5 research outputs found

    A Sound and Complete Projection for Global Types

    Get PDF
    Multiparty session types is a typing discipline used to write specifications, known as global types, for branching and recursive message-passing systems. A necessary operation on global types is projection to abstractions of local behaviour, called local types. Typically, this is a computable partial function that given a global type and a role erases all details irrelevant to this role. Computable projection functions in the literature are either unsound or too restrictive when dealing with recursion and branching. Recent work has taken a more general approach to projection defining it as a coinductive, but not computable, relation. Our work defines a new computable projection function that is sound and complete with respect to its coinductive counterpart and, hence, equally expressive. All results have been mechanised in the Coq proof assistant

    Verified decision procedures for MSO on words based on derivatives of regular expressions

    Get PDF
    Monadic second-order logic on finite words is a decidable yet expressive logic into which many decision problems can be encoded. Since MSO formulas correspond to regular languages, equivalence of MSO formulas can be reduced to the equivalence of some regular structures (e.g., automata). This paper presents a verified functional decision procedure for MSO formulas that is not based on automata but on regular expressions. Functional languages are ideally suited for this task: regular expressions are data types and functions on them are defined by pattern matching and recursion and are verified by structural induction. Decision procedures for regular expression equivalence have been formalized before, usually based on Brzozowski derivatives. Yet, for a straightforward embedding of MSO formulas into regular expressions, an extension of regular expressions with a projection operation is required. We prove total correctness and completeness of an equivalence checker for regular expressions extended in that way. We also define a language-preserving translation of formulas into regular expressions with respect to two different semantics of MSO. Our results have been formalized and verified in the theorem prover Isabelle. Using Isabelle's code generation facility, this yields purely functional, formally verified programs that decide equivalence of MSO formula

    A Compact Proof of Decidability for Regular Expression Equivalence

    No full text
    The article describes a compact formalization of the relation between regular expressions and deterministic finite automata, and a formally verified, efficient algorithm for testing regular expression equivalence, both based on the original notion of pointed regular expression
    corecore