101,579 research outputs found

    Performance analysis of parallel gravitational NN-body codes on large GPU cluster

    Get PDF
    We compare the performance of two very different parallel gravitational NN-body codes for astrophysical simulations on large GPU clusters, both pioneer in their own fields as well as in certain mutual scales - NBODY6++ and Bonsai. We carry out the benchmark of the two codes by analyzing their performance, accuracy and efficiency through the modeling of structure decomposition and timing measurements. We find that both codes are heavily optimized to leverage the computational potential of GPUs as their performance has approached half of the maximum single precision performance of the underlying GPU cards. With such performance we predict that a speed-up of 200−300200-300 can be achieved when up to 1k processors and GPUs are employed simultaneously. We discuss the quantitative information about comparisons of two codes, finding that in the same cases Bonsai adopts larger time steps as well as relative energy errors than NBODY6++, typically ranging from 10−5010-50 times larger, depending on the chosen parameters of the codes. While the two codes are built for different astrophysical applications, in specified conditions they may overlap in performance at certain physical scale, and thus allowing the user to choose from either one with finetuned parameters accordingly.Comment: 15 pages, 7 figures, 3 tables, accepted for publication in Research in Astronomy and Astrophysics (RAA

    A Parallel Monte Carlo Code for Simulating Collisional N-body Systems

    Full text link
    We present a new parallel code for computing the dynamical evolution of collisional N-body systems with up to N~10^7 particles. Our code is based on the the Henon Monte Carlo method for solving the Fokker-Planck equation, and makes assumptions of spherical symmetry and dynamical equilibrium. The principal algorithmic developments involve optimizing data structures, and the introduction of a parallel random number generation scheme, as well as a parallel sorting algorithm, required to find nearest neighbors for interactions and to compute the gravitational potential. The new algorithms we introduce along with our choice of decomposition scheme minimize communication costs and ensure optimal distribution of data and workload among the processing units. The implementation uses the Message Passing Interface (MPI) library for communication, which makes it portable to many different supercomputing architectures. We validate the code by calculating the evolution of clusters with initial Plummer distribution functions up to core collapse with the number of stars, N, spanning three orders of magnitude, from 10^5 to 10^7. We find that our results are in good agreement with self-similar core-collapse solutions, and the core collapse times generally agree with expectations from the literature. Also, we observe good total energy conservation, within less than 0.04% throughout all simulations. We analyze the performance of the code, and demonstrate near-linear scaling of the runtime with the number of processors up to 64 processors for N=10^5, 128 for N=10^6 and 256 for N=10^7. The runtime reaches a saturation with the addition of more processors beyond these limits which is a characteristic of the parallel sorting algorithm. The resulting maximum speedups we achieve are approximately 60x, 100x, and 220x, respectively.Comment: 53 pages, 13 figures, accepted for publication in ApJ Supplement

    4.45 Pflops Astrophysical N-Body Simulation on K computer -- The Gravitational Trillion-Body Problem

    Full text link
    As an entry for the 2012 Gordon-Bell performance prize, we report performance results of astrophysical N-body simulations of one trillion particles performed on the full system of K computer. This is the first gravitational trillion-body simulation in the world. We describe the scientific motivation, the numerical algorithm, the parallelization strategy, and the performance analysis. Unlike many previous Gordon-Bell prize winners that used the tree algorithm for astrophysical N-body simulations, we used the hybrid TreePM method, for similar level of accuracy in which the short-range force is calculated by the tree algorithm, and the long-range force is solved by the particle-mesh algorithm. We developed a highly-tuned gravity kernel for short-range forces, and a novel communication algorithm for long-range forces. The average performance on 24576 and 82944 nodes of K computer are 1.53 and 4.45 Pflops, which correspond to 49% and 42% of the peak speed.Comment: 10 pages, 6 figures, Proceedings of Supercomputing 2012 (http://sc12.supercomputing.org/), Gordon Bell Prize Winner. Additional information is http://www.ccs.tsukuba.ac.jp/CCS/eng/gbp201

    Improving the scalability of parallel N-body applications with an event driven constraint based execution model

    Full text link
    The scalability and efficiency of graph applications are significantly constrained by conventional systems and their supporting programming models. Technology trends like multicore, manycore, and heterogeneous system architectures are introducing further challenges and possibilities for emerging application domains such as graph applications. This paper explores the space of effective parallel execution of ephemeral graphs that are dynamically generated using the Barnes-Hut algorithm to exemplify dynamic workloads. The workloads are expressed using the semantics of an Exascale computing execution model called ParalleX. For comparison, results using conventional execution model semantics are also presented. We find improved load balancing during runtime and automatic parallelism discovery improving efficiency using the advanced semantics for Exascale computing.Comment: 11 figure

    GreeM : Massively Parallel TreePM Code for Large Cosmological N-body Simulations

    Full text link
    In this paper, we describe the implementation and performance of GreeM, a massively parallel TreePM code for large-scale cosmological N-body simulations. GreeM uses a recursive multi-section algorithm for domain decomposition. The size of the domains are adjusted so that the total calculation time of the force becomes the same for all processes. The loss of performance due to non-optimal load balancing is around 4%, even for more than 10^3 CPU cores. GreeM runs efficiently on PC clusters and massively-parallel computers such as a Cray XT4. The measured calculation speed on Cray XT4 is 5 \times 10^4 particles per second per CPU core, for the case of an opening angle of \theta=0.5, if the number of particles per CPU core is larger than 10^6.Comment: 13 pages, 11 figures, accepted by PAS

    Sapporo2: A versatile direct NN-body library

    Full text link
    Astrophysical direct NN-body methods have been one of the first production algorithms to be implemented using NVIDIA's CUDA architecture. Now, almost seven years later, the GPU is the most used accelerator device in astronomy for simulating stellar systems. In this paper we present the implementation of the Sapporo2 NN-body library, which allows researchers to use the GPU for NN-body simulations with little to no effort. The first version, released five years ago, is actively used, but lacks advanced features and versatility in numerical precision and support for higher order integrators. In this updated version we have rebuilt the code from scratch and added support for OpenCL, multi-precision and higher order integrators. We show how to tune these codes for different GPU architectures and present how to continue utilizing the GPU optimal even when only a small number of particles (N<100N < 100) is integrated. This careful tuning allows Sapporo2 to be faster than Sapporo1 even with the added options and double precision data loads. The code runs on a range of NVIDIA and AMD GPUs in single and double precision accuracy. With the addition of OpenCL support the library is also able to run on CPUs and other accelerators that support OpenCL.Comment: 15 pages, 7 figures. Accepted for publication in Computational Astrophysics and Cosmolog
    • …
    corecore