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ABSTRACT 

 

Power system harmonics are a menace to electric power systems with disastrous consequences. 

The line current harmonics cause increase in losses, instability, and also voltage distortion. With 

the proliferation of the power electronics converters and increased use of magnetic, power lines 

have become highly polluted. Both passive and active filters have been used near harmonic 

producing loads or at the point of common coupling to block current harmonics. Shunt filters still 

dominate the harmonic compensation at medium/high voltage level, whereas active filters have 

been proclaimed for low/medium voltage ratings. With diverse applications involving reactive 

power together with harmonic compensation, passive filters are found suitable [41]. Passive 

filtering has been preferred for harmonic compensation in distribution systems due to low cost, 

simplicity, reliability, and control less operation [42]. 

The uncontrolled ac-dc converter suffers from operating problems of poor power factor, injection 

of harmonics into the ac mains, variations in dc link voltage of input ac supply, equipment 

overheating due to harmonic current absorption, voltage distortion due to the voltage drop caused 

by harmonic currents flowing through system impedances, interference on telephone and 

communication line etc. 

The circuit topologies such as passive filters, ac-dc converter, based improved power quality ac-

dc converters are designed, modeled and implemented. The main emphasis of this investigation 

has been on a compactness of configurations, simplicity in control, reduction in rating of 

components, thus finally leading to saving in overall cost. Based on thesis considerations, a wide 

range of configurations of power quality mitigators are developed, which is expected to provide 
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detailed exposure to design engineers to choose a particular configuration for a specific 

application under the given constraints of economy and desired performance. For bidirectional 

power flow applications, the current source converter is designed and simulated with R-L load. 

The necessary modeling and simulations are carried out in MATLAB environment using 

SIMULINK and power system block set toolboxes. The behavior of different configurations of 

passive tuned filters on power quality is studied. One of the way out to resolve the issue of 

reactive power would be using filters and TCR, TSC with combination in the power system.  

Installing a filter for nonlinear loads connected in power system would help in reducing the 

harmonic effect.  The filters are widely used for reduction of harmonics.  With the increase of 

nonlinear loads in the power system, more and more filters are required. The combinations of 

passive filters with TCR and TSC are also designed and analyzed to improve the power quality at 

ac mains. This scheme has resulted in improved power quality with overall reduced rating of 

passive components used in front end ac-dc converters with R-L load.  
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 NOMENCLATURE 
 

d-q Synchronously rotating reference frame direct and quadrature axes 

id d-axis current 

iq q-axis current 

ѳ Angle of stationary reference frame 

RPF Filter resistance 

LPF Filter inductance 

R Load resistance 

L Load inductance 

ia, ib, ic Are line current in a, b, c phase 

P Active Power 

Q Reactive Power 

α Firing Angle 

BTCR Susceptance at thyristor control reactor 

ω Synchronously rotating frequency 

VT Voltage at thyristor 

VC Voltage at Thyristor switch capacitor 

Vdq Voltage in d-q reference frame 
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 ABBREVIATIONS 
 

PCC Point of common coupling 

PLL Phase locked loop 

PSF Passive shunt filter 

TCR Thyristor controlled Reactor 

TSC Thyristor switched Capacitor 

THD Total harmonic Distortion 

P-I Proportional and integral controller 

SRF Synchronous reference Frame 

FACTS Flexible ac transmission 

LPF Low pass filter 
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INTRODUCTION 

1.1 BACKGROUND 

Harmonics and reactive power regulation and guidelines are upcoming issues and increasingly 

being adopted in distributed power system and industries. Vital use of power electronic 

appliances has made power management smart, flexible and efficient. But side by side they are 

leading to power pollution due to injection of current and voltage harmonics. Harmonic pollution 

creates problems in the integrated power systems. The researchers and engineers have started 

giving effort to apply harmonic regulations through guidelines of IEEE 519-1992. Very soon 

customers have to pay and avail the facility for high performance, high efficiency, energy saving, 

reliable, and compact power electronics technology. It is expected that the continuous efforts by 

power electronics researchers and engineers will make it possible to absorb the increased cost for 

solving the harmonic pollution.   

The thyristor controlled reactors of various network configurations are widely used in industries 

and utility systems for harmonic mitigation and dynamic power factor correction. These thyristor 

controlled reactor operate as a variable reactance in both the inductive and capacitive domains. 

By means these two parameters two types of problems are normally encountered. The first 

problem is the reactive power (Var) that leads to poor power factor and the harmonics appears 

due to presence of power converter devices and nonlinear loads for example, electrics machines, 

fluctuating industrial loads, such as electric arc furnaces, rolling mills, power converters etc. 

These types of heavy industrial loads are normally concentrated in one plant and served from one 

network terminal, and therefore, can be handled best by a local compensator connected to the 

same terminal.  
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The main emphasis of the investigation has been on compactness of configurations, simplicity in 

control, reduction in rating of components, thus finally leading to saving in overall cost. Based 

on these considerations, a wide range of configurations of power quality mitigators are 

developed for providing a detailed exposure to the design engineer in selection of a particular 

configuration for a specific application under the given constraints of economy and the desired 

performance. Fig 1.1 shows a classical shunt passive filter is connected the power system 

through common coupling point (PCC). Because of using non-linear load, the load current is 

highly non-linear in nature. The compensating current which is the output of the shunt passive 

filter is injected in PCC, by this process the harmonic cancellation take place and current 

between the sources is sinusoidal in nature. The passive filter is popular in cancellation of 

harmonic current in power system. To control this process, there are two ways i.e. 

 

 

 

 

 

 

 

 

 

Fig1.1 The Classical Shunt Passive Filter 
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(i)Harmonic extraction technique 

(ii)Current modulator  

1.1.2 Harmonic Extraction 

The harmonic extraction is the process in which, reference current is generated by using the 

distorted waveform. Many theories have been developed such as p-q theory (instantaneous 

reactive power theory), d-q theory, P-I controller, adaptive controller etc. Out of these theories 

more than 60% research works have been consider p-q theory and d-q theory due to their 

accuracy, robustness and easy calculation. 

1.1.3 Current Modulator 

Current modulator mainly provides the gate pulse to the ac-dc converter. There may be many 

techniques used for giving the gate signals to PWM VSI or CSI such as sinusoidal PWM, 

triangular PWM etc. 

The above described two control techniques (harmonic extraction technique and current 

modulator technique) are main research foci of many researchers in recent years. It may be noted 

that either harmonics extraction technique or the current modulator can be used individually or 

both at a time. Apart from these two techniques, most of the research works are directed also in 

dealing with multi-level rectifier control problems. 
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1.2 LITERATURE REVIEW 

1.2.1 INTRODUCTION 

An overwhelming breadth of the literature, covering different techniques for power quality 

improvement at ac mains of ac-dc converter is available. The research work has been reported in 

the area of power quality improvement. The implementation of various international standards 

has been given further impetus to innovate new configurations of power quality converters to 

adhere to these standard limits. The motivation for developing new configurations has been 

focused mainly to reduce the rating of magnetic, to simplify the control circuitry, to improve the 

efficiency of the system and finally to bring down the cost the complete system. The exhaustive 

literature review is carried out on different techniques used for power quality of ac-dc converter. 

It also includes literature survey of control techniques normally used in reduction of reactive 

power. 

1.2.2 SIGNIFICANT DEVELOPMENTS 

The international standards [45, 47] have led to the significant developments in numerous 

harmonic mitigation techniques. The use of passive filters for three phase supply systems [48-

49], use of thyristor controlled reactor and thyristor switched capacitor with combination has 

been the significant developments. 

For three-phase supply systems, use of passive filters has been reported three decades back. 

Since then, different design techniques for passive filter have been reported for achieving their 

optimum performance using reduced rating of the passive filters.  
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The current injection techniques have been used in existing six-pulse ac-dc converter to achieve 

12,18,24,30 and higher pulse configurations. These configurations result in simple circuitry; 

simple control and they are rugged, reliable and economical. 

1.2.3 LITERATURE SURVEY 

During last decade, substantial research has been carried out in innovating different new 

configurations for harmonic mitigation in ac-dc converter with R-L load. There have been a 

number of developments in control techniques used in power system. The literature survey 

carried out in this research work has been divided into three main categories with further 

classification. 

K. V. Kumar [1], have been presented the performance comparison of Shunt Active Power Filter 

(SAPF) and Hybrid Active Power Filter (HAPF) with three different non linear loads. Two 

different PI controllers based on average load active power and synchronous reference frame 

theory are employed in this simulation study. MATLAB/ SIMULINK is used for the simulation 

of SAPF and HAPF. 

B. Singh, K. Al-Haddad [2], he presents a comprehensive review of active filter (AF) 

configurations, control strategies, selection of components, other related economic and technical 

considerations, and their selection for specific applications.  

J. W. Dixon [3], he has been studied analytically and tested using computer simulations and 

experiments. In the experiments, it has been verified that the filter keeps the line current almost 

sinusoidal and in phase with the line voltage supply. It also responds very fast under sudden 

changes in the load conditions, reaching its steady state in about two cycles of the fundamental. 
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L. A. Morán[4], describes different power quality problems in distribution systems and their 

solutions with power electronics based equipment. Shunt, hybrid and series active power filters 

are described showing their compensation characteristics and principles of operation. Different 

power circuits topologies and control scheme for each type of active power filter are analyzed. 

The compensation characteristics of each topology with the respective control scheme are proved 

by simulation and experimentally. 

Mahesh Singh [5], he identified the prominent concerns in the area and thereby to recommend 

measures that can enhance the quality of the power, keeping in mind their economic viability and 

technical repercussions. In this paper electromagnetic transient studies are presented for the 

following two custom power controllers: the distribution static compensator (D-STATCOM), 

and the dynamic voltage restorer (DVR). Comprehensive results are presented to assess the 

performance of each device as a potential custom power solution. 

Charles. S [6], he proposed a three of the three-phase shunt active filtering algorithms in time-

domain have been compared for a non-linear load. The non-linear load chosen here is a soft-start 

for a three-phase induction motor. The comparison of the simulation results show the 

effectiveness of both the algorithms although the time domain current detection modified 

algorithm is more complex in terms of its implementation aspects. 

S. P. Litran [7], he combined system of shunt passive and series active filter for a four-wire 

three-phase system has been designed and simulated with MATLAB/SIMULINK. The system 

combined mitigates the source current harmonics and compensates also unbalance voltages 

reducing the problems of using only a shunt passive filter. Therefore, a new control method 

based in the power vector theory has been proposed.  
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Salvador P. Litran[8], he described three different control strategies have been applied to a series 

active filter. The first is based on that the filter voltage must be proportional to the harmonic of 

the source current. With the second strategy the filter voltage must be equal to voltage harmonics 

on the side load but in opposition. The third strategy is hybrid control where the filter voltage is 

obtained using both previous strategies.  

L. Chen [9], he suggested that  an assessment and comparison of hybrid active filters, including 

their topologies, ratings, and control algorithms. Simulations are presented, along with a 

comprehensive topology and performance comparison. In addition, a modified "p-q" theory is 

introduced for control strategies, which is more feasible for extracting harmonic components for 

distorted load voltages. 

K. Karthik, St. Johns [10], he proposed a control scheme based on synchronous d-q-0 

transformation for a hybrid series voltage compensator. The effectiveness of the new control 

scheme in compensating for voltage sags, distortion and voltage flickers is demonstrated using 

simulation results. Its dual role as a harmonic isolator is also described. A comparison between 

the proposed schemes against an existing control scheme is presented via simulation. 

E. R. Ribeiro [11], have been presented a series active filter using a simple control technique. 

The series active filter is applied as a controlled voltage source contrary to its common usage as 

variable impedance. It reduces the terminal harmonic voltages, supplying linear or even 

nonlinear loads with a good quality voltage waveform. The operation principle, control strategy, 

and theoretical analysis of the active filter are presented.  

Hideaki Fujita [12], he presents a combined system of a passive filter and a small-rated active 

filter, both connected in series with each other. The passive filter removes load produced 
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harmonics just as a conventional one does. On the other hand, the active filter plays a role in 

improving the filtering characteristics of the passive filter.  

Hideaki Fujita [13], have already proposed the combined system of a shunt passive filter and a 

small-rated series active filter. The purpose of the series active filter is to solve such a problem as 

series and parallel resonance which is inherent in a shunt passive filter used alone. 

F. Zheng Peng [14], he a combined system of shunt passive and small rated series filters has 

already been proposed by the authors. The operating principle and steady compensation 

characteristics have been presented as well.  

Karuppanan P. and K. K. Mahapatra[15], the shunt APLC system is implemented with three 

phase current controlled Voltage Source Inverter (VSI) and is connected at the point of common 

coupling for compensating the current harmonics by injecting equal but opposite filter currents. 

The compensation process is based on PLL synchronization with PI or PID or fuzzy logic 

controller.  

Salem Rahmani [16], he compare the performance of the single-phase shunt active power filter 

(SPSAPF) and the single-phase shunt hybrid power filter (SPSHPF) that adopt both an indirect 

current control scheme with a uni-polar pulse width modulation (UPWM) strategy. The SPSHPF 

topology includes, in addition to the components of the SPSAPF, a power factor correction 

capacitor connected in series with a transformer.  

T. Mahalekshmi[17], here the current harmonic can be compensated by using the Shunt Active 

Power Filter, Passive Power Filter and the combination. The system has the function of voltage 

stability, and harmonic suppression. The reference current can be calculated by ‘dq’ 



 Chapter-1                                                                      Introduction 
 

National Institute of Technology, Rourkela Page 9 
 

transformation. An improved generalized integrator control was proposed to improve the 

performance of APF.  

R V D Rama Rao[18], he presents performance validation of Current Source Inverter (CSI)-

based UPQC using Fuzzy Logic Controller (FLC) and Results are compared with conventional 

PID Controller and improvements are observed by FLC. The FLC-based compensation scheme 

eliminates voltage and current magnitude of harmonics with good dynamic response 

Yash Pal Singh [19], Power supplies used for powering of magnets in INDUS-I and INDUS-II 

use different type of power converters including SMPS and thyristorised power converters.. In 

all the high power dc power supplies, wide variation in operating point leads to a considerable 

amount of reactive power generation and harmonic loading on ac mains. 

N. Karpagam[24], he proposed a fuzzy logic based supplementary controller for Static VAR 

Compensator (SVC) is developed which is used for damping the rotor angle oscillations and to 

improve the transient stability of the power system. Generator speed and the electrical power are 

chosen as input signals for the Fuzzy Logic Controller (FLC).  

S. A. Khaparde[25], he proposed work is to use combination of deviation in speed and electrical 

power output of the generator as input signals to PSS which operates simultaneously along with 

SVC. Such simultaneous PSS and SVC scheme is found to improve the damping under large 

disturbances i.e. the growth of system oscillations is arrested. The simulations are carried out on 

PSCAD.  

S. V. Chandrakar [26], he analyze the performance of Radial basis function network (RBFN) 

based SVC on improvement in transient stability and damping of oscillations of the two machine 

system. This paper presents the comparative performance studies of two different controllers 
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namely: [i] Conventional PI controller, and [ii] Radial basis function network (RBFN). The 

RBFN model is train by the voltage deviation signal.  

S. Abaz S.Abazariari[27], he presents the application of a rule- based control scheme for an 

Advanced Static VAR Compensator (ASVC) to improve power system transient stability. The 

proposed method uses a current reference, based on the Transient Energy Function (TEF) 

approach. The proposed scheme provides, also, a continuous control of the reactive power owe.  

A. S. Yome and N. Mithulananthan[28], he compares the shunt capacitor, SVC and STATCOM 

in static voltage stability improvement. Various performance measures are compared under 

different operating system conditions for the IEEE 14 bus test system. A methodology is also 

proposed to alleviate voltage control problems due to shunt capacitor compensation during 

lightly and heavily loaded conditions. 

W. Zhang [29], he categorized the literature relevant to optimal allocation of shunt dynamic 

VAR source SVC and STATCOM, based on the voltage stability analysis tools used. Those tools 

include static voltage stability analysis ones such as P-V and V-Q curve analysis, continuation 

power flow (CPF), optimization methods (OPF), modal analysis, saddle-node bifurcation 

analysis, and dynamic voltage stability analysis ones such as Hopf bifurcation analysis and time-

domain simulation.  

L. Jose [30], he proposes a new type of single phase static compensator (STATCOM) for low 

rating used in customer side is proposed. This new STATCOM is constructed by cascading a 

full-bridge (H Bridge) voltage-source inverter (VSI’s) to the point of common coupling (PCC.) 

A so-called sinusoidal pulse width modulation (SPWM) unipolar voltage switching scheme is 

applied to control the switching devices of each VSI.  
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D.J. Hanson [31], the unbundling of the generation and transmission functions in England and 

Wales in England and Wales into separate shareholder-owned companies has inevitably resulted 

in far less predictability in terms of generator sitting and closure. National Grid, as the sole 

transmission company in England and Wales, is required to plan and respond quickly to 

changing system patterns to maintain both security and power quality standards.  

A. S. Yome [32], he compares the shunt capacitor, SVC and STATCOM in static voltage 

stability improvement. Various performance measures are compared under different operating 

system condition for the IEEE 14 bus test system. Important issues related to shunt 

compensation, namely sizing   installation location, for exclusive load margin improvement are 

addressed.  

Mustapha Benghanem[33], presented a study of the dynamic performance analysis of an 

Advanced Static Var Compensator (ASVC) using a three-level voltage source inverter. The 

analysis is based on the modeling of the system in the d- q axis.  

M. A. Abido[34], he presents a comprehensive review on the research and developments in the 

power system stability enhancement using FACTS damping controllers.  

Anthony Johnson [35], the synchronized phasor measurements have only been used to monitor 

and analyze power system operations. However, synchrophasors have a much greater potential 

than just monitoring and visualization.  

Mark Ndubuka N. [36], he investigates of the effects of Static Var Compensator (SVC) on 

voltage stability of a power system. The functional structure for SVC built with a Thyristor 

Controlled Reactor (TCR) and its model are described. The model is based on representing the 

controller as variable impedance that changes with the firing angle of the TCR. A Power System 
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Computer Aided Design /Electromagnetic Transients including DC (PSCAD/EMTDC) is used to 

carry out simulations of the system under study and detailed results are shown to access the 

performance of SVC on the voltage stability of the system. 

1.3 MOTIVATION 

Mitigation of power quality problems is synonymous with reduction of harmonic currents or 

voltage distortion at ac mains. These problems can also be mitigated by improving the immunity 

of the equipment using better quality material along with proper protection arrangements, but it 

may not result in an effective and economical solution. 

 

1.4 OBJECTIVE 

 Study different method already proposed for mitigation of harmonics  due to non linear 

load. 

 Design of  synchronous reference frame (SRF)controller. 

 Design, modeling and simulation of AC-DC Converter supply power connected to a R-L 

load using shunt passive filter for reactive power and harmonics compensation. 

 Design, modeling and simulation of AC-DC Converter supply power system connected to 

a R-L load using a passive filter with thyristor controlled reactor (TCR) and thyristor 

switched capacitor (TSC) for reactive power and harmonics compensation. 

 Develop the control algorithm for basic P-I controller used in hybrid passive filter. 
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1.5 THESIS LAYOUT 

The present thesis embodies detailed investigations on different techniques of power quality 

improvement at ac mains in ac-dc converter with R-L load. The contents of the thesis have been 

divided into six chapters. A brief overview of each chapter is given as follows. 

 Chapter-1: deals with an introduction about the passive shunt filter. It also include 

comprehensive literature review of different topologies of passive filter and it control techniques. 

Also focus towards the motivation and objectives of the work. 

Chapter-2: deals with different configuration of passive filters such as passive series filters, 

passive shunt filters are designed. 

Chapter-3: different control strategy of passive shunt filter modeled and designed. SRF 

controller, TCR and TSC scheme with P-I controller were explained. 

Chapter-4: deals with simulations results and discussion. A comparative analysis for passive 

shunt filter and without filter schemes was explained. TCR and TSC configuration is compared 

with passive shunt filter results. 

Chapter-5: deals with conclusion and future scope of the work. It includes important reference 

for this project work. 
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INTRODCUTION TO PASSIVE FILTER 

2.1 INTRODUCTON 

The passive filters are used to mitigate power quality problems in six-pulse ac-dc converter with 

R-L load. Moreover, apart from mitigating the current harmonics, the passive filters also provide 

reactive power compensation, thereby, further improving the system performance. For current 

source type of harmonic producing loads, generally, passive shunt filters are recommended [43]. 

These filter apart from mitigating the current harmonics, also provide limited reactive power 

compensation and dc bus voltage regulation. However, the performance of these filters depends 

heavily on the source impedance present in the system, as these filter act as sinks for the 

harmonic currents. On the other hand, for voltage source type harmonic producing loads, the use 

of the series passive filters is recommended [43]. These filters block the flow of harmonic 

current into ac mains, by providing high impedance path at certain harmonic frequencies for 

which the filter is tuned. Moreover, the harmonic compensation is practically independent of the 

source impedance. But, passive filter suffer due to the reduction in dc link voltage due to the 

voltage drop across the filter components at both fundamental as well as harmonic frequencies.  

This chapter presents a detailed investigation into the use of different configurations of passive 

filter such as passive shunt filter and passive series filters. The advantages and disadvantages of 

both configurations are discussed. It is observed that both these configuration fail to meet the 

IEEE standard 519 guidelines under varying load conditions. A novel configuration of passive 

hybrid filter (a combination of passive shunt and passive series filter) is designed and developed 

for power quality improvement. The main attraction of this configuration is that it can achieve 

the improved power quality even under varying load conditions, its rating is less and it can 
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maintain that dc link voltage regulation within certain limits. The prototypes of these passive 

filters are developed and that test results are presented to verify the simulated results. Finally, a 

comparison of different power quality aspects in different configurations of passive filters is also 

presented for ac-dc converter with R-L load. 

2.2 CLASSIFICATION OF PASSIVE FILTERS 

Depending on the connection of different passive components, the passive filters can be broadly 

classified in three categories as given below. 

2.2.1 Passive Shunt Filter 

Fig.2.2 shows the schematic diagram of a passive shunt filter connected at input ac mains of six-

pulse ac-dc converter with R-L load. This is the most commonly used configuration of passive 

filters. In this configuration different branches of passive tuned filters (low pass and high pass) 

tuned for the more dominant harmonics are connected in parallel with the diode rectifier with R-

L load. It consists of a set of low pass tuned shunt filters tuned at 5th and 7th harmonic 

frequencies and high pass tuned for 11th harmonic frequency. This passive filter scheme helps in 

sinking the more dominant 5th and 7th and other higher order harmonics and thus prevents them 

from flowing into ac mains. The diversion of harmonic current in the passive filter is primarily 

governed by the source impedance available in the system. The higher value of source 

impedance offers better performance of the passive filter. 
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2.2.2 Passive Series Filter 

For voltage source type of harmonic loads (such as diode rectifier with R-L load filter), passive 

series filter is considered as a potential remedy for harmonic mitigation. Here, the different tuned 

branches of passive filters are connected in series with the supply and the diode rectifier. Fig.2.1 

shows the schematic diagram of a passive series filter connected at input ac mains. It consists of 

a set of low block tuned shunt filter tuned at 5th and 7th harmonic frequencies and high block 

tuned filter for 11th harmonic frequency. These passive filters blocks most dominant 5th, 7th   and 

other higher order harmonics and thus prevents them from flowing into ac mains. Here, the 

performance of the series filter is not much dependent on the source impedance. However, it 

results in reduction in dc bus voltage due to voltage drop across filter components. 

2.2.3 Passive Hybrid Filter 

The use of passive shunt filter creates the problem of voltage regulation at light loads. It also 

increases the dc voltage ripple and ac peak current of the rectifier. On the other hand, passive 

series filter suffers from lagging power factor operation as well as the voltage drop across the 

filter components both at fundamental frequency as well as harmonic frequencies. To overcome 

these drawbacks, a combination of both these configurations is presented as passive hybrid filter. 

This configuration is able to supplement the shortfalls of both these passive filters and 

simultaneously it results in improvement in harmonic compensation characteristics for varying 

load condition even under stiff and distorted ac mains voltage. 
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Fig.2.1 Schematic diagram of a ac-dc converter with R-L load and passive series filter at input. 

 

 

 

 

 

 

Fig.2.2 Schematic diagram of a six pulse ac-dc converter with R-L load and passive shunt filter 

at input 

 

 

 

 

Fig.2.3 Equivalent circuit diagram of passive tuned shunt filter based configuration. 
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Fig.2.4 Equivalent circuit diagram of passive tuned series filter based configuration. 

 

 

 

 

 

 

Fig.2.5 Fig.2.4 Equivalent circuit diagram of passive tuned series filter based configuration. 

. 

2.3 COMPENSATION PRINCIPLE AND DESIGN OF PASSIVE FILTERS 

The basic compensation principle and design procedure of different passive filter based 

configurations are given. In this work, mainly first order low pass filters and damped high pass 

filters are used for shunt configurations. For series configurations, single tuned first order filters 

and high block damped filters are used to form a composite filter. 
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2.3.1 Compensation Principle of Passive Shunt Filters  

A passive shunt filter mainly consists of several LCR branches each tuned at a particular 

frequency. Fig.2.3 shows the equivalent circuit diagram of a passive tuned shunt filter. 

The compensation characteristics of a passive shunt filter can be given as [43] 

shsshsl

sh

l

S

ZZZZZ
Z

V
I


                                                                                                         (2.1) 

Where ‘Zsh’ is the impedance of parallel LC filter. As it can be seen from eqn. (2.1), that the 

performance of parallel LC filter greatly depends on the source impedance and is determined 

only by the ratio of the source impedance and the filter impedance. 

If Zl =0, then from eqn. (2.1), Is =Il, which means that the passive filter is not effective. On the 

other hand, if Zs=0, then,  
ll

s

ZV
I 1
 , which means that the filter does not provide harmonic 

compensation. 

It is seen that the filter interaction with the source impedance results in a parallel resonance. For 

inductive source impedance (Zs), this occurs at a frequency below the frequency at which the 

filter is tuned. It is given as: 

 CLL
f

s
sys 


2
1                                                                                                                      (2.2) 

Moreover, if a filter is exactly tuned at a frequency of concern, then an upward shift in the tuned 

frequency results in a sharp increase in impedance as seen by the harmonic. The most common 

mechanisms that may cause filter detuning are: 
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 Capacitor fuse-blowing, which lowers the total capacitance, thereby raising the frequency 

at the filter has been tuned. 

 Manufacturing tolerances in both inductor as well as capacitor. 

 Temperature variations. 

 System parameter variations 

Therefore, generally, the filter banks are tuned to around 6%below the desired frequency as per 

IEEE standard 1531[45]. 

 

2.3.2 Compensation Principle of Passive Series Filters 

Here, the harmonic compensation is achieved by blocking specific harmonic current with the 

parallel tuned LCR circuits. Fig. 3 shows the equivalent circuit diagram of a passive tuned series 

filter. 

The compensation characteristics of a passive series filter can be given as [43] 

lsesl

S

ZZZV
I




1                                                                                                                      (2.3) 

Eqn. (2.3) shows that the harmonic compensation performance of the series filter is virtually 

independent of the source impedance, since the source impedance is relatively small compared to 

the LC filter impedance at harmonic frequencies. 

2.3.3 Design of passive filters 

Various issues involved with the design of the passive filters are considered here. The design 

procedure of passive filter is explained in detail.  
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2.3.4Filter design constraints 

There are various issues in the design of a passive filter for its proper functioning in harmonic 

reduction. The key issues are mentioned here: 

 Minimizing harmonic source current 

The prime objective of the filter design is to minimize the harmonic current in ac mains. This 

is ensured by minimizing the filter impedance at the harmonic frequencies so that the 

harmonic filter acts as a sink for the harmonic currents. 

 Minimizing fundamental current in passive filter 

   To ensure that the installation of passive filter does not cause the system loading, the 

fundamental current in the passive filter is minimized by the maximizing the passive filter 

impedance at the fundamental frequency. 

 Environment and ageing effect 

   The capacitors with metalized film construction lose capacitance as they age. Similarly the 

manufacturer tolerance of the harmonic filter reactor may result in tuned frequency higher 

than the nominal. An IEEE Standard 1531[45] recommends that the passive filters are tuned 

at 6% below the rated frequency so that it will exhibit acceptable tuning at the end of its 20 

year life. 

 

 

 

 



 Chapter-2                                   Introduction to Passive Filter 
 

National Institute of Technology, Rourkela Page 22 
 

 

2.3.5 Design of Passive Shunt Filter 

The passive shunt filter consists of first order series tuned low pass filters for 5th and 7th order 

harmonics. For the series tuned low pass filters, the impedance is given by: 

 

 

 

 

Fig.2.6 Low pass Filter                                                                    Fig.2.7 High pass Filter 
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Where Qsh is the reactive power provided by the passive filter, h is the harmonic order of the 

passive filter; XL is the reactance of inductor. Xc is the reactance of the capacitor at fundamental 

frequency. The reactive power requirement may be initially assumed around 25% of the rating of 

the load [44]. It may be equally divided among different filter branches. The values of series 

tuned elements may be calculated from eqn. (2.5). The quality factor for low pass filter (defined 

as QF =XL/R), is consider as 30 in this work to calculate the value of the resistive element. 
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The resonant frequency for the hth harmonic is given as: 

 hCR
fh 2

1
                                                                                                                        (2.6) 

Quality factor can be defined as  2CR
LQ                                                                                (2.7) 

The values of filter components can be calculated from above equations. 

2.4 SUMMARY 

The design of the passive shunt filter is carried out as per the reactive power requirements. This 

filter is designed to compensate the requirements of reactive power of the system. Therefore, this 

passive filter helps in maintaining the dc link voltage regulation within limits along with the 

power factor improvement. It also sinks the harmonic currents of frequencies at which the 

passive filters have been tuned.  
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CONTROL TECHNIQUES APPLIED TO PSF 

3.1 SRF CONTROLLER 

The synchronous reference frame theory or d-q theory is based on time-domain reference signal 

estimation techniques. It performs the operation in steady-state or transient state as well as for 

generic voltage and current waveforms. It allows controlling the active power filters in real time 

system. Another important characteristic of this theory is the simplicity of the calculations, 

which involves only algebraic calculation. The basic structure of SRF controller consists of 

direct (d-q) and inverse (d-q)-1 park transformations as shown in fig.1. These can useful for the 

evaluation of a specific harmonic component of the input signals [46]. 

 

 

 

 

 

 

 

 

Fig.3.1 Synchronous d-q-0 reference frame based compensation algorithm 

The reference frame transformation is formulated from a three-phase a-b-c stationary system to 
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separated from each other by 1200 as shown in fig. 2. The instantaneous space vectors, Va and ia 

are set on the a-axis, Vb and ib are on the b-axis, similarly Vc and ic are on the c-axis. 

These three phase space vectors stationary coordinates are easily transformed into two axis d-q 

rotating reference frame transformation. This algorithm facilitates deriving id-iq(rotating current 

coordinate) from three phase stationary coordinate load current iLa.iLb,iLc, as shown in equation
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                                                            (3.1) 

The d-q transformation output signals depend on the load current (fundamental and harmonic 

components) and the performance of the Phase Locked Loop (PLL). The PLL circuit provides 

the rotation speed (rad/sec) of the rotating reference frame, where ωt is set as fundamental 

frequency component. The PLL circuit provides the vectorized 50 Hz frequency and 300 phase 

angle followed by sinѳ and cosѳ for synchronization. The id-iq current are sent through low pass 

filter (LPF) for filtering the harmonic components of the load current, which allows only the 

fundamental frequency components. The LPF is a second order Butterworth filter, whose cut off 

frequency is selected to be 50 Hz for eliminating the higher order harmonics. The P-I controller 

is used to eliminate the steady-state error of the DC component of the d-axis reference signals. 

Furthermore, it maintains the capacitor voltage nearly constant. The DC side capacitor voltage of 

PWM-voltage source inverter is sensed and compared with desired reference voltage for 

calculating the error voltage. This error voltage is passed through a P-I controller whose 

propagation gain (KP) and integral gain (KI) is 0.1 and 1 respectively. 
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Fig.3.2 a-b-c to d-q-0 transformation 

3.2 THYRISTOR-CONTROLLED REACTOR (TCR) AND THYRISTOR SWITCH          

CONTROL (TSC) 

3.2.1 INTRODCTION 

A TCR is one of the most important building blocks of thyristor-based SVCs.Although it can be 

used alone,it is more often employed in conjuction with fixed or thyristor-switched capacitors to 

provide rapid,continuous control of reactive power over the entire selected lagging-to-leading 

range. 

3.2.2 Single-Phase TCR 

A basic single phase TCR comprises an anti-parallel connected pair of thyristor valves,T1 and 

T2,in series with a linear air-core reactor,shown in fig.The antiparallel thyristor pair acts like a 

bidirectional switch,with thyristor valve T1 conducting in positive half-cycles and thyristor T2 

conducting in negative half-cycles of the supply voltage.The firing angle of  the thyristors is 

measured from the zero crossing of the voltage appearing across its terminal. 
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The controllable range of the TCR firing angle, ߙ ,extends from 90o to 180o.The continuous 

sinusoidal current flow in the TCR but as ߙ range, the current reduces to zero for a firing angle 

of 180o and below 90o  ,it introduce a dc current , disturbing the symmetrical operation of the two 

antiparallel valve branches. 

 

 

 

 

 

Fig.3.3 Circuit diagram of TCR 

The basic modeling of single phase TCR can be as follows. The source source voltage as: 

  tVtVs sin  

From the basic Kirchhoffs voltage equation, we can modeled as fig.3.2. 

  0 tV
dt
diL s                                                                                                                        (3.2) 

Where V=peak value of the applied voltage , ߱= the angular frequency of the supply voltage and 

L= inductance  of the TCR, then the line current can be written as 
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For the boundary condition is   0ti , 

   t
L

Vti 


coscos                                                                                                       (3.5) 

Where ߙ=is the firing angle measured from posive going zero crossing of the applied voltage. 

The Fourier analysis equation (3.5) can be written as  

  tbtaI  sincos 11                                                                                                        (3.6) 

Where b1=0, because of odd symmetry i.e,     xfxf  .Also no even harmonics are generated 

because of half wave symmetry i.e    xfTxf  2  

The coefficient  a1 is given by 
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Solving, 
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The equation (7) can be written as 
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The TCR is act like a variable susceptance.Variation of firing angle changes the susceptance and 

consequently the fundamental-current component which leads to a variation of reactive power 

absorbed by the reactor because the applied ac voltage is constant. 

 

3.2.3 TSC 

It consists of capacitor in series with bidirectional thyristor switch. It is supplied from a ac 

voltage source. The analysis of the current transients after closing the switch brings two cases: 

 

 

 

 

 

Fig.3.4 Circuit diagram of TSC 

 

1. The capacitor voltage is not equal to the supply voltage when the thyristors  are fired. 

Immediately after closing the switch, a current of infinite magnitude flows and charges the 

capacitor to the supply voltage in an infinitely short time. The switch realized by the thyristor 

cannot withstand this stress and would fail. 

2. The capacitor voltage is equal to the supply voltage when the thyristors are fired. The current 

will jump immediately to the value of the steady-state current. Although the magnitude of the 

current does not exceed the steady-state values, the thyristor have an upper limit of  ௗ௜
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can withstand during the firing process. Here ௗ௜
ௗ௧

 is infinite, and the thyristor switch will again 

fail. 

3.2.4 TCR-TSC COMBINATION 

The TCR-TSC comprises usually n-series of TSC and single TCR that are connected in parallel. 

The capacitor can be switched in discrete steps, whereas continuous control within the reactive-

power span of each step is provided by TCR. 

 

 

 

 

 

 

Fig.3.5 Circuit diagram of TCR-TSC Combination 

 

As the size of TCR is small the harmonic generation is substantially reduced. The TSC branches 

are tuned with series reactor to different dominant harmonic frequencies.  

The main motivations in developing TCR_TSC were for enhancing the operational flexibility of 

the compensator during large disturbances and for reducing the steady-state losses. 
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What particularly aggravate the problem in which severe voltage swings are experienced and 

followed by the load rejection. But TCR-TSC can quickly operate to disconnect all the capacitor 

from the compensator,producing  resonant oscillations. 

The proposed configuration for passive shunt filter with TCR and TSC is shown in fig.3.6. 

 

 

 

 

 

 

 

 

 

Fig. 3.6 Proposed Configuration for passive shunt filter with TCR and TSC combination. 

 

3.2.5 EXTRACTION OF FIRING ANGLE ‘α’ 

The reflected reactance can be modeled and its value as a function of firing angle for two types 

of connection that is star and delta connection. 

The equivalent inductance of the star connection is given by 
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Where the firing angle is bounded as    2  

The equivalent delta inductance is given by
 







 






 



6
2sin

6
22

)(


 LL PFPF

                                                                   

(3.12)     

Where the firing angle is bounded as    6
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Where LPFB
0

1



 

The total reactive power of filter is
 

     LCPF BBVQ  23                                                                                                   (3.14) 

Where      
L

L XB 1        and    
C

C XB 1
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3.3 MODELING AND DESIGN OF PASSIVE FILTER WITH TCR 

 

 

 

 

 

 

Fig.3.7 Circuit diagram of TCR-TSC Combination. 

 

3.3.1Modeling of Passive Filter with TCR-TSC Combination 

Kirchhoff’s law equation in Stationary reference frame 
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Differentiating (3.15) once result in 
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3.3.2Model Transformation into “d-q” reference frame 

The system is transformed into the synchronous orthogonal frame rotating at the constant supply 

frequency ߱.The matrix conversion is 

 
   
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3
2123
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The equation (3.16) can be rewritten as 
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The following reduced transformation matrix can be used as 
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Applying these transformations into (3.18), then 
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Finally, the dynamic model in ‘d-q’ frame as 
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The eqn. (3.25) and (3.26) can be written as follows. 
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3.4 MODELING AND DESIGN OF P-I CONTROLLER 

3.4.1 INTRODUCTION 

The usefulness of PI control lies in their general applicability to most control systems. When the 

mathematical model of the plant is not known and therefore analytical design methods cannot be 

used, PI controls prove to be most useful. In practical cases, there may be one requirement on the 

response to disturbance input and another requirement on the reference input. Often these two 

requirements conflict with each other and cannot be satisfied in the single-degree-of-freedom 

case. By increasing the degrees of freedom, it can be reach up to the satisfaction of both. Finally, 

a very powerful computational approach with MATLAB to search optimal sets of parameter 

values to satisfy given transient response specifications(such as that the maximum overshoot in 

the response to the unit-step reference input be less than a specified value and the settling time be 

less than  a specified value). This approach can be directly applied to the design of high-

performance control systems.  

The proportional control will reduce the steady-state error, but at the cost of a larger overshoot. 

Furthermore, proportional gain will never completely eliminate the steady-state error. For that 

we need to try integral control. The Ki controller really slows down the response. To reduce the 

settling time, we can increase Ki  , but by doing this, the transient response will get worse (e.g. 

large overshoot). 

3.4.2 Design of P-I Controllers 

The standard approach to design is this: a mathematical model is built making necessary 

assumptions about various uncertain quantities on the dynamics of the system. If the objective s 

well defined in precise mathematical terms, then control strategies can be derived 

mathematically (e.g., by optimizing some criterion of the performance). 
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The control law is applied to the dynamic model equation (3.27) and (3.28)  

For making system equation (3.27) and (3.28) linear, we substitute the two input variables ud and 

uq such 

q
d

qPF
q

PFd V
dt

dViR
dt
di

Lu   2                                                                                      (3.29)  

d
q

dPF
d

PFq V
dt

dV
iR

dt
diLu   2                                                                                    (3.30) 

The input transformation given in the (3.29) and (3.30), the coupled dynamics of the tracking 

problem have been transformed into decoupled dynamics.  Thus the system equation (3.29) and 

(3.30) becomes linear one. 

 The corresponding transfer functions are: 

                               

………………………………………………………...(3.31) 

 

Fig.3.8 Block diagram of the closed loop system. 
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 dtikiku qiqpq
~~                                                                                                                   (3.32) 

The transfer function of the P-I controllers is given as  
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And the closed-loop transfer function of the current loop is 
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Fig.3.9 Block diagram of the closed loop system in q-axis. 

 

 

 

 

Fig.3.10 Block diagram of the closed loop system in d-axis. 
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Fig. 3.11 P-I Controller diagram 

 

3.5 SUMMARY 

This chapter explains the transformation theory for conversion of three phase parameters to 

two-phase and vice versa. Detail modeling of the TCR-TSC configuration is analyzed in 
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                                      RESULTS AND DISCUSSION 

4.1 SIMULATION RESULTS 

The simulation results are obtained through Power System toolboxes in SIMULINK by taking 

system parameter as given below. 

4.1.1 System Parameters 

The system parameters considered for the study of Passive shunt filter with TCR and TSC 

combination is given below in Table 4.1.  

TABLE 4.1. Specification for Test System 

Components Specifications 

AC Source Vs=415v, f=50 Hz 

Nonlinear Load Three-phase Thyristor Rectifier 

RL=40(Ω)    LL=50(mH) 

Passive Filter LPF=16(mH),RPF=0.83(Ω),CPF=25(µF) 

 

4.2 MATLAB BASED MODELING OF PASSIVE FILTER 

To demonstrate the performance of these passive filters feeding a three-phase converter with R-L 

load, these passive filters are modeled in MATLAB environment along with SIMULINK and 

power system block set toolboxes. Different components of these converters such as low pass 

filter with R-L load are simulated in MATLAB/SIMULINK. 
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4.2.1 Passive Shunt Filter Based Converter with R-L Load 

Fig. shows the MATLAB model of a passive series filter based six pulse ac-dc converters with 

R-L load. Depending on the harmonic spectrum of the supply current, the passive filters designed 

are low pass filter tuned for 5th order harmonic frequency. The subsystem named shunt filter 

consists of 5th harmonic frequency. Based on the design carried out the filter component values 

are L=16mH, C=25µF, R=0.83Ω. 

 

 

Fig.4.1 MATLAB based model of a six pulse ac-dc converter R-L load without passive filter. 
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Fig. 4.2 MATLAB based model of a six pulse ac-dc converter R-L load with passive shunt filter. 
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waveforms of supply voltage Vs, voltage at point of common coupling (PCC) Vpcc, supply 

current is, load current il, filter current ish and the dc link voltage Vdc(V). It can be observed that 

the supply current wave form improves as the shunt filter is switched on. The passive filter has 

been designed such that the rms current drawn from the ac mains is less than the load current.  

 

 

        (a)Without passive shunt filter                                                   

 

 

(b)With passive shunt filter 

Fig.4.3 AC mains voltage and current response (a) and (b) in simulation for converter with R-L 

load 
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(a)Without passive shunt filter 

 

 

(b)With passive shunt filter 

Fig.4.4 AC mains Active and Reactive power response (a) and (b) simulation for converter with 

R-L load 
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(a)Without passive shunt filter                    

                                   

(b) with passive shunt filter                                                                                        

Fig.4.5 AC mains voltage response with %THD (a) and (b) in simulation for converter with R-L 

load 
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(a)Without passive shunt filter 

       

 

(b) With passive shunt filter 

Fig.4.6 AC mains current response in simulation for converter with R-L load of (a) and (b) 

comparison. 
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4.3 MATLAB BASED MODELING OF PASSIVE FILTER WITH TCR AND TSC 

To demonstrate the performance of these passive filters with TCR and TSC feeding a three-phase 

converter with R-L load, these are modeled in MATLAB environment along with SIMULINK 

and power system block set toolboxes. Different components of these converters such as low 

pass filter with R-L load are simulated in MATLAB/SIMULINK. 

4.3.1 Passive Shunt Filter Based Converter with R-L Load 

Fig.4 shows the MATLAB model of a passive series filter based six pulse ac-dc converters with 

R-L load. Depending on the harmonic spectrum of the supply current, the passive filters designed 

are low pass filter tuned for 5th order harmonic frequency. The subsystem named shunt filter 

consists of 5th harmonic frequency. Based on the design carried out the filter component values 

are L=16mH, C=25µF, R=0.83Ω. 

Fig.4.7 MATLAB based model of a six pulse ac-dc converter R-L load passive filter with TCR 

and TSC combination. 

TSC1
94 Mvar

TCR
109 Mvar

Q
<------

Discrete,
Ts = 5e-005 s.

pq

To Workspace2

Vi

To Workspace1

t

To Workspace

P

A

B
C

P

A

B
C

Va_Ia

Q(Mv ar)

Signals &
Scopes

Scope

Vabc_prim

Vabc_sec

TCR

TSC1

TSC2

TSC3

SVC Controller
SVC

A

B

C

+

-

Recti fier

R1

N

A

B

C

Programmable
Voltage Source

A

B

C

a

b

c

Primary
(735 kV)

A B C

A B C

Passive shunt filter

L1

Vabc_Prim

Clock

A

B

C

A

B

C

735kV 6000 MVA 

Va (pu)  Ia (pu/100MVA)
Va (pu)  Ia (pu/100MVA)

 Q (Mv ar)



 Chapter-4                                                   Results and Discussion  
 

National Institute of Technology, Rourkela Page 48 
 

 

Fig.4.8 Inductance and alpha response in star delta connections 

 

Fig.4.9 Reactive Power and alpha response 
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Fig.4.10 Susceptance and alpha response 

 

 

Fig.4.11. Voltage and current response of the ac-dc converter with passive filter, TCR and TSC 

combination. 
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Fig.4.12 Active and Reactive power response of the ac-dc converter with the combination of 

passive filter, TCR and TSC. 

 

Fig.4.13. Voltage response and THD of the ac-dc converter with passive filter, TCR and TSC 

combination. 

 

 

0 0.5 1 1.5 2 2.5 3 3.5 4
-20

-10

0

10

20

30

40

50

60

70

80

Time(S)

A
ct

iv
e 

P
ow

er
 a

nd
 R

ea
ct

iv
e 

P
ow

er
(k

W
 &

 k
V

A
R

)

 

 
Active Power
Reactive Power

0 1 2 3 4 5 6 7 8 9 10
-2

0

2
Selected signal: 500 cycles. FFT window (in red): 2 cycles

Time (s)

Vs
a(

V
)

0 2 4 6 8 10 12 14 16 18 20
0

50

100

Harmonic order

Fundamental (50Hz) = 0.7226 , THD= 7.19%

M
ag

 (%
 o

f F
un

da
m

en
ta

l)



 Chapter-4                                                   Results and Discussion  
 

National Institute of Technology, Rourkela Page 51 
 

 

Fig.4.13. Current  response and THD of the ac-dc converter with passive filter, TCR and TSC 

combination. 
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TABLE 4.2 Comparisons THD with Different Schemes 

 

4.4 SUMMARY 

It has been shown that the use of TCR-TSC combination helps in reducing the passive filter 

capacitor rating by almost 75%. The performance of the proposed system has been verified by 

simulation results. The major goals were to compensate the load reactive power and current 

harmonics generated by the current source types of non linear load. The THD under the current 

source type of non linear load has been reduced for delta connection from 26% to 1.2%. 

 

 

 

MATLAB 

SIMULINK MODEL 

VOLTAGE 

THD% 

CURRENT 

THD% 

Q 

KVAR 

WITHOUT FILTER 29.83 7.49 5 

WITH FILTER 21.55 1.42 0 

FILTER AND TCR-

TSC 

7.19 0.7466 0 
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CONCLUSIONS AND FUTURE SCOPE OF THE WORK 

5.1 GENERAL 

The main objective of this investigation has been to evolve different power quality improvement 

techniques for improving various power quality indices at ac mains as well as on dc bus in ac-dc 

converter with R-L load. It has also intended to determine the extent of improvement in different 

power quality indices in various techniques for application. This research work has been on 

developing configurations suitable for retrofit applications, where presently a six pulse diode 

bridge rectifier is being used. The obtained results of various circuit configurations of front end 

ac-dc converters in preceding chapters have demonstrated successfully fulfilling these objectives. 

 

5.2 CONCLUSION 

 The effect of multiple harmonic sources can be investigated by applying the 

superposition principle. 

 The SVC harmonic generation modeled by positive-, negative-, and zero-sequence 

harmonic sources. 

 The system represented by linear models at each harmonic frequency. 

 The precise evaluation of harmonic distortion must have accurate load modeling. 

 Hence the TCR-TSC combination is better in SVC. 
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5.3 FUTURE SCOPE OF THE WORK 

 This configuration can be tested in hardware. 

 Multi-pulse rectifier can be added to the load as 12 pulse or 32 pulse ac-dc rectifier with 

R-L load. 

 Induction motor can also be the load instead of R-L load. 

 Active filter can be introduced to it for better performances. 
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