

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 17, 2017

The Anaconda hash functions

Thomsen, Søren Steffen

Publication date:
2008

Document Version
Early version, also known as pre-print

Link back to DTU Orbit

Citation (APA):
Thomsen, S. S. (2008). The Anaconda hash functions. (MAT report; No. 2008-05).

http://orbit.dtu.dk/en/publications/the-anaconda-hash-functions(f57d4cf3-8bea-4027-aae1-22ba443b28cb).html

The ANACONDA hash functions

Søren Steffen Thomsen

Mat-Report No. 2008-05

November 2008

ISSN nr. 0904-7611

The Anaconda hash functions

Søren Steffen Thomsen

Department of Mathematics
Technical University of Denmark

Matematiktorvet 303S
DK-2800 Kgs. Lyngby

Denmark

1 Introduction

In this report, we describe the Anaconda hash functions. Anaconda is an attempt at
designing a cryptographic hash function achieving the good diffusion properties of the
4× 4 matrix structure used in the block ciphers Square [2] and Rijndael/AES [3,11]. The
challenge in this respect is to arrive at a larger state size, since the 128-bit state of these
block ciphers is not large enough for hashing. There are, of course, several methods to
increase the state size; one method is to increase the size of the matrix (this method was
used in the Grøstl hash function [5], submitted to the NIST SHA-3 competition [10]),
and another method is to increase the word size from 8 bits to, e.g., 64 bits. The latter
method was followed in the design of Anaconda.

Unfortunately, 64-bit (and also 32-bit) S-boxes are infeasible to use in practice. There-
fore, increasing the word size necessitates other changes as well. The non-linear trans-
formation was therefore changed from operating on a word, to operating on a column,
but in a bitslice fashion (as in Serpent [1]). Apart from introducing non-linearity, this
also introduces diffusion within each column, and offers better protection against some
side-channel attacks [6] than a table-based S-box.

On the other hand, a bitslice S-box does not introduce diffusion within a word. Hence,
this must be taken care of by other means. The MixColumns transformation known from
Rijndael ensures maximal diffusion among words, but it, too, does not introduce much
diffusion within a word. Therefore, it was decided to abolish the principles underlying
the MixColumns transformation, and instead focus on an efficient linear transformation,
that provides a large amount of diffusion within words, and also provides (sub-optimal)
diffusion among the words in each row. The diffusion within words is obtained via a
primitive known from the SHA-2 hash functions [12].

The end result is a hash function that bears resemblance with both Rijndael and
Serpent at the same time. It is simple and (in the author’s view) elegant.

The name Anaconda refers to a class of hash functions returning outputs of any size
between 1 and 512 bits. The variants returning outputs of sizes between 1 and 256 bits
all use the same method, only the initial value and the amount of truncation taking place
in the end are different. This method is described in detail in the following section. For
the larger variants, another method is used; this method is described briefly in Section 8.

Mat-Report no. 2008-05 1

2 Specification of Anaconda

The Anaconda hash function H takes messages of length up to about 264 bits and
returns a hash result of n bits, where n is any number between 1 and 512. We now
describe how to produce hash results up to 256 bits.

Anaconda assumes a big-endian byte ordering. It applies a compression function
f : {0, 1}512 × {0, 1}512 → {0, 1}512 in standard Merkle-Damg̊ard mode [4,9]. The output
of the final application of the compression function is truncated to an n-bit value.

The compression function f operates with a 16-word state, that is seen as a 4 × 4
matrix of words (as in Rijndael). A state A = a0‖ · · · ‖a15 is seen as the matrix

A =

a0 a1 a2 a3

a4 a5 a6 a7

a8 a9 a10 a11

a12 a13 a14 a15

 .

Each word is 64 bits in size. Let W = {0, 1}64. The compression function takes a 512-bit
message block and a 512-bit chaining value, forms a 1024-bit state viewed as the matrix
above, and applies a number of rounds to the state. The final state is then truncated to
512 bits. The round function is now described.

2.1 Round function

The round function p : W16 → W16 is a permutation. It applies two different transfor-
mations: the linear transformation lt : W4 → W4, and the non-linear transformation
nt : W4 → W4. We shall come back to how these transformations are defined in a
moment. The round function operates on a state A = a0‖ · · · ‖a15 as follows.

a15 ← a15 ⊕ 1

(a0, a1, a2, a3) ← lt(a0, a1, a2, a3)

(a7, a4, a5, a6) ← lt(a7, a4, a5, a6)

(a10, a11, a8, a9) ← lt(a10, a11, a8, a9)

(a13, a14, a15, a12) ← lt(a13, a14, a15, a12)

(a0, a4, a8, a12) ← nt(a0, a4, a8, a12)

(a1, a5, a9, a13) ← nt(a1, a5, a9, a13)

(a2, a6, a10, a14) ← nt(a2, a6, a10, a14)

(a3, a7, a11, a15) ← nt(a3, a7, a11, a15)

See also Figure 1. In words, first a linear layer is applied to each row, and then a non-
linear layer is applied to each column. The linear layer provides diffusion both on the
bit-level and on the word-level (row-wise). The non-linear layer is a 4-bit S-box in bitslice
mode, which provides diffusion on the word-level (column-wise). Notice that the order of
the input words to the lt function is shifted for each row, and that the least significant bit
of a15 is flipped in the beginning. These measures are in order to introduce asymmetry.

Mat-Report no. 2008-05 2

lt nt

Fig. 1. The effects of the transformations lt and nt.

2.2 Compression function

The compression function takes the message block m and the chaining value h and forms
from these the state A = m‖h. It then applies the round function p a number ` of times.
` is a security parameter, and hence its value may be chosen depending on the desired
security level. We suggest ` = 16. Since p is a permutation, no collisions are formed (yet).

After the ` applications of p, the compression function returns trunc512(A), meaning
the last 512 bits of A. Hence, this final truncation is the only operation that introduces
collisions. More formally, the compression function f is defined as follows:

f(h,m) = trunc512(p
`(m‖h)).

2.3 Linear transformation lt

In the definition of lt, four transformations operating on a single word each are applied.
Let these be Σi, 0 ≤ i < 4. They are defined as follows (where a≪r means a rotated left
by r positions).

Σ0(a) ← a≪1 ⊕a≪20⊕a≪24

Σ1(a) ← a≪13⊕a≪22⊕a≪60

Σ2(a) ← a≪30⊕a≪50⊕a≪63

Σ3(a) ← a≪24⊕a≪51⊕a≪54

Given the four input words (a, b, c, d), lt is defined as follows.

a ← Σ0(a)

b ← Σ1(b)

c ← a⊕ b⊕ c

d ← a⊕ (bÀ1)⊕ d

c ← Σ2(c)

d ← Σ3(d)

a ← a⊕ c⊕ d

b ← b⊕ (cÀ3)⊕ d

aÀr means a shifted right by r bit positions (hence, the leftmost r bits of aÀr are zeros).
See Figure 2.

Mat-Report no. 2008-05 3

a b c d

a b c d

Σ1Σ0

Σ2 Σ3

? ?

-

?

?

- -

?

?

?

? ?

-

-

?

¾

¾

¾

¾
?

?

? ? ? ?

¾À3

À1

Fig. 2. The linear transformation lt.

2.4 Non-linear transformation nt

As mentioned, the non-linear transformation is a 4-bit S-box in bitslice mode. The S-box
S used for nt is defined as follows.

x : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S(x) : 2 9 8 3 11 5 7 14 12 15 1 4 6 0 10 13

This S-box is, conceptually, applied as follows. Place the jth bit of the ith input word
(counting from 0) in position (i, j) in a 4× 64 matrix of bits. Apply the S-box to each of
the 64 4-bit words defined by the columns of this matrix, where the bits in the top row are
the most significant bits. Then, map the matrix back to four 64-bit words. In practice, the
S-box application can be done via logical operations on the four 64-bit words. A method
to do this is described in Section 5.

2.5 Padding

A message M (of length N bits) to be hashed is padded to a multiple of 512 bits in length
as follows. First, a ‘1’ bit is appended. Then, −N−65 mod 512 ‘0’ bits are appended, and
finally, a 64-bit representation of N is appended. This padding rule induces a maximum
length of messages that can be hashed to 264−1 bits (approximately 255 message blocks).

Mat-Report no. 2008-05 4

2.6 The hash construction

The hash function applies the compression function f in Merkle-Damg̊ard mode, with
the addition that the final output is truncated to n bits. The initial value is the 512-bit
representation of the output size n. To be more precise, the message M is padded to
M+ = m1‖m2‖ · · · ‖mt, and we set h0 = 〈n〉512. Let

hi ← f(hi−1,mi) for i = 1, . . . , t.

Finally, let H(M) = truncn(ht).

3 Some preliminary observations

An alternative representation of the compression function f , assuming a single 1024-bit
input x and P = p`, is

f(x) = P (x) mod 2512.

Collisions can easily be found for the compression function: choose y1 and y2 to be distinct
1024-bit values such that y1 ≡ y2 (mod 2512), and compute x1 = P−1(y1) and x2 =
P−1(y2). Then the pair (x1, x2) forms a collision for the compression function. However,
if P is a good permutation, then an attacker will have no direct control over x1 and x2.

A “meet-in-the-middle” preimage attack can be launched in time 2256 as follows. Let
y = H(M) be a target image. Compute vi = f(h0‖ai) for 2256 arbitrary 512-bit values
of ai, 0 < i ≤ 2256. Compute bi‖wi = P−1(zi‖y) for arbitrary (1024− n)-bit values of zi,
0 < i ≤ 2256. Find a match (i, j) between vi and wj. Then H(ai‖bj) = y. We note that
the complexity is at least as high as the complexity of a brute force preimage attack,
since n ≤ 256. The memory requirements are 2256.

The invertibility of the compression function also leads to almost trivial pseudo-
attacks. For instance, a pseudo-preimage attack: given target image y = H(M), choose
arbitrary z, and compute m‖h∗0 = P−1(z‖y). Then m is a preimage of y when h∗0 is
used as initial value of the hash function. We argue that h∗0 cannot be controlled (except
by the method of the above preimage attack), and therefore we do not consider these
pseudo-attacks a threat.

4 Design considerations

In this section, we explain some of the considerations that we made in the process of
designing Anaconda.

4.1 The linear transformation

The linear transformation was inspired by the block cipher Serpent. The Σ transfor-
mations were inspired by the transformations with the same name in the SHA-2 hash
functions.

Although not immediately clear, the overall design of the linear transformation is
based upon a linear, binary code of length 8, dimension 4 and minimum distance 4.

Mat-Report no. 2008-05 5

Hence, the code is not MDS [8], as in Rijndael. However, minimum distance 4 is optimum
for a binary code of the dimensions mentioned.

To see why it makes sense to talk about a binary code, look at what happens if a, b, c, d
were bits, and we omit the shift operations. Then lt would have the specification

a′← a⊕ c⊕ d

b′← b⊕ c⊕ d

c′← a⊕ b⊕ c

d′← a⊕ b⊕ d,

where the primed values are the new values of a, b, c, d. Hence, a generator matrix for the
code is

1 0 0 0 1 0 1 1

0 1 0 0 0 1 1 1

0 0 1 0 1 1 1 0

0 0 0 1 1 1 0 1

 ,

for which it is easily seen that the minimum distance is 4. Therefore, differences in d,
0 < d < 4, of the words a, b, c, d spread to at least 4− d output words.

When 64-bit words are used, the Σ functions ensure that all output words depend
on all input words. On the other hand, the minimum distance of the code is no longer
guaranteed to hold. However, if there is only a difference on a, then this will spread to at
least a, c, and d. The inverse of lt has properties similar to lt itself.

The Σ functions. The purpose of the Σ functions is to cause diffusion within words.
Σ functions are also used in the SHA-2 hash functions [12]. We define the class of Σ
functions as the functions

Σ(a)← a≪r1 ⊕ a≪r2 ⊕ a≪r3 ,

where a is a 64-bit value, and 0 ≤ r1, r2, r3 < 64. Each choice of rotation values (r1, r2, r3)
defines a member of the class. Hence, a Σ function is completely defined by its rotation
values. We now state and prove two theorems regarding Σ functions.

Theorem 1. For any set of rotation values, Σ is a bijection, and Σ64(x) = x.

Proof. We first prove that Σ64(x) = x. We have:

Σ2(x) = x≪2r1 ⊕ x≪r1+r2 ⊕ x≪r1+r3 ⊕ x≪r1+r2 ⊕ x≪2r2 ⊕ x≪r2+r3 ⊕
x≪r1+r3 ⊕ x≪r2+r3 ⊕ x≪2r3

= x≪2r1 ⊕ x≪2r2 ⊕ x≪2r3 .

Repeating this reasoning, we have Σ2k
(x) = x≪2kr1 ⊕ x≪2kr2 ⊕ x≪2kr3 . Since x≪64d = x

for all integers d, we get Σ64(x) = x ⊕ x ⊕ x = x. This also shows that Σ64(x) =
Σ(Σ63(x)) = x ⇐⇒ Σ63(x) = Σ−1(x), and therefore, Σ is a bijection. We note that the
proof extends to the general case of 2k-bit words.

Mat-Report no. 2008-05 6

Theorem 2. Exactly one or three of the rotation values r1, r2, r3 are odd ⇐⇒ Σi(x) 6= x
for all x and all i, 1 ≤ i < 64.

Proof. Since Σ64(x) = x, we have that if Σ32(x) 6= x, then Σi(x) 6= x for all x and all
i < 64. From the proof of Theorem 1, we know that Σ32(x) = x≪32r1 ⊕ x≪32r2 ⊕ x≪32r3 .
If ri is even, then x≪32ri = x, and otherwise, x≪32ri = x≪32. Hence, if one or all three of
the ri are odd, then Σ32(x) = x≪32, and otherwise, Σ32(x) = x. Again, the proof extends
to the general case of 2k-bit words.

Obviously, r1, r2, r3 should be distinct – otherwise, Σ is only a rotation and does not
provide any diffusion. We consider a Σ function with distinct rotation values “good” if

– Σi(x) 6= x for all x and all i, 1 ≤ i < 64.
– The inverse function Σ−1 causes good diffusion.

Let us investigate some requirements for the inverse function Σ−1 to cause good diffusion.
From the proof of Theorem 1, we have that Σ−1(x) = Σ63(x), and hence we see that the
inverse is the sum (XOR) of all terms of the form x≪a, where a = ri0 +2ri1 +4ri2 +8ri3 +
16ri4 + 32ri5 mod 64, and ij ∈ {1, 2, 3}. Intuitively, the inverse causing good diffusion
corresponds to this sum having many terms that don’t cancel out: for inputs of Hamming
weight 1, the output Hamming weight is equal to the number of terms in the sum that
haven’t been cancelled out by other terms. For inputs of Hamming weight 2 to have
high output Hamming weight, we need that x≪a ⊕ x≪a+i contains many terms for all i,
1 ≤ i < 64. There always exist inputs to Σ−1 of Hamming weight 3 with output Hamming
weight 1, because if x has Hamming weight 1, then Σ(x) has Hamming weight 3.

If r1, r2, r3 are all odd, then a is always odd, and hence the inverse is the sum of at
most 32 terms. We may obtain better results by requiring that r1 is odd and r2 and r3

are even.
In order to find optimal rotation values, we performed a search. We fixed r1 = 1 and

searched for distinct, even values of r2 and r3 that would yield high output Hamming
weights for inputs to Σ−1 with Hamming weights 1 and 2. Of course, this search could
have been done without the theory described above, since the search space has size at
most 218. It turned out that 60 pairs (r2, r3) produced equally good results: a weight 1
input to Σ−1 causes at least a weight 37 output, and a weight 2 input causes at least a
weight 26 output. Note that translating the rotation values do not change the mentioned
properties. By translating a set of rotation values, we mean adding the same even constant
to all three rotation values.

In terms of the properties that we tried to optimise for Anaconda, the Σ functions
used in SHA-2 are not optimal. For instance, Σ

{512}
0 (see [12]) has (35, 18) in place of

(37, 26) (recall that these are the minimum output Hamming weights of Σ−1 given input
Hamming weights (1, 2)). We assume there are other good reasons why the Σ functions
used in SHA-2 were chosen as they were.

After having found the 60 equally good pairs, we chose four of them more or less at
random, but such that the two even rotation values were quite different. We then searched
for translations of these four sets of rotation values such that when used inside lt, a weight
1 input to lt ◦ lt yielded an output with a large Hamming weight. The first solution, for
which the output Hamming weight was maximal, was chosen.

Mat-Report no. 2008-05 7

The reason why we chose to measure the diffusion of lt by using two applications of
the linear transformation is that for only a single application, all translations have the
same effect: a weight 1 input yields at least a weight 8 output. For lt ◦ lt, with the Σ
functions chosen for Anaconda, a weight 1 input yields at least a weight 120 output.

4.2 The non-linear transformation

The S-box used in Anaconda is a variant of the Serpent S-box numbered 0. The change
as compared to the original Serpent S-box is based on the Serpent implementation by
Osvik [13]: here, each output bit is not in its right place after the S-box application,
and subsequent word moves are done implicitly. We would like to avoid this, and hence
we have just taken the output bits in the order they come out of the S-box application.
Furthermore, a logical negation was omitted in order to speed up the implementation.
This change only corresponds to an affine transformation, and hence does not change the
cryptographic properties of the S-box.

The S-box has the following properties [1]:

– A single input difference will always lead to an output difference in at least two bits

– The non-linear order is 2, and the non-linear order of each (single) output bit as a
function of the input bits is 3

– Each differential characteristic has a probability of at most 1/4

– Each linear characteristic has a probability in the range 1/2± 1/4.

An S-box in bitslice mode offers better protection against side-channel attacks such as
timing analysis [6], than an S-box implemented via table look-ups.

4.3 Global diffusion

Every bit of the state depends on every bit of the message block three rounds after the
message block is injected. In fact, most message bits affect all state bits after just two
rounds, and most of the state bits are affected by all message bits after just two rounds.

The linear transformation ensures that each word in a row affects all words in the
row. Combined with the non-linear transformation, this means that every word in the
state affects every other word after just one round.

4.4 State size

Since the chaining value is at least twice as large as the output, Anaconda is a wide
pipe construction [7]. An important advantage of this construction is that it allows “slight
failures” in the compression function. Consider, for instance, a collision attack on the
compression function, where the chaining input is not under the control of the attacker.
Assume this attack has complexity 2c/4, where c is the size of the chaining value. Although
being an indication that the compression function does not provide ideal security, this
attack would not constitute a collision attack on the hash function, since c ≥ 2n and
therefore 2c/4 ≥ 2n/2.

Mat-Report no. 2008-05 8

5 Implementation issues

As mentioned, the S-box was chosen from the set of Serpent S-boxes. These were im-
plemented by Osvik [13], who focused on their performance on Pentium processors. A
C implementation of the S-box used in Anaconda (based on Osvik’s implementations)
follows (t is a temporary variable).

#define S(x0,x1,x2,x3,t) do { \

t = x3; \

x3 |= x0; \

x0 ^= t; \

t ^= x2; \

t =~ t; \

x3 ^= x1; \

x1 &= x0; \

x1 ^= t; \

x2 ^= x0; \

x0 ^= x3; \

t |= x0; \

x0 ^= x2; \

x2 &= x1; \

x3 ^= x2; \

x2 ^= t; \

x1 ^= x2; \

} while (0)

More efficient implementations are likely to exist, particularly on other processors than
the Pentium. It is generally difficult to find optimal implementations of bitslice S-boxes.

Since no words are copied from one position in the state matrix to another, all com-
putations can be done “in place”, and therefore an implementation using 1024 bits of
memory is possible.

An implementation of Anaconda in C has been developed [14] and run on an Intel
Core2 Duo (E4600) 64-bit processor. With 16 rounds, the implementation reaches a speed
of around 23 cycles/byte. The compiler used was Intel’s C compiler version 10.1 (build
20080112) for Linux. The gcc compiler does not achieve the same speed for reasons that
are unclear at this point. We note that improvements to the implementation are almost
certainly possible.

6 Security claims

We claim that the best collision attack on Anaconda variants returning up to 256 bits
has complexity around 2n/2, and the best preimage and second preimage attacks have
complexity around 2n.

7 Cryptanalysis

Further work on Anaconda was postponed due to the SHA-3 competition. The author
decided to take part in another design, Grøstl, and hence, an investigation of the feasi-

Mat-Report no. 2008-05 9

bility of known attacks on Anaconda has yet to be made. However, we note here that
in each round, the 4-bit S-box is applied 256 times, totalling 4096 S-box applications over
the 16 rounds. This number is huge compared to, e.g., the number of S-box applications
in the 10 rounds of Rijndael, which is 160, or the number of S-box applications in the
32 rounds of Serpent, which is 1024. Of course, 4-bit and 8-bit S-boxes cannot be com-
pared directly, and the number of degrees of freedom that an attacker has in the input to
Anaconda is higher than in the block ciphers. However, considering the large number
of S-box applications combined with the good diffusion taking place in Anaconda, we
believe that differential, linear, and algebraic attacks will not work on Anaconda.

8 Larger variants

One possible method of building a 512-bit hash function on the basis of the method
described above is to use 128-bit words instead of 64-bit words. Although many processors
provide SSE instructions on 128-bit vectors, these are not capable of performing rotations,
and hence we estimate that there would be a rather large penalty in terms of efficiency.
Instead, we chose to change the definition of the compression function to the following.

f(h,m) = trunc512(p
2`(m‖h))⊕ h,

or, in the alternative representation (see Section 3),

f(x) = P 2(x)⊕ x mod 2512.

The chaining input is fed forward to protect against the meet-in-the-middle preimage
attack mentioned above, which would have complexity below 2n for n > 256.

The security claims for the larger variants of Anaconda are the same as for the
shorter variants, except for second preimage resistance, which we claim to be at a level
of 2n−k compression function evaluations for a first preimage of 2k blocks.

With 32 rounds, the larger variants perform at around 45 cycles/byte in the environ-
ment described above.

9 Summary

Anaconda is a hash function built on some of the design principles underlying Rijndael,
and also on some of those underlying Serpent. The compression function (for variants
returning up to 256 bits) is a permutation followed by a truncation. The internal state
size is at least twice the output size. Collisions can easily be found in the compression
function (even assuming the permutation is ideal), and therefore the security proof of the
Merkle-Damg̊ard construction [4, 9] does not apply to Anaconda. However, it does not
seem possible to extend the collision attack on the compression function to the full hash
function, assuming that the permutation contains no weaknesses.

For the larger variants returning more than 256 bits, it seems harder to find collisions
for the compression function. The compression function is not invertible, due to a feed-
forward of the chaining input. This feed-forward is omitted in the shorter variants in
order to avoid having to store a copy of the 512-bit chaining input.

Mat-Report no. 2008-05 10

References

1. R. J. Anderson, E. Biham, and L. R. Knudsen. Serpent: A Proposal for the Advanced Encryption Stan-
dard. AES Algorithm Submission, 1998. Available: http://www.cl.cam.ac.uk/~rja14/Papers/serpent.pdf
(2008/11/06).

2. J. Daemen, L. R. Knudsen, and V. Rijmen. The Block Cipher Square. In E. Biham, editor, Fast Software
Encryption 1997, Proceedings, volume 1267 of Lecture Notes in Computer Science, pages 149–165. Springer,
1997.

3. J. Daemen and V. Rijmen. AES Proposal: Rijndael. AES Algorithm Submission, September 3, 1999.
Available: http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf (2008/10/29).

4. I. Damg̊ard. A Design Principle for Hash Functions. In G. Brassard, editor, Advances in Cryptology –
CRYPTO ’89, Proceedings, volume 435 of Lecture Notes in Computer Science, pages 416–427. Springer,
1990.

5. Grøstl – a SHA-3 candidate. http://www.groestl.info (2008/11/03).
6. P. C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems. In

N. Koblitz, editor, Advances in Cryptology – CRYPTO ’96, Proceedings, volume 1109 of Lecture Notes in
Computer Science, pages 104–113. Springer, 1996.

7. S. Lucks. A Failure-Friendly Design Principle for Hash Functions. In B. K. Roy, editor, Advances in
Cryptology – ASIACRYPT 2005, Proceedings, volume 3788 of Lecture Notes in Computer Science, pages
474–494. Springer, 2005.

8. F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting Codes. North-Holland Mathematical
Library, 1977.

9. R. C. Merkle. One Way Hash Functions and DES. In G. Brassard, editor, Advances in Cryptology – CRYPTO
’89, Proceedings, volume 435 of Lecture Notes in Computer Science, pages 428–446. Springer, 1990.

10. National Institute of Standards and Technology. Announcing Request for Candidate Algorithm Nominations
for a New Cryptographic Hash Algorithm (SHA-3) Family. In Federal Register Vol. 27, No. 212, November
2007.

11. National Institute of Standards and Technology/U.S. Department of Commerce. Federal Information Pro-
cessing Standards Publication (FIPS PUB) 197. Advanced Encryption Standard (AES), November 2001.

12. National Institute of Standards and Technology/U.S. Department of Commerce. Federal Information Pro-
cessing Standards Publication (FIPS PUB) 180-2. Secure Hash Standard, August 2002.

13. D. A. Osvik. Speeding up Serpent. In Third AES Candidate Conference, pages 317–329, 2000.
14. S. S. Thomsen. Website of the Anaconda hash functions. http://www.mat.dtu.dk/people/S.Thomsen/

anaconda (2008/11/05).

Mat-Report no. 2008-05 11

