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Abstract We compare the performance of two very different parallel gravitationalN-
body codes for astrophysical simulations on large GPU clusters, both pioneer in their
own fields as well as in certain mutual scales -NBODY6++ andBonsai. We carry out
the benchmark of the two codes by analyzing their performance, accuracy and efficiency
through the modeling of structure decomposition and timingmeasurements. We find that
both codes are heavily optimized to leverage the computational potential of GPUs as their
performance has approached half of the maximum single precision performance of the
underlying GPU cards. With such performance we predict thata speed-up of200−300 can
be achieved when up to 1k processors and GPUs are employed simultaneously. We discuss
the quantitative information about comparisons of two codes, finding that in the same
casesBonsai adopts larger time steps as well as relative energy errors thanNBODY6++,
typically ranging from10 − 50 times larger, depending on the chosen parameters of the
codes. While the two codes are built for different astrophysical applications, in specified
conditions they may overlap in performance at certain physical scale, and thus allowing
the user to choose from either one with finetuned parameters accordingly.

Key words: methods: analytical — methods: data analysis — methods: numerical

1 INTRODUCTION

Algorithms for gravitationalN-body simulations, which are widely used tools in astrophysics nowadays,
have mainly evolved into two categories over the passed decades. Traditionally, by computing the pair-
wise force among particles, the direct summation method hasbeen employed as the core idea of the so-
called “directN -body code”. High accuracy can be archived by choosing smaller time steps, with higher
computational costs. Some best-known examples are theNBODY series codes developed byAarseth
(1999) and theStarlab environment developed by Hut, McMillan, Makino, PortegiesZwart, etc
(Hut 2003). Alternatively, the force calculation can be approximated with certain assumptions. In the
late 1960s, some approximation algorithm such as tree-codeor mesh-code are developed in attempt to
reduce the computational complexity so that larger simulations can be scaled on limited hardware with
acceptable time. One of the most prominent approximated algorithm, namely Barnes-Hut tree (Barnes &
Hut 1986), also have many implementations such asGADGET developed bySpringel(2005) andPEPC
developed by Gibbon, Winkel and collaborators (Winkel et al. 2012) .

http://arxiv.org/abs/1508.02510v1
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Since direct summation methods use an all-to-all particle force direct summation method they have
a raw computational complexityO(N2). Additional algorithms are developed to cut the absolute wall-
clock time down in spite of the prohibitive asymptotic complexity. On the other side approximate
schemes reduce complexities toO(N logN) or evenO(N) thanks to the approximate treatments in
force computations and some special structures such as octree or grids. However, such intelligent ap-
proximative algorithms may not be very suitable for the simulation of certain astronomical systems such
as dense star clusters, e.g. globular clusters or nuclear star clusters with or without central massive black
holes. This is because in these systems two-body relaxationis important, which can only be correctly
modeled by following pairwise particle interactions with high precision at large distances. They require
the use of direct summation methods, which has so far great difficulties reaching even one million parti-
cles (but seeWang et al. 2015). As such, the only practical approach at the present to handle simulations
with ultra-high particle numbers (e.g. cosmological structure formation) is through the employment of
approximate methods, despite their lack of resolution at small scales (Shin et al. 2014; Genel et al. 2014;
Vogelsberger et al. 2014).

Consequently, parallel technologies are applied forN-body simulations as a proper solution. With
the help of parallel hardware, simulations could be accelerated multifold in accordance with the num-
bers of invoking processors theoretically. In practice parallel schemes were implemented, as well as
performance analysis of parallelN-body codes on supercomputers or distributed systems, suchas the
work by Gualandris et al.(2007). Supercomputer clusters were used for the parallelization of N-body
simulations, special devices were also added in order to process the hot computation sections. In the
beginning, special-purpose architectures called GRAPE series (Makino et al. 2003) are designed forN-
body simulations exclusively, which achieved speed-ups byputting the whole force calculations into the
hardware that placing many pipelines on one chip, detailed performance of GRAPE measured byHarfst
et al.(2007). In recent years, with the rapid development of hardware manufacturing technique the GPU
(Graphics Processing Unit) as general-purpose devices aremore and more used and acted the same role
as GRAPE. Now architectures consisted of many processors and equipped with corresponding GPUs
are prevalent solutions inN-body simulations.

ParallelN-body simulation software running partially or even entirely on GPUs were developed
subsequently (Berczik et al. 2011, 2013; Spurzem et al. 2012; Bédorf et al. 2012a,b), while in practice
applications the performance would not measure up to ideal speed-up because of some inevitable serial
code in the code structure. The actual speed-up is limited bysequential fractions in codes and not di-
rectly proportional to the number of processor cores, the theoretical maximum value could be predicted
by Amdahl’s law(Amdahl 1967). What’s more, this peak value is unapproachable on accountof com-
munication overhead between multiple processors. The effectiveness of either parallelization or GPU
acceleration introduced inN-body software is not intuitive but interested.

In this paper, we focus on the performance analysis of two kinds ofN-body software, directN-body
codeNBODY6++ and tree-codeBonsai , which both can be executed in parallel and accelerated by
GPUs. Section2 describes an overview of the software and hardware we used. Section3 describes the
performance models used to analyse complicatedN-body codes, provides the detailed measurements,
performance results and reasonable predictions. Section4 describes the performance comparisons and
analysis, then makes a conclusion which gives us a better reference in the choice of opportune scheme
of software type and hardware scale inN-body simulations.

2 SOFTWARE AND HARDWARE

2.1 Direct N-body implementation: NBODY6++

In this section we provide a brief description ofNBODY6++ , which we used for the performance
analysis of directN-body code.

NBODY6++ developed by Rainer Spurzem is a parallel version ofNBODY6 (Spurzem 1999; Khalisi
et al. 2003; Spurzem et al. 2008). The standardNBODY6 is the6th generation ofNBODY code initi-
ated by Sverre Aarseth, who has a lifelong dedication to the development of the family ofNBODY series



Performance analysis ofN-body codes 3

codes (Aarseth 1999). The first codeNBODY1was a basic directN-body code with individual time steps.
Ahmad-Cohen neighbour scheme (Ahmad & Cohen 1973) was used inNBODY2 andNBODY5 made it
possible to treat larger systems. Kustaanheimo-Stiefel (1965) two-body regularization and chain regu-
larization were applied inNBODY3 andNBODY5 to deal with close encounters. By the timeNBODY6
had developed, the code included both neighbour scheme and regularizations, as well as applied with
Hermite scheme integration method combined with hierarchical block time steps.

NBODY6++ is a descendant of the standardNBODY6, it kept those features of its predecessor men-
tioned above as well as increased the efficiency by redesigning the algorithms suitable for parallel hard-
ware.NBODY6++ used the SPMD (Single Program Multiple Data) scheme to achieve parallelism, in
this mode multiple autonomous processors simultaneously start with chunked local data and then com-
municate with each other through thecopy algorithm(Makino 2002; Dorband et al. 2003), which is
a parallelized algorithm assumes that each processor has a local copy of the whole system and every
processor handles the subgroup of data itself then broadcasts the new data to all the other processors
immediately. The parallelization scheme ofNBODY6++ is implemented with the standard MPI library
package.

The most major improvement ofNBODY6++ is the parallelization of regular and irregular force
computations, which were special concepts introduced fromAhmad-Cohen neighbour scheme that di-
vided the full force of each particle involved by other all particles into two parts: one part called irregular
force that has a frequent but short time steps for interactions with adjacent particles, another one called
regular force which has a longer time steps for full interactions. By assigning the most expensive over-
head sections to multiple processorsNBODY6++ achieved the expected efficiency. Moreover, the heavier
regular force computation component was adapted for GPU acceleration using CUDA. The performance
of parallel accelerations showed in Section3.1.

2.2 N-body tree-code implementation: Bonsai

In this section we provide a brief description ofBonsai , which we used for the performance analysis
of N-body tree-code.

Tree-code algorithm as a widely used method nowadays forN-body simulations is originally in-
troduced byBarnes & Hut(1986). This algorithm reduces the computational complexity ofN-body
simulation fromO(N2) to O(N logN), therefore improves the simulating scale compared to the brute
force methods. HereBonsai , a parallel GPU tree-code implementation developed by Jeroen Bédorf,
Evghenii Gaburov and Simon Portegies Zwart (Bédorf et al. 2012a,b), is a suitable representative of
gravitationalN-body tree-code in recent years.

Certain schemes are introduced inBonsai to ensure the high efficiency of the code (Bédorf et al.
2012a). A sparse octree is used as the data structures, which meansthe structure is the three-dimension
extension of a binary tree where tree-cells are not completeand equal, it is based on the underlying par-
ticle distribution. The tree is constructed layer-by-layer from top to bottom, and inverted the direction in
traverse process. Tree-cell properties are updated duringthe steps, and the integration of the simulation
are advanced. The depth of tree traversing affects both accuracy and time consumption crucially, which
is determined by the multipole acceptance criterion (MAC) in the tree-code. The criterion is described
as follows,

d >
l

θ
+ δ (1)

whered is the smallest distance between a group and the cell’s center-of-mass,l is the length of the
cell, δ is the distance between the cells center-of-geometry and the center-of-mass,θ is an opening
angle parameter to control the accuracy. If the inequality is satisfied then traversing process will be
interrupted while multipole moment will be used.

Like other existingN-body codes,Bonsai uses parallel technique to reach large scale or high
resolution simulations, and applies GPUs to speed up force computations. In contrast to those GPU
tree-code,Bonsai executes all parts of the algorithm on GPUs, to avoid the bottlenecks generated from
CPU-GPU communications. In Section3.2the performance of main parts in the code are presented.
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2.3 Hardware environments and initial conditions

The supercomputer we mainly used for all the tests of both software presented above is an IBM iDat-
aPlex Cluster JUDGE named “The Milky Way System” partition provided and maintained by Jülich
Supercomputing Centre in Germany, which is a dedicated GPU cluster using 2 Intel Xeon X5650 6-core
processors and 2 NVIDIA Tesla M2050/M2070 GPU cards in everynode, with 206 compute nodes and
239 Teraflops peak performance in total.

Our performance measurements involved two different kindsof parallel gravitational GPU-
acceleratedN-body codes:NBODY6++ and Bonsai . The initial conditions of all tests of both
codes are consistent with each other, starting with Plummermodel and running over standard1 N-
body Time Unit. The number of particles used ranges fromN = 213(8k) to 220(1M), doubled the
number over the interval successively. There are additional tests using larger particle numbers up to
N = 224(16M) in Bonsai code runs. The number of processors we chose is the series increasing
numberNp = 1, 2, 4, 8, 16, 32. Other parameters which are necessary but specific only in each code,
such as time step factor for regular/irregular force polynomial and desired optimal neighbour number
in NBODY6++ , or accuracy control parameterθ and softening valueǫ in Bonsai , will be described
detailed in Section3.

3 PERFORMANCE

In this section we evaluated the performance of these two GPU-based parallelN-body simulation codes
(i.e. NBODY6++ andBonsai ) which we tested mainly on the Jülich Dedicated GPU Environment
described in Section2.3.

In spite of a vast difference between two codes derived from their own fundamental algorithms and
specific details, which make it difficult to give a one-to-onecomparison, there are some global values
providing sufficient information. Timing variables, speed-up and hardware performance indicators like
speed and bandwidth were measured below for performance analysis of codes.

3.1 Performance of NBODY6++

NBODY6++ , a parallel direct gravitationalN-body code, is featured with a couple of elegant algorithms
and schemes developed and maintained over the past few decades. The procedures of durative amelio-
rations enabled more realistic size of simulations runningin achievable circumstances while increased
sophistication as well. As a consequence we present a performance model for analysing the overall be-
haviour as well as main components of the code. Through this model we will have a better idea about
the performance of a typical directN-body code and predictions about the code behaviour furtherin
larger scales.

3.1.1 Performance model

We measured running time directly for evaluating performance and modelling. InNBODY6++ , the total
wall-clock timeTtotal required to advance the simulation for a certain integration interval can be written
as

Ttot = Tforce + Tcomm + Thost (2)

whereTforce = Treg + Tirr + Tpre is time spend on both host and device involving force calculations,
hereTreg, Tirr andTpre are time spend on force computations of regular time step, irregular time step
respectively and prediction;Tcomm = Tmov + Tmci + Tmcr + Tsyn is time spend on data moving for
parallel components, MPI communications after regular andirregular blocks and synchronizations of
processors;Thost is time spend on host side which are absolutely sequential runs. All of the time vari-
ables are measured directly by standard Fortran functionsETIME in sequential mode andMPI WTIME

in parallel mode. The entire descriptions are gathered in the last glossary (Table3).
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Fig. 1 Total wall-clock time (Ttot) of NBODY6++ as a function ofN & Np. Solid lines are
the measured values of running time, dashed lines are the ideal acceleration by increasing
processor numbers. (The unit symbols in the legend have the magnitudes:1k = 1, 024, 1M =
1k2 and1G = 1k3, similarly hereinafter.)

Table 1 Main components ofNBODY6++

Description
Timing
variable

Expected scaling
Fitting value [sec]N Np

Regular force computation Treg O(Nreg ·N) O(N−1
p ) (2.2 · 10−9 ·N2.11 + 10.43) ·N−1

p

Irregular force computation Tirr O(Nirr · 〈Nnb〉) O(N−1
p ) (3.9 · 10−7 ·N1.76 − 16.47) ·N−1

p

Prediction Tpre O(Nknp) O(N
−kpp
p ) (1.2 · 10−6 ·N1.51 − 3.58) ·N−0.5

p

Data moving Tmov O(Nknm1 ) O(1) 2.5 · 10−6 ·N1.29 − 0.28

MPI communication (regular) Tmcr O(Nkncr ) O(kpcr ·
Np−1

Np
) (3.3 · 10−6 ·N1.18 + 0.12)(1.5 ·

Np−1

Np
)

MPI communication (irregular)Tmci O(Nknci ) O(kpci ·
Np−1

Np
) (3.6 · 10−7 ·N1.40 + 0.56)(1.5 ·

Np−1

Np
)

Synchronization Tsyn O(Nkns ) O(Nkps
p ) (4.1 · 10−8 ·N1.34 + 0.07) ·Np

Sequential parts on host Thost O(Nknh) O(1) 4.4 · 10−7 ·N1.49 + 1.23

Notes: Detailed descriptions of used symbol gathered in Table 3.

According to the decomposition described above we broke down the code structure and measured
these main sections which have heavy weights in code. Owing to a large amount of variables and the
high complexities some insignificant components inNBODY6++ are not counted in. For every parts
to be analysed we listed the expected scaling and optimal fitting value in Table1, which are got-
ten from the structure of code implementation, chronographand fitting functions. A python function
scipy.optimize.curve fit are used to obtain the optimal fitting value, which based on non-
linear least squares.
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Fig. 2 The speed-up (S) of NBODY6++ as a function ofN & Np. Solid lines are the measured
speed-up ratio between sequential and parallel wall-clocktime, dashed lines are the predicted
performance of larger scale simulations.

The conception speed-up is used for evaluating the parallelism of the code. There are a couple of
definitions of speed-up with different ranges. The ideal maximum speed-upSi = Np will never be
accessible, whereNp is the number of processors used. Unreachable as well, but a more reasonable
indicator to predict the theoretical maximum speed-up is so-calledAmdahl’s law, which is defined as

Sa(Np) =
T (1)

T (Np)
=

1

(1−X) + X
Np

(3)

whereX is the fraction of the algorithm that can benefit from parallelization. In practice there is another
experiential speed-up to be measured through timer recording, which is given by

Se(Np) =
Ttot(1)

Ttot(Np)
(4)

whereTtot(1) & Ttot(Np) are both the measured values of actual running time. By combining the fitting
values into the speed-up formula we will have a general overall perception of the code, and by which
make a prediction accordingly about the code performance inlarger scale simulations.

The speed of force calculation is measured by the extent at which program reaches the peak of
computing devices. Here in our tests the computing device particularly refers to the NVIDIA Tesla
M2050/M2070 GPU cards, which feature up to 1,030 Gigaflops ofsingle precision floating point per-
formance and 515 Gigaflops of double precision floating pointperformance per card.

In NBODY6++ , as the total force are divided into two parts we used two speed variablesPreg and
Pirr represent regular and irregular force calculating speed, which are written as

Preg =
Nreg tot

Treg
=

Nreg ·N · γh4
Treg

, Pirr =
Nirr tot

Tirr
=

Nirr · 〈Nnb〉 · γh4
Tirr

(5)
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Fig. 3 Hardware performance ofNBODY6++ running on “MilkyWay” GPU cluster. The upper
panel corresponds to the regular force computation speed (Preg), where two dashed lines
refer to the peak single and double precision floating point performance. The lower panel
corresponds to the bandwidth of regular part (Breg).

whereN[reg|irr] tot is the total floating point operations of regular/irrgular force computations,N[reg|irr]

is the cumulative number of regular/irrgular time steps,〈Nnb〉 is the average number of integrated
“neighbour” particles, andγh4 defines the floating point operations counts of4th Hermite scheme per
particle per interaction per step, from the workNitadori & Makino(2008) which is a constant value has
γh4 = 60.

Bandwidth is measured as a part of hardware performance along with computing speed (P ). In
NBODY6++ , we defined bandwidth (Breg, Birr) as

Breg =
Nmcr

Tmcr
=

8 · (41 + lmax) ·N/Np

Tmcr
, Birr =

Nmci

Tmci
=

8 · 19 · 〈Nact〉/Np

Tmci
(6)

whereN[mcr|mci] is the number of bytes transferred during MPI communicationafter regular/irregular
blocks, constant terms derived from the size of datasets transferred, in whichlmax is the maximum size
of neighbour lists set manually. Detailed results of all these performance indicators presented in the next
section.

3.1.2 Performance results

The measured total wall-clock time ofNBODY6++ is shown in Figure1.
On the whole, the result shows a good extensibility and acceleration when using more processors

numbers. To be specific, we assign each part of the code with different weight. Among all of the parts the
time spend for force computations always has the highest value, therefore both regular, irregular force
computations and prediction have been implemented with parallel algorithm and decrease rapidly when
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code running in multi-processors. Here in the heaviest partTforce, the regular force computationTreg,
which takes the highest fraction of computing time in the former code versions, has been accelerated
and implemented on the specific device (GPU), as a consequence of causing a significant reduction of
the whole running time costs. Other parts are currently executed on CPU side.

Table1 shows the Main components ofNBODY6++ as a function ofN andNp. As describing above
for every part expected scaling is evaluated by code structure, and fitting value is based on experimental
data. The fitting process includes two steps by fittingN andNp successively but independently. Firstly
we used a minimum of fixedNp to avoid the disturbance of processor number and obtained the ex-
perimental scaling ofN . The fitting values withN are obtained under circumstances which using an
increasing particle numbers and fixed single processor (Np = 1), while for cases of multiprocessor-
related value(i.e.Tmci, Tmcr, Tsyn, which have no numbers in single processor runs) the number of
processors changed toNp = 2. The fitting values withNp are obtained by the second step. Grouping
the dataset according toN , then dividing every group data by eachN dependent function to get the
fitting values withNp. The fitting results of every main parts listed in the last column. Considering the
expected scaling value of main parts, asTmov, Tsyn andThost have no significant and direct scaling with
N from code structure whileTpre makes up of two prediction branches that determined byN in next
time step, we expect these values as a simple exponent form ofN . Nreg, Nirr and〈Nnb〉 which used in
Treg andTirr are values which are completely dependent withN asNreg ∝ N1.18, Nirr ∝ N1.10 and
〈Nnb〉 ∝ N2/3, then in the fitting values they are combined together also asan exponent form ofN . At
last, an unified exponent form ofN andNp are used in the last column rather than other symbols used
in the middle column.

By taking the fitting values into the definition of experimental speed-up, we give the prediction
about the performance ofNBODY6++ , which is shown in Figure2. As a result, the optimal value ofNp

needed for larger simulations of different scales showed clearly from the figure.
Figure3 shows the hardware performance ofNBODY6++ in the actual environment on a real GPU

accelerated cluster. Because GPUs played as the central role in acceleration we focus on GPU relevant
parts inNBODY6++ ,Preg andBreg were drawn in the figure. For the figure ofPreg, two dashed lines i.e.
peak single and double precision floating point performanceare used as the baseline, and the computa-
tion speed of different group ofN runs are increasingly closer to the peak whenN doubled. In the whole
NBODY6++ data structures there is two type precisions used in respective parts. Double precision type is
used in main loops of the code which declared as the type “REAL*8” in global header file, while for the
regular force computation part which accelerated by GPU allof the data convert to the type “REAL*4”
then single precision is used in all relevant parts of CUDA routine. Therefore a mixing precision data
structure is used in the regular part ofNBODY6++ - double precision in data moving process and single
precision in data computation process. As the computation process in GPU card dominating the regular
part, we use single precision to make a comparison. As shown in the figure, the force computation speed
of largeN runs passed over half of the maximum single precision performance (for instance,Preg for
1M particle runs have the values530 ∼ 570 Gflops per M2050/M2070 GPU card.) This proportion
concurs with the results ofBerczik et al.(2011, 2013), which claimed the speed performance of another
directN-body codeφ-GPU getting the values∝ 550 Gflops per C2050 GPU card and∝ 1.48 Tflops per
K20 GPU card, both results approached half of the single precision performance peak. Considering the
hardware architecture, as operations among various register and memory causes extra inevitable time
consumption, the proportion is acceptable in practical environments. For the figure ofBreg ignoring
the “dropping” points, others remained with the level of more than80% of the maximum bandwidth
performance.

3.2 Performance of Bonsai

3.2.1 Performance model

Similarly to Equation (2), in Bonsai the total wall-clock timeTtot can be written as

Ttot = Ttree + Tforce + Tcomm + Tother (7)
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Fig. 4 Total wall-clock time (Ttot) of Bonsai as a function ofN & Np. The legend is the
same as Figure1. Opening parameters of initial condition set as∆t = 0.0625, ǫ = 0.01,
θ = 0.5.

whereTtree = Tsort + Tbuild + Tprop + Tgrp is time spend on tree building, which mainly included
sorting and reordering of the particles along a 1D number string mapped alongSpace Filling Curve, tree
structure construction, tree-node properties computation and active groups setting for next steps;Tforce

is time spend on force computations in tree-traverse;Tcomm = Tdom + Texch + Tsyn is time spend on
distributing or redistributing the particles interprocessor and synchronizations of processors;Tother =
Tpre + Tcorr + Tene is time consumptions for other mainly essential parts, likelocal-tree predictions
before tree construction, corrections after force computations and energy check. All of the time variables
are measured by CUDA C functioncuEventElapsedTime from CUDA Event Management Driver
API and counted on device (GPU) entirely. Trivial time consumptions on the host side is ignored. The
entire descriptions are gathered in the last glossary (Table3).

In hardware performance aspect, differed from Equation (5) the force calculating speed inBonsai
are written as

Pforce =
Nforce tot

Tforce
=

Nforce · γt
Tforce

(8)

whereNforce tot is the total floating point operation counts;Nforce is the cumulative number of interac-
tions;γt is the number of operation counts for each interaction in tree-code, which we used a constant
value hasγt = 38 from the workWarren & Salmon(1992); Kawai et al.(1999); Hamada et al.(2009);
Hamada & Nitadori(2010), and the result figure shows in Figure6. Note thatBédorf et al.(2014) used
another separated operation counts23 & 65 for particle-particle and particle-cell interactions respec-
tively.
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Table 2 Main components ofBonsai

Description
Timing
variable

Expected scaling
Fitting value [sec]N Np

Sorting and reordering Tsort O(N) O(N−1
p ) (1.5 · 10−6 ·N + 2.45 · 10−4) ·N−1

p

Tree construction Tbuild O(N) O(N−1
p ) (2.8 · 10−7 ·N + 2.06 · 10−2) ·N−1

p

Node properties Tprop O(N) O(N−1
p ) (9.1 · 10−8 ·N + 5.78 · 10−3) ·N−1

p

Set active groups Tgrp O(N) O(N−1
p ) (1.7 · 10−9 ·N + 1.16 · 10−3) ·N−1

p

Force computation Tforce O(N logN) O(N
−kpg1
p ) (2.5 · 10−6 ·N logN − 0.10) ·N−0.88

p

Domain update Tdom O(N logN) O(1) 5.4 · 10−10 ·N logN + 2.96 · 10−3

Exchange Texch O(N logN) O(1) 2.1 · 10−9 ·N logN + 1.16 · 10−2

Synchronization Tsyn O(Nkns ) O(kps1 ·N
kps2
p ) (1.4 · 10−4 ·N0.45 + 9.3 · 10−4)(0.5 ·N0.49

p )
Prediction Tpre O(N) O(N−1

p ) (1.5 · 10−8 ·N + 1.49 · 10−3) ·N−1
p

Correction Tcorr O(N) O(N−1
p ) (3.8 · 10−8 ·N + 7.88 · 10−4) ·N−1

p

Energy check Tene O(N) O(N−1
p ) (8.8 · 10−9 ·N + 7.14 · 10−4) ·N−1

p

Notes: Detailed descriptions of used symbol gathered in Table 3.

3.2.2 Opening parameters in tree-code

Three opening parameters play significantly important roles in tree-code running and affect the perfor-
mance consequently as a different result.

θ: It is a dimension-less parameter defined in Equation (1) that controls the accuracy. Our test results
showed that a smallerθ makes the running time increasing shapely, then stopped rising on a certain range
(θ ≈ 0.01 as an experimental value); while a biggerθ (θ > 0.2 ∼ 0.35 influenced byN ) causes a less
accuracy of simulations.

ǫ: The softening parameterǫ does not contribute to the running time, on the other hand an optimal
ǫ could lead to a best approach to the minimum error. For a too small softening the estimates of the
forces will be too noisy, while for a too large softening the force estimates will be misrepresented
systematically, in between there is an optimal softening. The optimalǫ depends both on the number
of particles and the size of time steps. From the workAthanassoula et al.(2000) whenǫ has different
minimum values the conditions of simulations are not the same, there is a relationship betweenN and
optimalǫ. Through the comparison of their conclusions with groups ofour test results ofBonsai code
(using∆E instead ofMASE, θ = 0.5; ∆t = 0.0625), we conclusion that the value ofǫ what leads to a
minimum∆E is consistent with conclusions of the reference.

∆t: The value of∆t affect both running time and energy error. On the running time side,∆t has a
noticeable linearly dependent with time as:t ∝ 1/∆t; on the relative energy error side, the tests results
are more complex. Our results shows that∆Emin varies sensitively under the chosen of combinations
of ∆t andǫ, as well as the differentN .

3.2.3 Performance results

The measured total wall-clock time ofBonsai is shown in Figure4.
In Figure4 & 5 we do not use any data for small particle number and large number of GPU nodes,

because the performance goes down and the GPU’s are not fullyloaded in this regime.
We decomposedTtot into main components as described in Section3.2.1. For every components we

measured the running time separately, and obtain fitting formulae as a function ofN andNp. The fitting
procedures was the same as in theNBODY6++ part described in Section3.1.1, the results are shown in
Table2.

Figure5 shows the experimental speed-up ofBonsai defined as Equation (4). Compared with
the result of Figure2, Bonsai has tendency to a lower peak but wider scope. Considering theweight
factors of force computational part in Table1 & 2 quantitative information of ascendant distinctness are
revealed, while the different weight of communication partis the mainly determinant for descendant
lines.
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Fig. 5 The speed-up (S) of Bonsai as a function of particle numberN & Np. The legend is
the same as Figure2. Opening parameters of initial condition set as∆t = 0.0625, ǫ = 0.01,
θ = 0.5.

Figure6 shows the hardware performance ofBonsai in a practical environment on a real GPU
accelerated cluster. The performance in floating point operations per second is given for the dominant
part of the force computations only. The figure indicates that for the large enoughN we get near half
of the peak single precision of our M2050/M2070 GPU card and increasing steadily for large scaleNp.
This proportion is similar to the result ofNBODY6++ code discussed in Section3.1. The utilization of
the GPU is quite good considering the tree-code structure.

4 DISCUSSION

In this paper we analyze the performance of two very different kinds of N-body codes, both pioneers
in their fields and both heavily optimized for GPU acceleration and parallelization -NBODY6++ and
Bonsai . There is always the question what is the turn-even point forthe codes, how do they compare
with each other. Due to the very different nature of the two codes such a comparison is inevitably unfair
- NBODY6++ has few-body regularizations and is aimed for high accuracyof both near and more distant
gravitational forces;Bonsai achieves optimal performance if the opening parameterθ is relatively
large, providing rather less accurate gravitational forces. But in certain ranges of parameters both codes
may overlap in performance, accuracy and efficiency. It is the goal of this paper to provide a quantitative
information about this.

We do this with the help of the four panels in Figure7 - they show wall-clock time and energy accu-
racy as a function of the average time step; the main curves are forBonsai as indicated in the caption,
for two different opening parameters. However, also data for NBODY6++ are shown for comparison:
wall-clock time and accuracy as a function of average time step. In addition, we show that for a fixed
particle number the time step ofBonsai which results to the same wall-clock time as forNBODY6++ .
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Fig. 6 Hardware performance of force computation speed (Pforce) of Bonsai running on
“MilkyWay” GPU cluster. Two dashed lines in the figure refer to the peak single and double
precision floating point performance.

The following main conclusions can be drawn: at same wall-clock time and same particle number
(andθ = 0.2) Bonsai runs typically with time steps of a factor of10 − 50 larger. In other words
NBODY6++ provides a much smaller time step and a factor of10 better accuracy (see lower panels of
Figure7). Here energy error are used as the criterion to compare the accuracy. In our case the time
evolution of the energy error contain two main parts. One part comes from the machine accuracy of the
potential and force calculations. This is in our cases closeto the single precision machine accuracy of
order10−7 ∼ 10−8. The other error component comes from the numerical integration process itself,
which plays as the dominated role in total energy error. In the NBODY6++ we are using the complex
Hermite4th order individual block time step integration combined withthe Ahmad-Cohen neighbour
scheme. We have chosen the time step parameterη of the Aarseth time step criteria (for regular and
irregular time step, which values set as 0.02 in initial input files) such that the energy error keeps the level
of 10−6 ∼ 10−7. How the global energy error of our integrator inNBODY6++ behaves can be found in
a comprehensive study byMakino (1991). In the case of theBonsai , the code using the simple leap-
frog integration scheme, which (for the reasonable computational speed to reach the1 N-body Time
Unit) have a average energy error in a level of10−5 ∼ 10−6. Insofar we have not discovered anything
unexpected; howeverBonsai can reach surprisingly good accuracy in total energy (like5 · 10−6) at
wall-clock times comparable toNBODY6++ . With a larger opening angle (θ = 0.5) the time step and
wall-clock parameters approach each other more (factor twoto three, for one million bodies). In such
a case still there is a quite considerable energy accuracy oforder10−5. That levels of energy accuracy
arguably may be sufficient even for collisional gravothermal systems, as it seems.

However, the total energy conservation is not the only criterion to judge about the use of a code
and its accuracy. InNBODY6++ close encounters and interactions of compact or hierarchical multiple
systems are treated with regularization methods and zero softening, whileBonsai uses an artificial
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Fig. 7 Comparisons of wall-clock time and relative energy error ofNBODY6++ andBonsai
as a function of∆t. Opening parameters ofBonsai set asǫ = 0.01, θ = 0.5 in the left
column, and smaller valueǫ = 0.001, θ = 0.2 as the control group in the right column.
In every panel the left dashed line correspondsNBODY6++ benchmark data, and solid lines
areBonsai data. The diamond symbols indicates junctions ofBonsai which has the same
running time asNBODY6++ in the case of the sameN .

softening of the gravitational potential at small distances. Reasonable energy conservation refers to that
artificial gravitational potential including softening, which is conservative as well, but not the true few-
body potential. So the additional numerical efforts necessary forNBODY6++ goes on one hand side into
the exact resolution of all kinds of close interactions below the softening length used inBonsai . But
also on the other side, the long-range interactions,Bonsai uses the standard Tree-code procedure of ap-
proximating forces from groups of particles by forces from their centers of masses and multipoles. This
feature needs to be tested by simulation of core collapsing star clusters, where long range gravitational
interactions determine the global evolution, which is beyond the scope of this paper.
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Table 3 Glossary

Variable Description

GENERAL

N total particle number
Np number of processors
Sa theoretical maximum speed-up defined by Amdahl’s law
Si ideal maximum speed-up equals toNp

Se experiential speed-up equals to the ratio between measuredtime of single
and multiple processor number

P force computation speed of floating point operations per second
B bandwidth of bytes of data transfer per second
Ttot total wall-clock time
knx, kpx quantitative factors for fitting result of certain parts;k[n|p] implies the fac-

tor only depends onN |Np, subscriptx indicates different parts
∆E relative energy error
∆t time step interval of integration

NBODY6++

〈Nact〉 average number of integrated active particles
〈Nnb〉 average neighbour number
Nirr cumulative number of irregular time steps
Nreg cumulative number of regular time steps
γh4 floating point operations counts per particle per interaction per step
Tcomm sum of communication time
Tforce sum of force computation time
Thost time spend on the host side
Tirr neighbour (irregular) force computation time
Tmci MPI communication after irregular blocks
Tmcr MPI communication after regular blocks
Tmov time spend on data moving for parallel runs
Tpre particle prediction time
Treg full (regular) force computation time
Tsyn interprocessor synchronization time

Bonsai

Nforce cumulative number of interactions
γt floating point operations counts per particle per interaction per step
Tbuild time spend on tree structure building
Tcomm sum of communication time
Tcorr particle correction time
Tdom time spend on update of particle domain
Tene energy check time
Texch time spend on particle exchange
Tforce force computation time
Tgrp time spend on setting active groups
Tpre local tree prediction time
Tprop node properties computation time
Tsort sorting and data-reordering time
Tsyn interprocessor synchronization time
Ttree sum of the whole tree construction time
ǫ softening to diminish the effect of graininess
θ opening angle to control the accuracy
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