
International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-

6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 4, July-August (2013), © IAEME

1

MOIM: A NOVEL DESIGN OF CRYPTOGRAPHIC HASH FUNCTION

Mohammad A. AlAhmad
1
, Imad Fakhri Alshaikhli

2

1,2
Department of Computer Science, International Islamic University of Malaysia, 53100

Jalan Gombak Kuala Lumpur, Malaysia

ABSTRACT

A hash function usually has two main components: a compression function or
permutation function and mode of operation. In this paper, we propose a new concrete
novel design of a permutation based hash functions called MOIM. MOIM is based on
concatenating two parallel fast wide pipe constructions as a mode of operation designed
by Nandi and Paul, and presented at Indocrypt 2010 where the size of the internal state
is significantly larger than the size of the output. And the permutations functions used
in MOIM are inspired from the SHA-3 finalist Grøstl hash function which is originally
inspired from Rijndael design (AES). As a consequence there is a very strong confusion
and diffusion in MOIM. Also, we show that MOIM resists all the generic attacks and
Joux attack in two defense security levels.

Keywords: FWP - permutation - concatenation – mixing

1. INTRODUCTION

Cryptographic hash functions have indeed proved to be the workhorses for modern
cryptographic hash functions. Another name given to cryptographic hash functions is “Swiss
knife army” because it can serve many different purposes such as digital signatures,
conventional message authentication to secure passwords storage or forensics data
identification. Cryptographic hash functions take an unfixed size of input and produce a fixed
size of an output. A hash function usually built from two main components: (1) a basic
primitive compression function C and (2) an iterative mode of operation H, where the symbol
H

C denotes the hash function HC based on the compression function C. Most hash functions
in use today are so-called iterated hash functions, i.e. Merkle-Damgård (MD), based on
iterating a compression function. Examples of iterated hash functions are MD4 [1], MD5 [2],
SHA [3] and RIPEMD-160 [4]. For a cryptographic hash function H

C, if the compression
function C is resistant to the following attacks, then the hash function considered secure:

INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING

& TECHNOLOGY (IJCET)

ISSN 0976 – 6367(Print)

ISSN 0976 – 6375(Online)

Volume 4, Issue 4, July-August (2013), pp. 01-19

© IAEME: www.iaeme.com/ijcet.asp

Journal Impact Factor (2013): 6.1302 (Calculated by GISI)

www.jifactor.com

IJCET

© I A E M E

CORE Metadata, citation and similar papers at core.ac.uk

Provided by The International Islamic University Malaysia Repository

https://core.ac.uk/display/300421391?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-

6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 4, July-August (2013), © IAEME

2

1. Preimage: it is computationally infeasible to find x’ such that H(x’) = y, where y =
H(x).

2. 2
nd

 preimage: it is computationally infeasible to find x and y=H(x) find x’ ≠ x
where H(x’) = y.

3. Collision: it is computationally infeasible to find x and x’ where x’ ≠ x and H(x) =
H(x’).

Birthday attack (collision) is applicable to all hash functions after about 2
n/2. Brute

force attack preimages and 2nd preimages can be found after about 2n. It clearly stated that the
existence of 2nd preimage implies the existence of collision [5]. At this point, we have to
distinguish between theoretical and practical break. To illustrate the theoretical break, if an
attack succeeds to prove that a hash function can be exploited (e.g. finding a collision, or pre-
image, or second pre-image) with work less than required by the birthday or brute force
attack, the hash function is considered broken, even if the work required to break it is still
infeasible in practice. Indeed, finding such flaws in a hash function is an evidence of
structural weaknesses that may be exploited at later stages to turn this theoretical break into a
practical one; the primary example is MD5, which was first theoretically broken, then the
attacks eventually evolved and today practical collisions can easily be found in MD5 [7]. So,
everything started in 2004, when collisions were announced in SHA-0, MD4, MD5,
HAVAL-128, and RIPEMD. French researcher Antoine Joux [6] presented the collision in
SHA-0, and a group of collisions against MD4, MD5, HAVAL- 128, and RIPEMD were
found by the Chinese researcher Xiaoyun Wang with co-authors Dengguo Feng, Lai, and
Hongbo Yu [7]. After that, in February 2005, the same Xiaoyun Wang, Lisa Yiqun Yin, and
Hongbo Yu found collisions in SHA-1 using 269 hash computations [8]. Several strategies
were developed to thwart these attacks. Stefan lucks [9] introduced the wide pipe hash
construction as an intermediate version of Merkle-Damgård to improve the structural
weaknesses of Merkle-Damgård design. The process is similar to Merkle-Damgård algorithm
steps except of having a larger internal state size, which means the final hash digest is smaller
than the internal state size of bit length. For example, the final compression function
compresses the internal state length (for ex, 2n- bit) to output a hash digest of n-bit. This
simply can be achieved by discarding the last half of 2n-bit output. Mridul Nandi and
Souradyauti Paul [10] proposed the fast wide pipe (FWP) construction to overcome these
attacks. It is twice faster than the wide pipe construction. FWP is used in this paper to
construct MOIM keyed hash function. It is used as an operation of mode for MOIM (see
section 3). HAsh Iterated FrAmework (HAIFA) is also a patched version Merkle-Damgård
construction [11]. HAIFA design solves many of the internal collision problems associated
with the classic MD construction design by adding a fixed (optional) salt of s-bits along with
a (mandatory) counter Ci of t-bits to every message block in the iteration i of the hash
function. Wide-pipe and HAIFA are very similar designs. Sponge construction is an iterative
construction designed by Guido Bertoni, Joan Daemen, Micheal Peeter and Gilles Van
Assche to replace Merkle-Damgård construction [12]. It is a construction that maps a variable
length input to a variable length output. Keccak (SHA-3 winner) hash function uses sponge
construction. Namely, by using a fixed-length transformation (or permutation) f that operates
on a fixed number of b = r + c bits. Where r is called the bitrate and c is called the capacity.
First, the input is padded with padding algorithm and cut into blocks of r bits. Then, the b bits
of the state are initialized to zero. The sponge construction operates in two phases:
• Absorbing phase: The r-bit message blocks are XORed with the first r bits of the state of

the function F. After processing all the message blocks, the squeezing phase starts.

International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-

6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 4, July-August (2013), © IAEME

3

• Squeezing phase: The first r bits of the state are returned as output blocks of the function
F. lastly, the number of output blocks is chosen by the user [13].

The sponge construction has been studied by many researchers to prove its security
robustness. Bertoni et al. [13] proved that the success probability of any generic attack to a
sponge function is upper bound by its success probability for a random oracle plus N

2/2c-1
with N the number of queries to f. Aumasson and Meier [14] showed the existence of zero-
sum distinguishers for 16 rounds of the underlying permutation f of Keccak hash function.
Boura, Canteaut and De Cannière [15] showed the existence of zero-sums on the full
permutation (24 rounds).

For the reasons discussed earlier, most of modern hash functions are permutation-
based hash function due to the weaknesses of Merkle-Damgård construction. Permutation is a
mathematical term for a function that rearranges the elements of its domain so that exactly
one input is mapped to each output. Some examples are permutation-based hash functions are
PHOTON [16], Quark [17], Grøstl [18], Luffa [19] and Keccak [20]. Also, Keccak is the
winner of SHA-3 competition and it is permutation-based sponge construction. Our designed
concrete hash function MOIM presented in this paper is permutation-based hash function.
This paper is organized as follows, In Section 2, we give a high-level summary of the MOIM

proposal, and state the design goals. In Section 3, we present the details of the proposal and in
Section 4, we describe the features specific to MOIM and motivate our design choices.
Section 5 introduces some alternative descriptions of MOIM and Section 6 describes some
cryptanalysis notations of MOIM. Finally, we conclude in Section 7.

2. DESIGN GOALS

In this section, we give a brief motivation of the MOIM proposal. Particularly, we aim
to have security margins at several layers of abstraction in the design.

2.1 Overall goals for the hash
Here we state overall design goals for MOIM. Details of these goals are discussed in

the next sections.
1. Simplicity of design analysis since MOIM is based on a small number of two

permutations P and Q in each side of the two parallel FWPs of MOIM keyed hash
function.

2. Simplicity of proving properties of the design.
3. Cryptanalysis of the design is straightforward since a well known construction and

permutation functions are used.
4. Prevention of generic attacks, Joux attack and length-extension attacks.

2.2 Design Features

MOIM is a failure tolerant design due to the following feature:
1. The internal state is 2n-bits where the final output is n-bits, hence all known

generic attacks are thwarted.
2. Attacks on the compression function are not transferable to MOIM keyed hash

function.
3. Joux attack are thwarted in two levels:

a. By using FWP construction in each side of MOIM design
b. Mixing the two parallel FWPs results intermediate chaining values with the

other side of MOIM after five compression functions.

International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-

6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 4, July-August (2013), © IAEME

4

3. SPECIFICATION OF MOIM

MOIM is a concrete hash function, takes an input of length up to 264 bits and returns a
hash digest with length 1024-bits. We now specify the MOIM keyed hash function.

3.1 The hash function construction

The MOIM keyed hash functions iterate the compression function C which uses two
parallel FWP constructions. The fast wide pipe (FWP) construction is the faster version of the
wide pipe construction designed by Lucks as mentioned earlier. The secret key and the input
message of the wide pipe compression function are 2n and m bits. The initial value 1 (IV1)
and the initial value 2 (IV2) poses the secret keys to FWP. Once these two values iterated into
the FWP construction, then, we can call them the chaining values. The wide pipe
compression function can be expressed in as C : {0, 1}m+2n →{0, 1}2n. But since the FWP is
twice faster than the wide pipe construction, its compression function can be expressed as C :
{0, 1}m+n {0, 1}n where the message and the chaining input to the compression function are
m+n and n bits; thus, speeding up the hashing operation by allowing m+n bits of message
instead of just m bits per compression function invocation. As Figure 1 describe MOIM keyed
hash function design, firstly, the message M is padded and divide into l-bit message blocks
m1,...,mL, and each message block is processed sequentially (in both sides of the two parallel
FWP constructions). Two initial l-bit values h0 = iv1 and h0

’
 = iv2 are defined, and

subsequently the message blocks mi are processed. Algorithm 1 describes FWP construction
in more details.

Figure 1. The MOIM keyed hash function

International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-

6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 4, July-August (2013), © IAEME

5

Again, algorithm 1 is performed in parallel fashion in both sides of the FWP MOIM

keyed hash function construction but with different permutation functions in each side (see
section 3.2 for the compression function construction). To illustrate algorithm 1, two initial l-
bit values h0 = iv1= h0

’
 = iv2= 0n are defined, then, the message M is padded by the padding

rule pad(M). The padding rule pad(M) is the execution of the following operation: append t
zero bits and a 64-bit encoding of |M| to the message M [18]. Select the least integer t ≥ 0
such that |M|+t+n+64= 0modl. The length of the original message M is encoded in the last

block of message M. FWP �
�

 denotes all the compressions functions C used in FWP except for
the last compression function. In particular, the subfunction in algorithm 1 processes these
values (h0 = h’

0, M0, M1, ……, Mk-2) starting from the first compression function and ending
in the one before the last compression function. Then, algorithm 1 returns the final truncated
hash digest by using the last compression function denoted by (final) as shows in Figure 1

and line 4 of algorithm 1 (See section 3.3 for the final output compression function).

Algorithm 1. The FWP mode of operation with the compression function C (i.e., FWPC)
[10]

Input: Message M

Output: Hash output h of size n bits
Initialize: h0 = h0

’= 0n

1: M0||M1||…..||Mk-1=pad(M) where IMiI = l for all i < k-1 and IMk-1I = l-n;

2: (hk-2 = h’
k-2) = FWP �

�
 (h0 = h’

0, M0, M1, ……, Mk-2); /*See Subfunction below*/
3: C(hk-2 || h

’
k-2 ||Mk-1) = h”

k-1 || h
’
k-1;

4: return hash output h = h’k-1;

Subfunction FWP �
�

 (h0 = h’
0, M0, M1, ……, Mk-2)

5: for i = 0 to k-2 do

6: C(hi-1 ||Mi) = hi” || hi’;

7: hi = hi” ⊕ h
’
i-1;

8: end for
9: return (hk-2 = h’

k-2);

3.2 The compression function construction
MOIM has two different compression functions C in each side of the design. These

compression functions are based on the underlying l-bit permutations P and Q inspired from
Grøstl hash function. Hence, the two permutations P and Q in each side of MOIM keyed hash
function are defined as follows:

f1(h,m) = P(h m) h (one side of MOIM)

f2(h,m) = Q(h m) h (one side of MOIM)

The constructions of f1 and f2 are illustrated in Figure 2a and 2b respectively. In
section 3.3, we describe how P and Q are defined.

International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-

6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 4, July-August (2013), © IAEME

6

Figure 2. The two compression functions f1 and f2 of P and Q permutations respectively

3.3 The output transformation (final)
Let φ be the truncation operation that discards from 2n-bits to n-bits. The output

transformation MAC1 illustrated in Figure 3 is then defined by

MAC1 = truncn P hi-2

Figure 3. The output transformation φ computes truncn P

 To obtain MAC2, the same process is performed with replacing Q instead of P as
Figure 3 shown.

3.4 Concatenation of MACand Y2

 As Figure 3 shows that the two MAC values of MAC1 and MAC2 in each side of the
two parallel FWP hash constructions are concatenated together to form MAC1IIMAC2.
MAC1IIMAC2 are 1024-bits long which imply that MAC1 and MAC2 are 512-bits long each.

3.5 The design of P and Q
The design of P and Q were inspired from Grøstl [18] which originally inspired by the

Rijndael block cipher algorithm [21, 22]. Rijndael design consists of a number of rounds R,
which consists of a number of round transformations. Since P and Q are much larger than the
128-bit state size of Rijndael, most round transformations have been redefined. In MOIM, a
total of four round transformations are defined for each permutation [18]. These are

International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-

6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 4, July-August (2013), © IAEME

7

• AddRoundConstant
• SubBytes
• ShiftBytesWide
• MixBytes.

A round R consists of these four round transformations applied in the above order as

illustrated in Figure 4. Hence,
R = MixBytes • SubBytes • SubBytes • AddRoundConstant

We note that all rounds follow this definition. We denote by r the number of rounds.
Concrete recommendations for r will be given in Section 3.5.6.

The transformations operate on a state, which is represented as a matrix A of bytes (of
8 bits each). The matrix has 8 rows and 16 columns. For the simplicity of exposure, we
describe a matrix that has 8 rows and 8 columns, where MOIM is the large variant of this
concept (8×16) [18].

3.5.1 Mapping from a byte sequence to a state matrix and vice versa

Since MOIM operates on bytes, it is generally endianness neutral. However, we need
to specify how a byte sequence is mapped to the matrix A, and vice versa. This mapping is
done in

Figure 4. One round of the MOIM permutations for each P and Q is a composition of

four basic transformations [18].

similar way as in Rijndael. Hence, the 64-byte sequence 00 01 02 ... 3f is mapped to an 8×8
matrix as [18]

International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-

6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 4, July-August (2013), © IAEME

8

 For MOIM, we used 8×16 matrix, this method is extended in the natural way.
Mapping from a matrix to a byte sequence is simply the reverse operation. From now on, we
do not explicitly mention this mapping [18].

3.5.2 AddRoundConstant
The AddRoundConstant transformation adds a round-dependent constant to the state

matrix A. By addition we mean exclusive-or (XOR). To be precise, the AddRoundConstant
transformation in round i (starting from zero) updates the state A as

A ← A C[i];

where C[i] is the round constant used in round i. P and Q have different round constants. The
round constants for P1024 and Q1024 are [18]

where i is the round number viewed as an 8-bit value.

3.5.3 SubBytes
The SubBytes transformation substitutes each byte in the state matrix by another

value, taken from the s-box S. This s-box is the same as the one used in Rijndael as Figure 5
shown. Hence, if ai,j is the element in row i and column j of A, then SubBytes performs the
following transformation [18]:

ai,j ← S(ai,j), 0≤ i <8, 0≤ j<v.

International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-

6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 4, July-August (2013), © IAEME

9

Figure 5. SubBytes substitutes each byte of the state by its image under the s-box S

[18].

3.5.4 ShiftBytesWide
ShiftBytesWide cyclically shift the bytes within a row to the left by a number of

positions. Let [σ0, σ1,..., σ7] be a list of distinct integers in the range from 0 to v-1. Then,
ShiftBytesWide moves all bytes in row i of the state matrix σi positions to the left, wrapping
around as necessary. For ShiftBytes in P and Q, we use σ=[0,1,2,3,4,5,6,11] and
σ=[1,3,5,11,0,2,4,6] respectively as illustrated in Figure 6 [18].

Figure 6. The ShiftBytesWide transformation of permutation P1024 (top) and Q1024

(bottom) [18].

3.5.5 MixBytes
In the MixBytes transformation, each column in the matrix is transformed

independently. To describe this transformation we first need to introduce the finite field F256.
This finite field is defined in the same way as in Rijndael via the irreducible polynomial x8

x4 x3 x 1 over F2. The bytes of the state matrix A can be seen as elements of F256, i.e., as
polynomials of degree at most 7 with coefficient in {0,1}. The least significant bit of each
byte determines the coefficient of x0, etc [18].

International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-

6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 4, July-August (2013), © IAEME

10

MixBytes multiplies each column of A by a constant 8×8 matrix B in F256. Hence, the
transformation on the whole matrix A can be written as the matrix multiplication

A← B ×A.
The matrix B is specified as [18]

This matrix is circulant, which means that each row is equal to the row above rotated

right by one position. In short, we may write B = circ(02, 02, 03, 04, 05, 03, 05, 07) instead.
See also Figure 7 [18].

Figure 7. The MixBytes transformation left-multiplies each column of the state matrix

treated as a column vector over F256 by a circulant matrix B [18].

3.5.6 Number of rounds

Table 4.1 shows the recommended value for the two permutations P1024 and Q1024.

Table 1.Recommended value of number of round for MOIM

Permutations Digest Size Recommended value of r

P1024 and Q1024 512 14

3.6 Initial values

The initial value ivn of MOIM-n is the l-bit which is 1024-bits long.

International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-

6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 4, July-August (2013), © IAEME

11

3.7 Padding
As mentioned earlier, the length of each message block is l. To be able to operate on

inputs of varying length, a padding function pad is defined. This padding function takes a
string x of length N bits and returns a padded string x* = pad(x) of a length which is a
multiple of l.

The padding function does the following. First, it appends the bit ‘1’ to x. Then, it
appends w = -N-65mod l ‘0’ bits, and finally, it appends a 64-bit representation of (N + w +

65)/l. This number is an integer due to the choice of w, and it represents the number of
message blocks in the final, padded message.

Since it must be possible to encode the number of message blocks in the padded
message within 64 bits, the maximum message length is 65 bits short of 264-1 message
blocks. So, the maximum message length in bits is therefore is 1024 · (264-1) – 65 = 274-1089
[18].

3.8 Summary

This section summarizes the complete process of MOIM keyed hash function. First, a
message M which is to be digested by MOIM is padded using the padding function pad.
Then, the message M is sent into two parallel FWP construction functions. In one side of the
two FWPs, the hash function iterates a compression function C : {0, 1}l ×{0, 1}l → {0, 1}l

(where l=1024 -bits), which is based on one permutation P. The last compression function C

is called final which truncates the output MAC1 from 1024-bits to 512-bits. On the other side
of MOIM keyed hash function, the same process done as the first half of MOIM to produce
MAC2 with different permutation Q. Finally, the outputs of MAC1 and MAC2 are
concatenated together to form MACfinal which is 1024-bits long.

4. Design decisions and design features

 In this section, we explain the design decisions made for MOIM and some design
features of the MOIM. Some advantages of MOIM keyed hash function compared to other
hash functions are listed below.
• FWP construction used in MOIM is proved to be indifferentiable from a random oracle
model [10]. Also, the compression functions used in MOIM is provably collision resistant and
preimage resistant assuming that the permutations P and Q are ideal [23].
• Flexibility of MOIM is due to the fact that the algorithm can be implemented in different
application. The parameters used in MOIM, i.e. security parameters r, the number of rounds
can be adjusted to fit application’s purposes.
• Familiarity of MOIM due to the familiarity of Rijndael design. Rijndael design proved its
advantageous through cryptographers analysis. Since, MOIM compression function is
inspired from Grøstl which is originally inspired by Rijndael design, consequently, MOIM

gained the familiarity feature from Rijndael design.

4.1 The security of the construction
Generally, the estimation of the security level of hash functions can be measured with

respect to the standard properties such as collision resistance and (second) preimage
resistance. Also, this estimation includes the indifferentiability from the random oracle or the
random sponge. The compression functions used in MOIM is provably collision resistant and
(second) preimage resistant assuming that the permutations P and Q are ideal [23]. The

International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-

6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 4, July-August (2013), © IAEME

12

security proof states that at least 2l/4 evaluations of P and/or Q are required to find a collision
for the hash function that iterates C, and that at least 2l/2 evaluations are required to find a
preimage. Note that these levels are the square root of the security levels for an ideal
compression function. However, since l ≥ n/2 internal collision and preimage attacks on the
hash functions have complexities of at least 2

n/2 and 2n. This analysis assumes that the l
output bits of the last call to C are the final output of the hash function [18]. However, in
MOIM, an output transformation is applied. We discuss this output transformation in Section
4.8.

The MOIM construction (FWP) was also proved to be indifferentiable from random
oracle up to bound to 2n/3 bits (up to an additive constant in one side of MOIM) [10]. This
result states that when permutations P and Q are assumed ideal and independent from each
other, MOIM behaves like a random oracle up to O(2n/3+2n/3) queries.

4.2 Mixing between FWP1 and FWP2 constructions
 MOIM mixes the intermediate chaining values between the two parallel FWP
constructions as Figure 2 shows. After obtaining the fifth intermediate chaining value in each
side, MOIM exchange these intermediate chaining values with each other. This means, the
fifth intermediate chaining value obtained by FWP1 compression function is exchanged with
the fifth intermediate chaining value obtained by FWP2 compression function. The idea
behind mixing (or exchanging) process is to thwart Joux attack. More particularly, Joux
stated that finding multicollisions, i.e. r-tuples of messages that all hash to the same value, is
not much harder than finding ordinary collisions, i.e. pairs of collisions, even for extremely
large values of r [6]. To illustrate the idea of MOIM mixing process, we assume the exchange
of the two intermediate chaining values occurs after the fifth output of the compression
function in each side of MOIM. At this point, Joux attack in not applicable since we cannot
obtain multicollisions more than five consecutive messages due to the mixing process
performed between the two parallel FWP constructions. This is the first defense line of
MOIM against Joux attack, where another defense line for the same attack is presented in
section 4.3.

4.3 Concatenation of MAC1 and MAC2

In the past few years, hash functions designers does not prefer to design concatenated
hash functions due to Joux attack presented in Crypto 2004 [6]. Basically, Joux stated that
multicollisions attack in one of hash functions of a concatenated hash function can be
extended to a collision on the overall design, i.e. FIIG is not really secure than F or G itself.
MOIM design is based on concatenating two parallel FWP constructions. FWP construction
adopts the idea of widening the size of the internal state, i.e. 2n, of hash functions and
truncates the final output with output transformation function, i.e. n as stated in section 3.3.
Accordingly, the design of FWP thwarts Joux attack [10]. So, this is the second defense line
of MOIM against Joux attack. However, the final output of MOIM is obtained by
concatenating two independent outputs of the two parallel FWP constructions which is 1024-

bits long. In cryptography folklore, the longer hash digests the more secure hash function.
But, unfortunately, there is a price to pay for this security. The tradeoff between security and
efficiency is the most important issue in the design of cryptographic algorithms.
Cryptographic algorithms should be suitable to implement in a variety of platforms and have
reasonable performance with an adequate security margin. Most of functions designed that
way need longer digests to achieve the desired level of security. With MOIM design, we

International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-

6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 4, July-August (2013), © IAEME

13

preferred to increase the security margin by having a longer hash digest, at the same time, we
used two constructions of the fast wide pipe (FWP) to balance the gap between the
performance and security margin. As Figure 2 shows that the two MACs values of MAC1 and
MAC2 in each side of the two parallel FWP hash constructions are concatenated together to
form MAC1II MAC2. MAC1II MAC2 are 1024-bits long which imply that MAC1 and MAC2

are 512-bits long each.

4.4 AddRoundConstant
The purpose of adding round constants is to make each round different and at the

same time this provides a natural opportunity to make P and Q independent from each other
[18]. Hence, MOIM uses each of these permutations in each side of the design to achieve the
independency of the two parallel FWP constructions. In addition, by having different round
constants for AddRoundConstant in P and Q, the internal differential attack, which considers
differences between the permutations P and Q, can be made infeasible [18].

4.5 SubBytes

The SubBytes transformation is the only non-linear transformation in MOIM. It uses
the same s-box as used in Rijndael. For a walk-through of its properties, we refer to one of
[18, 21, 22]. The choice for this particular transformation was driven by the following
reasoning:

• Size: 8-bit s-boxes are a convenient trade-off between implementation aspects
(smallest word size on popular platforms) and cryptanalytic considerations. On the
other hand, there are 28! different permutations to choose from [18].

• Single s-box rather than many different s-boxes: this is again a trade-off between
implementation and cryptanalytic considerations [18].

• No random s-box: A structured s-box allows for significantly more efficient
hardware implementation than random s-box [18].

• The particular structure of the chosen s-box was already proposed in 1993 [24] and
has therefore undergone a long period of study [18].

• Since the s-box is inherited from the AES, implementation aspects (especially in
hardware) are well studied [18].

4.6 ShiftBytesWide
The ShiftBytesWide used in MOIM is the same used in Grøstl hash function. To

illustare the idea of this transformation, we needed shift values which result in optimal
diffusion. Let vt,c(ai,j) be the number of times that a state byte ai,j affects every state byte of
column c after t rounds. In detail, vt,c(ai,j) defines how often (or in how many ways) every
state byte of column c depends on ai,j. Hence, we have full diffusion after t rounds if vt,c(ai,j) ≥
1for all columns c and state bytes ai,j. In other words, each state byte is affected by every state
byte ai,j at least once. Let t* be the value of t for which this happens. Then we get optimal
diffusion, if min(vt*,c(ai,j)) is maximal for a specific geometry [18]. Second, to make P and Q
more independent form each other, they use different shift values in P and Q. In more detail,
we use shift values in Q such that no row is shifted by the same amount as in P, and such that
the resulting states in P and Q are not simply shifted versions of each other. This way, it
becomes much more differences or any other pattern in P and Q may line-up or cancel each
other. We achieve this property using shift values in Q with a different (halved or doubled)
slope than in P. For P1024 and Q1024 (ShiftBytesWide) we have searched for shift values with

International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-

6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 4, July-August (2013), © IAEME

14

optimal diffusion after three rounds (two rounds is not possible) and get optimal diffusion if
min(v3,c(ai,j)) = 2. For P1024, we have chosen the first set of such values when sorted in
lexicographical order. Again for Q1024, we used the same shift values as in P1024 in a different
order to get optimal independence (see Figure 6) [18].

4.7 MixBytes

The main design goal of the MixBytes transformation is to follow the wide trail
strategy. Hence, the MixBytes transformation is based on an error-correcting code with the
MDS (maximum distance separable) property. This ensures that both the differential and
linear branch number is 9. In other words, a difference in k > 0 bytes of a column will result
in a difference of at least 9-k bytes after one MixBytes application [18].

4.8 The output transformation (final)
The output transformation is the last compression function denoted with final which

truncates the large size of the chaining variables, i.e. 1024-bits, to the required output size,
i.e. 512-bits. Inside the final compression function, let φ be the operation that discards all but
the trailing n bits. The output transformation MAC1 illustrated in Figure 3 is then defined by

MAC1= truncn P

 On the other side of MOIM, the same aforementioned process will occur in parallel
fashion to produce MAC2 except of using Q permutation on this half of MOIM where we
used P permutation on the first half. The output transformation MAC2 illustrated in Figure 3
is then defined by

MAC2 = truncn Q

4.9 Number of rounds
The choice of the number of rounds is primarily based on the cryptanalysis results

described in section 6. These results were originally obtained from the cryptanalysis of P and
Q permutations of Grøstl hash function. The square/integral attack indicates that the
permutations might be distinguishable from ideal if the number of rounds is 9 or less in the
MOIM keyed hash function. The final choice of number of rounds to be 14 provides a
reasonably large security margin for MOIM keyed hash function.

5. ALTERNATIVE DESCRIPTIONS OF MOIM

This section provides alternative descriptions of MOIM which serve multiple

purposes. It helps cryptanalysists to analysis MOIM to lead for better implementation. In the
standard description of MOIM, the hash function iterates a permutation-based compression
function P and Q in two parallel FWP constructions, and then applies an output
transformation in each side to form the final hash of a message MAC1II MAC2. However, in
next sections, we describe MOIM in different manner.

 5.1 The mixing process of FWP1 and FWP2

 Mixing (or exchanging) the two output chaining variables after every five outputs of
the two parallel FWPs construction increases the avalanche effect property. For example, if a
one single bit changes in the input that will change the output significantly, i.e. half the
output bits flip. As explained in section 4.2, also the mixing process thwarts Joux attack since
an adversary cannot generate a multicollisions attack more than five consecutive messages.

International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-

6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 4, July-August (2013), © IAEME

15

5.2 The output transformations
The output transformations are defined as MAC1 = truncn P hi-2 and MAC2 =

truncn Q hi-2. The truncation process performed in MOIM clearly protects against length
extension attack as described in section 6.7. Basically, this attack is based on the observation
of the truncation from l to n bits. Since at least n bits are dropped in each side of MOIM, the
probability of correctly guessing those bits is about 2-n

+2
-n. The alternative description can

also be seen as an indication that MOIM is in fact an instance of the FWP construction, which
prevents length extension attacks [10]. Indeed, we can strictly state that the output
transformations of MOIM improves the security of the hash function.

6. CRYPTANALYSIS NOTATIONS

In this section, we describe some cryptanalysis notations on MOIM, and we state our

security claims.

6.1 Attacks exploiting properties of the permutations

We first consider well known attack methods that aim to exploit potential weaknesses
in the permutations P and Q.

6.1.1 Differential cryptanalysis
The permutations P and Q have diffusion properties according to the wide trail design

strategy. Since the MixBytes transformation has branch number 9, and ShiftWideBytes is
diffusion optimal (moves the bytes in each column to sixteen different columns), it is
guaranteed that for MOIM in each side, there are at least 92 = 81 active s-boxes in any four-
round differential trail [22, Theorem 9.5.1]. Hence, there are at least 3 · 81 = 243 active s-
boxes in any twelve-round differential trail. This, combined with the maximum difference
propagation probability of the s-box of 2-6, means that the probabilities of any differential
trail (assuming independent rounds) over twelve rounds (for either P or Q) are expected to be
at most 2-6.243= 2-1458 [18]. Therefore, in a classical differential attack where one specifies a
differential trail for every round for both P and Q, there is only a very small chance that this
would lead to a successful attack for MOIM [18].

6.1.2 Rebound attacks
The rebound attack [23, 24] is a new attack method for the cryptanalysis of hash

functions. It gives the best known results for a number of AES-based hash functions and
many SHA-3 candidates [25, 26, 27, 28, 29, 30, 31]. In general, the rebound attack works
with any differential or truncated differential. However, the diffusion properties of AES
based hash functions allow a very simple construction of good truncated differential paths,
which facilitates the analysis. The rebound attack is most successful if a high number of
degrees of freedom is available. Therefore, attacks on hash functions with a key schedule to
the underlying block cipher or other sources of freedom are more likely to succeed (see the
attacks on ECHO [32], LANE [33] or Whirlpool [34]). However, MOIM has been designed
to limit the degrees of freedom available to an attacker. Moreover, in attacks on the hash
function, much fewer degrees of freedom are available (compared to an attack on the
compression function or permutation). The best attack on the hash function for MOIM is for 3
rounds 14 [18].

International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-

6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 4, July-August (2013), © IAEME

16

6.1.3 Linear cryptanalysis
Linear and differential trails propagate in a very similar way. Since the MixBytes

transformation has linear branch number 9, it is guaranteed that for MOIM in each side, there
are at least 92 = 81 active s-boxes in any four-round linear trail [22, Theorem 9.5.1]. Hence,
there are at least 3·81 = 243 active s-boxes in any twelve-round linear trail. Since the s-box
has maximum correlation of 2-3, the maximum correlation for any four-round linear trial is 2-

3.81= 2-243. This means that the correlation of any linear trail over twelve rounds (for either P
or Q) is expected to be at most 2-279 [18].

6.2 Collision attacks on the compression function
This attack has complexity 2l/3, and hence is faster than a birthday attack on the

compression function. Note that this is still above the proven bound of 2l/4 and above the
complexity of a birthday attack on the hash function, since n ≤ l/2. The attack does not
provide the attacker with much control over the chaining input, and hence we do not see any
methods to extend the attack to the full hash function [18].

6.3 Collision attacks on the hash function
The construction of Figure 1 is provably collision resistant up to the level of 2l/4

permutation calls. Still, no collision attack of this complexity is known when the
permutations are assumed to be ideal. The best known collision attack requires 23l/8

permutation calls, but the true complexity in terms of compression function call equivalents is
higher than 2l/2. Hence, a large security margin remains [18].

6.4 Generic attacks on the iteration
The internal state being at least twice the size of the hash value for MOIM, generic

attacks applying to the Merkle-Damgård construction cannot be applied to MOIM directly via
brute force or birthday attacks. However, since the construction used for MOIM does not
achieve security comparable to an ideal iterated hash function with the same internal state
size, we do not claim that generic attacks do not apply using some other methods than the
standard brute force and birthday attacks [18].

6.5 Multicollision attack
Joux stated that finding multicollisions, i.e. r-tuples of messages that all hash to the

same value, is not much harder than finding ordinary collisions, i.e. pairs of collisions, even
for extremely large values of r [6]. Joux attack is not applicable in MOIM since we cannot
obtain multicollisions more than five consecutive messages due to the mixing process
performed between the two parallel FWP constructions. This is the first defense line of
MOIM against Joux attack. Also, FWP construction adopts the idea of widening the size of
the internal state, i.e. 2n, of hash functions and truncates the final output with output
transformation function, i.e. n as stated in section 3.3. Accordingly, the design of FWP
thwarts Joux attack.

6.6 Second preimage attack
The second preimage attack of Kelsey and Schneier [35] on the Merkle-Damgård

construction also seems to be complicated by the large internal state size. For an n-bit iterated
hash function based on an n-bit compression function, given a first preimage of length 2k
message blocks this attack finds a second preimage of the same length in 2n-k evaluations of
the compression function. A variant of this attack was published in [36]. Using the techniques
of [35, 36], the complexity of carrying out the second preimage attack on MOIM given a 264-

International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-

6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 4, July-August (2013), © IAEME

17

block first preimage is about 2l-64. For all the message digest sizes of MOIM, this complexity
is well above 2n-k. Hence, our claimed security level for the second preimage resistance is at
least 2n-k for any first message of at most 2k blocks. However, we do not know of an attack
with complexity below 2n [18].

6.7 Length extension attack

The length extension attack on Merkle-Damgård hash functions works as follows. Let

(M, M*) be a collision for the hash function H, with |M| = |M*|. H pads M and M* to �� and

��* before hashing, and by choosing any message suffix y, we have that B = ��IIy and B =

��IIy also collide. Hence, a single collision gives rise to many new collisions that “come for
free”. The length extension method is not trivial to carry out in MOIM, unless the messages
collide before the output transformation. Finding a collision before the output transformation
takes time 2l/2≥2n by the birthday attack. A related weakness of the Merkle-Damgård
transformation is the following. Assume the two values H(M) and |M| are known, but M itself
is not. Knowing |M|, one also knows how M was padded, and hence for any suffix y, one may

compute ����IIy), where �� is the padded version of M, without knowing M. This weakness
leads to attacks when Merkle-Damgård hash function underlies a secret prefix MAC. In
MOIM, this attack does not seem possible due to the output transformation [18].

7. CONCLUSION

This paper gives a proposal for new concrete novel design based on permutation hash

function named MOIM. MOIM is based on concatenating two FWP constructions and the
permutations P and Q used in SHA-3 finalist Grøstl hash function. We claimed that it is hard
to attack MOIM with complexities significantly less than brute force. MOIM has two defense
level of security to thwarts generic and Joux attacks. We leave the software implementation
of MOIM as a future work.

8. REFERENCES

1. R.L.Rivest.TheMD4messagedigestalgorithm.InS.Vanstone,editor,AdvancesinCryp-

tology - CRYPTO’90, Lecture Notes in Computer Science 537, pages 303–311. Springer  Verlag, 1991.

2. R.L. Rivest. The MD5 message-digest algorithm. Request for Comments (RFC) 1321,  Internet Activities Board, Internet Privacy Task Force, April 1992.

3. NIST. Secure hash standard. FIPS 180-1, US Department of Commerce, Washington  D.C., April 1995.

4. H. Dobbertin, A. Bosselaers, and B. Preneel. RIPEMD-160: A strenghened version of  RIPEMD. In Gollmann D., editor, Fast Software Encryption, Third International Work-

shop, Cambridge, UK, February 1996, Lecture Notes in Computer Science 1039, pages
71–82. Springer Verlag, 1996.

5. D. R. Stinson. Cryptography : Theory and Practice, Second Edition, CRC Press, Inc.
6. Antoine Joux. Multicollisions in Iterated Hash Functions. Application to Cascaded

Constructions. In Matt Franklin, editor, Advances in Cryptology- CRYPTO 2004, volume
3152 of Lecture Notes in Computer Science, pages 306–316. Springer, August 15–19
2004.

International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-

6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 4, July-August (2013), © IAEME

18

7. Wang, Xiaoyun, Hongbo Yu, and Yiqun Lisa Yin. "Efficient collision search attacks on
SHA-0." Advances in Cryptology–CRYPTO 2005. Springer Berlin Heidelberg, 2005.

8. XiaoyunWang, Yiqun Lisa Yin, and Hongbo Yu, 2005.”Finding Collisions in the Full

SHA-1,  Lecture Notes in Computer Science, Volume 3621, Advances in Cryptology –

CRYPTO 2005  Proceedings, pp. 17–36.

9. Lucks, S. (2004). Design principles for iterated hash functions, Cryptology ePrint
Archive, Report 2004/253, 2004, http://eprint. iacr. org.

10. Nandi, M. and S. Paul (2010). "Speeding up the wide-pipe: Secure and fast hashing."
Progress in Cryptology-INDOCRYPT 2010: 144-162.

11. Eli Biham and Orr Dunkelman, "A Framework for Iterative Hash Functions - HAIFA,"
Cryptology ePrint Archive, 2007. [Online]. http://eprint.iacr.org/2007/278

12. Guido Bertoni, Joan Daemon, Michael Peeters, and Gilles Van Assche, "Sponge
Functions," in ECRYPT Hash Function Workshop, 2007.

13. G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. On the indifferentiability of the
sponge construction. Advances in Cryptology - EUROCRYPT 2008, 27th Annual

International Conference on the Theory and Applications of Cryptographic Techniques,

Istanbul, Turkey, April 13-17, 2008. Proceedings, 4965:181–197, 2008.
14. J.-P. Aumasson and W. Meier. Zero-sum distinguishers for reduced Keccak-f and for the

core functions of Luffa and Hamsi. NIST mailing list, 2009.
15. C. Boura, A. Canteaut, and C. D. Canniére. Higher-order differential properties of Keccak

and Luffa. Cryptology ePrint Archive, Report 2010/589, 2010.
http://eprint.iacr.org/2010/589.pdf.

16. Guo, Jian, Thomas Peyrin, and Axel Poschmann. "The PHOTON family of lightweight
hash functions." Advances in Cryptology–CRYPTO 2011. Springer Berlin Heidelberg,
2011. 222-239.

17. Aumasson, Jean-Philippe, et al. "Quark: A lightweight hash." Cryptographic Hardware

and Embedded Systems, CHES 2010. Springer Berlin Heidelberg, 2010. 1-15.
18. Gauravaram, P., Knudsen, L. R., Matusiewicz, K., Mendel, F., Rechberger, C., Schläffer,

M., & Thomsen, S. S. (2008). Grøstl–a SHA-3 candidate. Submission to NIST.
19. De Canniere, C., Sato, H., & Watanabe, D. (2009). Hash function Luffa: specification.

Submission to NIST (Round 2).
20. Bertoni, G., Daemen, J., Peeters, M., & Van Assche, G. (2009). Keccak sponge function

family main document. Submission to NIST (Round 2), 3.
21. J. Daemen and V. Rijmen. AES Proposal: Rijndael. AES Algorithm Submis- sion,

September 1999. Available: http://csrc.nist.gov/archive/aes/rijndael/ Rijndael-
ammended.pdf (2011/01/15).

22. J. Daemen and V. Rijmen. The Design of Rijndael. Springer, 2002.
23. P.-A. Fouque, J. Stern, and S. Zimmer. Cryptanalysis of Tweaked Versions of SMASH

and Reparation. In R. Avanzi, L. Keliher, and F. Sica, editors, Selected Areas in
Cryptography 2008, Proceedings, volume 5381 of Lecture Notes in Computer Science,
pages 136–150. Springer, 2009.

24. K. Nyberg. Differentially uniform mappings for cryptography. In T. Helleseth, editor,
Advances in Cryptology – EUROCRYPT ’93, volume 765 of Lecture Notes in Computer
Science, pages 55–64. Springer, 1994.

25. M. Lamberger, F. Mendel, C. Rechberger, V. Rijmen, and M. Schl↵er. The Rebound
Attack and Subspace Distinguishers: Application to Whirlpool. Cryptology ePrint
Archive, Report 2010/198, 2010. http://eprint.iacr.org/2010/198(2011/01/15).

International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-

6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 4, July-August (2013), © IAEME

19

26. F. Mendel, C. Rechberger, M. Schl a↵er, and S. S. Thomsen. The Rebound Attack: Crypt-
analysis of Reduced Whirlpool and Grøstl. In O. Dunkelman, editor, Fast Software En-
cryption 2009, Proceedings, volume 5665 of Lecture Notes in Computer Science, pages 260–
276. Springer, 2009.

27. D. Khovratovich, I. Nikolic, and C. Rechberger. Rotational Rebound Attacks on Reduced
Skein. In M. Abe, editor, Advances in Cryptology – ASIACRYPT 2010, Proceedings,
volume 6477 of Lecture Notes in Computer Science, pages 1–19. Springer, 2010.

28. K. Matusiewicz, M. Naya-Plasencia, I. Nikoli 'c, Y. Sasaki, and M. Schl a↵er. Rebound
Attack on the Full LANE Compression Function. In M. Matsui, editor, Advances in
Cryptology – ASIACRYPT 2009, Proceedings, volume 5912 of Lecture Notes in Computer
Science, pages 106–125. Springer, 2009.

29. F. Mendel, T. Peyrin, C. Rechberger, and M. Schl a↵er. Improved Cryptanalysis of the Re-
duced Grøstl Compression Function, ECHO Permutation and AES Block Cipher. In M. J.
Jacobson, V. Rijmen, and R. Safavi-Naini, editors, Selected Areas in Cryptography 2009,
Proceedings, volume 5867 of Lecture Notes in Computer Science, pages 16–35. Springer,
2009.

30. M. Schla ↵er. Improved Collisions for Reduced ECHO-256. Cryptology ePrint Archive,
Report 2010/588, 2010. http://eprint.iacr.org/.

31. K. Matusiewicz, M. Naya-Plasencia, I. Nikoli 'c, Y. Sasaki, and M. Schl a↵er. Rebound
Attack on the Full LANE Compression Function. In M. Matsui, editor, Advances in
Cryptology – ASIACRYPT 2009, Proceedings, volume 5912 of Lecture Notes in Computer
Science, pages 106–125. Springer, 2009.

32. J. Kelsey and B. Schneier. Second Preimages on n-Bit Hash Functions for Much Less than 2n
Work. In R. Cramer, editor, Advances in Cryptology – EUROCRYPT 2005, Proceedings,
volume 3494 of Lecture Notes in Computer Science, pages 474–490. Springer, 2005.

33. E. Andreeva, C. Bouillaguet, P.-A. Fouque, J. J. Hoch, J. Kelsey, A. Shamir, and S. Zimmer.
Second Preimage Attacks on Dithered Hash Functions. In N. Smart, editor, Advances in
Cryptology – EUROCRYPT 2008, Proceedings, volume 4965 of Lecture Notes in Computer
Science, pages 270–288. Springer, 2008.

34. Imad Fakhri Al-shaikhli, Mohammad A. Alahmad and Khansaa Munther. The "Comparison
and analysis study of sha-3 finallists." International Conference on Advanced Computer
Science Applications and Technologies(26-28 Nov 2012): 7.

35. Mohammad A. Ahmad, I. F. A. S., Hanady Mohammad Ahmad (2012). "Protection of the
Texts Using Base64 and MD5." JACSTR Vol 2, No 1 (2012)(1): 12.

36. Imad F. Alshaikhli, M. A. Ahmad. (2011). "Security Threats of Finger Print Biometric in
Network System Environment." Advanced Computer Science and Technology Research 1(1):
15.

37. Mohammad A. Ahmad, I. F. A. S., Hanady Mohammad Ahmad (2012). "Protection of the
Texts Using Base64 and MD5." JACSTR Vol 2, No 1 (2012)(1): 12.

38. Mahmoud M. Maqableh, “Secure Hash Functions Based on Chaotic Maps for E-Commerce
Applications”, International Journal of Information Technology and Management
Information Systems (IJITMIS), Volume 1, Issue 1, 2010, pp. 12 - 22, ISSN Print:
0976 – 6405, ISSN Online: 0976 – 6413.

39. Varun Shukla and Abhishek Choubey, “A Comparative Analysis of the Possible Attacks on
Rsa Cryptosystem”, International Journal of Electronics and Communication Engineering
&Technology (IJECET), Volume 3, Issue 1, 2012, pp. 92 - 97, ISSN Print: 0976- 6464,
ISSN Online: 0976 –6472

