
JFP 25, e18, 30 pages, 2015. c© Cambridge University Press 2015

doi:10.1017/S0956796815000246

1

Verified decision procedures for MSO on words
based on derivatives of regular expressions

DMITRIY TRAYTEL

Institute of Information Security, Department of Computer Science, ETH Zürich, Switzerland

(e-mail: traytel@inf.ethz.ch)

TOBIAS NIPKOW

Fakultät für Informatik, Technische Universität München, Germany

(e-mail: nipkow@in.tum.de)

Abstract

Monadic second-order logic on finite words is a decidable yet expressive logic into which many

decision problems can be encoded. Since MSO formulas correspond to regular languages,

equivalence of MSO formulas can be reduced to the equivalence of some regular structures

(e.g., automata). This paper presents a verified functional decision procedure for MSO

formulas that is not based on automata but on regular expressions. Functional languages

are ideally suited for this task: regular expressions are data types and functions on them are

defined by pattern matching and recursion and are verified by structural induction. Decision

procedures for regular expression equivalence have been formalized before, usually based on

Brzozowski derivatives. Yet, for a straightforward embedding of MSO formulas into regular

expressions, an extension of regular expressions with a projection operation is required. We

prove total correctness and completeness of an equivalence checker for regular expressions

extended in that way. We also define a language-preserving translation of formulas into regular

expressions with respect to two different semantics of MSO. Our results have been formalized

and verified in the theorem prover Isabelle. Using Isabelle’s code generation facility, this yields

purely functional, formally verified programs that decide equivalence of MSO formulas.

1 Introduction

Many decision procedures for logical theories are based on the famous logic-

automaton connection. That is, they reduce the decision problem for some logical

theory to a decidable question about some class of automata. Automata are usually

implemented with the help of imperative data structures for efficiency reasons.

In functional languages, automata are not an ideal abstraction because they are

graphs rather than trees. In contrast, regular expressions are perfect for functional

languages and they are equally expressive. In fact, Brzozowski (1964) showed how

automata-based algorithms can be recast as recursive algebraic manipulations of

regular expressions. His derivatives can be seen as a way of simulating automaton

states with regular expressions and computing the next-state function symbolically.

Recently, Brzozowski’s derivatives were discovered by functional programmers

and theorem provers. Owens et al. (2009) realized that regular expressions and

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796815000246
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 18:49:33, subject to the Cambridge Core terms of use, available

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/85220935?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796815000246
https:/www.cambridge.org/core

2 D. Traytel and T. Nipkow

their derivatives fit perfectly with data types and recursive functions. Their paper

explores regular expression matching based directly on regular expressions rather

than automata. Fischer et al. (2010) also explore regular expression matching, but

by means of marked regular expressions rather than derivatives. Slightly later, the

interactive theorem proving community woke up to the beauty of derivatives, too.

This resulted in four papers about verified decision procedures for the equivalence

of regular expressions based on derivatives and on marked regular expressions (see

related work below). In one of these four papers, Coquand and Siles (2011) state that

“A more ambitious project will be to use this work for writing a decision procedure

for WS1S”, a monadic second-order (MSO) logic. Our paper does just that (and

more).

MSO logic on finite words is a decidable yet expressive logic into which many

decision problems can be encoded (Thomas, 1997). MSO allows only monadic

predicates but quantification both over numbers and finite sets of numbers. Two

closely related but subtly different semantics can be found in the literature. One of the

two, WS1S—the Weak MSO logic of 1 Successor, is based on arithmetic. The other,

M2L(Str) (Henriksen et al., 1995), is more closely related to formal languages. There

seems to be some disagreement as to which semantics is the more appropriate one for

verification purposes (Klarlund, 1999; Ayari & Basin, 2000). Hence, we cover both.

Essentially, MSO formulas describe regular languages. Therefore, MSO formulas

can be decided by translating them into automata. This is the basis of the highly

successful MONA tool (Elgaard et al., 1998) for deciding WS1S. MONA’s success

is due to its (in practical terms) highly efficient implementation and to the ease with

which very different verification problems can be encoded in MSO logic, for example

Presburger arithmetic and Hoare logic for pointer programs.

The contribution of this paper is the presentation of the first purely functional

decision procedures for two interpretations of MSO based on derivatives of regular

expressions. These decision procedures have been verified in Isabelle/HOL and we

sketch their correctness proofs. We are not aware of any previous decision procedure

for MSO based on regular expressions (as opposed to automata), let alone a verified

program.

It is instructive to compare our decision procedure for WS1S with MONA. MONA

is a highly tuned implementation using cache-conscious data structures including

a BDD-based automaton representation. Ours is a (by comparison tiny) purely

functional program that operates on regular expressions and can only cope with

small examples. MONA is not verified (and the prospect of doing so is daunting),

whereas our code is.

In this paper, we distinguish ordinary regular expressions that contain only

concatenation, union, and iteration from extended regular expressions that also

provide complement and intersection. The rest of the paper is organized as follows.

Section 2 gives an overview of related work. Section 3 introduces some basic

notations. Sections 4 and 5 constitute the main contribution of our paper—the

first shows how to decide equivalence of extended regular expressions with an

additional projection operation, the second reduces equivalence of MSO formulas

to equivalence of exactly those regular expressions with respect to both semantics,

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796815000246
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 18:49:33, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796815000246
https:/www.cambridge.org/core

Verified decision procedures for MSO on words 3

M2L and WS1S. In total, this yields a decision procedure for MSO on words. A

short case study of the decision procedure is given in Section 6.

This paper is an extended and revised version of the homonymous ICFP 2013

functional pearl (Traytel & Nipkow, 2013). The new contributions are mostly actual

changes to the decision procedure aiming to improve on both, performance and

presentation:

• Picking up an idea from Owens et al. (2009), we change the semantics of

atomic regular expressions to represent sets of alphabet letters rather than

single letters (Section 4.4).

• Based on earlier experimental results (Nipkow & Traytel, 2014), we change the

backend decision procedure for regular expression equivalence to use partial

derivatives instead of Brzozowski derivatives (Section 4.5).

• We improve the translations of M2L(Str) formulas to regular expressions by

removing redundancies and expand on the previously omitted implementation

of the translation of WS1S formulas to regular expressions (Section 5.4).

• A reevaluation of the performance shows a sizable improvement, yet still far

away from competing with MONA (Section 6).

While the paper is intended to be self-contained with respect to the presented

functional program deciding equivalence of MSO formulas, we deliberately give

only rough intuitions instead of detailed proofs. The proofs are where they truly

belong: in the publicly available formalization (Traytel & Nipkow, 2014).

2 Related work

Brzozowski (1964) introduced the notion of derivatives of extended regular expres-

sions and Ginzburg (1967) employed them in an algorithm for deciding language

equivalence that we essentially are using here. Antimirov (1996) devised the related

notion of partial derivatives of ordinary regular expressions. Caron et al. (2011) ex-

tended partial derivatives to extended regular expressions. The concept of derivatives

as means to compute the next state symbolically goes beyond regular expressions—

as witnessed by libraries for parsing developed by Danielsson (2010) in Agda and by

Might et al. (2011) in Lisp using lazily evaluated variations of Brzozowski derivatives

for parser combinators. Furthermore, Kozen (2008) lifted derivatives to expressions

of Kleene algebra with tests.

MONA was linked to Isabelle by Basin & Friedrich (2000) and to PVS by Owre

and Rueß (2000). In both cases, MONA is used as a trusted oracle for deciding

formulas in the respective theorem prover.

Now, we discuss work on verified decision procedures for regular expressions. The

first verified equivalence checker for regular expressions was published by Braibant

& Pous (2010). They worked with automata, not regular expressions, their theory

was large and their algorithm efficient. In response, Krauss & Nipkow (2012)

gave a much simpler partial correctness proof for an equivalence checker for

regular expressions based on derivatives. Coquand & Siles (2011) showed total

correctness of their equivalence checker for extended regular expressions based on

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796815000246
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 18:49:33, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796815000246
https:/www.cambridge.org/core

4 D. Traytel and T. Nipkow

derivatives. Asperti (2012) presented an equivalence checker for regular expressions

via marked regular expressions (as previously used by Fischer et al. (2010)) and

showed total correctness. Moreira et al. (2012) presented an equivalence checker for

regular expressions based on partial derivatives and showed its total correctness.

Recently, we have devised a general framework that unifies the different approaches

based on derivatives, partial derivatives, and marked regular expressions under one

roof (Nipkow & Traytel, 2014). Berghofer & Reiter (2009) formalized a decision

procedure for Presburger arithmetic via automata in Isabelle/HOL.

Outside of the application area of equivalence checking, Wu et al. (2014) benefited

from the inductive structure of regular expressions to formally verify the Myhill–

Nerode theorem.

3 Preliminaries

Although we formalized everything in this paper in the theorem prover Isa-

belle/HOL (Nipkow et al., 2002; Nipkow & Klein, 2014), no knowledge of the-

orem provers or Isabelle/HOL is required because we employ mostly ordinary

mathematical notation in our presentation. Some specific notations are summarized

below.

The symbol � represents the type of Booleans, where � and ⊥ represent true

and false. The type of sets and the type of lists over some type τ are written τ set

and τ list. In general, type constructors follow their arguments. The letters α and β

represent type variables. The notation t :: τ means that term t has type τ.

Many of our functions are curried. In some cases, we write the first argument as

an index: instead of f a b, we write fa(b) (in preference to just fa b). The projection

functions on pairs are called fst and snd. The image of a function f over a set S is

written f • S .

Lists are built up from the empty list [] via the infix # operator that prepends an

element x to a list xs: x # xs. Two lists are concatenated with the infix @ operator.

Accessing the nth element of a list xs is denoted by xs[n]; the indexing is zero-based.

The length of the list xs is written |xs|.
Finite words as in formal language theory are modeled as finite lists, i.e., type

α list. The empty word is the empty list. As is customary, concatenation of two

words u and v is denoted by their juxtaposition uv; similarly for a single letter a of

the alphabet and a word w: aw. That is, the operators # and @ remain implicit (for

words, not for arbitrary lists).

4 Extended regular expressions

In Section 5, MSO formulas are translated into regular expressions such that

encodings of models of a formula correspond exactly to words in the regular

language. Thereby, equivalence of formulas is reduced to the equivalence of regular

expressions.

Decision procedures for equivalence of regular expression have been formalized

earlier in theorem provers. Here, we extend the existing formalization and the

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796815000246
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 18:49:33, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796815000246
https:/www.cambridge.org/core

Verified decision procedures for MSO on words 5

soundness proof in Isabelle/HOL by Krauss & Nipkow (2012) with negation and

intersection operation on regular expressions, as well as with a nonstandard projec-

tion operation. Additionally, we provide proofs of termination and completeness.

4.1 Syntax and semantics

Regular expressions extended with intersection and complement allow us to encode

Boolean operators on formulas in a straightforward fashion. A further operation—

the projection Π—plays the crucial role of encoding existential quantifiers. These

Π-extended regular expressions (to distinguish them from mere extended regular

expressions) are defined as a recursive data type α RE, where α is the type of

the underlying alphabet. In conventional concrete syntax, α RE is defined by the

grammar

r = 0 | 1 | a
| r + s | r · s | r∗

| r ∩ s | ¬ r | Π r

where r, s :: α RE and a :: α. Note that much of the time, we will omit the

“Π-extended” and simply speak of regular expressions if there is no danger of

confusion.

We assume that type α is partitioned into a family of alphabets Σn that depend

on a natural number n and there is a function π :: Σn+1 → Σn
1 that translates

between the different alphabets. In our application, n will represent the number of

free variables of the translated MSO formula. For now, Σn and π are just parameters

of our setup.

We focus on well-formed regular expressions where all atoms come from the

same alphabet Σn. This will guarantee that the language of such a well-formed

expression is a subset of Σ∗n. The projection operation complicates wellformedness a

little. Because projection is meant to encode existential quantifiers, projection should

transform a regular expression over Σn+1 into a regular expression over Σn, just

as the existential quantifier transforms a formula with n + 1 free variables into a

formula with n free variables. Thus, projection changes the alphabet. Wellformedness

is defined as the recursive predicate wf :: �→ α RE→ �.

wfn(0) = � wfn(1) = �
wfn(a) = a ∈ Σn wfn(r + s) = wfn(r) ∧ wfn(s)
wfn(r · s) = wfn(r) ∧ wfn(s) wfn(r∗) = wfn(r)
wfn(r ∩ s) = wfn(r) ∧ wfn(s) wfn(¬ r) = wfn(r)
wfn(Π r) = wfn+1(r)

We call a regular expression r n-wellformed if wfn(r) holds.

1 Due to Isabelle’s lack of dependent types, the actual type of π is α→ α. The more refined dependent
type Σn+1 → Σn is realized via Isabelle’s tool for modeling parameterized systems with additional
assumptions: locales (Ballarin, 2006). A locale fixes parameters and states assumptions about them.
Hence, we use the locale assumption π • Σn+1 ⊆ Σn to relate locale parameters π and Σ.

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796815000246
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 18:49:33, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796815000246
https:/www.cambridge.org/core

6 D. Traytel and T. Nipkow

The language L :: �→ α RE→ (α list) set of a regular expression is defined as

usual, except for the equations for complement and projection. For an n-well-formed

regular expression, the definition yields a subset of Σ∗n.

Ln(0) = {} Ln(1) = {[]}
Ln(a) = {a} Ln(r + s) =Ln(r) ∪ Ln(s)
Ln(r · s) =Ln(r) · Ln(s) Ln(r∗) =Ln(r)∗

Ln(r ∩ s) =Ln(r) ∩ Ln(s) Ln(¬ r) = Σ∗n \ Ln(r)
Ln(Π r) = map π • Ln+1(r)

The first unusual point is the parametrization with n. It expresses that we expect a

regular expression over Σn and is necessary for the definition Ln(¬ r) = Σ∗n \ Ln(r).
The definitionLn(Π r) = map π • Ln+1(r) is parameterized by the fixed parameter

π :: Σn+1 → Σn. The projection Π denotes the homomorphic image under π. In more

detail: map lifts π homomorphically to words (lists), and • lifts it to sets of words.

Therefore, Π transforms a language over Σn+1 into a language over Σn.

To understand the “projection” terminology, it is helpful to think of elements of

Σn as lists of fixed length n over some alphabet Σ and of π as the tail function

on lists that drops the first element of the list. A word over Σn is then a list of

lists. Though this is a good intuition, the actual encoding of formulas later on will

be slightly more complicated. Fortunately, we can ignore these complications for

now by working with arbitrary but fixed Σn and π in the current section. Specific

instantiations for them are given in Section 5.

4.2 Deciding language equivalence

Now we turn our attention to deciding equivalence of Π-extended regular expres-

sions. The key concepts required for this are nullability and derivatives. We call a

regular expression nullable if its language contains the empty word []. Nullability can

be easily checked syntactically by the following recursive function ε :: α RE→ �.

ε(0) = ⊥ ε(1) = �
ε(a) = ⊥ ε(r + s) = ε(r) ∨ ε(s)
ε(r · s) = ε(r) ∧ ε(s) ε(r∗) = �
ε(r ∩ s) = ε(r) ∧ ε(s) ε(¬ r) = ¬ ε(r)
ε(Π r) = ε(r)

The characteristic property—ε(r) iff [] ∈ Ln(r) for any regular expression r and

n :: �—follows by structural induction on r.
The second key concept—the derivative of a regular expression D :: α→ α RE→

α RE and its lifting to words D∗ :: α list→ α RE→ α RE—semantically corresponds

to left quotients of regular languages with respect to a fixed letter or word. Just as

before, the recursive definition is purely syntactic and the semantic correspondence

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796815000246
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 18:49:33, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796815000246
https:/www.cambridge.org/core

Verified decision procedures for MSO on words 7

is established by a straightforward structural induction.

Db(0) = 0 Db(1) = 0

Db(a) = if a = b then 1 else 0 Db(r + s) = Db(r) + Db(s)
Db(r · s) = Db(r∗) = Db(r) · r∗

if ε(r) then Db(r) · s + Db(s)
else Db(r) · s
Db(r ∩ s) = Db(r) ∩ Db(s) Db(¬ r) = ¬ Db(r)

Db(Π r) = Π

(⊕
c∈π−b

Dc(r)

)

D∗[](r) = r D∗bw(r) = D∗w(Db(r))

Lemma 1

Assume b ∈ Σn, v ∈ Σ∗n and let r be an n-well-formed regular expression. Then

Ln(Db(r)) = {w | bw ∈ Ln(r)} and wfn(Db(r)), and consequently Ln(D∗v(r)) = {w |
vw ∈ Ln(r)} and wfn(D∗v(r)).

The projection case introduced some new syntax that deserves some explanation.

The preimage π− applied to a letter b ∈ Σn denotes the set {c ∈ Σn+1 | π c = b}.
Our alphabets Σn are finite for each n, hence so is the preimage of a letter. The

summation
⊕

over a finite set denotes the iterated application of the +-constructor

of regular expressions. Summation over the empty set is defined as 0.

Derivatives of extended regular expressions were introduced by Brzozowski (1964)

fifty years ago. Our contribution is the extension of the concept to handle the

projection operation. Since the projection acts homomorphically on words, it is

clear that the derivative of Π r with respect to a letter b can be expressed as

a projection of derivatives of r. The concrete definition is a consequence of the

following identity of left quotients for b ∈ Σn and A ⊆ Σ∗n+1:

{w | bw ∈ map π • A} = map π •
⋃

c∈π−b

{w | cw ∈ A}

Although we completely avoid automata in the formalization, a derivative with

respect to the letter b can be seen as a transition labeled by b in a deterministic

automaton, the states of which are labeled by regular expressions. The automaton

accepting the language of a regular expression r can be thus constructed iteratively

by exploring all derivatives of r and defining exactly those states as accepting, which

are labeled by a nullable regular expression. However, the set {D∗w(r) | w :: α list} of

states reachable in this manner is infinite in general. To obtain a finite automaton, the

states must be partitioned into classes of regular expressions that are ACI-equivalent,

i.e., syntactically equal modulo associativity, commutativity and idempotence of

the +-constructor or more formally related by the following inductively defined

congruence ∼.

r + (s + t) ∼ (r + s) + t r + s ∼ s + r r + r ∼ r

r ∼ r r ∼ s
s ∼ r

r ∼ s s ∼ t
r ∼ t

r1 ∼ s1 r2 ∼ s2

r1 + r2 ∼ s1 + s2

r1 ∼ s1 r2 ∼ s2

r1 · r2 ∼ s1 · s2

r ∼ s
r∗ ∼ s∗

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796815000246
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 18:49:33, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796815000246
https:/www.cambridge.org/core

8 D. Traytel and T. Nipkow

Brzozowski showed that the number of ∼-equivalence classes for a fixed regular

expression r is finite by structural induction on r. The inductive steps require proving

finiteness by representing equivalence classes of derivatives of the expression in

terms of equivalence classes of derivatives of subexpressions. This is technically

complicated, especially for concatenation, iteration and projection, since it requires

a careful choice of representatives of equivalence classes to reason about them,

and Isabelle’s automation cannot help much with the finiteness arguments—indeed

the verification of Theorem 2 constitutes the most intricate proof in the present

work.

Theorem 2

{〈D∗w(r)〉 | w :: α list} is finite for any regular expression r.

The function 〈−〉 :: α RE → α RE is the ACI normalization function, which

maps ACI-equivalent regular expressions to the same representative, i.e., defines a

particular executable choice of representatives of ∼-equivalence classes. It is defined

by means of a normalizing constructor ⊕ :: α RE → α RE → α RE and an

arbitrary linear order � on regular expressions. The equations for ⊕ are matched

sequentially.

〈0〉 = 0 〈1〉 = 1

〈a〉 = a 〈r + s〉 = 〈r〉 ⊕ 〈s〉
〈r · s〉 = 〈r〉 · 〈s〉 〈r∗〉 = 〈r〉∗

〈r ∩ s〉 = 〈r〉 ∩ 〈s〉 〈¬ r〉 = ¬ 〈r〉
〈Π r〉 = Π 〈r〉

(r + s) ⊕ t = r ⊕ (s ⊕ t)
r ⊕ (s + t) = if r = s then s + t

else if r � s then r + (s + t)
else s + (r ⊕ t)

r ⊕ s = if r = s then r
else if r � s then r + s

else s + r

When proving Theorem 2 by induction, on a high-level most cases follow

Brzozowski’s original proof (1964). The only exception is the newly introduced

constructor Π r, where we proceed as follows: By induction hypothesis we know

that r has a finite set D of distinct derivatives modulo ACI. Some of the formulas in

D can have a sum as the topmost constructor. If we repeatedly split such outermost

sums in D until none are left, we obtain a finite set X of expressions. Each word

derivative D∗w(r) is ACI equivalent to some Π (
⊕

Y) for some Y ⊆ X. Since X is

finite, its powerset is also finite. Hence, there are only finitely many distinct D∗w(r)
modulo ACI.

The above proof sketch is very informal. The corresponding formal proof is

technically more challenging, e.g., we need to define precisely in which way D∗w(r) is

ACI equivalent to Π (
⊕

Y) for arbitrary words w. Here, we employ the ACI normal-

ization function and its equivalent abstract characterization: After the application

of 〈−〉, all sums in the expression are associated to the right and the summands are

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796815000246
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 18:49:33, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796815000246
https:/www.cambridge.org/core

Verified decision procedures for MSO on words 9

sorted with respect to � and duplicated summands are removed. From this, further

later on useful properties of 〈−〉 can be derived:

Lemma 3

Let r be a regular expression, n :: � and b ∈ Σn. Then Ln〈r〉 = Ln(r), 〈〈r〉〉 = 〈r〉,
and 〈Db〈r〉〉 = 〈Db(r)〉.

So far, ACI normalization only connects Brzozowski derivatives to deterministic

finite automata. Furthermore, it will ensure termination of our decision procedure

even without ever entering the world of automata. Instead we follow Rutten (1998),

who gives an alternative view on deterministic automata as coalgebras. In the

coalgebraic setting, the function λr. (ε(r), λb. Db(r)) :: α RE→ �× (α→ α RE) is a

D-coalgebra for the functor D(S) = �× (α→ S). The final coalgebra of D exists and

corresponds exactly to the set of all languages. Therefore, we obtain the powerful

coinduction principle, reducing language equality to bisimilarity. We phrase this

general theorem instantiated to our concrete setting. The formalized proof itself

does not require any category theory; it resembles the reasoning in Section 4 of

Rutten (1998).

Theorem 4 (Coinduction)

Let R :: (α RE× α RE) set be a relation, such that for all (r, s) ∈ R, we have the

following:

1. wfn(r) ∧ wfn(s);
2. ε(r)↔ ε(s);
3. (〈Db(r)〉, 〈Db(s)〉) ∈ R for all b ∈ Σn.

Then for all (r, s) ∈ R, Ln(r) =Ln(s) holds.

From Lemmas 1 and 3, we know that the relation

B = {(〈D∗w(r)〉, 〈D∗w(s)〉) | w ∈ Σ∗n}

contains (〈r〉, 〈s〉) and fulfills the assumptions 1 and 3 of the coinduction theorem,

assuming that r and s are both n-wellformed. Moreover, using Theorem 2, it follows

that this relation is finite. Thus, checking assumption 2 for every pair of this

finite relation is sufficient to prove language equality of r and s by coinduction.

We obtain the following abstract specification of a language equivalence checking

algorithm.

Theorem 5

Let r and s be n-well-formed regular expressions. Then Ln(r) = Ln(s), iff we have

ε(r′)↔ ε(s′) for all (r′, s′) ∈ B.

4.3 Executable algorithm from a theorem

Our goal is not only to prove some abstract theorems about a decision procedure,

but also to extract executable code in some functional programming language (e.g.,

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796815000246
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 18:49:33, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796815000246
https:/www.cambridge.org/core

10 D. Traytel and T. Nipkow

Standard ML, Haskell, OCaml) using the code generation facility of Isabelle/HOL

(Haftmann & Nipkow, 2010). Theorem 5 is not enough to do so: it contains a set

comprehension ranging over the infinite set Σ∗n, which is not executable as such. We

need to instruct the system how to enumerate B.

We start with the pair (〈r〉, 〈s〉) and compute its pairwise derivatives for all letters

of the alphabet. For the computed pairs of regular expressions, we proceed by

computing their derivatives and so on. This of course does not terminate. However,

if we stop our exploration at pairs that we have seen before it does, since we are

exploring a finite set.

In more detail, we use a worklist algorithm that iteratively adds not yet inspected

pairs of regular expressions while exhausting words of increasing length until no new

pairs are generated. Saturation is reached by means of the executable combinator

while :: (α → �) → (α → α) → α → α option from the Isabelle/HOL library.

The option type α option has two constructors None :: α option and Some :: α →
α option. Some lifts elements from the base type α to the option type, while None

is usually used to indicate some exceptional behavior. The definition of while

while b c s = if ∃k.¬b(ck(s)) then Some (cLeast k.¬b(ck(s))(s)) else None

is not executable, but the following key lemma is

while b c s = if b s then while b c (c s) else Some s

The code generated from this recursive equation will return Some s in case the

definition of while says so, but instead of returning None, it will not terminate.

Thus, we can prove termination if we can show that the result is �= None.

In our case, the state s of the while loop consists of a worklist

ws :: (α RE× α RE) list of unprocessed pairs of regular expressions together with a

set N :: (γ × γ) set of already seen pairs modulo a normalization function norm ::

α RE→ γ. This normalization function (which is a parameter of our setup) is applied

to already ACI-normalized expressions, to syntactically identify further language

equivalent expressions. This makes the bisimulation relation that must be exhausted

smaller, thus saturation is reached faster. The range type of the normalization is

not fixed, but we require a notion of languages Lγ :: � → γ → (α list) set to be

available for it, such that Lγ
n(norm r) = Ln(r) holds. In the simplest case, norm

can be the identity function and Lγ =L. More interesting is a function on regular

expressions that eliminates 0 from unions, concatenations and intersections and 1

from concatenations. Other regular structures such as automata or different kinds

of regular expressions as instantiations for γ might enable even more sophisticated

simplifications.

We define the arguments to the while combinator b :: (α RE× α RE) list ×
(γ × γ) set→ � and c :: �→ (α RE×α RE) list×(γ × γ) set→ (α RE× α RE) list×
(γ × γ) set.

b ([],) = ⊥
b ((r, s) # ,) = ε(r)↔ ε(s)

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796815000246
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 18:49:33, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796815000246
https:/www.cambridge.org/core

Verified decision procedures for MSO on words 11

cn ((r, s) # ws , N) =

let

succs = map (λb.
let

r′ = 〈Db(r)〉; s′ = 〈Db(s)〉
in ((r′, s′), (norm r′, norm s′))) Σn;

new = remdups snd (filter (λ(, rs). rs /∈ N) succs)
in (ws @ map fst new, set (map snd new) ∪ N)

The function set :: α list → α set maps a list to the set of its elements, filter ::

(α → �) → α list → α list removes elements that do not fulfill the given predicate,

while remdups :: (α → β) → α list → α list is used to keep the worklist as small

as possible. remdups f xs removes duplicates from xs modulo the function f , e.g.,

remdups snd [(0, 0), (1, 0)] = [(1, 0)] (which element is actually kept is irrelevant;

the result [(0, 0)] would also be valid).

Finally, a well-formedness check completes the now executable algorithm eqvRE ::

�→ α RE→ α RE→ �.

eqvRE

n r s =

wfn(r) ∧ wfn(s) ∧
(case while b cn ([(〈r〉, 〈s〉)], {(norm〈r〉, norm〈s〉)}) of

Some ([],)⇒ �
| Some (# ,)⇒ ⊥)

The termination of eqvRE for any input is guaranteed by two facts: (1) all recur-

sively defined functions in Isabelle/HOL terminate by their definitional principle

(either primitive or wellfounded recursion) and (2) the termination of while follows

from Theorem 2 and the fact that the set N of already seen pairs in the state is a

subset of (λ(r, s). (norm r, norm s)) • {(〈D∗w(r)〉, 〈D∗w(s)〉) | w ∈ Σ∗n}.

Theorem 6 (Termination)

Let r and s be n-well-formed regular expressions. Then

while b cn ([(〈r〉, 〈s〉)], {(norm〈r〉, norm〈s〉)}) �= None.

Function eqvRE deserves the name decision procedure since it constitutes a

refinement of the algorithm abstractly stated in Theorem 5, and is therefore sound

and complete. The refinement follows from proving the following predicate being

an invariant for the states (ws , N) of the while-loop given two initial n-well-formed

regular expressions r and s:

inv (ws , N) =

(∀(r′, s′) ∈ set ws . (norm r′, norm s′) ∈ N) ∧
(∀(r′, s′) ∈ N. ∃w ∈ Σ∗n. D∗w(r) = r′ ∧ D∗w(r) = s′) ∧
(∀(r′, s′) ∈ N \ ((λ(r, s). (norm r, norm s)) • (set ws)) . ε(r′)↔ ε(s′) ∧

(∀a ∈ Σn. (norm (Da(r′)), norm (Da(s′))) ∈ N))

For an execution of eqvRE, either ws is eventually emptied—in which case the last

conjunct of inv corresponds to N being a bisimulation modulo norm—or the test

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796815000246
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 18:49:33, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796815000246
https:/www.cambridge.org/core

12 D. Traytel and T. Nipkow

Fig. 1. Checking the equivalence of a∗ and 1 + a · a∗ for Σn = {a, b}.

b fails for pair in ws yielding a counterexample to language equivalence using the

first two conjuncts of inv.

Theorem 7 (Soundness)

Let r and s be regular expressions such that eqvRE

n r s. Then Ln(r) =Ln(s).

Theorem 8 (Completeness)

Let r and s be n-well-formed regular expressions such that Ln(r) = Ln(s). Then

eqvRE

n r s.

Let us observe the decision procedure at work by looking at the regular expressions

a∗ and 1 + a · a∗ for some a ∈ Σn = {a, b} for some n. For presentation purposes, the

correspondence of derivatives to automata is useful. Figure 1 shows two automata,

the states of which are equivalence classes of pairs of regular expressions indicated

by a dashed fringe (which is omitted for singleton classes). The equivalence classes of

automaton (a) are modulo plain ACI normalization, while those of automaton (b)

are modulo a stronger normalization function, making the automaton smaller.

Transitions correspond to pairwise derivatives and doubled margins denote states

for which the associated pairs of regular expressions are pairwise nullable. Both

automata are the result of our decision procedure performing a breadth-first

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796815000246
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 18:49:33, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796815000246
https:/www.cambridge.org/core

Verified decision procedures for MSO on words 13

exploration starting with the initially given pair and ignoring states that are in

the equivalence class of already visited states. The absence of pairs (r, s) for which

r is nullable and s is not nullable (or vice versa) proves the equivalence of all pairs

in the automaton, including the pair (a∗, 1 + a · a∗).
Let us mention two obvious performance deficits of our algorithm. First, the ACI

normalization is sorting the summands in expressions basically using bubble-sort.

Using a set data structure instead of binary sums would improve this to merge-sort

and is certainly desirable. Second, the algorithm constructs a bisimulation (not even

a bisimulation up to equality). This effectively means that even when applied on two

identical expressions, the algorithm would still enumerate all derivatives. There is a

whole hierarchy of possible improvements: bisimulation up to equality, equivalence,

congruence, and congruence and context, which have been successfully employed in

unverified derivative-based decision procedures (Bonchi & Pous, 2013; Pous, 2015).

However, when verifying an algorithm one has to settle for a solution somewhere in

between of efficiency and simplicity.

4.4 Atoms with more structure

Owens et al. (2009) advocate a more compact regular expression structure where the

language of an atom denotes a set of one letter words. The gained compactness is

beneficial especially for expressions over a large alphabet. In our setting, this would

mean using the type (α set) RE instead of α RE (without changing the underlying

alphabet type α). We will see later that our alphabet is indeed large—exponential in

the number of free variables.

We generalize this idea without committing to a fixed type for the atoms yet.

Instead of α RE, the regular expressions over the alphabet type α on which the

algorithm operates will be of type β RE, where the relationship between α and

the new atoms β is given by a function memA :: β → α → �. The new semantics

L :: � → β RE → (α list) set of such regular expressions is defined just as the old

L except for the atom case. A similar adjustment is required for the new derivative

D :: α→ β RE→ β RE.

Ln(b) = {a | memA b a} Da(b) = if memA b a then 1 else 0

Furthermore, the function wfA :: nat→ β→ � is used to detect whether a β-atom is

wellformed. The wellformedness check for regular expressions wf :: nat→ β RE→ �
will use wfA in the atom case: wfn(b) = wfA n b. The functions memA and wfA are

two further parameters of our procedure. We obtain the original procedure by

instantiating β with α and defining memA (b :: α) a ↔ (a = b) and wfA n b ↔
(b ∈ Σn). For the data structure from Owens et al. (2009), one would instantiate

β with α set and define memA (B :: α set) a ↔ (a ∈ B) and wfA n B ↔ (∀a ∈ B.
a ∈ Σn).

The benefit of the abstract formulation is the fact that β can be instantiated with

a set representation tailored to the particularities of the used regular expressions.

In our case, the regular expressions are translated MSO formulas and a few very

particular sets of letters arise from the translation. Therefore, in Section 5 we will

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796815000246
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 18:49:33, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796815000246
https:/www.cambridge.org/core

14 D. Traytel and T. Nipkow

define a data type α atom matching exactly those particularities and instantiate β,

memA, and wfA accordingly.

4.5 Alternatives to Brzozowski derivatives

The example from Figure 1 shows that the choice of the normalization is crucial for

the size of the bisimulation relation. In prior work (Nipkow & Traytel, 2014), we

show that partial derivatives2 of ordinary regular expressions can be represented by

a composition 〈〈−〉〉 ◦ Da where 〈〈−〉〉 is a particular normalization function defined

using smart constructors and observe that 〈〈−〉〉 tends to maintain a better balance

between the size of the resulting bisimulation and the ease to compute the normal

form than other ad hoc choices. To use partial derivatives here, we extend this

particular function 〈〈−〉〉 to Π-extended regular expressions as follows. The equations

for the smart constructors + , · , ∩ , ¬ , and Π are matched sequentially.

〈〈0〉〉 = 0

〈〈1〉〉 = 1

〈〈a〉〉 = a
〈〈r + s〉〉 = 〈〈r〉〉 + 〈〈s〉〉
〈〈r · s〉〉 = 〈〈r〉〉 · s
〈〈r∗〉〉 = r∗

〈〈r ∩ s〉〉 = 〈〈r〉〉 ∩ 〈〈s〉〉
〈〈¬ r〉〉 = ¬ 〈〈r〉〉
〈〈Π r〉〉 = Π 〈〈r〉〉
0 · r = 0

1 · r = r
(r + s) · t = (r · s) + (s · t)
r · s = s · t
¬ (r + s) = (¬ r) ∩ (¬ s)
¬ (r ∩ s) = (¬ r) + (¬ s)
¬ (¬ r) = r
¬ r = ¬ r

Π 0 = 0

Π 1 = 1

Π (r + s) = (Π r) + (Π s)
Π r = Π r

0 + r = r
r + 0 = r
(r + s) + t = r + (s + t)
r + (s + t) = if r = s then s + t

else if r � s then r + (s + t)
else s + (r + t)

r + s = if r = s then r
else if r � s then r + s

else s + r

0 ∩ r = 0

r ∩ 0 = 0

(¬ 0) ∩ r = r
r ∩ (¬ 0) = r
(r + s) ∩ t = (r ∩ t) + (s ∩ t)
r ∩ (s + t) = (r ∩ s) + (r ∩ t)
(r ∩ s) ∩ t = r ∩ (s ∩ t)
r ∩ (s ∩ t) = if r = s then s ∩ t

else if r � s then r ∩ (s ∩ t)
else s ∩ (r ∩ t)

r ∩ s = if r = s then r
else if r � s then r ∩ s

else s ∩ r

It is worth noticing that 〈〈−〉〉 does not descend recursively into right-hand

side of concatenation and into iteration. Also, ∩ distributes over + , which

establishes something like a disjunctive normal form with respect to intersection

(conjunction) and union (disjunction). Our motivation for this design goes back to

2 Partial derivatives (Antimirov, 1996) refine Brzozowski derivatives by splitting the derivation result
at some +-constructors into a finite set of regular expressions. Partial derivatives correspond to
nondeterministic automata in the same way derivatives correspond to deterministic ones.

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796815000246
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 18:49:33, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796815000246
https:/www.cambridge.org/core

Verified decision procedures for MSO on words 15

Caron et al. (2011), who show how to extend partial derivatives to negation and

intersection using sets of sets of regular expressions. The outer level of sets there

represents unions, the inner intersections. We conjecture that the usage of our 〈〈−〉〉
as the normalization function produces isomorphic bisimulations to those obtained

by working with the extended partial derivatives by Caron et al. (2011) directly, but

do not attempt to prove it. This conjecture is irrelevant for our purpose, since there

is anyway only empirical evidence that partial derivatives perform better than other

normalizations for Π-extended regular expression, yet it is an interesting problem to

work on in the future. To employ 〈〈−〉〉 in the algorithm, it is sufficient to prove that

it preserves wellformedness and languages—an easy exercise in induction.

Lemma 9

Let r be an n-well-formed regular expression. Then wfn〈〈r〉〉 and Ln〈〈r〉〉 =Ln(r).

We remark that the normalization 〈〈−〉〉 does not enjoy nice algebraic properties.

The source of the problem is that our smart constructor ∩ is not idempotent. To

see this, assuming a � b � a ∩ b, we calculate: (a + b) ∩ (a + b) = a + b + (a ∩ b).

Consequently, the de Morgan law 〈〈¬ (r + s)〉〉 = 〈〈¬ r ∩ ¬ s〉〉 does not hold. One

could argue that this is a bad design of the normalization, which is modeled after

the operations on sets of sets of expressions given elsewhere (Caron et al., 2011).

(Those operations suffer from the same limitations.) However, the performance

when using this normalization in practice seems reasonable and our attempts in

changing the normalization function to make ∩ idempotent (for example, by giving

up distributivity of ∩ over + or by adding more equality checks in the definition of

∩) resulted in a perceivable decrease in performance.

Nevertheless, an interesting question is whether one can find a fast normalization

function that decides equivalence under the following inductively defined equivalence

relation ≈, which is modeled after what the normalization function 〈〈−〉〉 attempts

(but fails) to equate. Note that, unlike ∼ (ACI), the relation ≈ is only an equivalence,

not a congruence. Not being able to find such a normalization, we leave this question

as future work.

0 + r ≈ r r + 0 ≈ r 0 · r ≈ 0 1 · r ≈ r

(¬ 0) ∩ r ≈ r r ∩ (¬ 0) ≈ r 0 ∩ r ≈ 0 r ∩ 0 ≈ 0

r + (s + t) ≈ (r + s) + t r + s ≈ s + r r + r ≈ r

r ∩ (s ∩ t) ≈ (r ∩ s) ∩ t r ∩ s ≈ s ∩ r r ∩ r ≈ r

r ∩ (s + t) ≈ (r ∩ s) + (r ∩ t) (r + s) ∩ t ≈ (r ∩ t) + (s ∩ t)

(r + s) · t ≈ (r · t) + (s · t) ¬ (¬ r) ≈ r

¬ (r + s) ≈ (¬ r) ∩ (¬ s) ¬ (r ∩ s) ≈ (¬ r) + (¬ s)

Π (r + s) ≈ Π r + Π s Π 0 ≈ 0 Π 1 ≈ 1

r ≈ r r ≈ s
s ≈ r

r ≈ s s ≈ t
r ≈ t

r1 ≈ s1 r2 ≈ s2

r1 + r2 ≈ s1 + s2

r1 ≈ s1 r2 ≈ s2

r1 ∩ r2 ≈ s1 ∩ s2

r1 ≈ s1

r1 · t ≈ s1 · t
r ≈ s
¬ r ≈ ¬ s

r ≈ s
Π r ≈ Π s

Another promising alternative to Brzozowski derivatives is the data type α REop

of dual regular expressions (Okhotin, 2005). The data type is obtained by modifying

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796815000246
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 18:49:33, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796815000246
https:/www.cambridge.org/core

16 D. Traytel and T. Nipkow

α RE as following: drop the negation and intersection constructors and add to

every remaining n-ary constructor ◦ a Boolean flag b with the following semantics

Lop :: �→ α REop → �.

Lop
n (◦ b r1 · · · rn) =Ln(if b then ◦ r1 · · · rn else ¬ (◦ (¬ r1) · · · (¬ rn)))

In the formalization (Traytel & Nipkow, 2014) we define wellformedness, deriva-

tives and some ad hoc normalization on α REop and generalize the bisimulation

construction to work on α REop as well. The evaluation will show that the decision

procedure we obtain by using dual regular expression performs better for the WS1S

semantics of MSO, but worse for the M2L semantics—a phenomenon for which we

do not have an explanation yet.

5 MSO on finite words

Logics on finite words consider formulas in the context of a formal word, with

variables representing positions in the word. In the first-order logic on words, a

variable always denotes a single position while in MSO logic on finite words,

variables come in two flavors: first-order variables for single positions and second-

order variables for finite sets of positions.

In the next subsections, we first define the syntax of formulas and give them

a semantics that is related to formal languages: M2L(Str). The second semantics,

WS1S, is introduced as a relaxation of M2L (we drop the “(Str)” from now on). Both

semantics are equally expressive and deciding both is of nonelementary complexity.

The benefits and drawbacks of the two semantics are discussed elsewhere (Klarlund,

1999; Ayari & Basin, 2000).

5.1 Syntax and M2L semantics

MSO formulas are syntactically represented by the recursive data type α Φ using de

Bruijn indices for variable bindings. Terms of α Φ are generated by the grammar

ϕ = Q a m | m1 < m2 | m ∈ M | ϕ ∧ ψ | ϕ ∨ ψ | ¬ ϕ | ∃ ϕ | ∃∃∃∃∃∃∃∃∃ ϕ

where ϕ, ψ :: α Φ, m,m1,m2,M :: � and a :: α. Lower-case variables m,m1,m2

denote first-order variables, M denotes a second-order variable. The atomic formula

Q a m requires the letter of the word at the position represented by variable m to be

a; the constructors < and ∈ compare positions; Boolean operators are interpreted

as usual.

The bold existential quantifier ∃∃∃∃∃∃∃∃∃ binds second-order variables, ∃ binds first-order

variables. Occurrences of bound variables represented as de Bruijn indices refer to

their binders by counting the number of nested existential quantifier between the

binder and the occurrence. For example, the formula ∃ (Q a 0 ∧ (∃∃∃∃∃∃∃∃∃ 1 ∈ 0)) translates

to ∃x.(Q a x ∧ (∃X. x ∈ X)) when using names. The first 0 in the nameless formula

refers to the outermost first-order quantifier. Inside of the inner second-order

quantifier, index 1 refers to the outermost quantifier and index 0 to the inner

quantifier. The nameless representation simplifies reasoning by implicitly capturing

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796815000246
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 18:49:33, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796815000246
https:/www.cambridge.org/core

Verified decision procedures for MSO on words 17

α-equivalence of formulas. On the downside, de Bruijn indices are less readable and

must be manipulated with care.

Formulas may have free variables. The functions V1 :: α Φ → � set and

V2 :: α Φ→ � set collect the free first-order and second-order variables:

V1(Q a m) = {m} V2(Q a m) = {}
V1(m1 < m2) = {m1, m2} V2(m1 < m2) = {}
V1(m ∈ M) = {m} V2(m ∈ M) = {M}
V1(ϕ ∧ ψ) = V1(ϕ) ∪ V1(ψ) V2(ϕ ∧ ψ) = V2(ϕ) ∪ V2(ψ)

V1(ϕ ∨ ψ) = V1(ϕ) ∪ V1(ψ) V2(ϕ ∨ ψ) = V2(ϕ) ∪ V2(ψ)

V1(¬ ϕ) = V1(ϕ) V2(¬ ϕ) = V2(ϕ)

V1(∃ ϕ) = �V1(ϕ)\{0}� V2(∃ ϕ) = �V2(ϕ)�
V1(∃∃∃∃∃∃∃∃∃ ϕ) = �V1(ϕ)� V2(∃∃∃∃∃∃∃∃∃ ϕ) = �V2(ϕ)\{0}�

The notation �X� is shorthand for (λx. x− 1) • X, which reverts the increasing effect

of an existential quantifier on previously bound or free variables. To obtain only

free variables, bound variables are removed when their quantifier is processed, at

which point the bound variable has index 0.

Just as for Π-extended regular expressions, not all formulas in α Φ are meaningful.

Consider 0 ∈ 0, where 0 is both a first-order and a second-order variable. To

exclude such formulas, we define the predicate wfΦ :: � → α Φ → � as wfΦn (ϕ) =(
V1(ϕ) ∩V2(ϕ) = {}

)
∧ pre wfΦn (ϕ) and call a formula ϕ n-wellformed if wfΦn (ϕ)

holds. The recursively defined predicate pre wfΦ :: � → α Φ → � is used for

further assumptions on the structure of n-well-formed formulas, which will simplify

our proofs:

pre wfΦn (Q a m) = a ∈ Σ ∧ m < n
pre wfΦn (m1 < m2) = m1 < n ∧ m2 < n
pre wfΦn (m ∈ M) = m < n ∧ M < n
pre wfΦn (ϕ ∧ ψ) = pre wfΦn (ϕ) ∧ pre wfΦn (ψ)

pre wfΦn (ϕ ∨ ψ) = pre wfΦn (ϕ) ∧ pre wfΦn (ψ)

pre wfΦn (¬ ϕ) = pre wfΦn (ϕ)

pre wfΦn (∃ ϕ) = pre wfΦn+1(ϕ) ∧ 0 ∈ V1(ϕ) ∧ 0 /∈ V2(ϕ)

pre wfΦn (∃∃∃∃∃∃∃∃∃ ϕ) = pre wfΦn+1(ϕ) ∧ 0 /∈ V1(ϕ) ∧ 0 ∈ V2(ϕ)

pre wfΦn (ϕ) ensures that the index of every free variable in ϕ is below n and the

values of type α come from a fixed alphabet Σ. Note that Σ is really just a fixed set

of letters of type α, independent of any n and is a parameter of our setup. Moreover,

pre wfΦ checks that bound variables are correctly used as first-order or second-order

with respect to their binders and excludes formulas with unused binders; unused

binders are obviously superfluous.

An interpretation of an MSO formula is a pair of a word w :: α list from Σ∗ and

an assignment I :: (� + � set) list for free variables. The latter essentially consists

of two functions with finite domain: one from first-order variables to positions and

the other from second-order variables to sets of positions. We represent those two

functions by a list, once again benefiting from de Bruijn indices—the value lookup

for a variable with de Bruijn index i corresponds to inspecting the assignment I at

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796815000246
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 18:49:33, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796815000246
https:/www.cambridge.org/core

18 D. Traytel and T. Nipkow

position i, i.e., I[i]. The range of I is a sum type, denoting the disjoint union of

its two argument types. The sum type has two constructors Inl :: α → α + β and

Inr :: β → α + β, such that for a first-order variable m there is a position p with

I[m] = Inl p and for a second-order variable M there is a finite set of positions P
with I[M] = Inr P.

An interpretation that satisfies a formula is called a model. Satisfiability for M2L,

denoted by infix � :: α list× (� + � set) list→ α Φ→ �, is defined recursively on

α Φ. To simplify the notation, the constructors Inl and Inr are stripped implicitly in

the definition.

(w, I) � Q a m ↔ w[I[m]] = a

(w, I) � m1 < m2↔ I[m1] < I[m2]

(w, I) � m ∈ M ↔ I[m] ∈ I[M]

(w, I) � ϕ ∧ ψ ↔ (w, I) � ϕ ∧ (w, I) � ψ

(w, I) � ϕ ∨ ψ ↔ (w, I) � ϕ ∨ (w, I) � ψ

(w, I) � ¬ ϕ ↔ (w, I) �� ϕ

(w, I) � ∃ ϕ ↔ ∃p ∈ {0, . . . , |w| − 1}. (w, Inl p # I) � ϕ

(w, I) � ∃∃∃∃∃∃∃∃∃ ϕ ↔ ∃P ⊆ {0, . . . , |w| − 1}. (w, Inr P # I) � ϕ

For the definition to make sense, I must correctly map first-order variables to

positions (i.e., I[m] = Inl p) and second-order variables to sets of positions (i.e.,

I[M] = Inr P). Furthermore, all positions in I should be below the length of the

word, and for technical reasons the word should not be empty. We formalize these

assumptions by the predicate wfM2L :: α Φ→ α list× (� + � set) list→ � and call

an interpretation M2L-wellformed for ϕ if wfM2L

ϕ (w, I) holds:

wfM2L

ϕ (w, I) = w �= [] ∧ w ∈ Σ∗ ∧
∀ Inl p ∈ set I. p < |w| ∧
∀Inr P ∈ set I.

(
∀p ∈ P. p < |w|

)
∧

∀m ∈ V1(ϕ). (∃p. I[m] = Inl p) ∧
∀M ∈ V2(ϕ). (∃P. I[M] = Inr P)

5.2 WS1S semantics

In an M2L-well-formed model, positions are restricted by the length of the word.

This is the key difference compared to WS1S. In WS1S, no a priori restrictions

on the variable ranges are made, although all second-order variables still represent

finite sets. The subtle difference is illustrated by the formula ∃∃∃∃∃∃∃∃∃ (∀ 0 ∈ 1) (with names:

∃X. ∀x. x ∈ X), where ∀ ϕ is just an abbreviation for ¬ ∃ ¬ ϕ. In the M2L semantics,

∃∃∃∃∃∃∃∃∃ (∀ 0 ∈ 1) is satisfied by all well-formed interpretations—the witness set for the

outer existential quantifier is for a well-formed interpretation (w, I) just the set

{0, . . . , |w| − 1}. In contrast, in WS1S, there is no finite set which contains all

arbitrarily large positions, thus ∃∃∃∃∃∃∃∃∃ (∀ 0 ∈ 1) is unsatisfiable.

Formally, satisfiability for WS1S, denoted by infix �◦◦◦ :: α list× (� + � set) list→
α Φ → �, is defined just as for M2L (replacing � by �◦◦◦) except for the following

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796815000246
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 18:49:33, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796815000246
https:/www.cambridge.org/core

Verified decision procedures for MSO on words 19

equations.

(w, I) �◦◦◦ Q a m↔
(
if I[m] < |w| then w[I[m]] else z

)
= a

(w, I) �◦◦◦ ∃ ϕ ↔ ∃p. (w, Inl p # I) �◦◦◦ ϕ
(w, I) �◦◦◦ ∃∃∃∃∃∃∃∃∃ ϕ ↔ ∃P. (w, Inr P # I) �◦◦◦ ϕ ∧ finite P

Here, z is a distinguished letter from Σ. WS1S as defined in the literature does not

handle the Q a m case at all, usually interpreting formulas only with respect to the

assignment I. In order to be able to use the same syntax and the same type of

interpretations for both semantics, we have made the above choice. This also allows

us to translate Q a m into the same regular expression irrespective of the intended

semantics.

Besides the mentioned relaxation of WS1S-wellformedness regarding variable

ranges, the empty word also does not impose technical complications as in M2L.

Therefore, the predicate wfWS1S :: α Φ→ α list× (� + � set) list→ � is defined as

follows.

wfWS1S

ϕ (w, I) = w ∈ Σ∗ ∧
∀Inr P ∈ set I. finite P ∧
∀m ∈ V1(ϕ). (∃p. I[m] = Inl p) ∧
∀M ∈ V2(ϕ). (∃P. I[M] = Inr P)

5.3 Encoding interpretations as words

Formulas are equivalent if they have the same set of well-formed models. To relate

equivalent formulas with language equivalent regular expressions, the set of well-

formed models must be represented as a formal language by encoding interpretations

as words. As before, we cover the encoding of the M2L semantics first.

To simplify the formalization, we choose a very simple encoding using Boolean

vectors. For an interpretation (w, I), we associate with every position p in the

word w a Boolean vector bs of length |I|, such that bs[m] = � iff the mth

variable in I is first-order and its value is p or it is second-order and its value

contains p. For example, for Σ = {a, b} the interpretation (w, I) = (aba, Inl 0 #

Inr {1, 2} # Inl 2 # []) can be written in two dimensions as follows:

a b a

Inl 0 � ⊥ ⊥
Inr {1, 2} ⊥ � �
Inl 2 ⊥ ⊥ �

In the first row, the value � is placed only in the first column because the first variable

of I is the first-order position 0. In general, the columns correspond to the Boolean

vectors associated with positions in the word, while every row corresponds to one

variable. For first-order variables, there must be exactly one � per row. The first

row encodes the value of the most recently bound variable. Now, we consider every

column as a letter of a new alphabet, which is the underlying alphabet Σn = Σ×�n

of regular expressions of Section 4. This transformation of interpretations into

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796815000246
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 18:49:33, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796815000246
https:/www.cambridge.org/core

20 D. Traytel and T. Nipkow

words over Σn is performed by the function encM2L :: α list × (� + � set) list →
(α×� list) list; we omit its obvious definition.

Furthermore, the second parameter π :: Σn+1 → Σn of our decision procedure for

regular expressions can now be instantiated as the function that maps (a, b # bs)
to (a, bs). Thus, the projection Π operates on words by removing the first row

from words in the language of the body expression, reflecting the semantics of an

existential quantifier.

Finally, the M2L-language LM2L :: � → α Φ → (α×� list) set of an MSO for-

mula is the set of encodings of its well-formed models, i.e., LM2L

n (ϕ) = {encM2L(w,I) |
wfM2L

ϕ (w, I) ∧ |I| = n ∧ (w, I) � ϕ}.
Concerning WS1S, the encoding is slightly more complicated due to the following

observation: Interpretations (w,I) and (wzn,I) for all n :: � behave the same

when considering satisfiability and wellformedness with respect to a formula (zn

denotes n-fold repetition of the letter z as a word). That suggests that the example

interpretation (w, I) = (aba, Inl 0 # Inr {1, 2} # Inl 2 # []) from above can be

encoded as

a b a zm

Inl 0 � ⊥ ⊥ ⊥m

Inr {1, 2} ⊥ � � ⊥m

Inl 2 ⊥ ⊥ � ⊥m

for every m :: �. Hence, a single WS1S interpretation is translated into a count-

ably infinite set of words by a function encWS1S :: α list × (� + � set) list →
(α×� list) list set; we again omit its formal definition. Accordingly, the WS1S-

language LWS1S :: � → α Φ → (α×� list) set of an MSO formula is defined as

the union of all encodings of its well-formed models: LWS1S

n (ϕ) =
⋃
{encWS1S(w,I) |

wfWS1S

ϕ (w, I) ∧ |I| = n ∧ (w, I) �◦◦◦ ϕ}.

5.4 From M2L formulas to regular expressions

We have fixed the underlying alphabet type α×� list of the language of a formula.

In principle, we could start translating formulas of type α Φ into regular expressions

of type (α×� list) RE. However, the abstraction for atoms introduced in Section 4.4

caters for a more efficient encoding of formulas. We define the data type α atom as

atm = A a bs | AQ m a | ANth m b | ANth2 m M

where atm :: α atom, a bs :: α × � list, m,m1,m2,M :: �, a :: α, and b :: �.

Each constructor of α atom represents a set of elements of type α × � list. The

constructor A represents the singleton set containing the constructor’s argument,

AQ m a encodes all pairs whose first element is a and whose second element (a

Boolean vector) has � at index m. Both, this informal description as well as the

constructor name should indicate that AQ m a is closely related to the formula Q a m.

The remaining two constructors have a similar purpose, being related to the other

base cases of the formula type. Let us make this precise by instantiating the two

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796815000246
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 18:49:33, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796815000246
https:/www.cambridge.org/core

Verified decision procedures for MSO on words 21

parameters memA :: α atom→ α×� list→ � and wfA :: �→ α atom→ �.

memA (A a bs) a bs ′ ↔ a bs = a bs ′ wfA n (A a bs) ↔ a bs ∈ Σn

memA (AQ m a) (a′, bs) ↔ a = a′ ∧ bs[m] wfA n (AQ m a) ↔ a ∈ Σ ∧ m < n
memA (ANth m b) (, bs) ↔ bs[m] = b wfA n (ANth m b) ↔ m < n
memA (ANth2 m M) (, bs)↔ bs[m] ∧ bs[M] wfA n (ANth2 m M)↔ m < n ∧ M < n

Now, we are set to tackle the translations of formulas into regular expressions.

MSO formulas interpreted in M2L are translated by means of the primitive recursive

function mkREM2L :: �→ α Φ→ (α atom) RE.

mkREM2L

n (Q a m) = ¬ 0 · AQ m a · ¬ 0

mkREM2L

n (m1 < m2) = ¬ 0 · ANth m1 � · ¬ 0 · ANth m2 � · ¬ 0

mkREM2L

n (m ∈ M) = ¬ 0 · ANth2 m M · ¬ 0

mkREM2L

n (ϕ ∧ ψ) = mkREM2L

n (ϕ) ∩ mkREM2L

n (ψ)

mkREM2L

n (ϕ ∨ ψ) = mkREM2L

n (ϕ) + mkREM2L

n (ψ)

mkREM2L

n (¬ ϕ) = ¬ mkREM2L

n (ϕ)

mkREM2L

n (∃ ϕ) = Π
(
mkREM2L

n+1(ϕ) ∩ WFn+1{0}
)

mkREM2L

n (∃∃∃∃∃∃∃∃∃ ϕ) = Π
(
mkREM2L

n+1(ϕ)
)

At first, we ignore the function WF that is used in the case of the first-order

quantifier. The natural number parameter of mkREM2L indicates the number for

free variables for the processed formula. The parameter is increased when entering

recursively the scope of an existential quantifier.

The intuition behind the translation is demonstrated by the case Q a m. We fix

a well-formed model (w,I) of Q a m. This model must satisfy w[I[m]] = a, or

equivalently the fact that there exists a Boolean vector bs of length n such that

encM2L(w,I)[I[m]] = (a, bs) and bs[m] = �. Therefore, the letter at position I[m]

of encM2L(w,I) is matched by the “middle” part AQ m a of mkREM2L

n (Q a m), while

the subexpressions ¬ 0 (whose language is Σ∗n) match the first I[m] and the last

n−I[m] letters of encM2L(w,I).

Conversely, if we fix a word from mkREM2L

n (Q a m), it will be equal to an encoding

of an interpretation that satisfies Q a m by a similar argument. However, the

interpretation might be not wellformed for Q a m. This happens because the regular

expression mkREM2L

n (Q a m) does not capture the distinction between first-order and

second-order variables: it accepts encodings of interpretations that have the value

� more than once at different positions representing the same first-order variable.

This indicates that the subexpressions ¬ 0 in the base cases are not precise enough,

but also in the case of Boolean operators similar issues arise. So instead of tinkering

with the base cases, it is better to separate the generation a regular expression that

encodes models from the one that encodes well-formed interpretations.

To rule out not well-formed interpretations is exactly the purpose of the WF ::

�→ � set→ (α atom) RE function.

WFn(X) =
⋂
m∈X

(ANth m ⊥)∗ · ANth m � · (ANth m ⊥)∗

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796815000246
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 18:49:33, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796815000246
https:/www.cambridge.org/core

22 D. Traytel and T. Nipkow

The regular expression WFn(V1(ϕ)) accepts exactly the encodings of well-formed

interpretations (both models and non-models) for ϕ by ensuring that first-order

variables are encoded correctly (i.e., forcing the encoding of an interpretation to

contain exactly one � in rows belonging to a first-order variable).

Lemma 10

Let ϕ be an n-well-formed formula. Then

• Ln(WFn(V1(ϕ))) \ {[]} = {encM2L(w,I) | wfM2L

ϕ (w, I) ∧ |I|= n}, and

• Ln(WFn(V1(ϕ))) = {encWS1S(w,I) | wfWS1S

ϕ (w, I) ∧ |I|= n}.

Using WF in every case of the recursive definition of mkREM2L is sound but very

redundant—instead it is enough to perform the intersection once globally for the

entire formula and additionally for every variable introduced by the first-order

existential quantifier.

MSO formulas interpreted in WS1S are translated into regular expressions by

means of the function mkREWS1S :: �→ α Φ→ (α atom) RE.

The definition of mkREWS1S coincides with the one of mkREM2L except for the

existential quantifier cases:

mkREWS1S

n (∃ ϕ) = Q (z, ⊥n)
(
Π

(
mkREWS1S

n+1(ϕ) ∩ WFn+1{0}
))

mkREWS1S

n (∃∃∃∃∃∃∃∃∃ ϕ) = Q (z, ⊥n)
(
Π

(
mkREWS1S

n+1(ϕ)
))

The regular operation Q :: α × � list → (α atom) RE → (α atom) RE reestablishes

the invariant of having all words terminated with a suffix (z, ⊥n)m for every m :: �
in the WS1S language encoding of a formula as required by definition of encWS1S

(this invariant might be violated by the projection). More precisely, the following

language identity holds for an n-well-formed regular expression r:

Ln(Q a r) =
{

xam | ∃l. xal ∈ Ln(r)
}

The concrete executable definition of Q is more involved. On a high-level, Q is

computed by repeatedly deriving from the right by a via the function D←a (followed

by ACI-normalization) until a repetition is encountered. The definition of D← is

identical to the familiar D which derives from the left except for the concatenation

and iteration cases (in which it is dual).

D←b (0) = 0 D←b (1) = 0

D←b (a) = if a = b then 1 else 0 D←b (r + s) = D←b (r) + D←b (s)

D←b (r · s) = D←b (r∗) = r∗ · D←b (r)

if ε(s) then r · D←b (s) + D←b (r)

else r · D←b (s)

D←b (r ∩ s) = D←b (r) ∩ D←b (s) D←b (¬ r) = ¬ D←b (r)

D←b (Π r) = Π

(⊕
c∈π−b

D←c (r)

)

Repeated derivation is implemented using the while combinator. The state over

which the combinator iterates is of type � × α RE list. The Boolean component

simply indicates whether the loop should be executed once more, while the list

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796815000246
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 18:49:33, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796815000246
https:/www.cambridge.org/core

Verified decision procedures for MSO on words 23

contains all the derivatives computed so far in reversed order (i.e., the last element

of the list is the initial regular expression). The loop is exited on the first déjà

vu. The termination of this procedure is established by the dual of Theorem 2 for

ACI-equivalent “right derivatives”. After exiting the while loop, the operation Q
unions all the expressions computed so far, yielding an operation whose language

is
{

x | ∃l. xal ∈ Ln(r)
}
. To obtain the desired semantics, the iteration of a (lifted to

the α atom type by A) is concatenated to the union.

b
←

(continue,) = continue

c
←
a (, rs) =

let s = 〈D←a (head rs)〉
in if s ∈ set rs then (⊥, rs) else (�, s # rs)

Q a r =

let R = case while b
←

c
←
a (�, 〈r〉) of Some (, rs)⇒ set rs

in

(⊕
r∈R

r

)
· (A a)∗

Finally, we can establish the language correspondence between formulas and

generated regular expressions.

Theorem 11

Let ϕ be an n-well-formed formula. Then

• LM2L

n (ϕ) =Ln(mkREM2L

n (ϕ) ∩ WFn(ϕ)) \ {[]}, and

• LWS1S

n (ϕ) =Ln(mkREWS1S

n (ϕ) ∩ WFn(ϕ)).

The proof is by structural induction on ϕ. Above, we have seen the argument for

the base case Q a m, other base cases follow similarly. The cases ∃ ϕ and ∃∃∃∃∃∃∃∃∃ ϕ follow

easily from the semantics of Π given by our concrete instantiation for π and Σn and

the induction hypothesis. The most interesting cases are, somehow unexpectedly,

those for Boolean operators. Although the definitions are purely structural, sets

of encodings of models must be composed or, even worse, complemented in the

inductive steps. The key property required here is that encM2L (and encWS1S) do

not identify models and non-models: two different well-formed interpretations for

a formula—one being a model, the other being a non-model—are encoded into

different words (sets of words). This is again established by structural induction on

formulas for both semantics.

Lemma 12

Let (w1, I1) and (w2, I2) be two M2L-well-formed interpretations for a formula ϕ

such that encM2L(w1,I1) = encM2L(w2,I2). Then (w1, I1) � ϕ↔ (w2, I2) � ϕ.

Let (w1, I1) and (w2, I2) be two WS1S-well-formed interpretations for a formula

ϕ such that encWS1S(w1,I1) = encWS1S(w2,I2). Then (w1, I1) �◦◦◦ ϕ↔ (w2, I2) �◦◦◦ ϕ.

5.5 Deciding language equivalence of formulas

The algorithms eqvM2L :: �→ α Φ→ α Φ→ � and eqvWS1S :: �→ α Φ→ α Φ→
� that decide language equivalence of MSO formulas check wellformedness of the

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796815000246
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 18:49:33, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796815000246
https:/www.cambridge.org/core

24 D. Traytel and T. Nipkow

input formulas, translate the formulas into regular expressions and let eqvRE do the

work:

eqvM2L

n ϕ ψ = wfΦn (ϕ ∨ ψ) ∧ eqvRE

n (mkREM2L

n (ϕ) + 1) (mkREM2L

n (ψ) + 1)

eqvWS1S

n ϕ ψ = wfΦn (ϕ ∨ ψ) ∧ eqvRE

n (mkREWS1S

n (ϕ)) (mkREWS1S

n (ψ))

Note that wellformedness is checked on the disjunction of both formulas to ensure

that they agree on free variables (i.e., no first-order free variable of ϕ is used as a

second-order free variable in ψ and vice versa). Further, we add the empty word into

both regular expression when working with the M2L semantics. This is allowed, since
[] is not a valid encoding of an interpretation, and necessary because Theorem 11

does not give us any information whether the empty word is contained in the output

of mkREM2L or not.

Termination of eqvRE is ensured by Theorem 6 and the definition principle of

primitive recursion for wfΦ, mkREM2L, and mkREWS1S. Soundness and completeness

follow easily from Theorems 7, 8, and 11.

Theorem 13 (Soundness)

Let ϕ and ψ be MSO formulas.

• If eqvM2L

n ϕ ψ, then LM2L

n (ϕ) =LM2L

n (ψ).

• If eqvWS1S

n ϕ ψ, then LWS1S

n (ϕ) =LWS1S

n (ψ).

Theorem 14 (Completeness)

Let ϕ ∨ ψ be an n-well-formed MSO formula.

• If LM2L

n (ϕ) =LM2L

n (ψ), then eqvM2L

n ϕ ψ.

• If LWS1S

n (ϕ) =LWS1S

n (ψ), then eqvWS1S

n ϕ ψ.

As a sanity check let us apply our translation for M2L to the formula ϕ =

∃∃∃∃∃∃∃∃∃ (∀ 0 ∈ 1) (with names: ∃X. ∀x. x ∈ X), that is valid under the M2L semantics (but

unsatisfiable under the WS1S semantics as discussed earlier). Since ϕ is closed, it is

0-wellformed and our underlying alphabet is Σ0 = Σ × �0 for some base alphabet

Σ. For example, we can take Σ = {a} and write the unique element of Σ0 as â. The

function 〈〈mkREM2L

0 (ϕ)〉〉 translates ϕ to the accepting Π-extended regular expression

Π r over Σ0 where r is an abbreviation:

r = ¬ Π (((ANth 0 ⊥)∗ · ANth 0 � · (ANth 0 ⊥)∗) ∩ ¬ (¬ 0 · ANth2 0 1 · ¬ 0))

Derivatives of Π r by words of the form ân for n > 0 are all ≈-equivalent to a single

(also accepting) expression. More precisely, for all w ∈ Σ∗0 \ {[]}, we have

D∗w(Π r) = Π r + Π (r ∩ ¬ Π ((ANth 0 ⊥∗) ∩ ¬ (¬ 0 · ANth2 0 1 · ¬ 0)))

Because all derivatives of its translation are accepting, the formula ϕ must be valid.

We would have loved to include the same example using the WS1S semantics as

well, but unfortunately the output of the translation (and normalization) is a regular

expression with more than 2,000 constructors (which the decision procedure still can

handle).

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796815000246
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 18:49:33, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796815000246
https:/www.cambridge.org/core

Verified decision procedures for MSO on words 25

6 Application: finite-word LTL

We want to execute the code generated by Isabelle/HOL for our decision procedures

on some larger examples. For simplicity, we first focus on M2L.

In order to create larger formulas, it is helpful to introduce some syntactic

abbreviations. We define the unsatisfiable formula ⊥ as ∃ 0 < 0 and the valid formula

� as ¬ ⊥. Now, checking that a formula is valid amounts to checking its equivalence

to �. We call the function that performs this check Thm. Implication ϕ → ψ is

defined as (¬ ϕ) ∨ ψ and universal quantification ∀ ϕ as before as ¬ ∃ ¬ ϕ. Next,

we introduce temporal logical operators always �P :: � → α Φ and eventually

�P :: �→ α Φ depending on P :: �→ α Φ—a formula parameterized by a single

variable indicating the time. The operators have their usual meaning except that

with the given M2L semantics the time variable ranges over a fixed set determined

by the interpretation. Additionally, we lift the disjunction and implication to time-

parameterized formulas.

�P t = ∀ (¬ t + 1 < 0→P 0)

�P t = ∃ (¬ t + 1 < 0 ∧ P 0)

(P⇒ Q) t = P t→ Q t
(P Q) t = P t ∨ Q t

Note that t + 1 has nothing to do with the next time step. It is just the lifting of the

de Bruijn index under a single quantifier.

Formulas of linear temporal logic also contain atomic predicates for which the

interpretation must specify at which points in time they are true. This information

can be encoded in two ways, which we compare in the following.

The first possibility is to encode atomic predicates in the word of the interpretation.

This is done by identifying Σ with the powerset P of atomic predicates. For every

point in time, that is for every position in the word, the letter is the set of predicates

that are true at this point. Using this encoding, we can prove the validity of the

following closed formulas over the alphabet P{P} = {{P}, {}} automatically within

a few milliseconds.

∀
(
�(Q{P})⇒ �(Q{P})

)
0

∀
(
�(Q{P})⇒��(Q{P})

)
0

Alternatively, a free second-order variable can be used to encode an atomic

predicate directly. The variable denotes the set of points in time for which the

atomic predicate holds. The alphabet Σ can then be trivial, i.e., Σ = {a} for an

arbitrary a. Using this encoding, the above two formulas correspond to

∀ (�(λt. t ∈ 2)⇒ �(λt. t ∈ 2)) 0

∀ (�(λt. t ∈ 2)⇒��(λt. t ∈ 3)) 0

Both formulas have one free second-order variable 0 that is lifted when passing

two or three quantifiers. The generated algorithm shows the equivalence to � again

within milliseconds.

In order to explore the limits of our decision procedure, formulas over more atomic

predicates are required. Therefore, we consider the distributivity theorems of � over

implication for both representations of atomic predicates as shown in Figure 2.

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796815000246
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 18:49:33, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796815000246
https:/www.cambridge.org/core

26 D. Traytel and T. Nipkow

Fig. 2. Definition of ϕn and ψn.

Fig. 3. Benchmarks for ϕn (under M2L/WS1S semantics).

When the number of predicates n is increased, the size of ϕn grows exponentially:

to express that a predicate P holds at some position we need the disjunction of all

atoms containing P. In contrast, the size of ψn grows linearly. The complexity of ψn

is hidden in the number of variables and therefore in its encoding—the latter also

grows exponentially with increasing n.

Both, ϕi and ψi are theorems under both semantics. The running times of the

decision procedure Thm in seconds are summarized in Figures 3 and 4 (column

Thm, first number refers to the M2L semantics, the second to WS1S). Thereby,

ψ1, ψ2, and ψ3 were processed over Σ = {a}, ϕ1 was processed over Σ = P{P},
ϕ2 over Σ = P{P1, P2} and finally ϕ3 over Σ = P{P1, P2, P3}. The column “ICFP

2013” recapitulates the running times from the earlier unoptimized version of this

procedure (Traytel & Nipkow, 2013).

Figures 3 and 4 also shows the sizes (column size counting the number of

constructors) of the regular expressions generated from the input formulas. These

numbers show a huge gap between WS1S and M2L that also shows up in the

runtime results. Our implementation of Q is very inefficient. As future work, we plan

Fig. 4. Benchmarks for ψn (under M2L/WS1S semantics).

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796815000246
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 18:49:33, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796815000246
https:/www.cambridge.org/core

Verified decision procedures for MSO on words 27

to investigate the addition of this regular operator as a constructor to the data type

of regular expressions, similarly to our addition of the projection operator.

The last two columns show the running times of two variations of Thm: Thminterm

and Thmdual. One remaining source of inefficiency in Thm is the fact that, although

it constructs a bisimulation modulo 〈〈−〉〉, the intermediate expressions on which

the derivatives are computed are only ACI-normalized (i.e., they might contain

redundant subexpressions like 0 ∩ r and the derivative would needlessly recurse in r).
The algorithm Thminterm addresses this inefficiency by normalizing the intermediate

expressions with 〈〈−〉〉. This intermediate normalization might seem harmless, but it

is not clear anymore that the number of derivatives interspersed with normalization

is finite3. We were not able to prove finiteness of such derivatives interspersed with

〈〈−〉〉 (although we conjecture that it holds). However, we have proved that under

the condition that Thminterm terminates, its output—namely � if the input formula

is valid, ⊥ otherwise—is correct.

The algorithm Thmdual is similar to Thminterm in the respect that it normalizes

intermediate expressions. Therefore, we again guarantee only partial correctness.

Unlike Thminterm, Thmdual works with dual regular expressions (Section 4.5). It

seems to be the better choice for the WS1S semantics.

The attentive reader will have noticed that we have said nothing about how sets

are represented in the code generated from our mathematical definitions. We use the

default implementation as lists (with a linear membership test) from Isabelle’s library

for our measurements. We have also experimented with an existing verified red–black

tree implementation. Isabelle’s code generator supports the transparent replacement

of sets by some verified implementation (Haftmann et al., 2013). Unfortunately, the

overhead incurred by the trees outweighed the gain of a logarithmic membership

test instead of a linear one.

The performance of our automatically generated code may appear disappointing

but that would be a misunderstanding of our intentions. We see our work primarily

as a succinct and elegant functional program that may pave the way towards verified

and efficient decision procedures. As a bonus, the generated code is applicable to

small examples. In the context of interactive theorem proving, this is primarily what

one encounters: small formulas. Any automation is welcome here because it saves

the user time and effort. Automatic verification of larger systems is the domain of

highly tuned implementations such as MONA.

7 Conclusion

We have presented functional programs that decide equivalence of MSO formulas

for two different semantics in Isabelle/HOL. They come with formal proofs of

termination, soundness and completeness. The programs operate by translating

formulas into Π-extended regular expressions and deciding the language equivalence

3 For example, using the terminating normalization function that does the same ACI simplifications as
〈−〉, but additionally soundly rewrites 1 · a∗ to a∗ · a∗ for a fixed symbol a will result in an infinite
number of derivatives when applied at intermediate steps to the initial expression a∗.

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796815000246
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 18:49:33, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796815000246
https:/www.cambridge.org/core

28 D. Traytel and T. Nipkow

of the latter using Brzozowski derivatives. Although formalized in Isabelle/HOL’s

functional programming language, we can automatically generate code from them

in different functional target languages. The development amounts to roughly 500

lines of functional programs and 6,500 lines of proofs, of which 3,000 lines are

devoted to deciding equivalence of Π-extended regular expressions. The functional

programs are completely contained in this paper. The Isabelle scripts are publicly

available (Traytel & Nipkow, 2014).

Our work can be continued in two dimensions. First, our algorithm still offers

much room for optimization. Especially, the inefficient formalization of Q should

be revised. Second, several related decidable logics can be formalized and verified

using similar technology. A related logic is MSO on infinite words (also called

S1S). S1S formulas can be translated into ω-regular expressions representing ω-

regular languages. A verified decision procedure for deciding equivalence of ω-

regular expressions without constructing ω-automata is an interesting challenge. A

similarly ambitious goal is to move from words to trees (or even from ω-words to

ω-trees) and decide equivalence of MSO formulas on (in)finite trees (or alternatively

(W)S2S formulas) by translating them into (ω-)regular tree expressions.

Acknowledgments

We thank Alexander Krauss for inspiring discussions, Jasmin Blanchette for numer-

ous comments on the presentation, and several anonymous reviewers for a wealth of

comments and questions that helped to clarify certain fine points. While carrying out

this work, Traytel was affiliated with TU München and supported by the doctorate

program 1480 (PUMA) of the Deutsche Forschungsgemeinschaft (DFG).

References

Antimirov, V. (1996) Partial derivatives of regular expressions and finite automaton

constructions. Theor. Comput. Sci. 155(2), 291–319.

Asperti, A. (2012) A compact proof of decidability for regular expression equivalence. In

Proc. Int. Conf. Interactive Theorem Proving, ITP 2012, Beringer, L. & Felty, A. (eds), Lect.

Notes Comput. Sci., vol. 7406. Springer, pp. 283–298.

Ayari, A. & Basin, D. (2000) Bounded model construction for monadic second-order logics.

In Proc. Int. Conf. Computer Aided Verification, CAV 2000, Emerson, E. A. & Sistla, A. P.

(eds), Lect. Notes Comput. Sci., vol. 1855. Springer, pp. 99–112.

Ballarin, C. (2006) Interpretation of locales in Isabelle: Theories and proof contexts. In Proc.

Int. Conf. Mathematical Knowledge Management, MKM 2006, Borwein, J. M. & Farmer,

W. M. (eds), Lect. Notes Comput. Sci., vol. 4108. Springer, pp. 31–43.

Basin, D. & Friedrich, S. (2000) Combining WS1S and HOL. In Frontiers of Combining

Systems 2, Gabbay, D. M. & de Rijke, M. (eds), Studies in Logic and Computation, vol. 7.

Research Studies Press, pp. 39–56.

Berghofer, S. & Reiter, M. (2009) Formalizing the logic-automaton connection. In Proc. Int.

Conf. Theorem Proving in Higher Order Logics, TPHOLs 2009, Berghofer, S., Nipkow, T.,

Urban, C. & Wenzel, M. (eds), Lect. Notes Comput. Sci., vol. 5674. Springer, pp. 147–163.

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796815000246
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 18:49:33, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796815000246
https:/www.cambridge.org/core

Verified decision procedures for MSO on words 29

Bonchi, F. & Pous, D. (2013) Checking NFA equivalence with bisimulations up to congruence.

In Proc. Int. Symp. Principles of Programming Languages, POPL 2013, Giacobazzi, R. &

Cousot, R. (eds), ACM, pp. 457–468.

Braibant, T. & Pous, D. (2010) An efficient Coq tactic for deciding Kleene algebras. In Proc.

Int. Conf. Interactive Theorem Proving, ITP 2010, Kaufmann, M. & Paulson, L. (eds), Lect.

Notes Comput. Sci., vol. 6172. Springer, pp. 163–178.

Brzozowski, J. A. (1964) Derivatives of regular expressions. J. ACM 11(4), 481–494.

Caron, P., Champarnaud, J.-M., & Mignot, L. (2011) Partial derivatives of an extended

regular expression. In Proc. Int. Conf. Language and Automata Theory and Applications,

LATA 2011, Dediu, A.-H., Inenaga, S. & Martı́n-Vide, C. (eds), Lect. Notes Comput. Sci.,

vol. 6638. Springer, pp. 179–191.

Coquand, T. & Siles, V. (2011) A decision procedure for regular expression equivalence in

type theory. In Proc. Int. Conf. Certified Programs and Proofs, CPP 2011, Jouannaud, J.-P.

& Shao, Z. (eds), Lect. Notes Comput. Sci., vol. 7086. Springer, pp. 119–134.

Danielsson, N. A. (2010) Total parser combinators. In Proc. Int. Conf. Functional Programming,

ICFP 2010, Hudak, P. & Weirich, S. (eds), ACM, pp. 285–296.

Elgaard, J., Klarlund, N. & Møller, A. (1998) MONA 1.x: New techniques for WS1S and

WS2S. In Proc. Int. Conf. Computer Aided Verification, CAV 1998, Hu, A. J. & Vardi, M. Y.

(eds), Lect. Notes Comput. Sci., vol. 1427. Springer, pp. 516–520.

Fischer, S., Huch, F. & Wilke, T. (2010) A play on regular expressions: Functional pearl. Proc.

Int. Conf. Functional Programming, ICFP 2010, Hudak, P. & Weirich, S. (eds), ACM, pp.

357–368.

Ginzburg, A. (1967) A procedure for checking equality of regular expressions. J. ACM 14(2),

355–362.

Haftmann, F. & Nipkow, T. (2010) Code generation via higher-order rewrite systems. Proc.

Int. Symp. Functional and Logic Programming, FLOPS 2010, Lect. Notes Comput. Sci., vol.

6009. Springer, pp. 103–117.

Haftmann, F., Krauss, A., Kunčar, O. & Nipkow, T. (2013) Data refinement in Isabelle/HOL.

In Proc. Int. Conf. Interactive Theorem Proving, ITP 2013, Blazy, S., Paulin-Mohring, C. &

Pichardie, D. (eds), Lect. Notes Comput. Sci., vol. 7998. Springer, pp. 100–115.

Henriksen, J. G., Jensen, J. L., Jørgensen, M. E., Klarlund, N., Paige, R., Rauhe, T. & Sandholm,

A. (1995) MONA: Monadic second-order logic in practice. In Proc. Int. Workshop Tools

and Algorithms for the Construction and Analysis of Systems, TACAS 1995, Brinksma, E.,

Cleaveland, R., Larsen, K., Margaria, T. & Steffen, B. (eds), Lect. Notes Comput. Sci., vol.

1019. Springer, pp. 89–110.

Klarlund, N. (1999) A theory of restrictions for logics and automata. In Proc. Int. Conf.

Computer Aided Verification, CAV 1999, Halbwachs, N. & Peled, D. (eds), Lect. Notes

Comput. Sci., vol. 1633. Springer, pp. 406–417.

Kozen, D. (2008 March) On the Coalgebraic Theory of Kleene Algebra with Tests. Tech.

rept. http://hdl.handle.net/1813/10173. Computing and Information Science, Cornell

University.

Krauss, A. & Nipkow, T. (2012) Proof pearl: Regular expression equivalence and relation

algebra. J. Autom. Reason. 49(1), 95–106. published online March 2011.

Might, M., Darais, D. & Spiewak, D. (2011) Parsing with derivatives: A functional pearl.

In Proc. Int. Conf. Functional Programming, ICFP 2011, Chakravarty, M. M. T., Hu, Z. &

Danvy, O. (eds), ACM, pp. 189–195.

Moreira, N., Pereira, D. & de Sousa, S. M. (2012) Deciding regular expressions (in-)equivalence

in Coq. In Relational and Algebraic Methods in Computer Science, RAMiCS 2012, Kahl, W.

& Griffin, T. (eds), Lect. Notes Comput. Sci., vol. 7560. Springer, pp. 98–113.

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796815000246
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 18:49:33, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796815000246
https:/www.cambridge.org/core

30 D. Traytel and T. Nipkow

Nipkow, T. & Klein, G. (2014) Concrete Semantics: With Isabelle/HOL. Springer. Available

at: http://www.in.tum.de/~nipkow/Concrete-Semantics.

Nipkow, T. & Traytel, D. (2014) Unified decision procedures for regular expression equivalence.

In Proc. Int. Conf. Interactive Theorem Proving, ITP 2014, Klein, G. & Gamboa, R. (eds),

Lect. Notes Comput. Sci., vol. 8558. Springer, pp. 450–466.

Nipkow, T., Paulson, L. & Wenzel, M. (2002) Isabelle/HOL — A Proof Assistant for Higher-

Order Logic. Lect. Notes Comput. Sci., vol. 2283. Springer.

Okhotin, A. (2005) The dual of concatenation. Theor. Comput. Sci. 345(2–3), 425–447.

Owens, S., Reppy, J. H. & Turon, A. (2009) Regular-expression derivatives re-examined.

J. Funct. Program. 19(2), 173–190.

Owre, S. & Rueß, H. (2000) Integrating WS1S with PVS. In Proc. Int. Conf. Computer Aided

Verification, CAV 2000, Emerson, E. A. & Sistla, A. P. (eds), Lect. Notes Comput. Sci., vol.

1855. Springer, pp. 548–551.

Pous, D. (2015) Symbolic algorithms for language equivalence and Kleene algebra with test.

In Proc. Int. Symp. Principles of Programming Languages, POPL 2015, Walker, D. (ed),

ACM, pp. 357–368.

Rutten, Jan J. M. M. (1998) Automata and coinduction (an exercise in coalgebra) In Proc.

Int. Conf. Concurrency Theory, CONCUR 1998, Sangiorgi, D. & de Simone, R. (eds), Lect.

Notes Comput. Sci., vol. 1466. Springer, pp. 194–218.

Thomas, W. (1997) Languages, automata, and logic. In Handbook of Formal Languages,

Rozenberg, G. & Salomaa, A. (eds), Springer, pp. 389–455.

Traytel, D. & Nipkow, T. (2013) Verified decision procedures for MSO on words based on

derivatives of regular expressions. Proc. Int. Conf. Functional Programming, ICFP 2013,

Morrisett, G. & Uustalu, T. (eds), ACM, pp. 3–12.

Traytel, D. & Nipkow, T. (2014) Decision procedures for MSO on words based on derivatives

of regular expressions. In Archive of Formal Proofs, Klein, G., Nipkow, T. & Paulson, L. (eds),

http://afp.sf.net/entries/MSO_Regex_Equivalence.shtml, Formal proof development.

Wu, C., Zhang, X. & Urban, C. (2014) A formalisation of the Myhill-Nerode theorem based

on regular expressions. J. Autom. Reason. 52(4), 451–480.

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796815000246
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 18:49:33, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796815000246
https:/www.cambridge.org/core

