta le ti app nd 2· 

We shall construct swap(M) in a way to falsify each UOD X 1--7 Y not in M+ (but for 

which X 1--7 XV is in M+). This construction will be more complex than for split(M). 

For each pair of attributes A and B from M we determine whether there needs to be a 

swap between A and B - a pair of tuples sand t such that t -<As, buts -<st - and, if so, 

the context in which swap between A and B need to occur. 

Definition 18 (constant) 

A marked attribute A is called a constant with respect to M iff M I= [ ] 1--7 A Call an 

attribute a non-constant, otherwise. 

If an attribute is a constant, it means in any table that satisfies M, it can have only a 

single value occurring in the table. 
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Definition 19 (context) 

A set of non-constant attributes X with respect to M is a context of a swap t, s if! tx = 

SA:·· We say swap t, sis in the context of X iff tx = sx. (Note that a context for a swap t, 

s is not unique.) 

Constructing table swap(M) is not straightforward. We are able to simplify the con

struction via structural induction. the hypothesis is as follows. 

Hypothesis 1 (hypothesis) 

For some fixed integer K,foranysetofUODs M composed over attributes {E1 , ... ,Ek}, 

there exists a tablet in split-swap form that satisfies, and is complete with respect to, M. 

We prove the base of this for K ::; 2 (in Lemma 11 ). We hypothesize this is true for 

any M with K + 1 attributes. We then prove that for any M with K + 1 attributes that 

the hypothesis remains true (Theorem 17). Proof of the induction hypothesis in essence 

completes the overall proof. 

Induction provides us with a powerful mechanism within the proof. Consider any M 

with K + 1 attributes. In the first case, if any of the attributes are constants with respect 

to M we can reduce the problem. We effectively project out those constant attributes 

from M. This means we simply remove all occurrences of the attributes in the UODs. 

For example, if we are projecting out Band E, ABC t--+ DEF becomes AC~ OF. Call 
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the result M'. Then, M' is over Kor fewer attributes. By the induction hypothesis there 

is a table t' which satisfies, and is complete with respect to, M'. We can show easily 

how to construct a table t from t' which must satisfy, and be complete with respect to, 

M. This is established by Lemma 8. 

Lemmas 

Let r be a table that satisfies, and is complete with respect to, M. Let Z be an attribute 

not in M. Construct table r' as r with an extra column Z, and the same single value for 

Z in each row. Then r' satisfies, and is complete with respect to, M U { [] ~ Z}. 

Proof 

It is straightforward that r' satisfies M U { [] ~ Z} because Z is a constant in r' and 

Z does appear in M. Clearly, r' falsifies each X ~ Y that does not mention Z that r 

falsifies. For any X ~ Y that mentions Z, it is equivalent to some UOD that does not 

mention Z by the Replace rule, which has already been established. Thus, r' satisfies, 

and is complete with respect to, MU{[]~ Z}. 0 

In the second case, we may assume M contains no constant attributes. when consid

ering the pair A and B, if we find they require a swap in non-empty context X, we can 

"freeze" the attributes of X to a single value. This is true, for any table that satisfies M' 

=MU{[] ~Xi, ... , [] ~ Xn}, where X = {X1 , ... , Xn}· Now, we have an instance 

with K or fewer non-constants attributes. By our induction hypothesis, there exists a 

table t' in split-swap form that satisfies and is complete with respect to M'. Note that 
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M'+ ~ M+. Thus, t' does not falsify any UODs in M+. We append t' to the tablet 

that we are constructing. (Appending these is safe, since M has no constants.) Our table 

swap(M) therefore is a recursive appending of (sub )tables. 

There is a case of attributes A and B such that M dictates they must have a swap, but 

in the empty context {}. This time, we cannot use the induction hypothesis to construct 

the tuples for us r', that do the job. For this case, however, we can construct two tuples 

directly that introduce a swap for A and B, but that do not introduce swaps between any 

other pair of attributes that would falsify any UOD in M+. (The soundness of this step 

is established in Lemma 12.) 

For the latter, we must show that, for each X r--+ Y not in M + such that X r--+ XV 

is in M+, some sub-table in swap(M) by our construction does falsify it. This is done 

by proving there always is an attribute A in X, an attribute B in Y, and a swap between 

A and B in some context W, which falsifies X r--+ Y. (This is part of Lemma 15.) 

That completes the proof. These pieces are formally proved in the next two subchapters 

(Chapter 4.1.5 and Chapter 4.1.6). 

4.1.5 Completeness over FDs 

We show completeness of our axioms over FDs. This result is then used toward showing 

completeness over UODs. 

Theorem 14 (correspondence between FD and OD) 

100 



For relation R. for every instance r of it, X -t Y if! X I--* XY, for all list X that order 

the attributes of X and all list Y likewise for Y. 

Proof 

IF: Assume an OD X I--* XV does not hold. This means, there exists sand t E r, such 

thats =Sx t buts ~xv t by Definition 5. Therefore, sx = tx ands -<v t. Also s -<v t 

implies that sy =I- ty. Therefore, X -t Y is not satisfied. 

ONLY IF: By Lemma 1 if X I--* XV, then X -t XY. The FD XY -t Y holds by 

Armstrong axiom Reflexivity [2]. Hence by Armstrong axiom Transitivity, X -t Y. D 
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Theorem 15 (Permutation) 

i.x~xv 

x'~x'v' 

·Proof 

2. X ~ XY1 ... Yk [Decomposition(l)] 

4. x'x f-t x' [Normalization] 

D 

6. x' ~ X1

Y1 .. .Y k [Transitivity(3-5)] 

7. X
1 

t-t X' [Reflexivity] 

8. x' ~ x'yk [Drop(6,7)] 

9. x' ~ x'y' [Union(8)] 

Example 37 (Permutation) 

1. [year, month, day] ~ [year, month, day, century, week] 
2. [month, day, year] ~ [month, day, year, week, century] 

[time]~ [year, month, day, century] 
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Theorem 16 (completeness over FDs) 

Given the set of UODs M, UOD axioms are sound and complete over functional depen-

dencies. 

Proof 

Soundness is by Theorem 1, because of the correspondence between FDs and UODs 

(Theorem 14). The remaining step is to prove completeness over FDs, if M I= X -t Y 

then M I-I X -t Y. This is equivalent to say if M I= X f--7 XV then M I-I X f--7 XV 

for all lists X that order the attributes of X and all lists V for Y by Theorem 14 and 

Permutation. 

Firstly, we show that axioms for UODs imply Armstrong's axioms for FDs. We can 

do it because of soundness of axioms. 

FD1 Reflexivity: 

Y ~ X implies X -t Y. 

1. We are given that Y is a subset of X. 

2. Therefore, the normalization rule implies that an UOD X +-+ XV holds, for some 

list X that order the attributes of X and some list V likewise for Y. 

3. Hence, Permutation and Theorem 14 implies that FD X -t Y holds. 

FD2 Augmentation: 

X -t Y implies ZX -t ZY. 

I. Since we are given X -t Y, Theorem 14 tells us X f--7 V, for all lists X that order 

103 



the attributes of X and all lists Y likewise for Y. 

2. By Reflexivity we can infer Z +-t Z, for all list Z that order the attributes of Z. 

Hence, by Prefix rule ZX ~ ZXY holds. 

3. By Suffix ZX +-t ZXYZX. ZXYZX may be normalized (ZXYZX +-t ZXYX). 

4. By Transitivity ZX ~ ZXYZ. Therefore, by Permutation and Theorem 14 FD 

zx --7 zy holds. 

FD3 Transitivity: 

X --t Y and Y --t Z implies X --t Z. 

However, this proves that axiom system comprising of inference rules I is sound and 

complete for the set ofFDs F. We would like to show it is true for set ofUODs M. 

Let M' = {X ~XV, XV +-t VX IX~ XV EM'}. Based on Theorem 18 Mand 

M' are equivalent. Also let F = { X --t Y I X ~ XV E M+} 

Based on Permutation rule and Theorem 14 we know that any relation instance sat

isfying dependencies in F satisfies dependencies in M' and vice versa. Let x+ [ 44], 

the closure of X (with respect to F) be the set of attributes A such that X --t A can be 

deduced from F by Armstrong's axioms. We consider the relational instance r with two 

rows shown in figure below. 

Based on Ullman's [44] proof of soundness and completeness of Armstrong's ax

ioms, relation instance r shows that if F is the given set of dependencies, and X --t Y 

cannot be proved by Armstrong's axioms, then r is a relation in which the dependencies 
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Table 4.3: Table r showing soundness and completeness over FDs. 

I M+ Attributes I Other Attributes I 

I ~:::~ I ~:::~ I 

of F hold but X --+ Y does not. That is, F does not logically imply X --+ Y. This means 

the inference rules are sound and complete over F. As there is no swaps in r, we do 

not falsify anything in M', therefore M, too. This ends the soundness and completeness 

proof for FDs over set of M. 0 

4.L6 Completeness of the UOD Axiomatization 

As discussed before an UOD can be falsified by a split or a swap. Using this, our proof 

for completeness is by case. If X t-t XY is not in M+, there will be a split in the sub-

table split(M) that we construct that falsifies X t-t XV, and so that falsifies X t-t V also. 

IfX t-t Vis not in M+, but X t-t XV is, there will be a swap in sub-table swap(M) that 

falsifies X t-t V. 

Lemma 9 

There is not split in ti appendt2 that is between rows from ti andt2, respectively, besides 

[] t-t X for any X There is no swap in ti append t2 that is between rows from ti and t2, 

respectively. 
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Proof 

Lett be a tuple in ti ands be a tuple in t2 . Since all values int are less that all values in 

s, it is impossible for there to be a split (except [] r---+ X) or swap introduced between ti 

and t2 within ti append t2. D 

We construct tablet to satisfy, and to be complete with respect to, M. Tablet will 

be split(M) append swap(M), as introduced above. Note that by Theorem 18 these are 

the only two scenarios. 

Table split(M) is constructed by appending two rows to the table, as in Table 4.3 for 

each subset of attributes of X from M. 

Lemma 10 (split( M) satisfies M) 

For any M with no constants, split( M) does not falsify any UOD in M. 

Proof 

The relational instance split(M) we have constructed contains splits, but no swaps. 

Therefore X r---+ Y could be only falsified by split. (Consequently, X r---+ XV is falsi

fied, too.) But we know that we are sound and complete over set over FDs by Theorem 

16 and by Lemma 9 appending of the tables does not introduce additional splits (except 

[] r---+ X) or swaps, therefore this is not possible. 

Table split(M) is based on table we constructed for Min the proof of Theorem 16, 

which establishes that UODs subsume FDs; that is, split(M) satisfies Mand it is com-
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plete with respect to the UOD of the form X 1-7 XV - which are equivalent to FD state

ment (Theorem 14) - in that it falsifies each X 1-7 Y not in M+ but which is composable 

over the attributes in M. As constructed, split(M) introduces no swaps. 

For swap(M) a natural approach would seem to be to construct the table incremen

tally, to falsify each UOD not in M+, in tum, while ensuring we do not also falsify any 

OD in M+, in each step. This would be similar to how we constructed split(M). How

ever, how to do this by a straightforward construction is not apparent. When considering 

how to falsify X 1-t Y, which attributes from X and from Y, respectively, should have a 

swap appear in the table? And how do we ensure that this swap does not falsify any UOD 

in M+? Instead, we consider every pair of attributes, A and B, from the set of attributes 

in M. We determine the relevant contexts, if any, in which a swap with respect to A and 

B must occur in swap(M). 

The set(XY) is a context for A, B with respect to M if! XA rv Y and X rv YB are in 

M+, XA rv YB but is not in M+. If there exists such a context for A, B, this indicates 

there should be a swap between A and B (to falsify XA rv YB). It also indicates the 

"context" of the swap, as the swap must not falsify XA rv Y or X rv YB. One could 

imagine constructing a swap - a pair of rows t and s for this - by having txy = sxy. 

That way, the swap t, s would not falsify XA rv Y or X rv YB. But what should the values 

oft ands be outside of XY? We cannot construct t ands simply, ensuring the swaps, t 

does not falsify anything in M+. Instead, we use structural induction. Consider for now 
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Table 4.4: A relation instance for K + 1 non-constants attributes. 

I Attributes of XV I Other Attributes 

0 .. 0 al,1 al,2 al,i 

0 .. 0 aj,1 aj,2 a·. J,'l 

that XV is non-empty. If we added [] r--t XV to M - call the result M' - XV can only 

have a single value in any table that satisfies M'. Recall the hypothesis from Hypothesis 

1. We adopt this as our induction hypothesis. Assume our present M contains K + 1 

attributes. Then M' contains K or fewer attributes since [] r--t XV. By our induction 

hypothesis, there is a tablet' (see Table 4.4) that satisfies, and is complete with respect 

to M'. As XA '"'-'YB is not in M+, it is not in M'+ either. Thus t' falsifies XA '"'-'YB. o 

Which context for A, B should we do this for? Not for all of them. It is the maximal 

contexts that are relevant. X, Y is a maximal context for A, B if! it is a context for A, B 

and there is no other context X', y' such that set(X'Y') ~ XV. 

Since we use induction in the proof, we need to prove a base case of the induction 

hypothesis. We prove it for the cases of M with 0, 1, and 2 non-constant attributes in 

the following Lemma. 

Lemma 11 (Induction, base K ::; 2) 

For at most K ::; 2 attributes there exists a table t in split-swap form that satisfies and is 

complete with respect to M. 
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Proof 

This can be directly shown by enumerating through all the possibilities. 0 

We have assumed so far that the (maximal) contexts, if any, for A, B are non-empty. 

There is the case where A, B has a single maximal context {}, the empty context. In 

this case, we cannot appeal to the induction hypothesis. Fortunately, such pair A, B 

will have special properties by virtue of the fact they have swapped orders only in the 

empty context. In fact, our sixth axiom schema speaks directly to this very case. (We 

likely would never have had the insight for the sixth axiom (schema) Chain had we not 

encountered this case while attempting to prove completeness.) In this case, we will be 

able to construct a two-row swap for A, B directly that does not falsify anything in M+. 

Lemma 12 (empty context) 

There exists a swap for A, B with the empty maximal context that satisfies M while 

falsifying A rv B. 

Proof 

We construct a two-row swap with values 0 and 1 that falsifies A rv B but cannot falsify 

anything in M+ as shown in Figure 4.5. For the latter, it suffices to prove that the swap 

does not falsify any C rv Din M+. For A and B, they have opposite values in each row 

in the swap. For any C such that Arv C is in M+, C must have the same value as A in 

each row. (Otherwise, A and C would have swapped values - 0 and 1 - between the 

two rows.) Likewise for B. And for any D such that C rv Dis in M+, D must have the 
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Table 4.5: Swap for attributes with the empty maximal context. 

I A I B I A's group I B's group I Remaining attributes I 

I 
0 

I ~ I ~ I ::: I ~ I ~ I ~ I ~ I ~ I ~ I ::: I 0 

I 

same value as C (and so the same as A) in each row. And so forth. Of course, it would 

be impossible to construct our two rows if there is a chain connecting A and B through 

order-compatibility: A rv E1 rv ... rv En rv B. If there were, we would need to set the 

value of each E1 rv ... rv En the same as A's value and the same as B's value in each row. 

But A's and B's values differ. The Chain axiom schema (OD6) ensures there is no such 

chain from A to B. EA rv EiB is in M+, for each Ei, since the maximal context for A, 

Bis []. If there were a chain A r-v E1 rv ... r-v En r-v B such that A r-v E1 is in M+, Ei rv 

Ei+l is in M+ for each ion 1, .. , n -1, and En Bis in M+, then Arv Bis in M+ also, 

by the Chain axiom. Since we know that A r-v B is not in M+, there is no such Chain. 

Thus, our two rows are constructible. We can partition the attributes into three groups: 

those that must have the same values as A, those the same as B, and those for which it 

does not matter. Table 4.5 shows the construction. 

For attributes that do not match A or B, it is important we do not introduce swaps 

between them, as this could falsify something in M +. It suffices to use the same value 

for these in each row. Call the two-row swap in Table 4.5 r. Tabler satisfies M. Assume 

otherwise: for X 1-+ YE M, r falsifies it. Let X 1-+ Y be over non-constants attributes, 

without loss of generality. Let E be the first element of X, and F of Y. If both E and 
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F are from A, A's group or the remaining group attributes (as in Table 4.5), or they are 

both from B or B's group attributes, then X and Y order the two tuples of r the same way. 

Therefore, E must be from one group, and F from the other. Since X r--+ Y E M +, X "' Y 

EM+ by Theorem 18. By the Downward Closure rule E"' FEM+. Contradiction. D 

Our proof obligation for swap(M), that it does not falsify any UOD in M+ is proved 

in the following Lemma. 

Lemma 13 (swap( M) satisfies M) 

Assuming Hypothesis 1, for all M of K or fewer non-constants attributes, swap( M) 

does not falsify any UOD in M. 

Proof 

Hypothesis 1 is the key in proving that A, B does not falsify any UOD in M+. When we 

consider pair A and B which requires a swap in non-empty context X we obtain M' = 

M U { [) r--+ X1 , ... , [) r--+ Xn}, where X = {X1 , ... , Xn}. By our hypothesis, there exists 

a tablet' in split-swap form that is satisfied and complete with respect to M'. As M'+ 

;;;2 M+, therefore any UODs in M+ is not falsified. 

None of the sub-tables falsifies any UOD in M+ by the hypothesis in non-empty 

context and soundness of base cases (empty context and K :::; 2). As the table swap(M) 

is append-normalized, swap(M) does not falsify any UOD in M+. 0 

Lemma 14 
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Eve1y UOD that is derivable with respect to the axiomatization over M is not falsified 

by the table t. 

Proof 

The sub-tables split(M) and swap(M), as we construct them, are satisfied with respect to 

M (Lemma 10 and Lemma 13 respectively). If neither split(M) nor swap(M) falsifies 

any UOD in M+, then t as split(M) append swap(M) cannot falsify any UOD in M+ 

either (See Lemma 9). D 

Lemma 15 

Assuming Hypothesis 1 for all M constructed over K or fewer attributes, given any M 

constructed over K + 1 attributes and none is a constant with respect to M, the table t 

= split( M) append swap( M) is complete with respect to M. 

Proof 

Assume X 1---t V over only non-constant attributes, is in the complement of M+ (X 1---t V 

ti M+). Theorem 18 tells us that unidirectional order dependency X 1---t V holds iff 

X 1---t XV and XV f-7 VX. 

Case 1 

X 1---t XV ti M+. We have already proven that for the scenario with X 1---t XV (FD) we 

are always complete (Theorem 16). 
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Case 2 

X 1-t Y tf. M+, but X 1-t XV EM+. By Theorem 18 X rv Y tf. M+. Find longest PA 

prefixing X such that: 

1. P rv YEM+ 

2. PA rv Y ti. M+ 

Find longest QB prefixing Y such that: 

3. PA rv Q EM+ 

4. PA rv QB 5t M+ 

5. P rv Q EM+ [Downward Closure(l)] 

6. P rv QBE M+ [Downward Closure(!)] 

7. PAQB +-t QPAB EM+ [Shift(3, B +-t B)] 

8. PAQB +-t PQAB E M+ [Replace(5)] 

9. QBPA +-t PQBA E M+ [Shift(6, A +-t A)] 

10. PAQB +-t QBPA ti. M+ [(4)] 

11. PQAB +-t PQBA ti. M+ [Transitivity(8,9,10)] 

12. PQA +-t PQB ti. M+ [(11)] 

A and B have a swap within the context, W = set(PQ). In constructing swap(M), 

we considered all maximal contexts for A, B for which a swap is needed. Hence, we 

considered some superset V ;;;2 W. If V# [],a sub-table that satisfies, and is complete 

with respect to M U {[] 1-t Vi, ... ,[] 1-t Vn}, where V= {V1 , ... , Vn} is appended in 
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swap(M). This ·falsifies WA rv WB, for all lists W that order the attributes of W (thus, 

falsifies X 1-t Y). Else ifV = [],we appended a swaps, t as in Figure 4.5 which falsifies 

Arv B ([]Arv []B). D 

Theorem 17 (completeness) 

The set of the UOD axioms I= ODJ-OD6 is complete. 

Proof 

Base case: 

M with K ::; 2 attributes proved by Lemma 11. Assume Hypothesis 1 for all M 

composed over K or fewer attributes. 

Induction step: 

Consider an M over K + 1 attributes. 

Case 1. 

M contains constants attributes (Definition 24). Let M' be M with these constants 

attributes removed. M' has K or fewer attributes. By the induction hypothesis (Hy

pothesis 1) there is r' which satisfies, and is complete with respect to M'. Lemma 8 

guarantee we can construct r from r' that satisfies, and is complete with respect to M. 

Case 2. 

M contains no constants attributes. Lemma 15 establishes there exists an r that 

satisfies, and is complete with respect to M. 

D 
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f' 

4.2 A Hierarchy of OD Classes 

One can define classes of ODs, as we have done with our class of lexicographical ODs 

and the sub-class of UODs. Likewise, we can show that the class of functional depen

dencies is a sub-class of the class of UODs. In the literature, a number of variations of 

order dependencies have been studied. (We review these in Chapter 6.) The seminal 

work of [ 16] presented the especially general class of pointwise order dependencies. We 

establish the relationships among these classes. 

Of course, the syntax for FDs and ODs is different. We need to say formally what it 

means for one class of dependencies to generalize another (or that one class is a sub-class 

of another). 

Definition 20 (Class A generalizes class BJ 

Let mapping CJ map dependencies from class B into sets of dependencies in class A. 

Mapping CJ is semantically preserving iff, for any table r, for any B of class B, t f= 

B ~ t f= /\ CJ(B). (Additionally, mapping CJ is polynomial iff there is a polynomial

time algorithm that implements it.)· 

Dependency class A generalizes dependency class B iff there is a semantically pre

serving mapping of any arbitra1y dependency of class B into a set of dependencies of 

class A. 

Class A strictly generalizes class B iff A generalizes B but B does not generalize A. 
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If A (strictly) generalizes B, we also say then that Bis a (proper) sub-class of A. 

In Chapter 4.2.1, we characterize the inference problem for classes of dependencies 

of this type in general, for our (lexicographical) OD class, and decompose this into its 

fundamental pieces. (We employ these definitions and concepts in the proofs that follow.) 

We then establish a strict hierarchy of classes of ODs: in Chapter 4.2.2, we establish that 

our class of lexicographical ODs is, in fact, a proper sub-class of the class of pointwise 

order dependencies; in Chapter 4.2.3, we prove that UODs form a proper sub-class of the 

(lexicographical) ODs; and, in Chapter 4.2.4, we prove that FDs form a proper sub-class 

ofUODs. 

4.2.1 Violations 

We are considering dependencies of the form X =? Y for which X and Y are predicate 

conditions that can be evaluated over an ordered pair of tuples. A table satisfies the 

dependency if(, for every possible (ordered) pair of tuples from the table, if the pair 

satisfies X, then the pair also satisfies Y. Thus, if tablet does not satisfy a dependency, 

then there exists a pair of tuples from t that violates (falsifies) the dependency. This 

suffices to define functional and order dependencies. 

The inference problem for any such class is whether, given a collection of depen

dencies, a target dependency is logically entailed by the collection. This is defined in 

Definition 21 for our class of lexicographical ODs. 
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Definition 21 (M I= X r-+ Y) 

The problem of testing logical implication/or ODs is, given a set of ODs Mand an OD 

X r-+ Y, to decide whether M I= X r-+ Y. 

Since an ordered pair suffices to represent a violation, one can rewrite the two tuples 

with just the values 0 and 1, while preserving the relative order between columns's values 

between the two tuples, without loss of generality. Thus, to answer a question of logical 

implication (as by Definition 21), it would suffice to evaluate every pair of tuples com

posable over 0 and 1. For every such pair, ifthe pair does not violate any dependency in 

the collection, it also does not violate the target dependency, then the target is logically 

entailed. 

Consider ODs. Given n attributes over the collection, there are 22n such ordered tuple 

pairs composable over 0 and 1. This sets a lower bound for this brute force approach for 

checking of 0( 4n). (Checking each pair additionally requires the expense of evaluating, 

for each OD X r-+ Y in the collection and the target itself, X against the pair and Y 

against the pair.) This procedure directly establishes that the inference problem for ODs 

is decidable. 

For any class of dependencies, the inference problem is likewise decidable, of course, 

if i) a violation is a pair of tuples, ii) the domain of pairs that need to be checked is 

finite with respect to the dependencies, and iii) the check for violation given a pair and 

dependency is itself decidable. 
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Table 4.6: Table representing a split and a swap. 

An OD X H Y can be violated <falsified) in two ways, as by Theorem 18: by splits 

and swaps. 

Theorem 18 (decomposition) 

For eve1y instance r of relation R, X H Y if! X H XY and XY H YX. 

Proof 

IF: Suppose X HY. By the Suffix rule X ~ YX. By Prefix and Normalization X H XY 

andXY ~ YX. 

ONLY IF: Assume that X H XY and XV ~ YX. By Transitivity, X H YX. By 

Reflexivity and Transitivity, X H Y. 0 

Example 38 (split and swap) 

t- t- t- t- --+ --+ 
There is a split in Table 4. 6 with respect to an OD [ N , V] H [ N , V , A , B ] and a swap 

t- --+ --+ t- --+ --+ 
in Table 4.6 with respect to an OD [ N, A, M] rv [V, B, W]. 

4.2.2 Pointwise generalizes Lexicographical 

The class of pointwise order dependencies was proposed in the context of database sys-

terns in [ 16]. The type of dependency looks rather different than the lexicographical 
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ODs we have presented. The pointwise order dependency X -v-+ Y holds if order over the 

values of each attribute of X implies order over the values of each attribute of Y. Both 

X and Y are sets of order conditions. Let us restrict our interest to domains for which 

values are comparable. 

Definition 22 Each order condition is a marked ath··ibute A op for which op E { <, >, :::; , ~, =}. 

For any table r, r satisfies X -v-+ Y iff, for any tuples s, t E r, if, for each A op in X, SA 

op tA, then, for each B0 P in Y, ss op ts. 

While lexicographical ODs have been studied since (see Chapter 6), it has never been 

established how they are related with pointwise. We show thought the class of point

wise ODs strictly generalize the class of lexicographical ODs. (The mapping requires a 

quadratic number ofpointwise ODs in the size of the lexicographical OD.) 

The following two lemmas prove Theorem 19. Lemma 16 establishes that there are 

pointwise order dependencies that cannot be mapped in any semantically preserving way 

into lexicographical ODs. Lemma 17 shows a semantically preserving mapping of a 

lexicographical OD into a set of pointwise ODs. Together, these establishes that the 

class of lexicographical ODs is a proper sub-class of that of pointwise ODs. 

Lexicographical ODs can be expressed by pointwise ODs. 

Lemma 16 

There exists a semantically preserving, polynomial mapping (Definition 20) of a lexico-

119 



graphical OD into a set of pointwise ODs. 

Proof 

Algorithm 3 provides a polynomial mapping of an arbitrary lexicographical OD into a 

set of£ ofpointwise ODs. Any split or swap that violates the lexicographical OD X r-? Y 

violates some pointwise OD in £, and vice versa. 0 

Algorithm 3 Translation 

Input: Lexicographical OD X r-? Y, where X = [X0, ... , Xm_ 1] and Y = [Y 0, ... , Y n-1] 

Output: A set of pointwise ODs £ semantically equivalent to lexicographical OD X r-? 

Y. 

1: £={A;, ... , A=::i_1 "-"+A;, ... , A~_ 1 } 

2: for i f- 0 to m - 1 do 

3: for j f- 0 ton - 1 do 

5: £ = £ u {A;, ... , A~"-"+ s;, ... , B.f} 

---+ f-

6: . else if Xi= Ai and Yj = B j then 

7: £ = £ u {A;, ... , A~"-"+ s;, ... , s.n 
f- ---+ 

8: else if Xi= Ai and Yj = BJ then 

9: £ = £ u {A;, ... , A;"-"+ s;, ... , Bj} 

f- f-

10: else if Xi= Ai and Yj = BJ then 

11: £ = £ u {A;, ... , A;"-"+ s;, ... , s.n 
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Lemma17 

There exists a pointwise OD that cannot be mapped in a semantically preserving way 

(Definition 20) into a set of lexicographical ODs. 

Proof 

Consider the following table t. 

Table 4. 7: Tablet. 

i 8 8 8 
j 8 9 8 
k 10 10 10 
l 10 10 11 
m 12 12 13 
n 12 13 12 
0 14 14 15 
p 15 14 14 

q 16 ·17 16 
r 17 16 16 

Pointwise OD A>s> ~ c> is satisfied by tablet. However, it is straightforward to 

show that tablet that we construct consists of all possible splits (Definition 13, rows a-1) 

+
and swaps (Definition 14, rows a-f and m-r) defined for ODs over marked attributes A, 
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--t +-- --t +-- --t 
A, B , B, C and C are falsified by table t. D 

Theorem 19 

The class of pointwise ODs strictly generalizes the class of lexicographical ODs. 

Proof 

There exists semantically preserving, polynomial mapping for any set of lexicographical 

ODs to a set of pointwise ODs (Lemma 16). Additionally, the class of pointwise ODs 

are more expressive than lexicographical ODs (Lemma 17). D 

In [16], the authors demonstrated that the inference problem for pointwise ODs in 

general is co-NP-complete. By Theorem 19 and the fact that the mapping is polyno-

mial this sets a ceiling for the inference problem for lexicographical ODs. However, the 

problem for lexicographical ODs is just as hard, as we prove in Chapter 4.3. 

4.2.3 ODs generalize UODs 

Next, we investigate whether the addition of bidirectioal ODs (BODs, Definition 5) add 

expressive power over UODs. This is equivalent to the question of whether the class of 

ODs strictly generalizes UODs. 

With BODs, ODs are more expressive than UODs. (Given that UODs are a syntactic 

sub-class of ODs, it follows that the class of ODs strictly generalizes the class ofUODs.) 
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Theorem 20 

The class of ODs strictly generalizes the class of UODs. 

Proof 

UODs are a proper sub-class of ODs by Definition 5. D 

In fact, we can easily prove that the sound and complete axiomatization for the class 

of UODs from Figure 4.1 is not complete for the class of ODs. 

Lemma 18 

(incomplete for ODs) The set of the axioms from Figure 4.1 is not complete over ODs. 

Proof 

---+ ---+ ---+ ~ 

Consider the set M of [A] 1--+ [ B] and [A] 1--+ [ B]. From first principles, it is simple 

---+ 
to show that M f= [] 1--+ [B]. None of the axioms reduce the left-hand side of an OD 

---+ 
(besides Normalization, which does not apply here). M f= [] 1--+ [ B ] cannot be proved 

from the axioms. D 

The next question we might ask is whether there is a cost for this extra expressive-

ness. Is the inference problem harder for the class of ODs than for the class of UODs? 

Surprisingly perhaps, the answer is yes. This is shown in Chapter 4.3. 

4.2.4 UODs generalize FDs 

UODs are more expressive than FDs. 
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Table 4.8: Tablet falsifying FDs. 

a 0 0 
b 0 1 
c 2 2 
d 3 2 

Lemma 19 

The class of UODs is more expressive than the class of FDs. 

Proof 

Consider the tablet in Table 4.8. The UOD [A] "' [B] is satisfied in tablet. However, in 

tablet, all possible non-trivial FDs over attributes A and Bare falsified. 0 

Theorem 21 

The class of UODs strictly generalizes the class of FDs. 

Proof 

By Theorem 14 and Lemma 19. 0 

Since the class of ODs generalize the class of FDs the inference problem for UODs 

with INDs is undecidable. 

Corollary 22 (Undecidable for ODs with INDs) 

Testing logical implication for ODs with INDs is undecidable. 
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Proof 

This follows from that implication for FDs and INDs is undecidable and Theorems 20 

and 21 that ODs generalize UODs and that UODs generalize FDs, respectively. D 

4.3 Complexity 

We show that the inference problem for UODs (and ODs) is co-NP-complete [42]. Ad

ditionally, we show that inference problem for UODs and the inference problem of FDs 

from ODs are co-NP-complete. FD inference from UODs, a restricted case, is polyno

mially decidable, however. 

4.3.1 OD Inference 

We introduce first the notation which permits us to translate instances of 3-SAT into 

instances of the decision problem for testing logical implication for ODs. We assume the 

reader is familiar with NP-completeness in general, with the 3-SAT problem, and with 

reducibility [14]. 

Definition 23 

Let P = {p1 , ... , Pn} be a set of propositional variables for an arbitrary finite n, and 

let P = { •p1 , ... , 'Pn}· Let :F be a formula written over the propositional variables in 

P and their negations in conjunctive normal form with k clauses, each a disjunction of 
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length three, for an arbitraJy finite k. 

For i E { 1, ... , k}, let Vi,1 V Vi,2 V Vi,3 represent clause i such that 

Vi,1 E (PUP), 

Vi,2 E (PUP) - { Vi,1 }, and 

Vi,3 E (PUP) - {Vi,1, Vi,2}, 

without loss of generality. 

Call any such F a 3-SAT candidate. Call any such 3-SAT candidate F for which 

there exists a truth assignment over F's P which satisfies Fa 3-SAT instance. 

3-SAT is the collection of 3-SAT instances. 

Lemma 20 [14] 3-SAT is in NP-complete. 

Lemma21 

Given a set M of UODs and UOD [AJ r--.1 [BJ, deciding whether M I= [AJ r--.1 [BJ is 

co-NP-complete. 

Proof 

Candidate and instance. Given a 3-SAT candidate F (Definition 23), we construct an 

UODI candidate (M:F, [TJ r--.1 [FJ). 

Let (M, X f--+ Y) be an arbitrary pair of a finite set M of UODs and a target UOD 

X f--t Y constructed over the attributes that appear in M. 
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Call any such (M, X 1-t Y) an UODI candidate. Call any such (M, X 1-t Y) for 

which M f= X 1-t Y an UODI instance. 

UODI is the collection of DODI instances. This is the set-theoretic characterization 

of the inference decision problem for UODs. 

Reduction from 3-SAT. Construction. 

M.r is constructed as follows. For each Pi, i E {l, ... , n}, from F, we introduce 

four attributes to appear in M.r-: Pi,1, Pi,r, Qi,r, and Qi!· (Our intent is that [Pi,1, Pi.ti will 

mirror the truth value of Pi from Fin a given truth assigment, and [Qi,1, Qi~ will mirror 

the truth value of-.pi in that truth assigment.) 

For i E {l, ... , n}, add the following order dependencies for Pi,t and Pi,rto M.r: 

1. [Pi,1] rv [T] 

2. [Pi,r] rv [F] 

3. [Pi,1] rv [Pi,r] 

4. [Pi,1, Pi,r, T] rv [Pi,1, Pi,r, F] 

Likewise, for i E { 1, ... , n}, symmetrically add the "same" order dependencies for Qi,1 

and Oi,rto M.r: 

5. [Qi,1] rv [T] 

6. [Oi,r] rv [F] 

7. [Qi,1] rv [Oi,r] 

8. [Qi,1, Oi,r, T] rv [Qi,1, Oi,r, F] 
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For i E {l, ... , n}, add to MF: 

9. [Pi,r, Oi,1, T] rv [Pi,ti Oi,1, F] 

10. [Pifi Qif, T] rv [Pif, Qif, F] 

Next, we encode the clauses. For each clause, i E {l, ... , k }, from F, we introduce 

three attributes: Vi,1, Vi,2 , and Vi,3. For i E {l, ... , k }, j E {l, ... , 3}, add one OD to 

MF as follows. If vi,j =Pl (for a given l E {l, ... 'n}) in F, add to MF: 

11. [Vi,j] rv [Pl,1, Pl~ 

Else, vi,j = 'Pl (for a given l E {l, ... 'n}) in F; add to MF: 

12. [Vi,J] ,.__, [Ql,1, QlJ1 

Finally, for each clause i E {l, ... , k} in F, we introduce an attribute Ci, and we 

add to MF: 

14. [Ci) I-+ [Vi,li vi,2i vi,3, F) 

Polynomial reduction. 

The translation procedure above of a 3-SAT candidate into an UODI candidate is 

clearly polynomial in the size of F. 

Witness. 

We can build a counter-example for a given UODI candidate to demonstrate that it 

is not an UODI instance, in UODI. A pair of tuples is necessary and sufficient to falsify 

[T] rv [F]. Therefore, MF ~ [T) rv [F) if! we can construct a two-tuple table t over 

128 



the attributes appearing in M.r that falsifies [T] "' [F], but that does not falsify any 

order dependency in M.r (thus satisfies M.r). Between the two tuples int, Twill have 

different values, F will have different values, and the values of T and F will be anti-

monotonic. Let the two values for T and for F in t be 0 and 1, without loss of generality. 

We write the tuples in t in a fixed order in our discussion such that h,F = [? 6], without 

loss of generality. Conceptually, a transition from 0 to 1, as in tT = [?], encodes true; a 

transition from 1 to 0, as in tF = [ 6], represents false. 

We can always build a two-tuple tablet such that tT,F = [? 6] (which is necessary and 

sufficient to falsify [T] "' [F]) which satisfies ODs 1-13 of M.r. Let us construct such a 

t. Because of 0 D 1, f p i,i = [ g] or [ ? ] . (If only a single value appears in t for an attribute, 

we can assume that value is 0, without loss of generality.) Because of OD 2, tpi/ = [ g] 

or [ 6]. Because of OD 3, fpi,i,Pi/ =J [? 6]. Because of OD 4, fpi,,,Pi/ =J [8 8]. (Otherwise, 

OD 4 would be falsified by t, since h,F = [? 6].) Therefore, tpi,i,Pi/ = [8 6] or [? 8]. 

From ODs 5-8, it symmetrically follows that tai,1,ai/ = [ g 6] or [ ~ 8]. 

From ODs 9-10, it further follows that 

or 
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For any Vi,j such that Vi,j =Pl for a given l in :F, so OD 11 is in M.r for i, we know 

the following: 

• if fp1,,,P11 = [? 8], then tvi,j = [8] or[?]; 

• else fp1,,,P11 = [8 6] and tvi,j = [8] or [6]. 

For any Vi,j such that Vi,j ='Pl for a given l in :F instead, so OD 12 is in M.r for i, we 

know the following: 

• if fp1,,,P11 = [~ 8], then ta1,,,a11 =[86] and tvi,j = [8] or [6]; 

• else fp1,,,P11 = [ 8 5J, ta1,1,a11 = [? 8 J and tvi,j = [8] or [? ]. 

To satisfy ODs 13, for i E {1, ... , k }, it must be that fci = [ ~) since tT = [ n 
In coNP. 

It is not always possible further to set values for the Vi,j 'sin such a way that t also 

satisfies the ODs 14, for i E {l, ... , n }, j E {l, ... , 3}, and so satisfies M.r com

pletely. When we can also set values for the Vi,j 's so that t also satisfies the ODs 14 too, 

then t suffices as a witness that (M.r, [T] rv [F]) ¢ UODI. 

Correspondence. 

:FE 3-SAT if! (M.r, [T] rv [F]) ¢ UODI. 

Consider two-tuple tables t that satisfy the ODs 1-10 and 13 from M.r, but that 

falsify [T] rv [F]. There is a one-to-one mapping between truth assigments over the Pi, 

for i E {l, ... , n }, in :F and settings for Pi,r in such t. For i E {l, ... , n }, if Pi = true 

in the truth assignment, set 
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-...,.. . ., .. 

else (pi =false), set 

IF: There is some truth assigment over p1, ... , Pn that satisfies F. 

We construct a two-tuple tablet based on this truth assignment that satisfies M:F for 

ODs 1-13, and that falsifies [T) r'-J [F), as above (in the Witness part). For i E {1, ... , n }, 

assign values for Pi,r, Pi/, Qi,r, and Qi/according to the truth assignment mapping above. 

To satisfy further ODs 14, we must be able to assign values to the Vi,j 's that suffice. 

For i E {1, ... , n}, j E {1, ... , 3}, if Vi,j =true, set tvi,j =[~].This satisfies the OD 

11 or 12 added to M:F for i, given how we assigned P i,1, P if, Qi,1, and Qi/ based on Pi 's 

truth value. Otherwise (Vi,j =false), set fvi,j = [8]. This satisfies either the OD 11 or 

12 for i, j, vacuously. 

Since, for each i E {1, ... , k }, at least one of Vi,1 , Vi,2 , and Vi,3 is true in the truth 

assignment, at least one of tvi,1' fvi, 2 , or fvi,3 is [ ~]. Thus, t as constructed satisfies ODs 

1-14, and so all of M:F. 

ONLY IF: There is no truth assignment that satisfies F. 

For any arbitrary truth assignment, we can build a two-tuple table t that falsifies 

[T) r'-J [F) based on the truth assignment mapping that satisfies ODs 1-13, as done in the 

if part. We next try to assign values to the Vi,j 's in such a way that t satisfies ODs 14. 
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Since the truth assignment does not satisfy F, there is some clause i such that Vi,1' 

Vi,2 , and Vi,3 are eachfalse. The OD 14 for i will be falsified. For each Vi,j, as either the 

OD 11or12 is satisfied accordingly, fvi,j = [8] or [6]. 

If, for any Vi,j, fvi,j = [ 6], OD 14 is falsified since fci = [?]. If instead, for all Vi,J, 

fvi,j = [ 8], OD 14 is still falsified, since tF = [ 6 J. 

No two-tuple table t that falsifies [T] rv [F] can be constructed that satisfies MF. 

Any tablet therefore either satisfies [T] rv [F] or falsifies MF. 

Theorem 23 (single OD) 

X rv Y holds if.f XY 1-t Y 

Proof 

0 

IF: By Reflexivity axiom, OD YX 1-t Y is true. Therefore, by Transitivity, XY 1-t Y. 

ONLY IF: By Suffix axiom, XY +--+ YXY is true. Therefore, by Normalization and 

Transitivity, XV rv YX. 0 

Theorem 24 

Given a set M of UODs and UOD X 1-t Y, deciding whether M I= X 1-t Y is co-NP-

complete. 

Proof 

By Theorem 23, order compatible X rv Y is equivalent to a single UOD. Therefore, by 

Lemma 21, deciding whether M I= X 1-t Y is co-NP-hard. 
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Witness 

Any counter example for a given UOD X 1---+. Vis a pair of tuples (that can be checked in 

polynomial time). This is necessary and sufficient to falsify X 1---+ Y, by the definitions of 

split and swap (Definitions 13 and 14). 

Thus, deciding M f= X 1---+ Y is co-NP-complete. 0 

4.3.2 FD inference over ODs 

Corollary 25 

Given a set M of ODs and OD X 1---+ Y, deciding whether M f= X 1---+ Y is co-NP

complete. 

Proof 

Hardness, follows directly from Theorem 24 as a class of UODs is a proper sub-class 

of ODs. (Any witness that M ~ X 1---+ Y is a pair of tuples (that can be checked in 

polynomial time) by definitions of split and swap (Definitions 13 and 14). 0 

Functional-dependency inference for UODs is polynomial. In fact, it can be done in 

linear time (Theorem 26). This does not contradict Theorem 24; the type of inference 

that is hard for unidirectional ODs is order compatibility, X rv Y (as shown in Lemma 

21 and Theorem 24). 

Let the length of the representation of M, the string of concatenated left-hand and 

right-hand sides of the ODs, be denoted by IMI. 
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Theorem 26 (FDs over UODs) 

Let M be a set of UODs. Testing whether M I= X 1--t XY (M I= X --+ Y) can be 

accomplished in O~M~ time. (This includes.finding the closure for FDs, x+.) 

Proof 

Assume M' = {X 1--t XV, XV +-t YX I X 1--t VE M}. In [39], we have shown that F = 

{ X --+ Y IX 1--t VE M'} is a set ofFDs which enables one to compute the closure for 

FDs x+ over the set ofUODs M. Testing logical implication of a FD X --+ Y over a set 

of prescribed FDs has already been shown to be linear in [3]. This implies that testing 

M I= X --+ Y can be also accomplished in O(IM I). The same applies to M I= X 1--t XV 

by Theorem 14. 0 

This is not the same case, however, for bidirectional order dependencies. Both the 

inference problems for functional dependencies (embedded within the ODs), X 1--t XV, 

and for order compatibility, X rv V, are hard. 

We call an attribute a constant if, for any table that satisfies the set of ODs M, it can 

have only a single value occurring in the table. 

Definition 24 (constant) 

A marked attribute A is called a constant with respect to M iff M I= [] 1--t A 

Lemma 22 

Given a set M of ODs and a functional dependency {} --+ A, deciding whether M I= 
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{} ~ A is co-NP-complete. 

Proof 

Let (M, X 1-t Y) be an arbitrary pair ofa finite set M of ODs and an target UOD X 1-t Y 

constructed over the attributes that appear in M. 

Call any such (M, X 1-t Y) an OD! candidate. Call any such (M, X 1-t Y) for which 

M f= X 1-t Yan OD! instance. 

It suffices to show that any 3-SAT candidate (Definition 23) can be reduced to an 

ODI candidate of the form (M, X 1-t XV). We reduce any 3-SAT candidate to an ODI 

--t 
candidate of the form (M, [] 1-t [ T]) .11 

ODI is the collection of ODI instances. This is the set-theoretic characterization of 

the inference decision problem for ODs. 

Construct an ODI candidate from a given 3-SAT candidate in the very way the UODI 

candidate-also an ODI candidate-is constructed in Lemma 21. (Recall every un-

marked attribute in ODs 1-14 is ascending, by default.) Add one more OD to M: 

~ ~ 

15. [F] 1-t [T]. 

Witness 

~ 

A two-tuple table t is a necessary and sufficient witness that M ~ [] 1-t [ T]. Let 

11 A simpler reduction from 3-SAT to ODI is possible which suffices. A single pair of attributes can be 
----? +-

forced to be anti-monotonic: [ P] ~ [ Q ], just as with T and F. Then, Pi and Qi can be used to encode the 
truth assignment of Pi· Given that we preceded with Theorem 24, however, the proof given here is more 
concise. 
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Table 4.9: Table template. 

I # II X1 I ... I xk I attributes(M) - {Xi, ... ,Xk} I 

I ; II ~: I ::: I ~: I :::: I ::: I :: I 
(a) Template ro. 

I # II X1 I ... I xj-1 I xj I attributes(M) - {Xi, ... ,Xj} I 

I ; II ~: I ::: I ~~=: I ~; I :;:: I ::: I :: I 
(b) Template rj. 

tT = [~],without loss of generality. Then, tF = [ fi], given t satisfies OD 15. 

The rest of the proof then proceeds the same as for Lemma 21. 0 

Theorem 27 

Given a set M of ODs and a functional dependency X-t Y, deciding whether M I= 

X -t Y is co-NP-complete. 

Proof 

By Theorem 14 X -t Y iff X 1-7 XV, for any list X that orders the attributes of X and 

any list Y that orders for Y. Therefore, by Theorem 22, deciding whether M I= X -t Y is 

co-NP-complete as we can always construct a witness (that can be checked in polynomial 

time) that M ~ X-t Y, by the definition of split (Definition 13). 0 
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Table 4.10: Mapping. 

I# II A I BI c I 
s bi b3 t4 
t bi t3 b4 

I# II A I BI c I 

I~ II ~ I ~ I~ I 
(b) Instance 

cp(rm)· 

4.4 Inference Procedures 

A goal in any dependency theory is to develop algorithms for testing logical implication. 

We show how to test logical implication for ODs with an elimination procedure. 12 An 

elimination procedure is a reduction procedure for testing satisfaction of a data depen-

dencies in a database. It is used to reason about the consistency and correctness of data 

design and in query optimization. 

We next introduce an inference procedure for testing logical implication for a re-

stricted domain for UODs. The additional order property to be guaranteed over the 

schema is intuitive, holds for all real-world business domains that we have encountered, 

and can easily be verified whether it holds for a given table. Thus, it is a natural restric-

tion on the domain. We develop an inference procedure for UODs which is sound and 

12In preliminary work [38] (see Appendix ), we focused on jix,ing the table templates (Definition 25) 
with a chase procedure, whereas here, our technique is based on detecting with an elimination procedure 
the table templates which falsify the set of ODs M. Therefore, this revised elimination procedure is 
simpler and more efficient. This also means the proof that follows is much more concise. 
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complete when applied over a database that satisfies the property. Our inference proce

dure is e:fficient;with a reasonable polynomial complexity bound with respect to schema 

size. 

4.4.1 Elimination Procedure 

We establish a sound and complete elimination procedure for ODs for testing logical 

implication, for which the complexity is exponential. This complexity is with respect to 

schema (Therefore, it can be used in practice.) 

We define a table template over variables with respect to a given OD. We use these 

table templates to enumerate through all the possible cases where the OD can be falsified 

by splits and swaps. 

Definition 25 (table template) 

Let set of ODs M over relation R have n unique attributes and m be an OD X f-7 Y, 

where X is over attributes X 1 , ... , Xk. A table template for OD m, denoted as rm' is a 

table consisting of two tuples sand t, such that it is either r0 (Table 4.9a) or ri (Table 

4.9b), for j in [l, ... , k]. In r 0 and ri, symbols Pi and Qi represent one of the following 

three cases, where the ordering of variables bi and ti is defined as bi <ti: 

1. Pi = bi and Qi = bi; 

2. Pi =bi and Qi =ti; and 

3. Pi =ti and Qi = bi. 

138 



Example 39 presents how to apply a mapping (Definition 26) to a table template. 

Definition 26 (mapping rm to cp(rm)) 

Let rm be a table template.from Definition 25. A mapping of rm to cp(rm) is any instance 

with values that satisfy the ordering.from Definition 2 5. 

Example 39 

Consider Tables 4.JOa and 4.JOb as one of the possible mappings from Definition 26. In 

fact, it can be any relational instance which satisfies the Definition 25 for ordering of the 

variables. (The ordering of variables bi and ti is defined as bi < ti.) 

Lemma23 

Let rm be a table template (Definition 25) and cp(rm) be a mapping/ram rm (Definition 

26). Then rm f= X ~ Y iff cp(rm) f= X ~ Y. 

Proof 

By Definition 26, ordering of values in cp(rm) corresponds to the ordering of variables in 

rm' respectively. D 

Definition 27 (tableaux Tm) 

Let m be an OD X ~ Y. We define Tm to be the set of all table templates rm' as we 

defined in Definition 25. 

Note that Tm is a set of table templates, each consisting of two rows. The elimination 

of Tm is defined as follows. 
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Definition 28 (elimination of tableaux Tm) 

The elimination of Tm over a set of order dependencies M denoted as ELIMT m,M is 

defined byELIMTm,M ={rm I rm E Tm/\ rm f= M}. Furthermore, ELIMTm,M satisfies 

Xi-+ Y, denoted by ELIMTm,M f= Xi-+ Y, iff,for all rm E ELIMTm,M' rm f= Xi-+ Y 

ELIMTm,M satisfies the set of ODs M', which is denoted as ELIMTm,M f= M', iff, for 

all x I-+ y E M', ELIMTm,M F x I-+ y 

Theorem 28 (elimination procedure for ODs is sound and complete) 

LetMbeasetofODsoverRandmbeanODXi--+ Y ThenM f=Xi--+ Yif.fELIMTm,M f= 

Xi-+ y 

Proof 

IF: Assume ELIMTm,M ~Xi-+ Y. By Definition 28, there exists rm E ELIMTm,M such 

that rm ~Xi-+ Y. By Definition 28, rm f= M. Hence, there is a mapping cp to generate 

a relation instance cp(rm). By Lemma 23, cp(rm) f= M, but in addition cp(rm) ~Xi-+ Y. 

We have found a relation instance which satisfies M but does not satisfy Xi-+ Y, which 

implies that M ~Xi-+ Y. 

ONLY IF: Assume ELIMT m,M f= X i-+ Y. Lets and t be any two tuples in any relation r 

such thats ::;x t and that satisfies the set of ODs M. We would like to present thats ::;y t. 

Let rm E Tm. Let rm= {p, q} be the template relation such that cp(p) =sand cp(q) = t. 

It is possible always to find such a pair of tuples rm since Tm considers all possibilities 

of two tuples which satisfy conditions ::;x t. Therefore, we have cp(rm) = {s, t} and 
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cp(rm) I= M. By Lemma 23, it follows that rm I= M. It follows by Definition 28 that 

rm E ELIMTm,M· Since we assumed that ELIMTm,M I= X ~ Y, we have rm I= X ~ Y. 

This implies that cp(r m) I= X ~ Y by Lemma 23. Hence, s ~v t. D 

Proof 

By Theorem 28, testing logical implication problem of ODs is decidable as the elimina-

tion procedure is a sound and complete inference algorithm for ODs. D 

Theorem 29 (complexity of elimination) 

The complexity of building templates for the ODs elimination procedure is 0(3n ). (Note 

this is schema complexity.) 

Proof 

By Definition 25, there are 3n-k templates for r 0 and 3n-J templates for each rj. There

fore, there are (3n + 3n-k)/2 templates in total. By geometric progression: 0(3n). D 

We have implemented elimination procedure in IBM DB2. Our experiments have 

shown that the time of running it for real world business domains for which the number 

of unique attributes in the set of prescribed ODs is from 5 to 12 is marginal. 

4.4.2 Chase Procedure 

We show how to test logical implication for ODs using chase procedure. Chase is a 

fixpoint algorithm enforcing satisfaction of data dependencies in databases. The chase 
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algorithm is used to reason about consistency and correctness of data design and in query 

optimization to rewrite queries. 

Definition 29 (equalize) 

Lets and t be two tuples in relation instance r, and let A be a single attribute. Also let x 

= min(sA, tft). The operation equalize(r, A, s, t) returns a relational instance r', with s 

and t modified in r so SA = x and tA = x. 

Example 40 

Consider Table 4.11 a and Table 4.11 b as an example of an operation equalize. 

Now, we are going to introduce chase rules, which are applied to two rows in a 

relation instance with respect to set of ODs M. 

Definition 30 (chase rules) 

Let s and t be two tuples in relational instance r, and let X and Y be lists of marked 

attributes such that X f---+ Y is falsified in r (sx ::S tx but sy ~ ty). Also, let A be the first 

attribute in X such that SA =/: tA (if such an attribute A exists) and let B be first attribute 

in Y such that ss =/: ts Two chase rules are defined. 

4. Split rule: if sx = tx, then r' = equalize(r, B, s, t). 

5. Swap rule: if SA=/: tA and ss =/:ts, then r' = equalize(r, B, s, t). 
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Table 4.11: Operation equalize. 

I# II A I 

8IE 
(a) r = {s, t}. 

I# II A I 

wrn 
(b) r' = equalize(r, A, s, t). 

Example 41 

---+ ---+---+ ---+ f--

Let M = { A 1---t B C, B 1---t C } and let r be an instance over R with attributes 

{A, B, C}. From Table 4.12a to Table 4.12b demonstrates an example of applying the 

---+ ---+---+ 
split rule (A 1---t BC is falsified in r in Table 4.12a). From Table 4.12b to Table 4.12c 

---+ +-
demonstrates applying the swap rule (B 1---t C is falsified in r' in Table 4.12b). 

The chase algorithm is as follows (Algorithm 4 ). 

Example 42 

---+ ---+---+ ---+ f--

Let M = { A 1---t B C, B 1---t C } be a set of ODs and r be an instance over R with 

attributes {A, B, C}. The sequence from Table 4.12a, Table 4.12b, to Table 4.12c is an 

example of applying chase algorithm (Algorithm 4) to r as in Table. In Table 4.12c, 

there is nos and t that matches (as in step 5 of Algorithm 4), so the procedure terminates 

with it. 
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Algorithm 4 Chase procedure. 

Input: A set of prescribed ODs M and an instance relation r over R. 

Output: Table Current 

1: Current~ r 

2: Previous ~ {} 

3: while Current -=I- Previous do 

4: Current ~ Previous 

5: if :3 s, t E Current, :3 X i--+ Y E M such that sx ~ tx but sv --A tv then 

6: Apply one of the chase rules (split or swap from Definition 30) to s and t, 

assigning the table which is returned from equalize operation to Current. 

7: return Current 

Lemma 24 (termination and satisfaction) 

Algorithm 4 terminates and the resulting table of Algorithm 4 satisfies set of ODs M. 

Proof 

Consider a given relation instance r, and any relational instances, over schema R. With

out loss of generality let all values in r and s be zero or greater. Let L::s be the sum of all 

the values of all the columns in s. Let there be an applicable chase rule - split or swap 

- on s with respect to M, ands' be the result of its application. Instances' has the same 

number of rows as s. Also L::s' < L::s as the equalize replaced a value in some column of 
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Table 4.12: Chase algorithm. 

I# II A I BI c I 
s 1 1 2 
t 1 1 1 
u 3 3 3 

(a) r l;h M. 

I# II A I BI c I 
s 1 1 l 
t 1 1 l 
u 3 3 3 

(b) r ~ M, using split rule for 
rows sand t. 

I# II A I BI c I 
s 1 1 1 
t 1 1 1 
u 3 3 1 

(c) chase(r, M) f= M, using 
swap rule for rows t and u. 

some row by a smaller value. (Note that equalize does not introduce new values.) Zero is 

the lower bound on the I:s'. As a chase procedure is a finite sequence of transformation 

starting with r, it must terminate. 

The remaining step is to show that resulting table of Algorithm 4 satisfies set of ODs 

M. The instance chase(r, M) satisfies Mas no split or swap with respect to M applies. 

If not the chase procedure would not have terminated at that point. 0 

Theorem 30 

Let relation instance r be over Rand let M be a set of ODs. Then r I= M if.fr = chase(r, 

M). 
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Proof 

IF: If any split or swap applies to table instance s with respect to M, for the resulting 

s', Es' < Es. Then clearly s =f=. s'. Thus, r = chase(r, M) if no swap or split applies, 

meaning r I= M. 

ONLY IF: From Definition 30 it follows that chase rules split and swap are only used if 

they break a dependency m M. D 

Please note that we apply chase rules split and swap on table templates using ordering 

from Definition 25 (Section 4.2). 

Lemma 25 

Let rm be a table template from Definition 25, where mis an OD X 1-+ Y Then, rm I= 

M iffrm = chase(rm, M). 

Proof 

The proof follows directly from Theorem 30 by replacing rm with r and applying chase 

rules split and swap on variables, using ordering defined in Definition 25. D 

Lemma 26 

Let rm be a table template.from Definition 25 and <p(rm) be mappingfrom rm(Definition 

26). Then, rm I= X 1-+ Y ijf <p(rm) I= X 1-+ Y 

Proof 

The proof follows from the definition of ordering of variables in Definition 25. Since 
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ordering ofvalues in <p(rm) corresponds with ordering of variables in <p(rm) respectively 

(Definition 26). 0 

Definition 31 (tableaux Tm) 

Let m be an OD X 1-+ Y We define Tm to be the set of all table templates rm' as defined 

in Definition 25. 

Note that Tm is not just a single table template. It is a set of table templates (each 

consisting of two rows). The chase of Tm is defined as follows. 

Definition 32 (chase of tableaux Tm) 

The chase ofT mover a set of ODs M, denoted as CHASET m,M is de.fined by CHASET m,M = 

{chase(r,M) I rm E Tm. Furthermore, CHASETm,M satisfies X 1-+ Y, denoted by 

CHASETm,M I= X 1-+ Y, if.f, for all rm E CHASETm,M' chase(r, M) f= X 1-+ Y 

CHASETm,M satisfies the set of ODs M', which is denoted as CHASETm,M f= M', iff, 

for all X 1-+ YE M', CHASETm,M f= X 1-+ Y 

Theorem 31 (chase procedure for ODs is sound and complete) 

Let M be a set of ODs over R and m be an OD X 1-+ Y Then M I= X 1-+ Y if! 

CHASET m,M F XI-+ Y 

Proof 

IF: Assume CHASET m,M ~ X 1-t Y. By Definition 32, there exists rm E Tm, such 
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that chase(r m' M) ~ X r-t Y. Note chase(r m' M) I= M by Lemma 24. Hence, there 

is a mapping c.p to generate a relation instance c.p(chase(rm, M)) and by Lemma 26, 

c.p(chase(rm,M)) I= M, but c.p(chase(rm,M)) ~ X r-t Y. This implies that M ~ 

X r-t Y because we have found a relation instance which satisfies M but does not satisfy 

X r-t Y. Therefore, if Ml= X r-t Y then CHASETm,M I= X r-t Y. 

ONLY IF: Assume CHASETm,M I= X r-t Y. Lets, t be any two tuples in relation r such 

thats ~x t and that satisfies the set of ODs M. We would like to present thats ~v t. Let 

rm E Tm· Let rm = {p, q} be the template relation such that c.p(p) = s and c.p( q) = t. 

It is possible always to find such a pair of tuples rm since Tm considers all possibilities 

of two tuples which satisfy conditions ~x t. Therefore, we have c.p(rm) = {s, t} and 

c.p(rm) I= M. By Lemma 26, it follows that rm I= M. Therefore, it follows by Lemma 

25 that rm= chase(rm, M). Since we assumed that CHASETm,M I= X r-t Y, we have 

chase(rm, M) I= X r-t Y. As c.p(rm) = c.p(chase(rm, M)), it implies that c.p(rm) I= X r-t 

Y by Lemma 26. Hence, s ~Y t. D 

4.4.3 A Natural Domain 

In [32], an axiomatization for UODs (defined as we have in this thesis) over a restricted 

domain is presented. The authors call these temporal functional dependencies (TFDs ), 

focusing on the time domain, and they provide axiomatization for TFDs. A TFD X -t Y 

means that \:/ A E Y. X r-t [A], in which X describes time and the attributes in Y 
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are time variants. The domain is too restricted, unfortunately, to be of use to us. It 

effectively restricts one to ODs of the form with just a single attribute on the right-hand 

side (e.g., X 1--t [A]). In many of our examples, in particular, in Examples 2 and 3, we 

need UODs with lists of multiple attributes on the right-hand side. Thus, TFDs do not 

suffice. Furthermore, no inference procedure for TFDs was defined. 

We can take the same tactic to find a natural property by which we can restrict our 

database domains to make the inference problem tractable, but still cover real-world 

domains. Our axiomatization in Chapter 2 yields us insight into how this can be done. 

We observe that a relation satisfying the OD X t-t Y satisfies the OD X rv Y, but 

conversely a relation which satisfies the OD X rv Y may not necessarily satisfy the OD 

X t-t Y. The following example helps to illustrate that point. 

Example 43 (Difference between two lists being order compatible and order equivalent.) 

The order dependency [month] rv [quarter] is satisfied in table date_di'm. On the other 

hand, order dependency [month] t-t [quarter] is falsified by table date_dim. 

It is surprising initially that the order-compatibility relation 'rv' (Definition 4) is not 

transitive as shown in Example 44. (By Transitivity axiom (Figure 4.1) the order relation 

('1--t') is.) 

Example 44 (Order compatibility is not transitive.) 

Assume M = {[A] rv [BJ, [BJ rv [CJ}. The Table 4.13 satisfies the set of UODs M. 
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Table 4.13: Showing Lack of Transitivity. 

0 0 1 
1 0 0 
2 2 2 

However, it falsifies [A] rv [CJ. This demonstrates that the order-compatibility relation is 

not transitive. 

If we restrict our domains to have a property that guarantees a limited form of tran-

sitivity over order-compatibility, then we can make an efficient inference procedure for 

UODs. 13 The property we prescribe is transitivity of order compatibility over single 

attributes. Let us call a domain a transitive domain if it satisfies this property. 

Definition 33 (transitivity of order compatibility) 

A domain (relation schema) has the property of transitivity of order compatibility iff it 

can be guaranteed that, for each relation R in the schema, for any three attributes A, B, 

and C where Bis not a constant, if [A] rv [B] and [B] rv [C], then [A] rv [C]. If a domain 

has this property, we call it a transitive domain. 

Example 45 (Transitivity over order compatibility.) 

[quarter] rv [month] and [month] rv [trimester] are satisfied in Table 2.3 by Date 

13It is this lack of transitivity over the order-compatible relation generally that is at the heart of the high 
complexity for the inference problem over general domains. 
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domain. Also, so is [quarter] rv [trimester] Hence, the transitivity property holds over 

order compatibility for this. 

All of the real-world business domains we have explored including the TPC-DS 

schema, and the examples which are used in this thesis are transitive, as by Definition 

33. One can argue that breaking the underlying property in data can be only done by con-

trivance. Thus, this restriction is quite natural, as it covers the cases one sees in practice. 

Domains can be tested if they are transitive in a straightforward way, by enumeration. 

4.4.4 An Inference Procedure for UODs 

over Natural Domains 

Let M = { a0 , ... , an-1} be a set of UODs defined over the set of attributes U = 

{Ao, ... , Am-1}. The set M is represented as a string of pairs, each pair representing 

an UOD (the left-hand and right-hand sides of the dependency). Each side is a list of 

attributes. Let the length of the representation of M, the string of concatenated left-hand 

and right-hand sides, be denoted by IMI. 

We first present the key elements of the algorithm for testing logical implication 

for transitive domains of UODs. Lastly, we establish that the algorithm is sound and 

complete in Theorem 32. 

The algorithm TestOrderDependency (Algorithm 5) tests logical implication for tran

sitive domains ofUODs. It invokes algorithms TestFunctiona/Dependency and TestOrder-
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Compatible (Algorithm 6). Algorithm TestFunctionalDependency performs a test whether 

M f= X 1-+ XV which by Theorem 14 implies an FD, M f= X ---+ Y. Algorithm 

TestOrderCompatible tests whether M f= XV ~ YX ( M f= X r-..J V). These parts com

bine to complete the proof of soundness and completeness of our inference procedure 

for UODs over transitive domains. Since by Theorem 18 X 1-+ Y holds if! X 1-+ XV and 

xv~vx. 

Theorem 26 states that testing whether X 1-+ XV, which corresponds to an FD X ---+ Y 

(Theorem 14), can be achieved in linear time. Notice that we assume there is a TestFunc

tionalDependency algorithm which finds a closure of a given set of attributes X, as in [ 5] 

which provides a linear algorithm for finding closures over FDs. 

Testing if X r-..J Y is more involved and complex. We observe that M ~ X r-..J V if! 

we are able to construct a tablet that satisfies set of UODs Mand consists of two rows 

which have a swap (see Definition 14 and Example 38 in Chapter 4.4.1) with respect to 

X r-..J V. In the tablet that we construct, we shall use integer values for the cells without 

lost of generality. (A cell is a given column entry of a given row.) 

We test if X r-..J V in the algorithm TestOrderCompatible (Algorithm 6). For each 

pair of attributes A in X and Bin V, we test in an algorithm TestSingleOrderCompatible 

(Algorithm 7) whether we can construct a table t described above with a swap with 

respect to [A] r-..J [B] with attributes prefixing A and B, in lists X and V, respectively, being 

constants (Definition 24) within tablet, such that tablet satisfies the set of ODs M'. (Let 
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Algorithm 5 TestOrderDependecy 

Input: A set M ofn UODs on attributes {Ao, ... ,Am-i} and an UOD X ~ Y. 

Output: "true" if M I= X ~ Y; "false" otherwise. 

Global data structures: 

a. Attributes are represented by integers between 0 and m-1. 

b. UODs in M are represented by integers between 0 and n-1. 

c. LS[O:n-1], RS[O:n-1] are arrays oflists, containing the attributes in the left and 

right side of each UOD. 

d. DEPEND[O:m-1] is an array of attributes found to be functionally dependent on 

given set of attributes. 

e. OC[O:n-1; 0: I] is a two dimensional array of order compatible dependencies with 

single attribute on the left and right side. 

f. LX and LY are lists of attributes represented by integers, corresponding to X and 

Y respectively. 

1: DEPEND+-- TestFunctionalDependency(M, X) 

2: if exists i in LY such that DEPEND[i] ="false" then 

3: result +-- "false" 

4: return result 

5: else 

6: result +-- TestOrderCompatible 

7: return result 
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P be the concatenated attributes prefixing A and B. We consider M' =MU{[] r--+ P}.) 

[] r--+ Pis a way of forcing each attribute C in list P to be a constant. Note that any table 

which satisfies M' satisfies M. Once we find a swap, we halt in Algorithm 6. 

Algorithm 6 TestOrderCompatible 
Output: A result which states if X and Y are order compati-

ble. 

1: for i +-- 0 to IXI - 1 do 

2: for j +-- 0 to IYI - 1 do 

3: result+-- TestSingleOrderCompatible(i, j) 

4: if ! result then 

5: return "false" 

6: return "true" 

Based on Definition 33, order compatibility for single attributes (over the attributes 

which are non-constant) is transitive for transitive domains. Therefore, we test if there 

is a path between A and B in a graph consisting of the first non-constant attributes from 

the left-hand side and a right-hand side of each UOD from M'. We find this graph in 

Algorithm FindOrderCompatibleGraph (Algorithm 8). Finding a path by the transitivity 

property over order-compatibility means that [A] ,....., [BJ holds. 

We assume Algorithm TestExistPath which tests if there exists a path between two 

nodes. The problem of testing if there exists a path is simple. One can track the visited 
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edges during the process of traversing the nodes. We can guarantee that each edge is 

visited only once. Hence, we can check the existence of the path in linear time. Note 

there is an edge per OD in M', so the number of edges (plus number of nodes) is O(IM I). 

Algorithm 7 TestSingleOrderCompatible 
Input: Attributes indexes i and j. 

Output: "true" if single attributes LX[i] and LY[j] are order compatible, "false" other-

wise. 

1: if LX[ i] = LY[j] then 

2: return "true" 

3: else 

4: List Pis a concatenation oflists LX.subList(O, i - 1) and LY.subList(O, j - 1) 

5: M' +---Mu{[)~ P} 

6: DEPEND +--- TestFunctionalDependency([ ], M') 

7: if DEPEND[LX[i]] II DEPEND[LY[j]] then 

8: return "true" 

9: else 

10: OC +--- FindOrderCompatibleGraph 

11: return TestExistPath(LX[i], LY[j], OC) 

Theorem 32 (soundness and completeness) Algorithm 5 for testing logical implication 

M I= X ~ Y for transitive domains of UODs is sound and complete. 
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Algorithm 8 FindOrderCompatibleGraph 

1: initialize two dimensional array OC with [O; O] 

2: for l +-- 0 to n - 1 do 

3: fork +-- 0 to LS[Z].size() - 1 do 

4: if DEPEND[LS[l][k]] ="false" then 

5: a+-- DEPEND[LS[Z][k]] 

6: for s +-- 0 to RS[Z].size() - 1 do 

7: if DEPEND[RS[Z][s]] ="false" then 

8: b +-- DEPEND[RS[Z][s]] 

9: OC[Z][O] +-- a, OC[Z][l] +-- b 

10: break 

11: break 

Proof 

Theorem 18 states that order dependency X t-t V holds if.f X t-t XV and XV ~ VX. 

Case 1 M I= X t-t XV. We have already proven that testing X t-t XV is sound and 

complete (Theorem 26). 

Case 2 M I= X rv V. This step is tested in algorithm TestOrderCompatible (Algo-

rithm 6). If M I= X rv Vis falsified, then we show that we are always able to construct 

a two-tuple tablet which satisfies set of UODs Mand has a swap (Definition 14) with 

respect to an UOD X rv V. The main body of this algorithm is a double-nested for-loop 
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Table 4.14: Tablet. 

I Constants I A J B J Group A J Remaining attributes J 

I ~ I ~ I ~ I ~ I ::: I ~ I ~ I ::: I ~ I 

runs IXI IYI times (and terminates). Inside, it invokes Algorithm 7 each time. 

Algorithm 7 tests for each pair of attributes A and B from X and Y, respectively, if it is 

possible to construct the described table t which has a swap between A and B, and which 

also satisfies M'. M'= M U {[] f-t P}, where Pis a conjunction of lists prefixing A 

and B from lists X and Y, respectively. Note that any table which satisfies M' satisfies 

M. Therefore, as by Definition 14 we enumerate through all the possible cases in the 

columns where an UOD X rv Y can be falsified by a swap. (It cannot be falsified by a 

split, Definition 13.) 

We construct the tablet (see Table 4.14) with values 0 and 1 only if both A and B 

are not constants. Attributes are partitioned into three groups: those that have the same 

values as A (and consequently swapped values to B); those that are constants; and the 

remaining attributes which have swapped attributes to A. Group A is the set of attributes 

which have a path with A in a data structure OC (defined in Algorithm 5, the values 

are assigned in Algorithm 8). We use the transitivity property for single attributes over 

order-compatibility. Algorithm TestExistPath tests if there exists a path. 

Tablet satisfies M'. Assume otherwise: for M f-t N E M', t falsifies it. We do not 

introduce splits in tablet that falsify M f-t MN because by Theorem 26 the algorithm is 

157 
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sound and complete for inferring FDs. (Note that it applies also to constants which can 

be expressed as FDs.) 

Consider M rv N. Breaking this is the other way of falsifying UOD M 1---t N by 

Theorem 18. Let Ebe the first element which is not a constant from M and F from N, 

respectively. If both E and F are from group A with A or they are both from remaining 

attribute group with B, then M and N order the tuples oft the same way. Therefore, E 

must be from one group and F from the other. Since the transitivity property holds over 

order-compatibility, we would detect this. Contradiction. 0 

Theorem 33 (complexity for transitive domains) 

Testing logical implication for transitive domains of UODs, (that is whether M I= X 1---t 

~is solvable in polynomial time, O(IXJIYllMI). 

Proof 

By Theorem 18, X 1---t V holds if{ X 1---t XV and XV t-t VX. 

Case 1 Testing the logical implication that M I= X 1---t XV can be done in O(IM I) 

time by Theorem 26. 

Case 2 Algorithm 6 tests logical implication, that M I= X rv V. In the main body 

of this algorithm, the double-nested for-loop runs IXllVI times invoking each time Algo

rithm 7. Algorithm 7 tests if each A from Xis order compatible with each B from V. This 

is done by checking if there is a path in a graph. We keep track of visited edges. Hence, 
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Table 4.15: Table Employee_salary. 

id position I rank I grade I hire_date I salary I years· I 
100 Manager 70 87% 20010112 80K 11 
150 Secretary 30 90% 20050112 40K 7 
200 Manager . 70 90% 20060817 SOK 6 
202 Director 90 50% 20080817 200K 4 
203 Director 90 95% 20080818 200K 4 

we can check if there is a path in linear time over O(IMI). Therefore the complexity of 

Algorithm 6 is O(IXllYllMI). D 

We illustrate the use of ODs, and how they can be used to support SQL functions and 

user-defined functions. Consider the human-resource table employee_salary in Table 

4.15. 

Example 46 (Human Resource) 

A table employee_salary has the following attributes: id( employee identifier), posi-

tion (c01porate title), rank (ranking of the employee)14
, grade (employee evaluation), 

hire_date (date hired), salary (employee's salwy), years (years of service). 

Salary rises as ranking, years of service, and grade rise, in that lexicographical or-

der. That is, [rank, years, grade] 1-+ [salary]. Moreover, the date when the person was 

hired is monotonic with respect to the identifier: [id] 1-+ [date_hire]. Assume these order 

dependencies are declared as check constraints. The.first constraint which expresses that 

[rank, years, grade] 1-+ [salary] may be used to check the consistency of the database. 

14The higher the position, the higher the rank. (For example, for the secretary, the rank is 30, while for 
the director, it is 90.) 
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(It would detect errors in assigning the salary, according to the business logic.) Further

more, assume the table has a clustered index on hire_date. Given a business query with 

order by date_hire, it could be evaluated using the index on id. Note also that an OD 

[id] 1-t [date_hire] can be used to save disk space, since no index on date_hire is needed. 

In this example, all of the inferences can be automatically done by our OD-inference 

procedure. 
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5 Conclusions 

5.1 In Summary 

Ordering permeates databases, to such an extent that we take it for granted. We expect it 

to be exploited wisely in query plans. It appears in many queries and is relatively expen

sive to perform. Queries that involve order by, group by, join, partition by and distinct 

statement with SQL functions and algebraic expressions are common in real business 

scenarios. Identifying an order dependency between the attributes of such queries can 

remove or simplify potentially expensive operators such as sort. One of the thesis's key 

contributions is an algorithm for reducing an interesting order into a canonical form by 

using declared, detected, and inferred ODs. 

We built a prototype of this in IBM DB2, (as a branch of the code base). The tech

niques described in this thesis, although implemented in IBM DB2, are general enough 

to be used in any query optimizer. These techniques should apply to a wide range of BI 

queries. 

Our experiments show the viability of our proposed solutions. We ran the benchmark 
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experiments over TPC-DS to demonstrate the efficiency of our approach using the order 

dependency. The nine queries described in the thesis (Section 3 .2) benefited with an 

average gain of 30% on a a ten-GB database. 

Of TPC-DS 's 99 queries, 13 matched our rewrite technique described in Section 

3.4. Every one of the 13 benefited, with an average performance gain of 48%. The 

other queries in TPC-DS were not affected as they were not rewritten. (There is an 

additional optimization cost because of the additional rewrite rules, but it is marginal.) 

Queries that involve predicates over time and date are exceedingly common for most 

data warehouses. For many design reasons, date is often represented explicitly as a 

dimension table of its own, with the primary key of the date table done as a surrogate 

key. While this design can have compelling advantages, the surrogate key can cause 

problems for queries. A majority of queries are over a fact table. A query often uses 

natural date values in predicates. However, date in the fact table is recorded by surrogate 

key. This necessitates a potentially quite expensive join between the fact table and the 

date dimension table when the query is evaluated. There is an additional problem when 

a fact table has been partitioned by date, as it is common practice in data warehouse 

systems in order to accommodate very large tables (e.g. in distributed systems). Since 

the date range (surrogate values) over the fact table cannot be determined from the query 

(natural values) all the partitions of the fact table must be scanned. 

We have sought to optimize such queries involving date in data warehouses by re-
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moving this join, and by choosing just the relevant partitions of the fact table when the 

table is distributed. We explored two solutions. The first is to encode date information 

into the so-called surrogate key. In some situations, this is acceptable, and it preserves 

most of the advantages of using a surrogate key. Such an embedded surrogate key, how

ever, makes it possible to execute many queries without a join to the date table. However, 

embedded surrogate keys are not always acceptable. Our second solution is more gen

eral. We introduce the notion of order dependency, and show that surrogate data keys 

will be monotone with respect to the natural data values they represent in most any data 

warehouse design. By making this monotone dependency known to the query optimizer, 

queries with date predicates can often be rewritten to avoid a join with the date table, and 

to select just the relevant partitions of the fact table. 

One of the main goals of this thesis was to develop a theory behind the complexity 

of ODs. To the best of our knowledge, this is the first attempt to study the complexity of 

such dependencies. 

We devise an elimination procedure for testing logical implication for ODs and show 

hierarchy of order dependencies classes. We present that testing logical implication for 

UODs is co-NP-complete, as well as FDs over ODs. However, we demonstrated that 

testing logical implication of FDs over UODs is linear. We have also shown our infer

ence rules for UODs are sound and complete. Finally, we have also shown a transitive 

domain over which the inference problem for UODs is more efficient. We designed a 
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polynomial algorithm for testing logical implication over this domain. We have imple

mented the elimination procedure and the inference procedure for transitive domains in 

IBM DB2. Our experiments have shown that the time of running the elimination proce

dure for real world business domains, for which the number of unique attributes in the 

set of prescribed ODs is from 5 to 12 is marginal. (The time of running the inference 

procedure for transitive domains is marginal even for large domains.) 

5.2 Future Work 

There is more that can be done, and that we plan to do. Future work in this area should 

pursue two lines of research: further investigation of the theoretical questions; and, ap

plications of the theoretical framework in a practical database setting. 

In future work, we plan to pursue following. 

• We plan to work on extending our work axiomatization for UODs [39] into an 

axiomatization for ODs, which allow the mix of ascending and descending orders. 

Such an axiomatization might provide insight into how ODs behave, and provide 

input for useful query rewrites. 

• One of the practical applications on which we are currently working is a sound 

theorem prover. We prove in this work that testing logical implication for ODs is 

co-NP-complete. However, it is the lack of transitivity over the order-compatibility 

that is at the heart of the complexity. That is why the Chain axiom is necessary for 
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a complete axiomatization ofUODs (Figure 4.1). We would like to investigate if 

there is a polynomial algorithm for reasoning over the first five axioms, excluding 

the Chain axiom (Figure 4.1 ). Such a theorem prover would be a useful tool in 

query optimization and an alternative approach to what we proposed in this work, 

defining a domain property that makes reasoning over ODs efficient. 

• Integrity constraints have been widely used in query optimization through que1y 

rewrites. For example FDs have been shown to be useful in simplifying queries 

with distinct, join, order by and group by operations [37] whereas 

inclusion dependencies can be used to remove certain joins over primary and 

foreign keys [9]. We would like to extend our work of optimizing business

intelligence queries with UODs [ 41 ], in order to cover more scenarios including 

nested queries [21]. This includes monotonicity in case expressions and optimiza

tion of queries such as Query 16 where there is an order dependency between the 

customer _id and the output of the then statement. 

• We are working on introducing a framework for discovering conditional order 

dependencies. The problem of extending dependencies with conditions was stud

ies in [8, 13]. Conditional sequential dependencies were proposed in [17]. A 

conditional order dependency can be represented as a pair (X 1-t Y, Tr), where 

X 1-t Y, referred to as the embedded OD, and Tr is a range pattern tableau defin

ing over which rows the dependency applies. It would provide a novel integrity 
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Query 16 Categories by case. 

select ... , sum(S.quantity), 

(case 

P' 

when S.customer id between 1 and 10 

then 1 

when S.customer id between 91 and 100 

then 10 

end) 

from sales S, 

where 

group by (case ... ) 

order by(case ... ); 

constraint allowing one to express, that an OD date 1---t salary holds for a given 

employee_id. 

• We are trying to improve the integration of our order constraints with the cost

based optimizer to improve cardinality estimation. For example, when we know 

there is an order equivalence between columns, such as between d_date_id and 

d_date, a surrogate and natural key, and we know there is a one-to-one mapping 

between them, then the cardinality of a range predicate on one could be estimated 

using the other. This could improve the performance even more beyond what we 

have already gained with our query-rewrite techniques. 
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• If ABC f--7 D holds but not AB f--7 D, is ordering by AB useful if we need a stream 

sorted by D? If the stream is sorted by AB, it may be nearly sorted on D. If it 

were known that every partition of AB is small, each AB-partition could be sorted 

on-the-fly in main memory, removing the need for an external sort operator. We 

believe the work of [ 4] and this work on order dependencies could be combined to 

formalize the concept of nearly sorted. 

• In the process of merging data from various sources, it is often the case that small 

variations occur. For example, one movie site might report the movie Gone with 

the Wind as having a running time of 222, while site two reports 238 minutes for 

it. The FD that movie -t length would be violated. In [27], they define a metric 

over FDs to allow for such small variations. Likewise, we would like to define 

metric ODs to generalize both ODs as in this thesis and metric FDs. We would 

like to devise algorithms for determining whether a given metric OD holds for a 

given relation, and to investigate the use of these as data cleaning techniques as in 

[ 6] for matching dependencies. 

• We want to improve the integration of our order constraints with the cost-based 

optimizer to improve cardinality estimation. For example, when we know there is 

an order equivalence between columns, such as between d_date_sk and d_date, 

a surrogate and natural key, and we know there is a one-to-one mapping between 

them, then the cardinality of a range predicate on one could be estimated using the 
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other. This could improve the performance beyond what we have already gained 

with our query-rewrite techniques. 

• We believe that order dependencies can also be identified in geo-spatial dimen

sions of data warehouses. Similar optimization techniques which we have de

scribed in this thesis can be applied there, too. 

• We are exploring the use of ODs for database design [3]. The concept of func

tional dependency lies at the heart of database design and the relational model. 

Order dependency extends functional dependency in a quite natural way to include 

also semantics of order over the data. ODs can reveal redundancies that cannot be 

detected using FDs alone. This leads one to wonder about the concept of normal

ization modulo ODs. It would be an interesting research topic to extend the results 

obtained there to the design of relational databases. 
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6 Related Work 

Ordered sets and lattices have been researched in mathematics [ 11]. In fact, our concept 

of order dependencies is equivalent to order-preserving mapping between two ordered 

sets. The work in mathematics has concentrated on investigating the properties of, and 

relationships between, ordered sets rather than among the mappings. To the best of our 

knowledge, no complexity study for investigating relationship between mappings of ODs 

has been proposed. 

Sorting is at the heart of many database operations: sort-merge join, index genera

tion, duplicate elimination, ordering the output through the SQL order-by operator, etc. 

The importance of sorted sets for query optimization and processing was recognized 

very early on. Right from the start, the query optimizer of System R [36] paid partic

ular attention to interesting orders by keeping track of all such ordered sets throughout 

the process of query optimization. In [21] authors explored the use of sorted sets for 

executing nested queries. In System R, interesting orders were primarily employed to 

prevent subplans that satisfy some useful order from being pruned by less expensive but 
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unordered subplans during bottom-up plan generation. A later paper on the System R 

optimizer [1] shows how to combine interesting orders when possible from order-by, 

group-by, and distinct statements, so a single sort can be used more often to satisfy more 

than one operator. An other, strongly related paper is [36]. Its main contribution was 

a set of fundamental operations for use in order optimization by exploiting functional 

dependencies. 

The importance of sorted sets has prompted the researchers to look beyond the sets 

that have been explicitly generated. Thus, [31] shows how to discover sorted sets created 

as generated columns via algebraic expressions. (In DB2, a generated column is a column 

that can be computed from other columns in the schema.) 

For example, if column A is sorted, so is the generated column G defined as G = 

A/100 +A - 3 (that is, A -v-+ G). 15 We show in [40] how to use relationships between 

sorted attributes discovered by reasoning over the physical schema. The testing logi

cal implication system presented here provides a formal way of reasoning (hence dis

covering) previously unknown or hidden sorted sets. Based on this work, many other 

optimization techniques from relational query processing can also be adapted. 

Order dependencies were introduced for the first time in the context of database sys

tems in [15]. However, the type of orders, hence the dependencies defined over them, 

were different from the ones we presented here. A dependency X -v-+ Y holds if order 

15We use the arrow"~" for simplicity for different type of orders, regardless. 
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over the values of each attribute in X implies an order over the values of each attribute of 

Y. In other words, the dependency is defined over the sets of attributes rather than lists. 

The distinction between these two types of dependencies was later [32] aptly described 

as pointwise versus lexicographical order dependency. Formally, an instance satisfies a 

pointwise order dependency X ~ Y if, for all tuples s and t, for every attribute A op in 

X, SA op fA, implies that for every attribute B0P in Y, ss op ts. 

In [16] a sound and complete set of inference rules for such dependencies is defined 

with demonstrating that determining logical implication is co-NP-complete. A practical 

application of the dependencies for an improved index design is presented in [12]. 

Dependencies defined over lexicographically ordered domains were introduced in 

[32] under the name lexicographically ordered functional dependencies. (We called these 

UODs.) Two other papers [33, 34] by the same author develops a theory behind both 

lexicographical as well as pointwise dependencies. {The latter were simpler than the 

dependencies defined in [ 16].) A set of inference rules (proved to be sound and complete) 

is introduced for pointwise dependencies, but -interestingly - not for the lexicographical 

dependencies in this work. Only a chase procedure is defined for the latter, for which 

the order dependencies are defined as here. the complexity of testing logical implication 

for ODs has also not been studied, which is the subject of our work. An extension of 

relational algebra to ordered domains is presented in [34]. Recently, in [39], we presented 

a sound and complete axiomatization for UODs. UODs do not consider bidirectionality 
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(a mix of asc and desc) as do ODs which we introduced for the first time in [38]. 

Traditional integrity constraints have been adapted to apply conditionally on the data 

to be able to capture the semantics of, and errors commonly found, in real data. Con

ditional functional dependencies were proposed in [7] and conditional inclusion depen

dencies were proposed in [8]. In a similar vein a novel integrity constraint for ordered 

data, sequential dependencies which defined also over sets of attributes was introduced 

in [17]. For example, a sequential dependency sequence_id-v-+[5,61 time means that time 

gaps between consecutive sequence numbers are between 5 and 6. The authors present a 

framework for discovering which subsets of the data obey prescribed sequential depen

dencies. 

The problem of discovering dependencies in data was first studied in [23, 25] where 

the goal was to find antecedent and consequent attributes from among different subsets 

of attributes in the schema satisfying an FD. The problem of a conditional functional de

pendency discovery, given an embedded FD, was introduced in [18]. The range tableaux 

proposed in [ 18] specify that the FD independently holds on each subset of tuples that 

agree on the antecedent attributes such that the value of the ordered attribute is within 

the range. In [17], a tableau pattern denotes that the underlying Sequential Dependency 

holds in the entire interval. 

The problem of estimating the sortedness of data stream was studies in [ 19]. Many 

times, relations prove to be nearly-sorted; most of tuples are close to their place in the 
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order. An interesting study of establishing whether a given stream is sufficiently nearly

sorted was described in [ 4]. 

173 



7 Copyrights 

IBM and DB2 are registered trademarks of International Business Machines Corpora

tion in the United States, other countries, or both. A current list of IBM trademarks is 

available on the Web as "Copyright and Trademark Information" at 

http://www.ibm.com/legal/copytrade.shtml. 

Intel is a trademark of Intel Corporation or its subsidiaries in the United States and 

other countries. TPC-DS is a trademark of The Transaction Processing Performance 

Council. 

Other company, product, or service names may be trademarks or service marks of 

others. 

174 



Bibliography 

[l] G. Antoshenkov. Query processing in dee rdb: Major issues and future challanges. 
In IEEE Bulletin on the Technical Comittee on Data Engineering, 1993. 

[2] W. Armstrong. Dependency Structures of Database relationships. In Proceedings 
of the IFIP Congress, 580-583, 1974. 

[3] C. Beeri and P. Bernstein. Computional Problems Related to the Design of Normal 
Form Relational Schemas. TODS 4(1):30-59, 1979. 

[4] S. Ben-Moshe, Y. Kanza, E. Fischer, A. Matsliah, M. Fischer, and C. Staelin. De
tecting and exploiting near-sortedness for efficient relational query evaluation. In 
!CDT, 256-267, 2011. 

[ 5] P. Bernstein. Synthesing third normal form relations from functional dependencies. 
TODS, 1(4): 277-298, 1976. 

[6] L. Bertossi, S. Kolahi, and V. Laks Lakshmanan. Data cleaning and query answer
ing with matching dependencies and matching functions. In !CDT, 268-279, 2011. 

[7] P. Bohannon, W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis. Conditional fun
cional dependencies for data cleaning. In ICDE, 746-755, 2007. 

[8] L. Bravo, W. Fan, and L. Yang. Extending dependencies with conditions. In VLDB, 
243-253, 2007. 

[9] Q. Cheng, J. Gryz, F. Koo, T. Leung, L. Liu, X. Qian, and K. Schiefer. Implementa
tion of Two Semantic Query Optimization Techniques in DB2 Universal Database. 
In VLDB, 687-698, 1999. 

[ 1 O] F. Chiang and R. Miller. Discovering data quality rules. PVLDB, 1 (1): 1166-1177, 
2008. 

[11] B. Davey and H. Priestley. Introduction to Lattices and Order. In Cambridge 
University Press, 1-50, 2002. 

175 



[12] J. Dong and R. Hull. Applying Approximate order dependency to Reduce Indexing 
Space. In SIGMOD, 119-127, 1982. 

[13] W. Fan, F. Geerts, L. Lakshmanan, and M. Xiong. Discovering conditional func
tional dependencies. In JCDE, 481-492, 2009. 

[14] M. Garey and D. Johnson. A Guide to NP-completness. In Freeman, 1979. 

[ 15] S. Ginsburg and R. Hull. Ordered Attribute Domains in the Relational Model. In 
XP2 Workshop on Relational Database Themy, 1981. 

[16] S. Ginsburg and R. Hull. Order dependency in the Relational Model. TCS, 26(1): 
149-195, 1983. 

[17] L. Golab, H. Karloff, F. Korn, and D. Srivastava. Sequential Dependencies. PVLDB, 
2(1): 574-585, 2009. 

[18] L. Golab, H. Karloff, F. Korn, D. Srivastava, and B. Yo. On generating near-optimal 
tableaux for conditional functional dependencies. PVLDB, 1 (1): 376-390, 2008. 

[19] P. Gopalan, T. Jayram, R. Krauthgamer, and R. Kumar. Estimating the sortedness 
of a data stream. In SODA, 318-327, 2007. 

[20] S. Guo, W. Sun, and M. Weiss. Solving satisfiability and implication problem in 
database systems. TODS, 21(2): 270-293, 1996. 

[21] R. Guravannavar, H. Ramanujam, and S. Sudarshan. Optimizing Nested Queries 
with Parameter Sort Orders. In VLDB, 481-492, 2005. 

[22] P .. Honeyman. Testing Satisfaction of Functional Dependencies. Journal of the 
ACM, 668-677, 1982. 

[23] Y. Huhtala, P. Karkkainen, P. Porkka, and H. Toivonen. Tane: An efficient algorithm 
for discovering functional and approximate dependencies. The Computer Journal 
42(2), 100-111, 1999. 

[24] R. Kimball and M. Ross. The Data Warehouse Toolkit Second Edition. The Com
plete Guide to Dimensional modeling. In John Wiley and Sun, 217-227, 2012. 

[25] J. Kivinen and H. Mannila. Approximate inference of functional dependencies from 
relations. TCS 149(1), 129-149, 1995. 

[26] F. Korn, S. Muthukrishnan, and Y. Zhu. Checks and balances: monitoring data 
quality problems in network traffic databases. In VLDB, 536-547, 2003. 

176 



[27] N. Koudas, A. Saha,, A. Saha, and V. S. Srivastava, D. Metric Functional Depen
dencies. In ICDE, 1291-1294, 2009. 

[28] N. Lorentzos. DBMS Support for Time and Totally Ordered Compound Data Types. 
Information Systems 17(5), 347-358, 1992. 

[29] D. Maier, A. Mendelzon, and Y. Sagiv. Testing Implication of Data Dependencies. 
TODS, 1-16, 1979. 

[30] E. Malinowski and E. Zimanyi. A conceptual solution for representing time in data 
warehouse dimension. In APCCM, 45-54, 1982. 

[31] T. Malkemus, P. S., B. Bhattacharjee, and L. Cranston. Predicate Derivation and 
Monotonicity Detection in DB2 UDB. In ICDE, 939-947, 2005. 

[32] W. Ng. Lexicographically Ordered Functional Dependencies and Their Application 
to Temporal Relations. In IDEAS, 279-287, 1999. 

[33] W. Ng. Ordered Functional Dependencies in Relational Databases. lnformaiton 
Systems, 535-554, 1999. 

[34] W. Ng. An Extension of the Relational data model to incorporate ordered domains. 
TODS, 26(3) 344-383, 2001. 

[35] M. Riedewald, A. Agrawal, and A. Abbadi. Efficient Integration and Aggregation 
of Historical Information. In SIGMOD, 13-24, 1982. 

[36] P. Selinger and M. Astrahan. Access Path Selection in a Relational Database Man
agement System. In SIGMOD, 23-34, 1979. 

[3 7] D. Simmen, E. Shekita, and T. Malkemus. Fundamental Techniques for Order 
Optimization. In SIGMOD, 57-67, 1996. 

[38] J. Szlichta, P. Godfrey, and J. Gryz. Chasing Polarized Order Dependencies. In 
AMw, 168-179, 2012. 

[39] J. Szlichta, P. Godfrey, and J. Gryz. Fundamentals of Order Dependencies. PVLDB, 
5(11): 1220-1231, 2012. 

[ 40] J. Szlichta, P. Godfrey, J. Gryz, W. Ma, P. Pawluk, and C. Zuzarte. Queries on 
Dates: Fast Yet not Blind. In EDBT, 497-502, 2011. 

177 



[ 41] J. Szlichta, P. Godfrey, J. Gryz, W. Ma, W. Qiu, and C. Zuzarte. Business
Intelligence Queries in DB2 with Order Dependencies. Technical report, York 
University, 2012. Submitted for review. www.cse.yorku.ca/techreports/2012/CSE-
2012-04.pdf. 

[ 42] J. Szlichta, P. Godfrey, J. Gryz, and C. Zuzarte. Expressiveness and Complexity of 
Order Dependencies. PVLDB, 2013. 

[43] J. Szlichta, P. Godfrey, J. Gryz, and C. Zuzarte. The Axiomatic System for Order 
Dependencies. In AMW, 2013. 

[ 44] J. Ullman. Principles of database and knowledge-base systems, vol. 1. In Computer 
Science Press, 378-379, 1988. 

[ 45] Y. Zhu and D. Shasha. Statistical monitoring of thousands of data streams in real 
time. In VLDB, 358-369, 2002. 

178 



Appendix 

A TPC-DS Benchmark Table Definitions 

The TPC-DS benchmark is a decision support benchmark. It consists of a suite of busi

ness oriented queries. The queries and the data populating the database have been chosen 

to have a broad industry-wide relevance while maintaining a sufficient degree of ease of 

implementation. This benchmark illustrates decision support systems that: 

• Examine large volumes of data, 

• Execute queries with a high degree of complexity, 

• Give answers to critical business questions. 

The minimum database required to run the benchmark holds business data of the size 

1 GB. Compliant benchmark implementations may also use one of the larger permissible 

database populations( e.g. 1 OGB). 

Below we show table definitions used in experimental evaluation of our prototype. 

Al Fact Table Definitions 

Each row in web_sales table represents a single lineitem for a sale made through the web 

channel and recorded in the web_sales fact table. 

Each row in store_sales table represents a single lineitem for a sale made through the 

store channel and recorded in the store_sales fact table. 
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Customer 

Figure Al: Store_sales ER-Diagram. 

A2 Dimension Table Definitions 

Time Dim 

Household_ 

Income_ 
Band 

The customer _demographics table contains one row for each unique combination of cus-

tomer demographic information. 

Each row in date_dim table represents one calendar day. The surrogate key ( d_date_sk) 

for a given row is derived from the julian date being described by the row. 

Each row in time_dim table represents one second. 

Each row in item table represents a unique product formulation (e.g., size, color, 

manufacture, etc.). 

Each row in promotion table represents details of a specific product promotion (e.g., 
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Figure A2: Web_sales ER-Diagram. 

advertising, sales, PR). 

Warehouse 

Income_ 
Band 

Each row in store dimension table represents details of a store. 

Each row in warehouse dimension table represents a warehouse where items are 

stocked. 

Each row in ship_mode represents a shipping mode. 
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Table Al: Web_sales column definitions. 

Column Datatype I NULLs I Primary Key I Foreign Key 

ws_sold_date_sk identifier d_date_sk 
ws_sold_time_sk identifier Uime_sk 

crJtem_sk identifier N y ij tem_sk,csJ tem_sk 
er _refunded_customer _sk identifier c_customer _sk 

er _refunded_cdemo_sk identifier cd_demo_sk 
er _refundedlldemo _sk identifier hd_demo_sk 

er _refunded_addr _sk identifier ca_address_sk 
er _returning_customer _sk identifier c_customer _sk 

er _returning_cdemo_sk identifier cd_demo_sk 
er _returninglldemo _sk identifier hd_demo_sk 

er _retuming_addr _sk identifier ca_address_sk 
cr _calLcenter _sk identifier cc_calLcenter _sk 

cr _catalog_page_sk identifier cp_catalog_page_sk 
er __shipJnode_sk identifier sm_shipJnode_sk 
er_ warehouse_sk identifier w _ warehouse_sk 

er _reason_sk identifier r _reason_sk 
cr_order__number identifier N y cs_order__number 

er _retum_quantity integer 
cr_retum_amount decimal(? ,2) 

er _retum_tax decimal(? ,2) 
er _retum_amLinc_tax decimal(? ,2) 

cr_fee decimal(? ,2) 
er _retum_ship_cost decimal(? ,2) 
er _refunded_cash decimal(? ,2) 

er _reversed_charge decimal(7,2) 
cr _store_credi t decimal(? ,2) 

cr__neUoss decimal(? ,2) 
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Table A2: Sales column definitions. 

Column Datatype I NULLs I Primary Key I Foreign Key 

ss_sold_date_sk identifier d_date_sk 
ss_sold_time_sk identifier Uime_sk 

ssjtem_sk identifi~r N y ij tem_sk,srJtem_sk 
ss_customer _sk identifier c_customer _sk 

ss_cdemo_sk identifier cd_demo_sk 
sslidemo_sk identifier hd_demo_sk 

ss_addr_sk identifier ca_address_sk 
ss_store_sk identifier s_store_sk 

ss_promo_sk identifier p_promo_sk 
ss_tickeLnumber identifier N y sr _tickeLnumber 

ss_quantity integer 
ss_ wholesale_cost decimal(? ,2) 

ss_lisLprice decimal(? ,2) 
ss_sales _price decimal(? ,2) 

ss_exLdiscounLamt decimal(? ,2) 
ss_exLsales_price decimal(? ,2) 

ss_exL wholesale_cost decimal(7,2) 
ss_exLlisLprice decimal(? ,2) 

ss_exLtax decimal(? ,2) 
ss_coupon_amt decimal(? ,2) 

ss_net__paid decimal(? ,2) 
ss_net__paidjnc_tax decimal(? ,2) 

ss_neLprofit decimal(? ,2) 

Table A3: Customer_demographics column definitions. 

Column I Datatype I NULL,s I Primary Key I Foreign Key I 
cd_demo_sk identifier N y 

cd_gender char(l) 
cd_maritaLstatus char(l) 

cd_education_status char(20) 
cd_purchase_estimate integer 

cd_crediLrating char(lO) 
cd_dep_count integer 

cd_dep_employed_count integer 
cd_dep_college_count integer 
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Table A4: Date_dim column definitions. 

Column I Datatype I NULLs I Primary Key I Foreign Key I 
d_date_sk identifier N y 

d_date_id char(16) N 
d_date date 

d_month_seq integer 
d_week_seq integer 

d_quarter _seq integer 
d_year integer 
d_dow integer 
d_moy integer 
d_dom integer 
d_qoy integer 

d_fy_year integer 
d_fy _quarter _seq integer 
d_fy _ week__seq integer 

d_day_name char(9) 
d_quarter _name char(6) 

d__holiday char(l) 
d_weekend char( I) 

d_following__holiday char( I) 
d_firsLdom integer 
dJasLdom integer 

d_same_day _ly integer 
d_same_day _lq integer 
d_currenLday char( I) 

d_currenL week char( I) 
d_currenLmonth char(l) 
d_currenLquarter char( I) 

d_currenLyear char(l) 
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Table A5: Time_dim column definitions. 

Column I Datatype I NULLs I Primary Key I Foreign Key I 
Uime_sk Identifier N y 

Uime_id char(l6) N 
Uime Integer 
t_hour Integer 

Lminute Integer 
Lsecond Integer 
Lam_pm char(2) 

Lshift char(20) 
Lsub_shift char(20) 

LmeaLtime char(20) 

Table A6: Item column definitions. 

Column Datatype I NULLs I Primary Key [ Foreign Key I 
i_item_sk identifier N y 

i_item_id (B) char(l6) N 
i_rec_starLdate date 
iJec_end_date date 

iJ.tem_desc varchar(200) 
i_currenLprice decimal(? ,2) 

i_wholesale_cost decimal(? ,2) 
Lbrand_id integer 

i_brand char(50) 
i_class_id integer 

i_class char(50) 
i_category _id integer 

i_category char(50) 
i_manufacLid integer 

i_manufact char(50) 
LSlZe char(20) 

i_formulation char(20) 
i_color char(20) 
i_units char(IO) 

i_container char(IO) 
i_manager _id integer 

i_producLname char(50) 
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Table A 7: Item column definitions. 

Column Datatype I NULLs I Primary Key I Foreign Key I 
Litem_sk identifier N y 

i_itemJd (B) char(l6) N 
i_rec_starLdate date 
i__rec_end_date date 

Litem_desc varchar(200) 
i_currenLprice decimal(? ,2) 

i_ wholesale_cost decimal(? ,2) 
LbrandJd integer 

Lb rand char( SO) 
i_classJd integer 

i_class char(50) 
i_category Jd integer 

i_category char( SO) 
i_manufactJd integer 

i_manufact char( SO) 
i_size char(20) 

i_formulation char(20) 
i_color char(20) 
i_units char( IO) 

i_container char( IO) 
i_managerJd integer 

i_producLname char( SO) 
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Table A8: Promotion column definitions. 

Column Datatype I NULLs I Primary Key I Foreign Key I 
p_promo_sk identifier N y 

p_promoJd char(l6) N 
p_starLdate_sk identifier d_date_sk 
p_end_date_sk identifier d_date_sk 

pJtem_sk identifier iJtem_sk 
p_cost decimal(15, 2) 

p_response_targ et integer 
p_promo_name char( SO) 

p_channeLdmail char( I) 
p_channeLemail char( I) 

p_channeLcatalog char( I) 
p_channeLtv char( I) 

p_channel_radio char( I) 
p_channeLpress char( I) 
p_channeLevent char( I) 
p_channeLdemo char(l) 
p_channeLdetails varchar(l 00) 

p_purpose char(l5) 
p_discounLactive char( I) 
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Table A9: Store column definitions. 

Column Datatype I NULLs I Primary Key I Foreign Key I 
s_store_sk identifier N y 

s_store_id char(16) N 
s_rec_starLdate date 
s_rec_end_date date 

s_closed_date_sk identifier d_date_sk 
s_store_name varchar( 5 0) 

s_number _employees integer 
s_ftoor _space integer 

sliours char(20) 
s_rnanager varchar( 40) 
s_rnarkeLid integer 

s_geography _class varchar( I 00) 
s_rnarkeLdesc varchar( I 00) 

s_rnarket_rnanager varchar( 40) 
s_divisionJd integer 

s_division_name varchar(50) 
s_company _id integer 

s_company _name varchar(50) 
s_street_number varchar(l 0) 
s_street_name varchar( 60) 
s_streeLtype char(l5) 

s_suite_number char( IO) 
s_city varchar(60) 

s_county varchar(30) 
s_state char(2) 
s_zip char(IO) 

s_country varchar(20) 
s_gmt_offset decimal(5,2) 

s_tax_percentage decimal(5,2) 
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Table Al 0: Warehouse column definitions. 

Column Datatype I NULLs I Primary Key I Foreign Key I 
w _ warehouse_sk identifier N y 

w _ warehouseJd char(l6) N 
w _ warehouse_name varchar(20) 
w _warehouse_sq_ft integer 
w _street_number char(IO) 
w _streeLname varchar( 60) 
w _street_type char(l5) 

w _suite_number char(IO) 
w_city varchar( 60) 

w_county varchar(30) 
w_state char(2) 
W-Zlp char( IO) 

w_country varchar(20) 
w _gmLoffset decimal( 5 ,2) 

Table All: Ship_mode column definitions. 

Column I Datatype I NULLs I Primary Key I Foreign Key I 
sm_ship_mode_sk identifier N y 

sm_ship_modeJd char(l6) N 
sm_type char(30) 
sm_code char(lO) 

sm_carner char(20) 
sm_contract char(20) 
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Table Al2: Web_site column definitions. 

Column Datatype I NULLs I Primary Key I Foreign Key I 
web_site_sk identifier N y 

web_sitejd (B) char(16) N 
web_rec_starLdate date 
web_rec_end_date date 

web_name varchar(50) 
web_open_date_sk identifier d_date_sk 
web_close_date_sk identifier d_date_sk 

web_class varchar( 50) 
web_manager varchar( 40) 
web_mkLid integer 

web_mkt_class varchar(50) 
web_mkt_desc varchar(l 00) 

web_market_manager varchar( 40) 
web_company _id integer 

web_company _name char(50) 
web_street_number char( IO) 
web_street_name varchar( 60) 
web_streeLtype char(l5) 

web_suite_number char(IO) 
web_city varchar( 60) 

web_county varchar(30) 
web_state char(2) 
web_zip char( IO) 

web_country varchar(20) 
web_gmt_offset decimal(5,2) 

web _tax_percentage decimal(5,2) 
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