744 research outputs found

    Fuzzy Logic Controller of Five Levels Active Power Filter

    Get PDF
    AbstractThis paper presents five-level inverter as a shunt active power filter (SAPF) to compensate reactive power and suppresses harmonics drawn from a diode rectifier supplying RL load under distorted voltage conditions. The harmonic current extraction is based on the use of self tuning filter (STF) and fuzzy logic controller employed to control harmonic current and inverter DC voltage. The aim of the present work is to obtain a perfect compensation by extracting accurate harmonic currents to improve the performances of the five-levels active power filters.The proposed scheme is validated by computer simulation using MATLAB Fuzzy Logic Toolbox in order to show the effectiveness and ability of this method. The results have demonstrated that the proposed shunt active power filter with STF and Fuzzy Logic Controller (FLC) have produced a sinusoidal supply current with low harmonic distortion and in phase with the line voltage

    Regulatori struje aktivnih filtara snage za poboljšanje kvalitete snage: Tehnička analiza

    Get PDF
    Non-linear load deteriorates the quality of current waveforms at the point of common coupling of various consumers. Active power filter (APFs) is used to mitigate the most concern harmonic pollution in an electrical network. The controller part is the nucleus of an active power filter configuration. Active power filter performance is affected significantly by the selection of current control techniques. The active filter and its current control must have the capability to track sudden slope variations in the current reference to compensate the distorted current drawn by the voltage source inverter. Therefore, the choice and implementation of the current regulator is more important for the achievement of a satisfactory performance level. In this survey, technical reviews of various types of controllers covering a wide range have been presented. This work also reveals the advantages and disadvantages of the practiced control strategies. The effectiveness of the study will help the researchers to choose the proper control methods for various applicationsof active power filter.Nelinearni tereti pogoršavaju kvalitetu strujnih valova u točki u kojoj se spaja više potrošača. Aktivni filtar snage se koristi za ublažavanje najvažnijeg harmoničkog onečišćenja strujne mreže. Jezgra aktivnog filtra snage je regulator. Na performanse aktivnog filtra snage značajno utječe odabir upravljačke tehnike. Aktivni filtar i njegova tehnika upravljanja strujom moraju imati mogućnost pratiti nagle skokove u referentnoj vrijednosti struje kako bi mogli kompenzirati izobličenja struje koju vuče inverter naponskog izvora. Zato su izbor i implementacija regulatora struje iznimno važni za postizanje zadovoljavajuće razine performansi. U ovom pregledu su predstavljene tehničke recenzije koje pokrivaju širok raspon regulatora. Ovaj rad također otkriva prednosti i mane korištenih strategija upravljanja. Efektivnost ovog pregleda pomoći će istraživačima da izaberu ispravnu metodu upravljanja za različite aplikacije aktivnog filtra snage

    Regulatori struje aktivnih filtara snage za poboljšanje kvalitete snage: Tehnička analiza

    Get PDF
    Non-linear load deteriorates the quality of current waveforms at the point of common coupling of various consumers. Active power filter (APFs) is used to mitigate the most concern harmonic pollution in an electrical network. The controller part is the nucleus of an active power filter configuration. Active power filter performance is affected significantly by the selection of current control techniques. The active filter and its current control must have the capability to track sudden slope variations in the current reference to compensate the distorted current drawn by the voltage source inverter. Therefore, the choice and implementation of the current regulator is more important for the achievement of a satisfactory performance level. In this survey, technical reviews of various types of controllers covering a wide range have been presented. This work also reveals the advantages and disadvantages of the practiced control strategies. The effectiveness of the study will help the researchers to choose the proper control methods for various applicationsof active power filter.Nelinearni tereti pogoršavaju kvalitetu strujnih valova u točki u kojoj se spaja više potrošača. Aktivni filtar snage se koristi za ublažavanje najvažnijeg harmoničkog onečišćenja strujne mreže. Jezgra aktivnog filtra snage je regulator. Na performanse aktivnog filtra snage značajno utječe odabir upravljačke tehnike. Aktivni filtar i njegova tehnika upravljanja strujom moraju imati mogućnost pratiti nagle skokove u referentnoj vrijednosti struje kako bi mogli kompenzirati izobličenja struje koju vuče inverter naponskog izvora. Zato su izbor i implementacija regulatora struje iznimno važni za postizanje zadovoljavajuće razine performansi. U ovom pregledu su predstavljene tehničke recenzije koje pokrivaju širok raspon regulatora. Ovaj rad također otkriva prednosti i mane korištenih strategija upravljanja. Efektivnost ovog pregleda pomoći će istraživačima da izaberu ispravnu metodu upravljanja za različite aplikacije aktivnog filtra snage

    Power quality improvement using passive shunt filter, TCR and TSC combination

    Get PDF
    Power system harmonics are a menace to electric power systems with disastrous consequences. The line current harmonics cause increase in losses, instability, and also voltage distortion. With the proliferation of the power electronics converters and increased use of magnetic, power lines have become highly polluted. Both passive and active filters have been used near harmonic producing loads or at the point of common coupling to block current harmonics. Shunt filters still dominate the harmonic compensation at medium/high voltage level, whereas active filters have been proclaimed for low/medium voltage ratings. With diverse applications involving reactive power together with harmonic compensation, passive filters are found suitable [41]. Passive filtering has been preferred for harmonic compensation in distribution systems due to low cost, simplicity, reliability, and control less operation [42]. The uncontrolled ac-dc converter suffers from operating problems of poor power factor, injection of harmonics into the ac mains, variations in dc link voltage of input ac supply, equipment overheating due to harmonic current absorption, voltage distortion due to the voltage drop caused by harmonic currents flowing through system impedances, interference on telephone and communication line etc. The circuit topologies such as passive filters, ac-dc converter, based improved power quality ac-dc converters are designed, modeled and implemented. The main emphasis of this investigation has been on a compactness of configurations, simplicity in control, reduction in rating of components, thus finally leading to saving in overall cost. Based on thesis considerations, a wide range of configurations of power quality mitigators are developed, which is expected to provide detailed exposure to design engineers to choose a particular configuration for a specific application under the given constraints of economy and desired performance. For bidirectional power flow applications, the current source converter is designed and simulated with R-L load. The necessary modeling and simulations are carried out in MATLAB environment using SIMULINK and power system block set toolboxes. The behavior of different configurations of passive tuned filters on power quality is studied. One of the way out to resolve the issue of reactive power would be using filters and TCR, TSC with combination in the power system. Installing a filter for nonlinear loads connected in power system would help in reducing the harmonic effect. The filters are widely used for reduction of harmonics. With the increase of nonlinear loads in the power system, more and more filters are required. The combinations of passive filters with TCR and TSC are also designed and analyzed to improve the power quality at ac mains. This scheme has resulted in improved power quality with overall reduced rating of passive components used in front end ac-dc converters with R-L load

    A Comprehensive Survey on Different Control Strategies and Applications of Active Power Filters for Power Quality Improvement

    Get PDF
    This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).Power quality (PQ) has become an important topic in today’s power system scenario. PQ issues are raised not only in normal three-phase systems but also with the incorporation of different distributed generations (DGs), including renewable energy sources, storage systems, and other systems like diesel generators, fuel cells, etc. The prevalence of these issues comes from the non-linear features and rapid changing of power electronics devices, such as switch-mode converters for adjustable speed drives and diode or thyristor rectifiers. The wide use of these fast switching devices in the utility system leads to an increase in disturbances associated with harmonics and reactive power. The occurrence of PQ disturbances in turn creates several unwanted effects on the utility system. Therefore, many researchers are working on the enhancement of PQ using different custom power devices (CPDs). In this work, the authors highlight the significance of the PQ in the utility network, its effect, and its solution, using different CPDs, such as passive, active, and hybrid filters. Further, the authors point out several compensation strategies, including reference signal generation and gating signal strategies. In addition, this paper also presents the role of the active power filter (APF) in different DG systems. Some technical and economic considerations and future developments are also discussed in this literature. For easy reference, a volume of journals of more than 140 publications on this particular subject is reported. The effectiveness of this research work will boost researchers’ ability to select proper control methodology and compensation strategy for various applications of APFs for improving PQ.publishedVersio

    Particle Swarm Optimization Trained Artificial Neural Network to Control Shunt Active Power Filter Based on Multilevel Flying Capacitor Inverter

    Get PDF
    © 2020 by the authors; licensee IIETA, Edmonton, Canada. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/).Shunt Active Power Filters (SAPF) are an emerging power electronics-based technology to mitigate harmonic and improve power quality in distribution grids. The SAPF proposed in this paper is based on three-phase Flying Capacitor Inverter (FCI) with a three-cell per phase topology, which has the advantage to provide voltage stress distribution on the switches. However, controlling the voltage of floating capacitors is a challenging problem for this type of topology. In this paper, a controller based artificial neural networks optimized with particle swarm optimization (ANN-PSO) is proposed to regulate the filter currents to follow the references extracted by the method of synchronous reference frame (SRF). The simulation results showed an enhancement of the power quality with a significant reduction in the THD levels of the current source under various loading conditions, which confirms the effectiveness, and robustness of the proposed control scheme and SAPF topology.Peer reviewe

    Interleaved Buck Converter Based Shunt Active Power Filter with Shoot-through Elimination for Power Quality Improvement

    Get PDF
    The “shoot-through” phenomenon defined as the rush of current that occurs while both the devices are ON at the same time of a particular limb is one of the most perilous failure modes encountered in conventional inverter circuits of active power filter (APF). Shoot-through phenomenon has few distinct disadvantages like; it introduces typical ringing, increases temperature rise in power switches, causes higher Electromagnetic Interference (EMI) and reduces the efficiency of the circuit. To avert the “shoot-through”, dead time control could be added, but it deteriorates the harmonic compensation level. This dissertation presents active power filters (APFs) based on interleaved buck (IB) converter. Compared to traditional shunt active power filters, the presented IB APFs have enhanced reliability with no shoot-through phenomenon. The instantaneous active and reactive power (p-q) scheme and instantaneous active and reactive current component (id-iq) control scheme has been implemented to mitigate the source current harmonics. Type-1 and Type-2 fuzzy logic controller with different membership functions (MFs) viz. Triangular, Trapezoidal and Gaussian have been implemented for the optimal harmonic compensation by controlling the dc-link voltage and minimizing the undesirable losses occurred inside the APF. Additionally, the adaptive hysteresis band current controller (AHBCC) is being implemented to get the nearly constant switching frequency. The performance of the control strategies and controllers for the presented IB APF topologies has been evaluated in terms of harmonic mitigation and dc-link voltage regulation under sinusoidal, unbalanced sinusoidal and non-sinusoidal voltage source condition. This dissertation is concerned with the different topologies of 3-phase 4-wire IB APFs viz. split capacitor (2C) topology, 4-leg (4L) topology, transformer based full-bridge IB APF or single capacitor based FB IB APF (1C 3 FB IB APF) and full-bridge IB APF (FB IB APF) for low to medium power application. Moreover, APF topology is now being expanded to multilevel VSIs for high power application. Thanks to flexible modular design, transformerless connection, extended voltage and power output, less maintenance and higher fault tolerance, the cascade inverters are good candidates for active power filters with the utility of high power application. The cascaded FB IB APF is modelled with no shoot-through phenomenon by using multicarrier phase shifted PWM scheme. Extensive simulations have been carried out in the MATLAB / Simulink environment and also verified in the OPAL-RT LAB using OP5142-Spartan 3 FPGA to support the feasibility of presented IB APF topologies, control strategies and controllers during steady and dynamic condition. The performance shows that IB-APF topologies bring the THD of the source current well below 5% adhering to IEEE-519 standard. A comparison has also been made, based on SDP (switch device power) between the IB-APF topologies

    Performance Analysis of Type-1 and Type-2 FLC based Shunt Active Filter Control Strategies for Power Quality Improvement

    Get PDF
    In recent years electrical power quality has been an important and growing problem because of the proliferation of nonlinear loads such as power electronic converters in typical power distribution systems. Particularly, voltage harmonics and power distribution equipment problems result from current harmonics produced by nonlinear loads. The electronic equipments like; computers, battery chargers, electronic ballasts, variable frequency drives, and switch mode power supplies, generate perilous harmonics and cause enormous economic loss every year. Problems caused by power quality have great adverse economic impact on the utilities and customers. Due to that both power suppliers and power consumers are concerned about the power quality problems and compensation techniques. Issue of harmonics are of a greater concern to engineers and building designers because harmonics can do more than distort voltage waveforms, they can overheat the building wiring, causes nuisance tripping, overheat transformer units, and cause random end-user equipment failures. Thus power quality (PQ) has become more and more serious with each passing day. As a result active power filter (APF) gains much more attention due to excellent harmonic and reactive power compensation in two-wire (single phase), three-wire (threephase without neutral), and four-wire (three-phase with neutral) ac power networks with nonlinear loads. The APF technology has been under research and development for providing compensation for harmonics, reactive power, and/or neutral current in ac networks. Current harmonics are one of the most common power quality problems and are usually resolved by the use of shunt active filters. In this research work, the performance of the shunt active filter control strategies has been evaluated in terms of harmonic mitigation and DC link voltage regulation. Three-phase reference current waveforms generated by proposed scheme are tracked by the three-phase voltage source converter in a hysteresis band control scheme. This research presents different topologies and controllers with enhanced performance of shunt active filter for power quality improvement by mitigating the harmonics and maintaining dc link voltage constant. For extracting the three-phase reference currents for shunt active power filters, we have developed shunt active filter Instantaneous active and reactive power “p-q” and Instantaneous active and reactive current “Id-Iq” control strategies. For regulating and maintaining the DC link capacitor voltage constant, the active power flowing into the active filter needs to be controlled. In order to maintain DC link voltage constant and to generate the compensating reference currents, we have developed PI Controller, Type-1 and Type-2 Fuzzy logic controller with different Fuzzy MFs (Trapezoidal, Triangular and Gaussian). The proposed APF is verified through MATLAB/SIMULINK. The detailed real-time results using Real-time digital simulator are presented to support the feasibility of proposed control strategy

    Power Quality Improvement of a Solar Energy Conversion System by a Coordinated Active and LCL Filtering

    Get PDF
    Power converters play an essential role in Photovoltaic (PV) system to maximize the power transfer to the electrical grid. However, the generated harmonics in the grids due to these power converters and nonlinear loads are considered one of the encountered problems to overcome. This paper presents a decoupled control of PV field real power and reactive power injected to the high voltage network via a PWM inverter by using fuzzy logic controllers. Elsewhere, a procedure based on a coordinated active and LCL filtering is proposed to mitigate the harmonic current introduced by a nonlinear load and the inverter itself in such a way to enhance the power quality injected into the grid. The results obtained in the present study show the good performance of the suggested hybrid filtering approach and demonstrate that almost all harmonics orders of the grid current are well mitigated; the current Total Harmonic Distortion (THD) meets its standard and consequently the power quality is considerably enhanced
    corecore