504 research outputs found

    Survey and Benchmark of Block Ciphers for Wireless Sensor Networks

    Get PDF
    Cryptographic algorithms play an important role in the security architecture of wireless sensor networks (WSNs). Choosing the most storage- and energy-efficient block cipher is essential, due to the facts that these networks are meant to operate without human intervention for a long period of time with little energy supply, and that available storage is scarce on these sensor nodes. However, to our knowledge, no systematic work has been done in this area so far.We construct an evaluation framework in which we first identify the candidates of block ciphers suitable for WSNs, based on existing literature and authoritative recommendations. For evaluating and assessing these candidates, we not only consider the security properties but also the storage- and energy-efficiency of the candidates. Finally, based on the evaluation results, we select the most suitable ciphers for WSNs, namely Skipjack, MISTY1, and Rijndael, depending on the combination of available memory and required security (energy efficiency being implicit). In terms of operation mode, we recommend Output Feedback Mode for pairwise links but Cipher Block Chaining for group communications

    MOIM: a novel design of cryptographic hash function

    Get PDF
    A hash function usually has two main components: a compression function or permutation function and mode of operation. In this paper, we propose a new concrete novel design of a permutation based hash functions called MOIM. MOIM is based on concatenating two parallel fast wide pipe constructions as a mode of operation designed by Nandi and Paul, and presented at Indocrypt 2010 where the size of the internal state is significantly larger than the size of the output. And the permutations functions used in MOIM are inspired from the SHA-3 finalist Grøstl hash function which is originally inspired from Rijndael design (AES). As a consequence there is a very strong confusion and diffusion in MOIM. Also, we show that MOIM resists all the generic attacks and Joux attack in two defense security levels

    The Anaconda hash functions

    Get PDF

    Algebraic properties of generalized Rijndael-like ciphers

    Full text link
    We provide conditions under which the set of Rijndael functions considered as permutations of the state space and based on operations of the finite field \GF (p^k) (p2p\geq 2 a prime number) is not closed under functional composition. These conditions justify using a sequential multiple encryption to strengthen the AES (Rijndael block cipher with specific block sizes) in case AES became practically insecure. In Sparr and Wernsdorf (2008), R. Sparr and R. Wernsdorf provided conditions under which the group generated by the Rijndael-like round functions based on operations of the finite field \GF (2^k) is equal to the alternating group on the state space. In this paper we provide conditions under which the group generated by the Rijndael-like round functions based on operations of the finite field \GF (p^k) (p2p\geq 2) is equal to the symmetric group or the alternating group on the state space.Comment: 22 pages; Prelim0
    corecore