10 research outputs found

    Range Camera Self-Calibration Based on Integrated Bundle Adjustment via Joint Setup with a 2D Digital Camera

    Get PDF
    Time-of-flight cameras, based on Photonic Mixer Device (PMD) technology, are capable of measuring distances to objects at high frame rates, however, the measured ranges and the intensity data contain systematic errors that need to be corrected. In this paper, a new integrated range camera self-calibration method via joint setup with a digital (RGB) camera is presented. This method can simultaneously estimate the systematic range error parameters as well as the interior and external orientation parameters of the camera. The calibration approach is based on photogrammetric bundle adjustment of observation equations originating from collinearity condition and a range errors model. Addition of a digital camera to the calibration process overcomes the limitations of small field of view and low pixel resolution of the range camera. The tests are performed on a dataset captured by a PMD[vision]-O3 camera from a multi-resolution test field of high contrast targets. An average improvement of 83% in RMS of range error and 72% in RMS of coordinate residual, over that achieved with basic calibration, was realized in an independent accuracy assessment. Our proposed calibration method also achieved 25% and 36% improvement on RMS of range error and coordinate residual, respectively, over that obtained by integrated calibration of the single PMD camera

    A Study for Efficient Methods of System Calibration between Optical and Range Sensors

    Get PDF

    Accuracy Investigation for Structured-light Based Consumer 3D Sensors

    Get PDF
    This work focuses on the performance investigation of consumer 3D sensors with respect to their repeatability and accuracy. It explores currently available sensors based on the 3D sensing technology developed by PrimeSense and introduced to the market in the form of the Microsoft Kinect. Accuracy and repeatability can be crucial criteria for the use of these sensors outside their intended use for home entertainment. The test strategies for the study are motivated by the VDI/VDE 2634 guideline. At the core of the work is the investigation of several units of the Asus Xtion Pro and the PrimeSense Developer Kit and a comparison of their performance. Altogether eighteen sensor units were tested. The results of the proposed test scenario for the sensor units show excellent repeatability at a few millimetres. However, absolute accuracy is worse and can be up to a few centimetres. Sensor performance varies greatly both for sensors of the same manufacturer and in-between manufacturers

    System Calibration between Non-metric Optical Camera and Range Camera

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ฑด์„คํ™˜๊ฒฝ๊ณตํ•™๋ถ€, 2013. 8. ๊น€์šฉ์ผ.์ตœ๊ทผ ์‹ค๋‚ด 3์ฐจ์› ๋ชจ๋ธ๋ง์€ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์—์„œ ์ฃผ๋ชฉ๋ฐ›๊ณ  ์žˆ์œผ๋ฉฐ, ์ด์— ๋”ฐ๋ผ ๊ด€๋ จ ์—ฐ๊ตฌ์— ๋Œ€ํ•œ ํ•„์š”์„ฑ์ด ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ๋‹ค. ํŠนํžˆ ์ด์ข… ์„ผ์„œ ์˜์ƒ๊ฐ„์˜ ์œตํ•ฉ์„ ํ†ตํ•œ ์‹ค๋‚ด 3์ฐจ์› ๋ชจ๋ธ๋ง ์—ฐ๊ตฌ์˜ ํ•„์š”์„ฑ์ด ๋Œ€๋‘๋˜๊ณ  ์žˆ๋‹ค. ์ด๋•Œ ์ด์ข… ์„ผ์„œ ์˜์ƒ๊ฐ„์˜ ์œตํ•ฉ์— ์žˆ์–ด, ์ •๋ฐ€ํ•œ ์‹œ์Šคํ…œ ์บ˜๋ฆฌ๋ธŒ๋ ˆ์ด์…˜์€ ๋งค์šฐ ํ•„์ˆ˜์ ์ธ ์š”์†Œ์ด๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ๋Š” ๋น„์ธก์ •์šฉ ๊ด‘ํ•™ ์นด๋ฉ”๋ผ์™€ ๋ ˆ์ธ์ง€ ์นด๋ฉ”๋ผ๋กœ ๊ตฌ์„ฑ๋œ ์นด๋ฉ”๋ผ ์‹œ์Šคํ…œ์— ๋Œ€ํ•œ ์บ˜๋ฆฌ๋ธŒ๋ ˆ์ด์…˜์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๊ธฐ์กด์˜ ๊ด‘ํ•™ ์นด๋ฉ”๋ผ์™€ ๋ ˆ์ธ์ง€ ์นด๋ฉ”๋ผ๊ฐ„์˜ ์‹œ์Šคํ…œ ์บ˜๋ฆฌ๋ธŒ๋ ˆ์ด์…˜์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋Š” ์ฃผ๋กœ ํŠน์ • ๊ฐ์ฒด๋งŒ์„ 3์ฐจ์›์œผ๋กœ ๊ตฌ์„ฑํ•˜๋Š” ๊ฒƒ์— ์—ฐ๊ตฌ๊ฐ€ ์ง‘์ค‘๋˜์—ˆ๋‹ค. ๋˜ํ•œ ์‹œ์Šคํ…œ ์บ˜๋ฆฌ๋ธŒ๋ ˆ์ด์…˜ ๋ฐฉ๋ฒ• ๊ฐ„์˜ ๋น„๊ต ํ‰๊ฐ€๊ฐ€ ๋ถ€์กฑํ•˜์˜€์œผ๋ฉฐ, ๊ฒ€์ • ๋Œ€์ƒ์ง€ ์„ค๊ณ„๊ฐ€ ๋ฏธํกํ•˜์˜€๋‹ค๋Š” ํ•œ๊ณ„๊ฐ€ ์กด์žฌํ•œ๋‹ค. ์ด์— ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋น„์ธก์ •์šฉ ๊ด‘ํ•™ ๋ฐ ๋ ˆ์ธ์ง€ ์นด๋ฉ”๋ผ์˜ ํŠน์„ฑ์„ ๊ณ ๋ คํ•˜์—ฌ ๊ธฐ์กด๊ณผ ๋‹ค๋ฅธ ๊ฒ€์ • ๋Œ€์ƒ์ง€๋ฅผ ์ƒˆ๋กญ๊ฒŒ ์„ค๊ณ„ํ•˜์˜€๋‹ค. ๋˜ํ•œ ๋‹จ์‚ฌ์ง„ ํ‘œ์ • ๋ฐ ๋ธ”๋ก ์กฐ์ •์˜ ๋‘ ๊ฐ€์ง€ ๋ฐฉ๋ฒ•์„ ํ†ตํ•˜์—ฌ ์‹œ์Šคํ…œ ์บ˜๋ฆฌ๋ธŒ๋ ˆ์ด์…˜์„ ์ˆ˜ํ–‰ํ•˜์—ฌ ์ƒ๋Œ€ํ‘œ์ •์š”์†Œ๋ฅผ ๋„์ถœํ•˜๊ณ , ๊ทธ ๊ฒฐ๊ณผ์— ๋Œ€ํ•˜์—ฌ ๋น„๊ต ํ‰๊ฐ€ํ•˜์˜€๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ ์ƒ๋Œ€ํ‘œ์ •์š”์†Œ๊ฐ„์˜ ์ƒ๊ด€๊ด€๊ณ„ ๋ฐ ํ‘œ์ค€ํŽธ์ฐจ๋ฅผ ๋‚ฎ์ถ”๋Š” ๊ฒƒ์ด ์ •ํ™•๋„์— ํฐ ์˜ํ–ฅ์„ ์ฃผ๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€์œผ๋ฉฐ, ๋ธ”๋ก ์กฐ์ •์„ ํ†ตํ•˜์—ฌ ๋ณด๋‹ค ์‹ ๋ขฐ๋„ ๋†’์€ ๊ฒฐ๊ณผ๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๋ณด๋‹ค ํšจ์œจ์ ์ธ ์‹œ์Šคํ…œ ์บ˜๋ฆฌ๋ธŒ๋ ˆ์ด์…˜ ์ˆ˜ํ–‰ ๋ฐฉ๋ฒ• ๋ฐ ๊ฒ€์ • ๋Œ€์ƒ์ง€ ์„ค๊ณ„์™€ ์˜์ƒ ์ดฌ์˜ ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค.Recently, indoor 3D modeling has attracted attention in various fields, and the needs of its related research needs is increasing. Especially, indoor 3D modeling studies by using image fusion technique with different types of sensors are becoming a necessity. For a image fusion between two kinds of sensors, precise system calibration is essential. Therefore, system calibration was performed on the camera system consisting of non-metric optical camera and range camera in this study. Previous studies about system calibration between non-metric optical camera and range camera were mainly focused on constructing certain object in 3d model. And previous test-bed design was not sufficient for system calibration. In this study, test-bed for calibration was designed by considering the characteristics of non-metric optical camera and range camera. Also, relative orientation parameters were derived by performing a system calibration using single photo resection and block adjustment. As a result, it was confirmed that it is important to reduce correlation between relative orientation parameters and standard deviation to obtain result with high accuracy. Also, it was confirmed that through block-adjustment method to get more reliable results. Finally, a efficient way to perform system calibration, test-bed design and image shooting methods were proposed.1. ์„œ๋ก  1 1.1. ์—ฐ๊ตฌ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ 1 1.2. ์—ฐ๊ตฌ๋™ํ–ฅ 3 1.3. ์—ฐ๊ตฌ์˜ ๋ชฉ์  ๋ฐ ๋ฒ”์œ„ 5 2. ์‹œ์Šคํ…œ ์บ˜๋ฆฌ๋ธŒ๋ ˆ์ด์…˜ ์ˆ˜ํ•™์  ๋ชจ๋ธ 7 2.1. ๊ด‘ํ•™ ์นด๋ฉ”๋ผ ์˜์ƒ์˜ ์ˆ˜ํ•™์  ๋ชจ๋ธ์‹ 7 2.2. ๋ ˆ์ธ์ง€์นด๋ฉ”๋ผ ์˜์ƒ์˜ ์ˆ˜ํ•™์  ๋ชจ๋ธ์‹ 8 2.2.1. ๊ฑฐ๋ฆฌ ๊ด€์ธก๊ฐ’ 8 2.2.2. ์ •์˜ค์ฐจ(systematic error) 8 2.3. ๋‹จ์‚ฌ์ง„ํ‘œ์ •์˜ ์ˆ˜ํ•™์  ๋ชจ๋ธ์‹ 10 2.4. ๋ธ”๋ก์กฐ์ •์—์„œ์˜ ์ˆ˜ํ•™์  ๋ชจ๋ธ์‹ 13 3. ์นด๋ฉ”๋ผ์˜ ํŠน์ง• ๋ฐ ๊ฒ€์ • ๋Œ€์ƒ์ง€ ๊ตฌ์„ฑ 14 3.1. ๊ด‘ํ•™ ๋ฐ ๋ ˆ์ธ์ง€ ์นด๋ฉ”๋ผ์˜ ์ œ์› ๋ฐ ํŠน์ง• 14 3.1.1. ๊ด‘ํ•™์นด๋ฉ”๋ผ 14 3.1.2. ๋ ˆ์ธ์ง€ ์นด๋ฉ”๋ผ 16 3.2. ์นด๋ฉ”๋ผ ๋ฐ ๊ฒ€์ • ๋Œ€์ƒ์ง€ ์ขŒํ‘œ๊ณ„ ์„ค์ • 19 3.3. ๊ฒ€์ • ๋Œ€์ƒ์ง€ ๊ตฌ์„ฑ 20 3.3.1. ๊ด‘ํ•™์นด๋ฉ”๋ผ์šฉ ๊ฒ€์ • ๋Œ€์ƒ์ง€ ๊ตฌ์„ฑ 20 3.3.2. ๋ ˆ์ธ์ง€์นด๋ฉ”๋ผ์šฉ ๊ฒ€์ • ๋Œ€์ƒ์ง€ ๊ตฌ์„ฑ 21 4. ์‹œ์Šคํ…œ ์บ˜๋ฆฌ๋ธŒ๋ ˆ์ด์…˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ 25 4.1. ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ์ง„ํ–‰ ์„ค๊ณ„ ๋ฐ ์ˆœ์„œ 25 4.2. ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒ€์ • ๋Œ€์ƒ์ง€ ๋ฐ ํ‘œ์ •์š”์†Œ ๊ฒฐ์ • 27 4.2.1. ๊ฒ€์ • ๋Œ€์ƒ์ง€ ๋ฐ ์ง€์ƒ ๊ธฐ์ค€์  ์„ค๊ณ„ 27 4.2.2. ๋‚ด๋ถ€ํ‘œ์ •์š”์†Œ 29 4.2.3. ์™ธ๋ถ€ํ‘œ์ •์š”์†Œ ๋ฐ ์ƒ๋Œ€ํ‘œ์ •์š”์†Œ์˜ ๊ฒฐ์ • 31 4.3. ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ์˜์ƒ ์ œ์ž‘ 36 4.3.1. ๊ด‘ํ•™ ์นด๋ฉ”๋ผ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ์˜์ƒ ์ œ์ž‘ 36 4.3.2. ๋ ˆ์ธ์ง€ ์นด๋ฉ”๋ผ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ์˜์ƒ ์ œ์ž‘ 39 4.4. ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ์‹œ์Šคํ…œ ์บ˜๋ฆฌ๋ธŒ๋ ˆ์ด์…˜ ์ˆ˜ํ–‰ 43 4.4.1. ๋‹จ์‚ฌ์ง„ ํ‘œ์ • ์‹œ๋ฎฌ๋ ˆ์ด์…˜ 43 4.4.2. ๋ธ”๋ก์กฐ์ • ์‹œ๋ฎฌ๋ ˆ์ด์…˜ 45 5. ์‹œ์Šคํ…œ ์บ˜๋ฆฌ๋ธŒ๋ ˆ์ด์…˜ 46 5.1. ์‹œ์Šคํ…œ ์บ˜๋ฆฌ๋ธŒ๋ ˆ์ด์…˜ ์ง„ํ–‰ ์„ค๊ณ„ ๋ฐ ์ˆœ์„œ 46 5.2. ๊ฒ€์ • ๋Œ€์ƒ์ง€ ๊ตฌํ˜„ 47 5.2.1. ๊ฒ€์ • ๋Œ€์ƒ์ง€ ํ”„๋ ˆ์ž„ 47 5.2.2. ๊ด‘ํ•™ ์นด๋ฉ”๋ผ์šฉ ์ง€์ƒ ๊ธฐ์ค€์  48 5.2.3. ๋ ˆ์ธ์ง€ ์นด๋ฉ”๋ผ์šฉ ์ง€์ƒ ๊ธฐ์ค€์  50 5.2.4. ์ง€์ƒ ๊ธฐ์ค€์  ์ขŒํ‘œ ์ธก์ • 55 5.3. ์‹ค์˜์ƒ ์ดฌ์˜ 56 5.3.1. ์นด๋ฉ”๋ผ๊ฐ„์˜ ์œ„์น˜ ๊ด€๊ณ„ 56 5.3.2. ์‹ค์˜์ƒ ์ดฌ์˜ 57 5.4. ์‹œ์Šคํ…œ ์บ˜๋ฆฌ๋ธŒ๋ ˆ์ด์…˜ ์ˆ˜ํ–‰ 60 5.4.1. ๋‚ด๋ถ€ํ‘œ์ •์š”์†Œ ๋„์ถœ 60 5.4.2. ๋‹จ์‚ฌ์ง„ ํ‘œ์ • 61 5.4.3. ๋ธ”๋ก์กฐ์ • 61 6. ์บ˜๋ฆฌ๋ธŒ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ ๋ฐ ํ‰๊ฐ€ 62 6.1. ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ์บ˜๋ฆฌ๋ธŒ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ 62 6.1.1. ๋‹จ์‚ฌ์ง„ ํ‘œ์ •์„ ํ†ตํ•œ ์‹œ์Šคํ…œ ์บ˜๋ฆฌ๋ธŒ๋ ˆ์ด์…˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ 62 6.1.2. ๋ธ”๋ก ์กฐ์ •์„ ํ†ตํ•œ ์‹œ์Šคํ…œ ์บ˜๋ฆฌ๋ธŒ๋ ˆ์ด์…˜ 75 6.1.3. ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋‹จ์‚ฌ์ง„ ํ‘œ์ •๊ณผ ๋ธ”๋ก ์กฐ์ • ๊ฒฐ๊ณผ ๋น„๊ต 81 6.2. ์‹ค์ œ ์˜์ƒ์„ ์ด์šฉํ•œ ์‹œ์Šคํ…œ ์บ˜๋ฆฌ๋ธŒ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ 83 6.2.1. ๋‹จ์‚ฌ์ง„ ํ‘œ์ •์„ ํ†ตํ•œ ์‹œ์Šคํ…œ ์บ˜๋ฆฌ๋ธŒ๋ ˆ์ด์…˜ 83 6.2.2. ๋ธ”๋ก ์กฐ์ •์„ ํ†ตํ•œ ์‹œ์Šคํ…œ ์บ˜๋ฆฌ๋ธŒ๋ ˆ์ด์…˜ 93 6.2.3. ๋‹จ์‚ฌ์ง„ ํ‘œ์ • ๋ฐ ๋ธ”๋ก ์กฐ์ • ๊ฒฐ๊ณผ ๋น„๊ต 99 6.3. ์‹œ๋ฎฌ๋ ˆ์ด์…˜๊ณผ ์‹ค์ œ ์‹œ์Šคํ…œ ์บ˜๋ฆฌ๋ธŒ๋ ˆ์ด์…˜ ๋น„๊ต ํ‰๊ฐ€ 101 7. ๊ฒฐ๋ก  103 ์ฐธ๊ณ ๋ฌธํ—Œ 107 ๋ถ€ ๋ก 118 A.1. ์ตœ์†Œ์ œ๊ณฑ๋ฒ• 118 A.2. ์ถ•์ฐจ๊ทผ์‚ฌ๋ฒ• 120 A.3. ๊ณต์„ ์กฐ๊ฑด์‹(collinearity condition) 121 A.4. ๊ด‘ํ•™์นด๋ฉ”๋ผ ๋‹จ์‚ฌ์ง„ ํ‘œ์ • ๋ชจ๋ธ์‹ ๋ฐ ํ–‰๋ ฌ๊ตฌ์„ฑ 125 A.5. ๋ ˆ์ธ์ง€์นด๋ฉ”๋ผ ๋‹จ์‚ฌ์ง„ ํ‘œ์ • ๋ชจ๋ธ์‹ 131 A.6. ๋ธ”๋ก์กฐ์ • ์ˆ˜ํ•™์  ๋ชจ๋ธ 135Maste

    A Comparison of Three Geometric Self-Calibration Methods for Range Cameras

    No full text
    Significant instrumental systematic errors are known to exist in data captured with range cameras using lock-in pixel technology. Because they are independent of the imaged object scene structure, these errors can be rigorously estimated in a self-calibrating bundle adjustment procedure. This paper presents a review and a quantitative comparison of three methods for range camera self-calibration in order to determine which, if any, is superior. Two different SwissRanger range cameras have been calibrated using each method. Though differences of up to 2 mm (in object space) in both the observation precision and accuracy measures exist between the methods, they are of little practical consequence when compared to the magnitude of these measures (12 mm to 18 mm). One of the methods was found to underestimate the principal distance but overestimate the rangefinder offset in comparison to the other two methods whose estimates agreed more closely. Strong correlations among the rangefinder offset, periodic error terms and the camera position co-ordinates are indentified and their cause explained in terms of network geometry and observation range

    A Comparison of Three Geometric Self-Calibration Methods for Range Cameras

    No full text
    Significant instrumental systematic errors are known to exist in data captured with range cameras using lock-in pixel technology. Because they are independent of the imaged object scene structure, these errors can be rigorously estimated in a self-calibrating bundle adjustment procedure. This paper presents a review and a quantitative comparison of three methods for range camera self-calibration in order to determine which, if any, is superior. Two different SwissRanger range cameras have been calibrated using each method. Though differences of up to 2 mm (in object space) in both the observation precision and accuracy measures exist between the methods, they are of little practical consequence when compared to the magnitude of these measures (12 mm to 18 mm). One of the methods was found to underestimate the principal distance but overestimate the rangefinder offset in comparison to the other two methods whose estimates agreed more closely. Strong correlations among the rangefinder offset, periodic error terms and the camera position co-ordinates are indentified and their cause explained in terms of network geometry and observation range

    ToF Camera calibration: an automatic setting of its integration time and an experimental analysis of its modulation frequency

    Get PDF
    [ES] La percepciรณn de profundidad se hace imprescindible en muchas tareas de manipulaciรณn, control visual y navegaciรณn de robots. Las cรกmaras de tiempo de vuelo (ToF: Time of Flight) generan imรกgenes de rango que proporcionan medidas de profundidad en tiempo real. No obstante, el parรกmetro distancia que calculan estas cรกmaras es fuertemente dependiente del tiempo de integraciรณn que se configura en el sensor y de la frecuencia de modulaciรณn empleada por el sistema de iluminaciรณn que integran. En este artรญculo, se presenta una metodologรญa para el ajuste adaptativo del tiempo de integraciรณn y un anรกlisis experimental del comportamiento de una cรกmara ToF cuando se modifica la frecuencia de modulaciรณn. Este mรฉtodo ha sido probado con รฉxito en algoritmos de control visual con arquitectura โ€˜eye-in-handโ€™ donde el sistema sensorial estรก compuesto por una cรกmara ToF. Ademรกs, la misma metodologรญa puede ser aplicada en otros escenarios de trabajo.[EN] The depth perception is essential in many manipulation tasks, visual inspection and robot navigation. The cameras of Time of Flight (TOF) generate range images which provide depth measurements in real time. However, the distance parameter computed from these cameras is strongly dependent on the integration time set for the sensor and the frequency of modulation used by the integrated lighting system. In this paper, a methodology for automatic setting of integration time and an experimental analysis of ToF camera behavior adjusting its modulation frequency is presented. This method has been successfully tested on visual servoing algorithms with architecture โ€˜eye-in-handโ€™ in which the sensory system consists of a ToF camera, in addition this methodology can be applied to other workspaces and scenarios.Este trabajo ha sido co-financiado por el Gobierno regional de la Generalitat Valenciana, Universidad de Alicante y CICYT travรฉs de los proyectos GV2012/102, GRE10-16 y DPI2012-32390.Gil, P.; Kisler, T.; Garcรญa, G.; Jara, C.; Corrales, J. (2013). Calibraciรณn de cรกmaras de tiempo de vuelo: Ajuste adaptativo del tiempo de integraciรณn y anรกlisis de la frecuencia de modulaciรณn. Revista Iberoamericana de Automรกtica e Informรกtica industrial. 10(4):453-464. https://doi.org/10.1016/j.riai.2013.08.002OJS453464104Bouguet, J.Y., 2000. Pyramidal implementation of affine Lucas Kanade feature tracker. Intel Corporation- Microprocessor Research Labs, OpenCV Library.Chaumette, F., Hutchinson, S., 2006. Visual servo control. I. Basic approaches. IEEE Robotics and Automation Magazine 13, IEEE Press, pp. 82-90.Chiabrando, F., Chiabrando, R., Piatti, D., Rianudo, F., 2009. Sensors for 3d imaging: metric evualuation an calibration of CCD/CMOS time-of-flight camera. Sensors 9(9), pp. 10080-10096. DOI: 10.3390/s91210080.Distante, C., Diraco, G., Leone, A., 2010. Active range imaging dataset for indoor surveillance. In Proc. of British Machine Vision Conference (BMVC), BMVA Press, vol. 2, pp.1-16.Foix, S., Alenya, G., & Torras, C. (2011). Lock-in Time-of-Flight (ToF) Cameras: A Survey. IEEE Sensors Journal, 11(9), 1917-1926. doi:10.1109/jsen.2010.2101060Plaue, M. (2009). Theoretical and experimental error analysis of continuous-wave time-of-flight range cameras. Optical Engineering, 48(1), 013602. doi:10.1117/1.3070634Fuchs, S. Hirzinger, G., 2008. Extrinsic and depth calibration of ToF-cameras. In Proc. of Conference on Computer Vision and Pattern Recognition (CVPR), IEEE Press Society, pp. 1-6. DOI: 10.1109/CVPR.2008.4587828.Garcia, F., Aouada D., Mirbach, B., Solignac T., Ottersten B., 2011. Real-time hybrod ToF multi-camera rig fusion system for depth map enhancement. In Proc. of Conference on Computer Vision and Pattern Recognition (CVPR), IEEE Press Society, pp. 1-8. DOI: 10.1109/CVPRW.2011.5981740.Gil, P., Pomares, J., Torres, F., 2010. Analysis and adaptation of integration time in PMD camera for visual servoing. In Proc. of 20th International Conference on Pattern Recognition (ICPR), IEEE Press Society, pp. 311-315. DOI: 10.1109/ICPR.2010.85.Herrera, D.C., Kannala, J., Heikkila, J., 2011. Accurate and practical calibration of a depth and color camera pair. In Proc. of 14th International Conference on Computer Analysis of Images and Patterns (CAIP), vol 2, Ed. Springer-Verlag Berlรญn, Heidelberg, pp. 437-445.Hussman, S., Liepert, T., 2009. Three-dimensional tof robot vision system. IEEE Transactions on Instrumentation and Measurement 58(1), pp. 141-146. DOI: 10.1109/TIM.2008.928409.Hussman, S., Edeler, T., 2010. Robot vision using 3d tof systems. En: Ales Ude, (Ed.), Robot Vision. Intech Press, pp. 293-306.Kakiuchi, Y., Ueda, R., Kobayashi, K., Okada, K., Inaba, M., 2010. Working with movable obstacles using on-line environmet perception reconstruction using active sensing and color range sensor. In Proc. of International Conference on Intelligent Robots and Systems (IROS), IEEE Press, pp. 1696-1701. DOI: 10.1109/IROS.2010.5650206.Kim, Y.M., Chan, D., Theobalt, C., Thrun, S., 2008. Design and calibration of a multi-view ToF sensor fusion system. In Proc. of 22nd Conference on Computer Vision and Pattern Recognition (CVPR), IEEE Press Society, pp. 1524-1530. DOI: 10.1109/CVPRW.2008.4563160.Kisler, T., Gil, P., 2011. Detecciรณn y seguimiento de objetos sรณlidos con cรกmaras ToF. Actas de XXXII Jornadas de Automรกtica (JA), CEA-IFAC Actas. Sevilla (Spain).Khoshelham, K. 2011. Accuracy analysis of Kinect depth data. En: D.D., Lichti, A.F., Habbib, (Ed.). In Proc of ISPRS Journal of Photogrammetry and Remote Sensing-Workshop on Laser Scanning, vol. 38(5), pp. 29-31.Kolb, A., Barth, E., Koch, E., Larse, R., 2010. Time-of-flight Cameras in Computer Graphics. Computer Graphics Forum, vol. 29(1), pp. 141-159. DOI: 10.1111/j.1467-8659.2009.01583.x.Kuehnle, J.U., Xue, Z., Sotz, M., Zoellner, J.M., Verl, A., Dillmann, R., 2008. Grasping in depth maps of time-of-flight cameras. In Proc. of IEEE International Workshop on Robotic and Sensors Environments (ROSE). pp. 132-137. DOI: 10.1109/ROSE.2008.466914.Lai, K., Liefeng Bo, Xiaofrng Ren, Fox, D., 2011. Spares distance learning for object recognition combining RGB and depth information. In Proc. of International Conference on Robotics and Automation (ICRA), IEEE Press Society, pp. 4007-4013. DOI: 10.1109/ICRA.2011.5980377.Lichti, D., 2008. Self-calibration of a 3D range camera. In Proc of International Society for Photogrammetry and Remote Sensing 37(3), pp.1-6.Lichti, D. Rouzaud, D., 2009. Surface-dependent 3d range camera self- calibration. En: A., Beraldin, G.S., Cheok, M., McCarthy, (Ed.), In Proc. of SPIE vol. 72390, pp. DOI: 10.1117/12.805509.Lichti, D., Kim, C., 2011. A comparison of three geometric self-calibration methods for range cameras. Remote Sensing 11(3), pp. 1014-1028. DOI: 10.3390/rs3051014.Lindner, M., Kolb, A., Ringbeck, T., 2008. New insights into the calibration of ToF-sensors. In Proc. of 22nd Conference on Computer Vision and Pattern Recognition (CVPR), IEEE Press Society, pp. 1603-1607. DOI: 10.1109/CVPRW.2008.4563172.Lindner, M., Schiller, I., Kolb, A., & Koch, R. (2010). Time-of-Flight sensor calibration for accurate range sensing. Computer Vision and Image Understanding, 114(12), 1318-1328. doi:10.1016/j.cviu.2009.11.002May, S., Werner, B., Surmann, H., Pervรถlz, K., 2006. โ€œ3d time-of-flight cameras for mobile robotics. In Proc. of International Conference on Intelligent Robots and Systems (IROS), IEEE Press, 790-795, DOI: 10.1109/IROS.2006.281670.May, S., Fuchs, S., Droeschel, D. Holz, D., Nรผchter, A., 2009. Robust 3d-mapping with time-of-flight cameras. In Proc. of International Conference on Intelligent Robots and Systems (IROS), IEEE Press Society, pp 1673-1678.May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nรผchter, A., Hertzberg, J., 2009. Three-dimensional mapping with time-of-light cameras. Journal of Field Robotics. Special Issue on Three-dimensional Mapping Part 2, 26(11-12), pp. 934-965. DOI: 10.1002/ROB.20321.Mufti, F., & Mahony, R. (2011). Statistical analysis of signal measurement in time-of-flight cameras. ISPRS Journal of Photogrammetry and Remote Sensing, 66(5), 720-731. doi:10.1016/j.isprsjprs.2011.06.004Pattison, T., 2010. Quantification and description of distance measurement errors of a time-of-flight camera. M. Sc. Thesis. University of Stuttgart, Stuttgart (Germany).Pomares, J., Gil, P., Torres, F., 2010. Visual control of robots using range images. Sensors 10(8), pp. 7303-7322. DOI: 10.3290/s100807303.Rapp, H., Frank, M., Hamprecht, F.A., Jรคhne, B., 2008. A theoretical and experimental investigation of the systematic errors and statistical uncertainties of time-of-flight-cameras. International Journal of Intelligent Systems Technologies and Applications vol. 5(3-4), pp. 402-413. DOI: 10.1504/IJISTA.2008.021303.Shahbazi, M., Homayouni, S., Saadatseresht, M., & Sattari, M. (2011). Range Camera Self-Calibration Based on Integrated Bundle Adjustment via Joint Setup with a 2D Digital Camera. Sensors, 11(9), 8721-8740. doi:10.3390/s110908721Schaller, C., 2011, Time-of-Flight-A new Modality for Radiotherapy, M. Sc. Thesis. University Erlangen-Nuremberg, Erlagen (Germany).Schiller, I., Beder, C., Koch, R., 2008. Calibration of a PMD-camera using a planar calibration pattern together with a multi-camera setup. In Proc. of ISPRS Journal of Photogrammetry and Remote Sensing vol. 37, pp. 297-302.Schwarz, L., Mateus, D., Castaneda, V., Navab, N., 2010. Manifold learning for ToF-based human body tracking and activity recognition. In Proc. of British Machine Vision Conference (BMVC), BMVA Press, pp.1-11. DOI: 10.5244/C.24.80.Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman, A., Blake, A., 2011. Real-time human pose recognition in parts from single depth images. In Proc of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE Press Society, pp. 1297-1304.Smisek, J., 2011. 3D Camera Calibration. MSc. Thesis. Czech Technnical Univesity, Prague (Czech).Weyer, C.A., Bae, K.H., Lim, K., Lichti, D., 2008. Extensive metric performance evaluation of a 3D range camera. In Proc. of ISPRS Journal of Photogrammetry and Remote Sensing vol.37(5), pp.939-944.Wiedemann M., Sauer M., Driewer F. Schilling K., 2008. Analysis and characterization of the PMD camera for aplication in mobile robots. M. J. Chung and P. Misra (Ed.). In Proc. of 17th World Congress of the International Federation of Automotic Control, IFAC Press, pp.13689-13694.Zhang, Z. (2000). A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(11), 1330-1334. doi:10.1109/34.888718Zhu, J., Wang, L., Yang, R., Davis, J., 2008. Fusion of time-of-flight depth and stereo for high accuracy depth maps. In Proc. of Computer Vision and Pattern Recognition (CVPR), IEEE Press Society, pp. 1-8. DOI: 10.1109/CVPR.2008.4587761.Zhu, J., Yang, R., & Xiang, X. (2011). Eye contact in video conference via fusion of time-of-flight depth sensor and stereo. 3D Research, 2(3). doi:10.1007/3dres.03(2011)5Zinber, T., Schmidt, J., Niemann, H., 2003. A refined ICP algorithm for robust 3d correspondence estimation. In Proc. of Conference on Image Processing (ICIP), IEEE Press, pp. 695-698
    corecore