13 research outputs found

    A Fully integrated D-band Direct-Conversion I/Q Transmitter and Receiver Chipset in SiGe BiCMOS Technology

    Get PDF
    This paper presents design and characterization of single-chip 110-170 GHz (D-band) direct conversion in-phase/quadrature-phase (I/Q) transmitter and receiver monolithic microwave integrated circuits (MMICs), realized in a 130 nm SiGe BiCMOS process with ft/fmax of 250 GHz/370 GHz. The chipset is suitable for low power wideband communication and can be used in both homodyne and heterodyne architectures. The Transmitter chip consists of a six-stage power amplifier, an I/Q modulator, and a LO multiplier chain. The LO multiplier chain consists of frequency sixtupler followed by a two-stage amplifier. It exhibits a single sideband conversion gain of 23 dB and saturated output power of 0 dBm. The 3 dB RF bandwidth is 31 GHz from 114 to 145 GHz. The receiver includes a low noise amplifier, I/Q demodulator and x6 multiplier chain at the LO port. The receiver provides a conversion gain of 27 dB and has a noise figure of 10 dB. It has 3 dB RF bandwidth of 28 GHz from 112-140 GHz. The transmitter and receiver have dc power consumption of 240 mW and 280 mW, respectively. The chip area of each transmitter and receiver circuit is 1.4 mm x 1.1 mm

    Dual-Band Transmitter and Receiver with Bowtie-Antenna in 0.13 μm SiGe BiCMOS for Gas Spectroscopy at 222 - 270 GHz

    Get PDF
    This paper presents a transmitter (TX) and a receiver (RX) with bowtie-antenna and silicon lens for gas spectroscopy at 222-270 GHz, which are fabricated in IHP’s 0.13 μm SiGe BiCMOS technology. The TX and RX use two integrated local oscillators for 222 – 256 GHz and 250 – 270 GHz, which are switched for dual-band operation. Due to its directivity of about 27 dBi, the single integrated bowtie-antenna with silicon lens enables an EIRP of about 25 dBm for the TX, and therefore a considerably higher EIRP for the 2-band TX compared to previously reported systems. The double sideband noise temperature of the RX is 20,000 K (18.5 dB noise figure) as measured by the Y-factor method. Absorption spectroscopy of gaseous methanol is used as a measure for the performance of the gas spectroscopy system with TX- and RX-modules

    Design and characterization of monolithic millimeter-wave active and passive components, low-noise and power amplifiers, resistive mixers, and radio front-ends

    Get PDF
    This thesis focuses on the design and characterization of monolithic active and passive components, low-noise and power amplifiers, resistive mixers, and radio front-ends for millimeter-wave applications. The thesis consists of 11 publications and an overview of the research area, which also summarizes the main results of the work. In the design of millimeter-wave active and passive components the main focus is on realized CMOS components and techniques for pushing nanoscale CMOS circuits beyond 100 GHz. Test structures for measuring and analyzing these components are shown. Topologies for a coplanar waveguide, microstrip line, and slow-wave coplanar waveguide that are suitable for implementing transmission lines in nanoscale CMOS are presented. It is demonstrated that the proposed slow-wave coplanar waveguide improves the performance of the transistor-matching networks when compared to a conventional coplanar waveguide and the floating slow-wave shield reduces losses and simplifies modeling when extended below other passives, such as DC decoupling and RF short-circuiting capacitors. Furthermore, wideband spiral transmission line baluns in CMOS at millimeter-wave frequencies are demonstrated. The design of amplifiers and a wideband resistive mixer utilizing the developed components in 65-nm CMOS are shown. A 40-GHz amplifier achieved a +6-dBm 1-dB output compression point and a saturated output power of 9.6 dBm with a miniature chip size of 0.286 mm². The measured noise figure and gain of the 60-GHz amplifier were 5.6 dB and 11.5 dB, respectively. The V-band balanced resistive mixer achieved a 13.5-dB upconversion loss and 34-dB LO-to-RF isolation with a chip area of 0.47 mm². In downconversion, the measured conversion loss and 1-dB input compression point were 12.5 dB and +5 dBm, respectively. The design and experimental results of low-noise and power amplifiers are presented. Two wideband low-noise amplifiers were implemented in a 100-nm metamorphic high electron mobility transistor (HEMT) technology. The amplifiers achieved a 22.5-dB gain and a 3.3-dB noise figure at 94 GHz and a 18-19-dB gain and a 5.5-7.0-dB noise figure from 130 to 154 GHz. A 60-GHz power amplifier implemented in a 150-nm pseudomorphic HEMT technology exhibited a +17-dBm 1-dB output compression point with a 13.4-dB linear gain. In this thesis, the main system-level aspects of millimeter-wave transmitters and receivers are discussed and the experimental circuits of a 60-GHz transmitter front-end and a 60-GHz receiver with an on-chip analog-to-digital converter implemented in 65-nm CMOS are shown. The receiver exhibited a 7-dB noise figure, while the saturated output power of the transmitter front-end was +2 dBm. Furthermore, a wideband W-band transmitter front-end with an output power of +6.6 dBm suitable for both image-rejecting superheterodyne and direct-conversion transmission is demonstrated in 65-nm CMOS

    Resonant tunnelling diode terahertz sources for broadband wireless communications

    Get PDF
    This paper will discuss resonant tunnelling diode (RTD) sources being developed on a European project iBROW (ibrow. project. eu) to enable short-range multi-gigabit wireless links and microwave-photonic interfaces for seamless links to the optical fibre backbone network. The practically relevant output powers are at least 10 mW at 90 GHz, 5 mW at 160 GHz and 1 mW at 300 GHz and simulation and some experimental results show that these are feasible in RTD technology. To date, 75 - 315 GHz indium phosphide (InP) based RTD oscillators with relatively high output powers in the 0.5 - 1.1 mW range have been demonstrated on the project. They are realised in various circuit topologies including those that use a single RTD device, 2 RTD devices and up to 4 RTD devices for increasingly higher output power. The oscillators are realised using only photolithography by taking advantage of the large micron-sized but broadband RTD devices. The paper will also describe properties of RTD devices as photo-detectors which makes this a unified technology that can be integrated into both ends of a wireless link, namely consumer portable devices and fibre-optic supported base-stations (since integration with laser diodes is also possible).info:eu-repo/semantics/publishedVersio

    Design of Fully-Integrated High-Resolution Radars in CMOS and BiCMOS Technologies

    Get PDF
    The RADAR, acronym that stands for RAdio Detection And ranging, is a device that uses electromagnetic waves to detect the presence and the distance of an illuminated target. The idea of such a system was presented in the early 1900s to determine the presence of ships. Later on, with the approach of World War II, the radar gained the interest of the army who decided to use it for defense purposes, in order to detect the presence, the distance and the speed of ships, planes and even tanks. Nowadays, the use of similar systems is extended outside the military area. Common applications span from weather surveillance to Earth composition mapping and from flight control to vehicle speed monitoring. Moreover, the introduction of new ultrawideband (UWB) technologies makes it possible to perform radar imaging which can be successfully used in the automotive or medical field. The existence of a plenty of known applications is the reason behind the choice of the topic of this thesis, which is the design of fully-integrated high-resolution radars. The first part of this work gives a brief introduction on high resolution radars and describes its working principle in a mathematical way. Then it gives a comparison between the existing radar types and motivates the choice of an integrated solution instead of a discrete one. The second part concerns the analysis and design of two CMOS high-resolution radar prototypes tailored for the early detection of the breast cancer. This part begins with an explanation of the motivations behind this project. Then it gives a thorough system analysis which indicates the best radar architecture in presence of impairments and dictates all the electrical system specifications. Afterwards, it describes in depth each block of the transceivers with particular emphasis on the local oscillator (LO) generation system which is the most critical block of the designs. Finally, the last section of this part presents the measurement results. In particular, it shows that the designed radar operates over 3 octaves from 2 to 16GHz, has a conversion gain of 36dB, a flicker-noise-corner of 30Hz and a dynamic range of 107dB. These characteristics turn into a resolution of 3mm inside the body, more than enough to detect even the smallest tumor. The third and last part of this thesis focuses on the analysis and design of some important building blocks for phased-array radars, including phase shifter (PHS), true time delay (TTD) and power combiner. This part begins with an exhaustive introduction on phased array systems followed by a detailed description of each proposed lumped-element block. The main features of each block is the very low insertion loss, the wideband characteristic and the low area consumption. Finally, the major effects of circuit parasitics are described followed by simulation and measurement results

    Journal of Telecommunications and Information Technology, 2009, nr 4

    Get PDF
    kwartalni
    corecore