
A Formal Context for Acyclic Join Dependencies

Jaume Baixeries

Departament de Ciències de la Computació. Universitat Politècnica de Catalunya.
08024 Barcelona. Catalonia. jbaixer@cs.upc.edu

Abstract. Acyclic Join Dependencies (AJD) play a crucial role in database
design and normalization. In this paper, we use Formal Concept Analysis
(FCA) to characterize a set of AJDs that hold in a given dataset. This
present work simplifies and generalizes the characterization of Multival-
ued Dependencies with FCA.

1 Introduction and Motivation

In database theory, a dependency expresses a relationship between sets of
attributes in a dataset. There are numerous types of dependencies: conditional
dependencies, sequential dependencies, order dependencies, to name just a few
of them (see [13] for a more detailed survey). Dependencies may have different
semantics, and may express relationships of different nature: equality, similarity,
order, distance, etc.

However, not all of those dependencies have been equally popular. The most
common dependencies in the relational database model are functional depen-
dencies (FD’s), which have been widely studied in the field of database theory
([16]). The reason of this success may be twofold: on the one hand, their seman-
tics is very simple and intuitive, on the other hand, they have been proven to be
very versatile, since they can be used for database design, database validation,
and, also, data cleaning [9]. They play a key role to explain the normalization
of a database scheme in the relational database model.

Another type of dependencies that have been relevant in database theory are
multivalued dependencies (MVDs) ([16]). These dependencies are a general-
ization of functional dependencies, and their semantics is capable of expressing
how a table can be split into two different tables such that their join is exactly the
original table. This procedure is of key importance for database normalization
and design.

Acyclic Join Dependencies (AJDs) ([17]) are a generalization of multival-
ued dependencies. AJDs are of critical importance in the decomposition method
[10], which is a method for designing database schemes. An AJD specifies a
lossless decomposition of a dataset, which is the decomposition into different
(smaller) datasets such that their composition restores the original dataset. The
interest of this decomposition is that it allows the dataset to be in the so-called
4th-normal form (4NF), which prevents redundancy and update errors. We dis-
cuss AJDs in more detail in Section 2.1.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/87660833?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Formal Concept Analysis (FCA) is a simple and elegant lattice-oriented
mathematical framework that is strongly connected to lattice theory. The uses of
FCA are manyfold, as, for instance, knowledge discovery and machine learning
[14], among many others. We discuss FCA in more detail in Section 2.2.

Formal Concept Analysis has been widely used to characterize and compute
different types of dependencies. We present the most relevant work on this sub-
ject in Section 2.3.

In this paper, we deal with the characterization of a set of AJDs that hold in
a given dataset, using the formalism of FCA. The goals of this paper are twofold:
on the one hand, extend previous work that dealt with the characterization of
functional and multivalued dependencies. On the other hand, propose FCA as
a tool to compute sets of AJDs that hold in a dataset, compute the closure of
a set of AJDs and explore the possibility of computing minimal bases for this
kind of dependencies.

This paper starts with the Notation section, where we explain the basics of
AJDs, FCA and also, previous work linking FCA and data dependencies. In the
Results section, we present a new formal context for AJDs. We also present an
example in a separate section to illustrate the results. Finally, we present the
conclusions and future work.

2 Notation

The primary objects with which we deal in this paper are a set of attributes
and a dataset. A dataset T is a set of tuples: T = {t1, . . . , tN} (we use indis-
tinctively dataset and set of tuples as equivalent terms) and a set of attributes
U = {a, b, . . . } (commonly known as column names). Each tuple has a value
associated to each attribute. We use non capital letters for single elements of
the set of attributes, starting with a, b, c, . . . , and capital letters X,Y, Z, . . . for
subsets of U . We drop the union operator and use juxtaposition to indicate set
union. For instance, instead of X ∪ Y we write XY . If the context allows, we
drop the set notation, and write abc instead of { a, b, c }.

id a b c d

t1 1 1 1 1

t2 1 2 1 1

t3 1 1 2 2

t4 1 2 2 2

Fig. 1. Example dataset.

For instance, Figure 1 is an example of a dataset T = { t1, t2, t3, t4 }, with its
set of attributes U = { a, b, c, d }. We use the notation t(X) to indicate the
restriction of a tuple t to the set of attributes X. In this same example,
t2(〈 b, c 〉) = 〈 2, 1 〉. It is necessary to note that when the values of the tuple

are given, some order must be implicit, because a value that appears in a tuple
is always related to an attribute. We also use juxtaposition for the composi-
tion of tuples. For instance, t(〈 a, b 〉)t(〈 c, d 〉) is the tuple t(〈 a, b, c, d 〉). We also
have that t(〈 a, b 〉)t(〈 c, d 〉) is equivalent to t(〈 c, d 〉)t(〈 a, b 〉), assuming that we
have a total order on the attributes set. We use the notation ΠX(S), where
X ⊆ U and S ⊆ T as the set ΠX(S) = { t(X) | t ∈ S }, this is, the set of
restrictions of all tuples in S to the set of attributes X. In this same example,
Π〈 a,d 〉(T) = { 〈 1, 1 〉, 〈 1, 2 〉 }.

Given a set S, we define also the set of its splits and pairs:

Definition 1. The set Split(S) is the set of partitions of S of size 2. For in-
stance, if S = { a, b, c, d }, then, Split(U) = { [a | bcd], [b | acd], [c | abd], [d |
abc], [ab | bc], [ac | bd], [ad | cd] }.

Definition 2. The set Pair(S) is the set of pairs of elements of S, modulo re-
flexivity and commutativity. For instance, if S = { a, b, c, d }, then, Pair(S) =
{ (a, b), (a, c), (a, d), (b, c), (b, d), (c, d) }.

Finally, we define the join operator ./ on the datasets R and S as follows:
R ./ S = { r ∪ s | r ∈ R ∧ s ∈ S ∧ r(X) = s(X) }, where X is the set of
attributes that are common to both R and S. If they have no common attributes,
then, this operation becomes a cartesian product.

2.1 Acyclic Join Dependencies

An acyclic join dependency is a special case of a join dependency. We provide
first the definition of a join dependency, and then, we describe the restriction
that applies to acyclic join dependencies.

Definition 3. Let T be a set of tuples and let U be its attribute set. A join
dependency R = [R1, . . . , RN] is a set of sets of attributes such that:

1. Ri ⊆ U ,∀i : 1 ≤ i ≤ N .
2. U =

⋃
1≤i≤N

Ri, this is, all attributes are present in R.

A join dependency R holds in T if and only if:

T = ΠR1
(T) .// ΠRN

(T)

The intuition behind a join dependency is that the set of tuples T can be
decomposed into different smaller (with less attributes and, maybe, tuples) sets
of tuples, such that their composition according to R is lossless, this is, no
information is lost [7]. Acyclic join dependencies are join dependencies that
hold in a set of tuples according to the condition in Definition 3. However,
they have some syntactical restrictions that make them more tractable than join
dependencies, both in terms of axiomatization and computational complexity
[12]. A deep discussion on the differences between both join and acyclic join

dependencies is far beyond the scope of this paper, and we will provide only the
basic definition and properties of AJDs that are relevant to this paper.

The notion of a join dependency is closely related to that of a hypergraph
[8]. Let S be a set of vertices, a hypergraph extends the notion of a graph in the
sense that an edge in a hypergraph is not limited to two vertices, as in a graph,
but to any number of vertices. In a join dependency R = [R1, . . . , RN], the set of
vertices would be U , and R would be the set of edges. Also in hypergraphs, there
is the notion of acyclicity, but this notion is not as intuitive as in the case of
graphs. In fact, there are different definitions of acyclicity, some more restrictive
than others (in [6] some are discussed). In this case, we use the definition of
acyclicity that appears in [6]. But, again, this definition can be enunciated in
as many as 12 different equivalent ways, but we just use one of them which
is necessary to understand the results in this paper. With this definition, we
proceed to define acyclic join dependencies.

Definition 4 ([6]). Let R = [R1, . . . , RN] be a join dependency. A join tree
JT for R is a tree such that the set of nodes is the same as R and:

1. Each edge (Ri, Rj) is labeled with Ri ∩Rj.
2. For any pair Ri, Rj ∈ R, where i 6= j, we take the only path P = {Ri, Ri+1 . . . Rj}

between Ri and Rj. For all edges (Ri+k, Ri+k+1) we have that: Ri ∩ Rj ⊆
Ri+k ∩Ri+k+1).

A join dependency R is an acyclic join dependency (AJD) if and only if
it has a join tree. If an acyclic join dependency has only two components, then,
it is called a multivalued dependency.

Example 1. For instance, if we have that U = { a, b, c, d, e, f, g } and the AJD
R = [abc, ace, abfg, abd], a join tree for R is in Figure 2. We can see, for instance,
that in the path from node ace to node abd, the intersection ace∩abd = a appears
in all the edges of the path.

abc

ace

ac

abfg

abd

ab

ab

Fig. 2. Join tree for R.

Therefore, an acyclic join dependency is a join dependency that has a join
tree or, equivalently, is an acyclic hypergraph. For a given AJD, there can be
more than one possible join trees, since, for instance, the choice of a root is
completly arbitrary (although swiching the root is not the only possible way to
have different join trees).

One important and useful property of AJDs is that a single AJD is equivalent
to a set of multivalued dependencies. We remind the reader that a MVD is a
special case of AJD with cardinality 2. Definition 5 is a technicality that helps
to understand how to compute the set of MVDs that are equivalent to an AJD
in Proposition 2.

Definition 5. Let JT = 〈R,E 〉 be the join tree of an AJD R. We define the
function Removal that returns a partition of the set of attributes U into three
classes according to an edge of JT .

Let C1 = 〈V1, E1 〉, C2 = 〈V2, E2 〉 be the two connected components that
appear after the removal of an edge (Ri, Rj) ∈ E in JT . Let Ci = 〈Vi, Ei 〉, then
attrib(Ci) returns the set of attributes that appear in that connected component,
this is: attrib(Ci) =

⋃
X∈Vi

X. The function Removal(〈R,E 〉, (Ri, Rj)) returns

the triple:

Removal(〈R,E 〉, (Ri, Rj)) := 〈Ri∩Rj , attrib(C1)\(Ri∩Rj), attrib(C2)\(Ri∩Rj) 〉

Proposition 1. Let R be an AJD and let JT = (U , R) be its join tree. The
function Removal returns a partition of the set U .

Proof. Since R is an AJD, then, R contains all the attributes in U . Lets assume
that we are removing the edge (Ri, Rj) After splitting JT we have two connected
components: C1 = 〈V1, E1 〉, C2 = 〈V2, E2 〉. Therefore, all the attributes are
either in V1 or in V2. This implies that all attributes will appear in one of the
classes returned by Removal, since either this attribute will be in V1, or in V2 or in
Ri∩Rj . Now we need to prove that an attribute will not appear in more than one
class. Because Ri∩Rj is substracted in V1 and V2, if there is a repeated attribute,
it will only be in V1 and V2. Let us suppose, by way of contradiction, that there
is an attribute that is in attrib(C1) \ (Ri ∩ Rj) and attrib(C2) \ (Ri ∩ Rj), this
is, in Rk ∈ E1 and Rj ∈ E2. Since JT is a join tree, it means that this attribute
will appear in all the edges in the path from Rk to Rj , also in Ri ∩Rj because
the edge (Ri, Rj) is necessarily in that path, which yields a contradiction.

Example 2. We return to Example 1. We have the AJD R = [ace, abc, abfg, abd]
and the corresponding join tree JT = 〈AJD, (ace, abc), (abc, abfg), (abfg, abd) 〉.
We have that:

Removal(JT, (abc, abfg)) = 〈 ab, ce, dfg 〉

Removal(JT, (ace, abc)) = 〈 ac, e, bdfg 〉

We now define the set of MVDs that are equivalent to a single AJD.

Proposition 2. Let R be an AJD, and let JT = 〈R,E 〉 be its join tree. R
holds in a table T if and only if ∀(Ri, Rj) ∈ E : [XY,XZ] holds in T, where
〈X,Y, Z 〉 := Removal(JT, (Ri, Rj)). The proof is in Theorem 7.1 in [6].

2.2 Formal Concept Analysis

In this brief account of Formal Concept Analysis (FCA), we use standard defi-
nitions from [11]. Let G and M be arbitrary sets and I ⊆ G ×M be a binary
relation between G and M . The triple (G,M, I) is called a formal context. Each
g ∈ G is interpreted as an object, each m ∈M is interpreted as an attribute. The
statement (g,m) ∈ I is interpreted as “g has attribute m”. The two following
derivation operators (·)′:

A′ = {m ∈M | ∀g ∈ A : gIm} for A ⊆ G,
B′ = {g ∈ G | ∀m ∈ B : gIm} for B ⊆M

define a Galois connection between the powersets of G and M . The derivation
operators {(·)′, (·)′} put in relation elements of the lattices (℘(G),⊆) of objects
and (℘(M),⊆) of attributes and reciprocally.

2.3 Previous Work

The characterization of dependencies (in a generic sense) and FCA can be
roughly divided into two different parts: a syntactical characterization and a
semantical characterization. In a syntactical characterization, a formal context
characterizes the closure of a set of dependencies. This is, given a set of depen-
dencies, what is the maximal set of dependencies that can be derived according
to the axioms for these dependencies?

The semantical characterization of a set of dependencies takes into account
the definition of these dependencies with respect to a dataset. In this line of
work, a formal context is constructed, such that the set of objects is related to a
dataset, and the set of attributes is related to the set of attributes of the dataset,
which is a parameter of the formal context. In this paper, we continue this latter
like of work.

The definition of a formal context to characterize the functional dependencies
that hold in a dataset can be found in [1,18,15]. These dependencies are also char-
acterized with pattern structures (a generalization of FCA) in [5]. Degenerate
multivalued dependencies are characterized in [2], multivalued dependencies in
[3], and similarity dependencies are characterized in terms of pattern structures
in [4].

In all previous cases, the characterization in terms of FCA (or pattern struc-
tures) allows the formal context to answer the question: does a specific depen-
dency hold in that dataset? It can also compute the whole set of dependencies
that hold in that dataset. As we have mentioned, previously, the defined context
takes into account the set of tuples and the set of attributes of a given dataset.
As an example, we describe the formal context that was defined in [3] to charac-
terize the set of multivalued dependencies that hold in a dataset T . This formal
context was defined as KT = (Part(T),Part(U), I) where Part(T) is the set of
all partitions that can be formed with the set of tuples T , and Part(U) is the
set of all partitions of the set of attributes U . We mention this example because

multivalued dependencies are a special case of acyclic join dependencies, which
are treated in this paper. In the next section, we define a new formal context for
acyclic join dependencies that will be simpler (in size) than this previous con-
text, and that will characterize acyclic join dependencies, as well as multivalued
dependencies, as a special case.

3 Results

In this section we present the main result in this paper. Given a dataset, we
define a formal context that can be used to check if an AJD holds in that
dataset. Eventually, this formal context could also compute the set of all AJDs
that hold in that dataset, although this is not discussed in this paper.

Before defining the formal context, we need to define the binary relation it
will contain.

Definition 6. Let T be a set of tuples, and U its set of attributes. Let S = [X |
Y] ∈ Split(U) and let (ti, tj) ∈ Pair(T). We define the relation I ⊆ Split(U) ×
Pair(T) as follows: [X | Y] is related to the pair of tuples (ti, tj) if and only if
the tuples ti(X)tj(Y) and tj(X)ti(Y) are in T . More formally:

[X | Y] I (ti, tJ)⇔ ti(X)tj(Y), tj(X)ti(Y) ∈ T

We are now ready to define the following formal context:

Definition 7. Let T be a set of tuples, and U its set of attributes. The AJD-
formal context for the set of tuples T is:

KT = (Split(U),Pair(T), I)

We now use this formal context in order to check if an AJD holds in T . We
have seen that, according to Proposition 2, in order to check if an AJD holds in
a dataset, we need to check if the equivalent set of MVDs hold as well. This is
the base for our next theorem.

Theorem 1. Let T be a dataset, and let R = {R1, . . . , RN } be an acyclic join
dependency, and let JT = 〈R,E 〉 the corresponding join tree of R. R holds in
T if and only if: ∧

e∈E
{ [X | Y Z] }′ = { [Y | XZ], [Z | XY] }′

holds in the formal context KT = (Split(U),Pair(T), I), where 〈X,Y, Z 〉 =
Removal(JT, e).

Proof. The base of this proof is to check if this condition holds for all the MVDs
that are equivalent to an AJD according to Proposition 2.

(⇒) We assume that R holds in T , we need to prove that∧
e∈E
{ [X | Y Z] }′ = { [Y | XZ], [Z | XY] }′

where 〈X,Y, Z 〉 = Removal(JT, e). We take an arbitrary e ∈ E and a pair
of tuples ti, tj ∈ T . We need to prove now two things:

1. If (ti, tj) ∈ { [X | Y Z] }′, then, we have that (ti, tj) ∈ { [Y | XZ], [Z |
XY] }′. Since (ti, tj) ∈ { [X | Y Z] }′ tuples ti(X)tj(Y Z) and tj(X)ti(Y Z)
are in T . Therefore, we have that T contains, at least:

ti(X)ti(Y)ti(Z) tj(X)tj(Y)tj(Z)
ti(X)tj(Y)tj(Z) tj(X)ti(Y)ti(Z)

Now, if (ti, tj) ∈ { [Y | XZ] }′, we need the following tuples to be in
T : ti(X)tj(Y)ti(Z) and tj(X)ti(Y)tj(Z) and for (ti, tj) ∈ { [Z | XY] }′,
we need the following tuples: ti(X)ti(Y)tj(Z) and tj(X)tj(Y)ti(Z). By
Proposition 2, we have that [XY,XZ] holds in T . This implies that the
following tuples are also in T :

ti(X)ti(Y)tj(Z) ti(X)tj(Y)ti(Z)
tj(X)tj(Y)ti(Z) tj(X)ti(Y)tj(Z)

2. We need to prove the inverse condition: if (ti, tj) ∈ { [Y | XZ], [Z |
XY] }′, then, we have that (ti, tj) ∈ { [X | Y Z] }′. Since (ti, tj) ∈ { [Y |
XZ], [Z | XY] }′, we have, at least, the following tuples in T :

ti(X)ti(Y)ti(Z) tj(X)tj(Y)tj(Z)
ti(X)tj(Y)ti(Z) tj(X)ti(Y)tj(Z)
ti(X)ti(Y)tj(Z) tj(X)tj(Y)ti(Z)

If we want (ti, tj) ∈ { [X | Y Z] }′ we need the following tuples to be
in T as well: ti(X)tj(Y)tj(Z) and tj(X)ti(Y)ti(Z). Since [XY,XZ]
holds in T , we also have the following tuples in T : ti(X)tj(Y)tj(Z) and
tj(X)ti(Y)ti(Z).

(⇐) We now assume that
∧

e∈E
{ [X | Y Z] }′ = { [Y | XZ], [Z | XY] }′ where

〈X,Y, Z 〉 = Removal(JT, e) holds, we need to prove that R holds in T . For
that, we use Proposition 2, and, therefore, we prove that all the MVDs that
are equivalent to R hold in T .
We prove that an arbitrary MVD [XY,XZ], where 〈X,Y, Z 〉 = Removal(JT, e),
holds if { [X | Y Z] }′ = { [Y | XZ], [Z | XY] }′. We take a pair of tuples
(ti, tj) such that ti(X) = tj(X). In order to prove that [XY,XZ] holds, we
need to prove that the following tuples are in T as well: ti(X)ti(Y)tj(Z) and
ti(X)tj(Y)ti(Z). Clearly, (ti, tj) ∈ { [X | Y Z] }′, and by the hypothesis, we
have that (ti, tj) ∈ { [Y | XZ], [Z | XY] }′. This means that the following
tuples are in T : ti(X)ti(Y)tj(Z) and ti(X)tj(Y)ti(Z).

4 Example

We provide a running example in order to illustrate and clarify the results that
are contained in the previous section. From the dataset in Example 1, we define
the formal context KT = (Split(U),Pair(T), I) in Table 1.

Table 1. Formal context KT = (Split(U),Pair(T), I)

K (t1, t2) (t1, t3) (t1, t4) (t2, t3) (t2, t4) (t3, t4)

[a | bcd] × × × × × ×
[b | acd] × × × × × ×
[c | abd] × ×
[d | abc] × ×
[ab | cd] × × × × × ×
[ac | bd] × ×
[ad | bc] × ×

The AJD R = [ab, bc, cd] holds in T because T = Πab(T) ./ Πbc(T) ./
Πcd(T). We check that in our context we also have this result. Let E = { (ab, bc), (bc, cd) }
and JT = 〈R,E 〉 be the join tree of R. We verify that

∧
e∈E
{ [X | Y Z] }′ = { [Y |

XZ], [Z | XY] }′, where 〈X,Y, Z 〉 = Removal(JT, e). This is:

{ [b | acd] }′ = { [a | bcd], [ab | cd] }′ ∧ { [c | abd] }′ = { [ab | cd], [abc | d] }′ ⇔
{ (t1, t2), (t1, t3), (t1, t4), (t2, t3), (t2, t4), (t3, t4) } =

{ (t1, t2), (t1, t3), (t1, t4), (t2, t3), (t2, t4), (t3, t4) } ∩ { (t1, t2), (t1, t3), (t1, t4), (t2, t3), (t2, t4), (t3, t4) }
∧{ (t1, t2), (t3, t4) } = { (t1, t2), (t1, t3), (t1, t4), (t2, t3), (t2, t4), (t3, t4) } ∩ { (t1, t2), (t3, t4) }

which is true.

5 Conclusions and Future Work

We have presented a new formal context for acyclic join dependencies. This
context generalizes a previous approach for multivalued dependencies simply
because these dependencies are a special case, and it simplifies it because the
formal context has a smaller size. Acyclic join dependencies are of capital im-
portance in database design and validation, among many others.

This result is just a first step towards (1) a more complete characterization of
acyclic join dependencies or join dependencies within the formal concept analysis
framework, (2) the application of FCA algorithms to compute the set of AJDs
that hold in a dataset, (3) the computation of minimal bases for AJDs, and

(4) using other FCA-related formalisms for the same purpose, as, for instance,
pattern structures.
Acknowledgments. This research work has been supported by the SGR2014-890

(MACDA) project of the Generalitat de Catalunya, and MINECO project APCOM

(TIN2014-57226-P).

References

1. J. Baixeries. A formal concept analysis framework to model functional dependen-
cies. In Mathematical Methods for Learning, 2004.

2. J. Baixeries and J. L. Balcázar. Characterization and armstrong relations for
degenerate multivalued dependencies using formal concept analysis. In B. Ganter
and R. Godin, editors, ICFCA, volume 3403 of Lecture Notes in Computer Science,
pages 162–175. Springer, 2005.

3. J. Baixeries and J. L. Balcázar. A lattice representation of relations, multivalued
dependencies and armstrong relations. In ICCS, pages 13–26, 2005.

4. J. Baixeries, M. Kaytoue, and A. Napoli. Computing similarity dependencies with
pattern structures. In M. Ojeda-Aciego and J. Outrata, editors, CLA, volume 1062
of CEUR Workshop Proceedings, pages 33–44. CEUR-WS.org, 2013.

5. J. Baixeries, M. Kaytoue, and A. Napoli. Characterizing functional dependencies
in formal concept analysis with pattern structures. Annals of Mathematics and
Artificial Intelligence, 72(1-2):129–149, Oct. 2014.

6. C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On the desirability of acyclic
database schemes. J. ACM, 30(3):479–513, July 1983.

7. C. Beeri and M. Y. Vardi. Formal systems for join dependencies. Theoretical
Computer Science, 38:99 – 116, 1985.

8. C. Berge. Hypergraphs, volume 45 of North-Holland Mathematical Library. North-
Holland, 1989. Combinatorics of Finite Sets.

9. P. Bohannon, W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis. Conditional
functional dependencies for data cleaning. In ICDE, pages 746–755, 2007.

10. E. F. Codd. Further normalization of the data base relational model. IBM Research
Report, San Jose, California, RJ909, 1971.

11. B. Ganter and R. Wille. Formal Concept Analysis. Springer, Berlin, 1999.
12. M. Gyssens. On the complexity of join dependencies. ACM Trans. Database Syst.,

11(1):81–108, Mar. 1986.
13. P. C. Kanellakis. Elements of relational database theory. In J. van Leeuwen, editor,

Handbook of theoretical computer science (vol. B), pages 1073–1156. MIT Press,
Cambridge, MA, USA, 1990.

14. S. O. Kuznetsov. Machine learning on the basis of formal concept analysis. Autom.
Remote Control, 62(10):1543–1564, Oct. 2001.

15. S. Lopes, J.-M. Petit, and L. Lakhal. Functional and approximate dependency
mining: database and fca points of view. Journal of Experimental and Theoretical
Artificial Intelligence, 14(2-3):93–114, 2002.

16. D. Maier. The Theory of Relational Databases. Computer Science Press, 1983.
17. F. Malvestuto. A complete axiomatization of full acyclic join dependencies. Infor-

mation Processing Letters, 68(3):133 – 139, 1998.
18. R. Medina and L. Nourine. Conditional functional dependencies: An fca point of

view. In L. Kwuida and B. Sertkaya, editors, ICFCA, volume 5986 of Lecture Notes
in Computer Science, pages 161–176. Springer, 2010.

	A Formal Context for Acyclic Join Dependencies

