172 research outputs found

    A survey of scheduling problems with setup times or costs

    Get PDF
    Author name used in this publication: C. T. NgAuthor name used in this publication: T. C. E. Cheng2007-2008 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    The Dynamic Multi-objective Multi-vehicle Covering Tour Problem

    Get PDF
    This work introduces a new routing problem called the Dynamic Multi-Objective Multi-vehicle Covering Tour Problem (DMOMCTP). The DMOMCTPs is a combinatorial optimization problem that represents the problem of routing multiple vehicles to survey an area in which unpredictable target nodes may appear during execution. The formulation includes multiple objectives that include minimizing the cost of the combined tour cost, minimizing the longest tour cost, minimizing the distance to nodes to be covered and maximizing the distance to hazardous nodes. This study adapts several existing algorithms to the problem with several operator and solution encoding variations. The efficacy of this set of solvers is measured against six problem instances created from existing Traveling Salesman Problem instances which represent several real countries. The results indicate that repair operators, variable length solution encodings and variable-length operators obtain a better approximation of the true Pareto front

    Hybrid Offline/Online Methods for Optimization Under Uncertainty

    Get PDF
    This work considers multi-stage optimization problems under uncertainty. In this context, at each stage some uncertainty is revealed and some decision must be made: the need to account for multiple future developments makes stochastic optimization incredibly challenging. Due to such a complexity, the most popular approaches depend on the temporal granularity of the decisions to be made. These approaches are, in general, sampling-based methods and heuristics. Long-term strategic decisions (which are often very impactful) are typically solved via expensive, but more accurate, sampling-based approaches. Short-term operational decisions often need to be made over multiple steps, within a short time frame: they are commonly addressed via polynomial-time heuristics, while more advanced sampling-based methods are applicable only if their computational cost is carefully managed. We will refer to the first class of problems (and solution approaches) as offline and to the second as online. These phases are typically solved in isolation, despite being strongly interconnected. Starting from the idea of providing multiple options to balance the solution quality/time trade-off in optimization problem featuring offline and online phases, we propose different methods that have broad applicability. These methods have been firstly motivated by applications in real-word energy problems that involve distinct offline and online phases: for example, in Distributed Energy Management Systems we may need to define (offline) a daily production schedule for an industrial plant, and then manage (online) its power supply on a hour by hour basis. Then we show that our methods can be applied to a variety of practical application scenarios in very different domains with both discrete and numeric decision variables

    Dynamic vehicle routing problems: Three decades and counting

    Get PDF
    Since the late 70s, much research activity has taken place on the class of dynamic vehicle routing problems (DVRP), with the time period after year 2000 witnessing a real explosion in related papers. Our paper sheds more light into work in this area over more than 3 decades by developing a taxonomy of DVRP papers according to 11 criteria. These are (1) type of problem, (2) logistical context, (3) transportation mode, (4) objective function, (5) fleet size, (6) time constraints, (7) vehicle capacity constraints, (8) the ability to reject customers, (9) the nature of the dynamic element, (10) the nature of the stochasticity (if any), and (11) the solution method. We comment on technological vis-à-vis methodological advances for this class of problems and suggest directions for further research. The latter include alternative objective functions, vehicle speed as decision variable, more explicit linkages of methodology to technological advances and analysis of worst case or average case performance of heuristics.© 2015 Wiley Periodicals, Inc

    The dynamic nearest neighbor policy for the multi-vehicle pick-up and delivery problem

    Get PDF
    In this paper, a dynamic nearest neighbor (DNN) policy is proposed for operating a fleet of vehicles to serve customers, who place calls in a Euclidean service area according to a Poisson process. Each vehicle serves one customer at a time, who has a distinct origin and destination independently and uniformly distributed within the service area. The new DNN policy is a refined version of the nearest neighbor (NN) policy that is well known to perform sub-optimally when the frequency of customer requests is high. The DNN policy maintains geographically closest customer-to-vehicle assignments, due to its ability to divert/re-assign vehicles that may be already en-route to pick up other customers, when another vehicle becomes available or a new customer call arrives. Two other pertinent issues addressed include: the pro-active deployment of the vehicles by anticipating in which regions of the service area future calls are more likely to arise; and, imposition of limits to avoid prohibitively long customer wait times. The paper also presents accurate approximations for all the policies compared. Extensive simulations, some of which are included herein, clearly show the DNN policy to be tangibly superior to the first-comefirst-served (FCFS) and NN policies

    Strategies for Handling Temporal Uncertainty in Pickup and Delivery Problems with Time Windows

    Get PDF
    In many real-life routing problems there is more uncertainty with respect to the required timing of the service than with respect to the service locations. We focus on a pickup and delivery problem with time windows in which the pickup and drop-off locations of the service requests are fully known in advance, but the time at which these jobs will require service is only fully revealed during operations. We develop a sample-scenario routing strategy to accommodate a variety of potential time real- izations while designing and updating the routes. Our experiments on a breadth of instances show that advance time related information, if used intelligently, can yield benefits. Furthermore, we show that it is beneficial to tailor the consensus function that is used in the sample-scenario approach to the specifics of the problem setting. By doing so, our strategy performs well on instances with both short time windows and limited advance confirmation

    A dynamic ridesharing dispatch and idle vehicle repositioning strategy with integrated transit transfers

    Full text link
    We propose a ridesharing strategy with integrated transit in which a private on-demand mobility service operator may drop off a passenger directly door-to-door, commit to dropping them at a transit station or picking up from a transit station, or to both pickup and drop off at two different stations with different vehicles. We study the effectiveness of online solution algorithms for this proposed strategy. Queueing-theoretic vehicle dispatch and idle vehicle relocation algorithms are customized for the problem. Several experiments are conducted first with a synthetic instance to design and test the effectiveness of this integrated solution method, the influence of different model parameters, and measure the benefit of such cooperation. Results suggest that rideshare vehicle travel time can drop by 40-60% consistently while passenger journey times can be reduced by 50-60% when demand is high. A case study of Long Island commuters to New York City (NYC) suggests having the proposed operating strategy can substantially cut user journey times and operating costs by up to 54% and 60% each for a range of 10-30 taxis initiated per zone. This result shows that there are settings where such service is highly warranted

    Multi-objective Analysis of Approaches to Dynamic Routing of a Vehicle

    Get PDF
    We consider a routing problem for a single vehicle serving customer Locations in the course of time. A subset of these customers must necessarily be served, while the complement of this subset contains dynamic customers which request for service over time, and which do not necessarily need to be served. The decision maker’s conflicting goals are serving as many customers as possible as well as minimizing total travel distance. We solve this bi-objective Problem with an evolutionary multi-objective algorithm in order to provide an a-posteriori evaluation tool for enabling decision makers to assess the single objective solution strategies that they actually use in real-time. We present the modifications to be applied to the evolutionary multi-objective algorithm NSGA2 in order to solve the routing problem, we describe a number of real-time single-objective solution strategies, and we finally use the gained efficient trade-off solutions of NSGA2 to exemplarily evaluate the real-time strategies. Our results show that the evolutionary multi-objective approach is well-suited to generate benchmarks for assessing dynamic heuristic strategies. Our findings point into future directions for designing dynamic multi-objective approaches for the vehicle routing problem with time windows
    corecore