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ABSTRACT 

 

A hash function usually has two main components: a compression function or 
permutation function and mode of operation. In this paper, we propose a new concrete 
novel design of a permutation based hash functions called MOIM. MOIM is based on 
concatenating two parallel fast wide pipe constructions as a mode of operation designed 
by Nandi and Paul, and presented at Indocrypt 2010 where the size of the internal state 
is significantly larger than the size of the output. And the permutations functions used 
in MOIM are inspired from the SHA-3 finalist Grøstl hash function which is originally 
inspired from Rijndael design (AES). As a consequence there is a very strong confusion 
and diffusion in MOIM. Also, we show that MOIM resists all the generic attacks and 
Joux attack in two defense security levels.  
 

Keywords:  FWP - permutation - concatenation – mixing  
 

1. INTRODUCTION 
 

Cryptographic hash functions have indeed proved to be the workhorses for modern 
cryptographic hash functions. Another name given to cryptographic hash functions is “Swiss 
knife army” because it can serve many different purposes such as digital signatures, 
conventional message authentication to secure passwords storage or forensics data 
identification. Cryptographic hash functions take an unfixed size of input and produce a fixed 
size of an output. A hash function usually built from two main components: (1) a basic 
primitive compression function C and (2) an iterative mode of operation H, where the symbol 
H

C denotes the hash function HC based on the compression function C. Most hash functions 
in use today are so-called iterated hash functions, i.e. Merkle-Damgård (MD), based on 
iterating a compression function. Examples of iterated hash functions are MD4 [1], MD5 [2], 
SHA [3] and RIPEMD-160 [4]. For a cryptographic hash function H

C, if the compression 
function C is resistant to the following attacks, then the hash function considered secure:  
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1. Preimage: it is computationally infeasible to find x’ such that H(x’) = y, where y = 
H(x). 

2. 2
nd

 preimage: it is computationally infeasible to find x and y=H(x) find x’ ≠ x 
where H(x’) = y. 

3. Collision: it is computationally infeasible to find x and x’ where x’ ≠ x and H(x) = 
H(x’). 

Birthday attack (collision) is applicable to all hash functions after about 2
n/2. Brute 

force attack preimages and 2nd preimages can be found after about 2n. It clearly stated that the 
existence of 2nd preimage implies the existence of collision [5]. At this point, we have to 
distinguish between theoretical and practical break. To illustrate the theoretical break, if an 
attack succeeds to prove that a hash function can be exploited (e.g. finding a collision, or pre-
image, or second pre-image) with work less than required by the birthday or brute force 
attack, the hash function is considered broken, even if the work required to break it is still 
infeasible in practice. Indeed, finding such flaws in a hash function is an evidence of 
structural weaknesses that may be exploited at later stages to turn this theoretical break into a 
practical one; the primary example is MD5, which was first theoretically broken, then the 
attacks eventually evolved and today practical collisions can easily be found in MD5 [7]. So, 
everything started in 2004, when collisions were announced in SHA-0, MD4, MD5, 
HAVAL-128, and RIPEMD. French researcher Antoine Joux [6] presented the collision in 
SHA-0, and a group of collisions against MD4, MD5, HAVAL- 128, and RIPEMD were 
found by the Chinese researcher Xiaoyun Wang with co-authors Dengguo Feng, Lai, and 
Hongbo Yu [7]. After that, in February 2005, the same Xiaoyun Wang, Lisa Yiqun Yin, and 
Hongbo Yu found collisions in SHA-1 using 269 hash computations [8]. Several strategies 
were developed to thwart these attacks. Stefan lucks [9] introduced the wide pipe hash 
construction as an intermediate version of Merkle-Damgård to improve the structural 
weaknesses of Merkle-Damgård design. The process is similar to Merkle-Damgård algorithm 
steps except of having a larger internal state size, which means the final hash digest is smaller 
than the internal state size of bit length. For example, the final compression function 
compresses the internal state length (for ex, 2n- bit) to output a hash digest of n-bit. This 
simply can be achieved by discarding the last half of 2n-bit output. Mridul Nandi and 
Souradyauti Paul [10] proposed the fast wide pipe (FWP) construction to overcome these 
attacks. It is twice faster than the wide pipe construction. FWP is used in this paper to 
construct MOIM keyed hash function. It is used as an operation of mode for MOIM (see 
section 3). HAsh Iterated FrAmework (HAIFA) is also a patched version Merkle-Damgård 
construction [11]. HAIFA design solves many of the internal collision problems associated 
with the classic MD construction design by adding a fixed (optional) salt of s-bits along with 
a (mandatory) counter Ci of t-bits to every message block in the iteration i of the hash 
function. Wide-pipe and HAIFA are very similar designs. Sponge construction is an iterative 
construction designed by Guido Bertoni, Joan Daemen, Micheal Peeter and Gilles Van 
Assche to replace Merkle-Damgård construction [12]. It is a construction that maps a variable 
length input to a variable length output. Keccak (SHA-3 winner) hash function uses sponge 
construction. Namely, by using a fixed-length transformation (or permutation) f that operates 
on a fixed number of b = r + c bits. Where r is called the bitrate and c is called the capacity. 
First, the input is padded with padding algorithm and cut into blocks of r bits. Then, the b bits 
of the state are initialized to zero. The sponge construction operates in two phases: 
• Absorbing phase: The r-bit message blocks are XORed with the first r bits of the state of 

the function F. After processing all the message blocks, the squeezing phase starts. 
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• Squeezing phase: The first r bits of the state are returned as output blocks of the function 
F. lastly, the number of output blocks is chosen by the user [13]. 

The sponge construction has been studied by many researchers to prove its security 
robustness. Bertoni et al. [13] proved that the success probability of any generic attack to a 
sponge function is upper bound by its success probability for a random oracle plus N

2/2c-1 
with N the number of queries to f. Aumasson and Meier [14] showed the existence of zero-
sum distinguishers for 16 rounds of the underlying permutation f of Keccak hash function. 
Boura, Canteaut and De Cannière [15] showed the existence of zero-sums on the full 
permutation (24 rounds).  

For the reasons discussed earlier, most of modern hash functions are permutation-
based hash function due to the weaknesses of Merkle-Damgård construction. Permutation is a 
mathematical term for a function that rearranges the elements of its domain so that exactly 
one input is mapped to each output. Some examples are permutation-based hash functions are 
PHOTON [16], Quark [17], Grøstl [18], Luffa [19] and Keccak [20]. Also, Keccak is the 
winner of SHA-3 competition and it is permutation-based sponge construction. Our designed 
concrete hash function MOIM presented in this paper is permutation-based hash function. 
This paper is organized as follows, In Section 2, we give a high-level summary of the MOIM 

proposal, and state the design goals. In Section 3, we present the details of the proposal and in 
Section 4, we describe the features specific to MOIM and motivate our design choices. 
Section 5 introduces some alternative descriptions of MOIM and Section 6 describes some 
cryptanalysis notations of MOIM. Finally, we conclude in Section 7. 

 

2. DESIGN GOALS 
 

In this section, we give a brief motivation of the MOIM proposal. Particularly, we aim 
to have security margins at several layers of abstraction in the design.   

 

2.1 Overall goals for the hash 
Here we state overall design goals for MOIM. Details of these goals are discussed in 

the next sections.  
1. Simplicity of design analysis since MOIM is based on a small number of two 

permutations P and Q in each side of the two parallel FWPs of MOIM keyed hash 
function.   

2. Simplicity of proving properties of the design. 
3. Cryptanalysis of the design is straightforward since a well known construction and 

permutation functions are used. 
4. Prevention of generic attacks, Joux attack and length-extension attacks. 

 

2.2 Design Features 

MOIM is a failure tolerant design due to the following feature:  
1. The internal state is 2n-bits where the final output is n-bits, hence all known 

generic attacks are thwarted. 
2. Attacks on the compression function are not transferable to MOIM keyed hash 

function.  
3. Joux attack are thwarted in two levels:  

a. By using FWP construction in each side of  MOIM design  
b. Mixing the two parallel FWPs results intermediate chaining values with the 

other side of MOIM after five compression functions. 
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3. SPECIFICATION OF MOIM  
 

MOIM is a concrete hash function, takes an input of length up to 264 bits and returns a 
hash digest with length 1024-bits. We now specify the MOIM keyed hash function.    

 

3.1 The hash function construction 

The MOIM keyed hash functions iterate the compression function C which uses two 
parallel FWP constructions. The fast wide pipe (FWP) construction is the faster version of the 
wide pipe construction designed by Lucks as mentioned earlier. The secret key and the input 
message of the wide pipe compression function are 2n and m bits. The initial value 1 (IV1) 
and the initial value 2 (IV2) poses the secret keys to FWP. Once these two values iterated into 
the FWP construction, then, we can call them the chaining values. The wide pipe 
compression function can be expressed in as C : {0, 1}m+2n →{0, 1}2n. But since the FWP is 
twice faster than the wide pipe construction, its compression function can be expressed as C : 
{0, 1}m+n {0, 1}n where the message and the chaining input to the compression function are 
m+n and n bits; thus, speeding up the hashing operation by allowing m+n bits of message 
instead of just m bits per compression function invocation. As Figure 1 describe MOIM keyed 
hash function design, firstly, the message M is padded and divide into l-bit message blocks 
m1,...,mL, and each message block is processed sequentially (in both sides of the two parallel 
FWP constructions). Two initial l-bit values h0 = iv1 and h0

’
 = iv2 are defined, and 

subsequently the message blocks mi are processed. Algorithm 1 describes FWP construction 
in more details.   

 

 
 

 

Figure 1. The MOIM keyed hash function  
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Again, algorithm 1 is performed in parallel fashion in both sides of the FWP MOIM 

keyed hash function construction but with different permutation functions in each side (see 
section 3.2 for the compression function construction). To illustrate algorithm 1, two initial l-
bit values h0 = iv1= h0

’
 = iv2= 0n are defined, then, the message M is padded by the padding 

rule pad(M). The padding rule pad(M) is the execution of the following operation: append t 
zero bits and a 64-bit encoding of |M| to the message M [18]. Select the least integer t ≥ 0 
such that |M|+t+n+64= 0modl. The length of the original message M is encoded in the last 

block of message M. FWP  �
�

 denotes all the compressions functions C used in FWP except for 
the last compression function. In particular, the subfunction in algorithm 1 processes these 
values (h0 = h’

0, M0, M1, ……, Mk-2) starting from the first compression function and ending 
in the one before the last compression function. Then, algorithm 1 returns the final truncated 
hash digest by using the last compression function denoted by (final) as shows in Figure 1 

and line 4 of algorithm 1 (See section 3.3 for the final output compression function).      
 

Algorithm 1. The FWP mode of operation with the compression function C (i.e., FWPC) 
[10] 

___________________________________________________________________________
___ 
Input: Message M 

Output: Hash output h of size n bits  
Initialize: h0 = h0

’= 0n 

1: M0||M1||…..||Mk-1=pad(M) where IMiI = l for all i < k-1 and IMk-1I = l-n; 

2: (hk-2 = h’
k-2) = FWP  �

�
 (h0 = h’

0, M0, M1, ……, Mk-2); /*See Subfunction below*/ 
3: C(hk-2 || h

’
k-2 ||Mk-1) = h”

k-1 || h
’
k-1; 

4: return hash output h = h’k-1; 

Subfunction FWP  �
�

 (h0 = h’
0, M0, M1, ……, Mk-2) 

5: for i = 0 to k-2 do  

6: C(hi-1 ||Mi) = hi” || hi’; 

7: hi = hi” ⊕   h
’
i-1; 

8: end for  
9: return (hk-2 = h’

k-2); 
___________________________________________________________________________
___ 

 
 

3.2 The compression function construction 
MOIM has two different compression functions C in each side of the design. These 

compression functions are based on the underlying l-bit permutations P and Q inspired from 
Grøstl hash function. Hence, the two permutations P and Q in each side of MOIM keyed hash 
function are defined as follows: 

 
f1(h,m) = P(h m)  h    (one side of MOIM) 

f2(h,m) = Q(h m)  h    (one side of MOIM) 

 

The constructions of  f1 and f2  are illustrated in Figure 2a and 2b respectively. In 
section 3.3, we describe how P and Q are defined.  
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Figure 2. The two compression functions f1 and f2 of P and Q permutations respectively 

 

3.3 The output transformation (final) 
Let φ be the truncation operation that discards from 2n-bits to n-bits. The output 

transformation MAC1 illustrated in Figure 3 is then defined by 
 

MAC1 = truncn P  hi-2 

 

 
Figure 3. The output transformation φ computes truncn P 

 

  To obtain MAC2, the same process is performed with replacing Q instead of P as 
Figure 3 shown. 

 

3.4 Concatenation of MACand Y2  

 As Figure 3 shows that the two MAC values of MAC1 and MAC2 in each side of the 
two parallel FWP hash constructions are concatenated together to form MAC1IIMAC2. 
MAC1IIMAC2 are 1024-bits long which imply that MAC1 and MAC2 are 512-bits long each. 
 

3.5 The design of P and Q 
The design of P and Q were inspired from Grøstl [18] which originally inspired by the 

Rijndael block cipher algorithm [21, 22]. Rijndael design consists of a number of rounds R, 
which consists of a number of round transformations. Since P and Q are much larger than the 
128-bit state size of Rijndael, most round transformations have been redefined. In MOIM, a 
total of four round transformations are defined for each permutation [18]. These are 
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• AddRoundConstant  
• SubBytes 
• ShiftBytesWide 
• MixBytes. 
 
A round R consists of these four round transformations applied in the above order as 

illustrated in Figure 4. Hence, 
R = MixBytes • SubBytes • SubBytes • AddRoundConstant 

We note that all rounds follow this definition. We denote by r the number of rounds. 
Concrete recommendations for r will be given in Section 3.5.6.  

The transformations operate on a state, which is represented as a matrix A of bytes (of 
8 bits each). The matrix has 8 rows and 16 columns. For the simplicity of exposure, we 
describe a matrix that has 8 rows and 8 columns, where MOIM is the large variant of this 
concept (8×16) [18]. 

 

3.5.1 Mapping from a byte sequence to a state matrix and vice versa 

Since MOIM operates on bytes, it is generally endianness neutral. However, we need 
to specify how a byte sequence is mapped to the matrix A, and vice versa. This mapping is 
done in  

 
Figure 4. One round of the MOIM permutations for each P and Q is a composition of 

four basic transformations [18]. 
 

similar way as in Rijndael. Hence, the 64-byte sequence 00 01 02 ... 3f is mapped to an 8×8 
matrix as [18] 
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 For MOIM, we used 8×16 matrix, this method is extended in the natural way. 
Mapping from a matrix to a byte sequence is simply the reverse operation. From now on, we 
do not explicitly mention this mapping [18]. 
 

3.5.2 AddRoundConstant 
The AddRoundConstant transformation adds a round-dependent constant to the state 

matrix A. By addition we mean exclusive-or (XOR). To be precise, the AddRoundConstant 
transformation in round i (starting from zero) updates the state A as 

 
A ← A C[i]; 

where C[i] is the round constant used in round i. P and Q have different round constants. The 
round constants for P1024 and Q1024 are [18] 
 

 
where i is the round number viewed as an 8-bit value. 
 

3.5.3 SubBytes 
The SubBytes transformation substitutes each byte in the state matrix by another 

value, taken from the s-box S. This s-box is the same as the one used in Rijndael as Figure 5 
shown. Hence, if ai,j is the element in row i and column j of A, then SubBytes performs the 
following transformation [18]: 

ai,j ←  S(ai,j), 0≤ i <8, 0≤ j<v. 
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Figure 5. SubBytes substitutes each byte of the state by its image under the s-box S 

[18]. 
 

3.5.4 ShiftBytesWide 
ShiftBytesWide cyclically shift the bytes within a row to the left by a number of 

positions. Let [σ0, σ1,..., σ7] be a list of distinct integers in the range from 0 to v-1. Then, 
ShiftBytesWide moves all bytes in row i of the state matrix σi positions to the left, wrapping 
around as necessary. For ShiftBytes in P and Q, we use σ=[0,1,2,3,4,5,6,11] and 
σ=[1,3,5,11,0,2,4,6]   respectively as illustrated in Figure 6 [18].  

 

 
Figure 6. The ShiftBytesWide transformation of permutation P1024 (top) and Q1024 

(bottom) [18]. 

 

3.5.5 MixBytes 
In the MixBytes transformation, each column in the matrix is transformed 

independently. To describe this transformation we first need to introduce the finite field F256. 
This finite field is defined in the same way as in Rijndael via the irreducible polynomial x8

x4 x3 x 1 over F2. The bytes of the state matrix A can be seen as elements of F256, i.e., as 
polynomials of degree at most 7 with coefficient in {0,1}. The least significant bit of each 
byte determines the coefficient of x0, etc [18]. 
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MixBytes multiplies each column of A by a constant 8×8 matrix B in F256. Hence, the 
transformation on the whole matrix A can be written as the matrix multiplication 

A← B ×A. 
The matrix B is specified as [18]  

 
This matrix is circulant, which means that each row is equal to the row above rotated 

right by one position. In short, we may write B = circ(02, 02, 03, 04, 05, 03, 05, 07) instead. 
See also Figure 7 [18]. 

 
Figure 7. The MixBytes transformation left-multiplies each column of the state matrix 

treated as a column vector over F256 by a circulant matrix B [18]. 
 

3.5.6 Number of rounds 

Table 4.1 shows the recommended value for the two permutations P1024 and Q1024.  

 
Table 1.Recommended value of number of round for MOIM 

 

Permutations Digest Size Recommended value of r 

P1024 and Q1024 512 14 

 

3.6 Initial values 

The initial value ivn of MOIM-n is the l-bit which is 1024-bits long. 
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3.7  Padding 
As mentioned earlier, the length of each message block is l. To be able to operate on 

inputs of varying length, a padding function pad is defined. This padding function takes a 
string x of length N bits and returns a padded string x* = pad(x) of a length which is a 
multiple of l. 

The padding function does the following. First, it appends the bit ‘1’ to x. Then, it 
appends w = -N-65mod l ‘0’ bits, and finally, it appends a 64-bit representation of (N + w + 

65)/l. This number is an integer due to the choice of w, and it represents the number of 
message blocks in the final, padded message. 

Since it must be possible to encode the number of message blocks in the padded 
message within 64 bits, the maximum message length is 65 bits short of 264-1 message 
blocks. So, the maximum message length in bits is therefore is 1024 · (264-1) – 65 = 274-1089 
[18]. 

 

3.8 Summary 

This section summarizes the complete process of MOIM keyed hash function. First, a 
message M which is to be digested by MOIM is padded using the padding function pad. 
Then, the message M is sent into two parallel FWP construction functions.  In one side of the 
two FWPs, the hash function iterates a compression function C : {0, 1}l ×{0, 1}l → {0, 1}l 

(where l=1024 -bits), which is based on one permutation P. The last compression function C 

is called final which truncates the output MAC1 from 1024-bits to 512-bits. On the other side 
of MOIM keyed hash function, the same process done as the first half of MOIM to produce 
MAC2 with different permutation Q. Finally, the outputs of MAC1 and MAC2 are 
concatenated together to form MACfinal which is 1024-bits long.   

 

4. Design decisions and design features 

  
 In this section, we explain the design decisions made for MOIM and some design 
features of the MOIM. Some advantages of MOIM keyed hash function compared to other 
hash functions are listed below. 
• FWP construction used in MOIM is proved to be indifferentiable from a random oracle 
model [10]. Also, the compression functions used in MOIM is provably collision resistant and 
preimage resistant assuming that the permutations P and Q are ideal [23].  
• Flexibility of MOIM is due to the fact that the algorithm can be implemented in different 
application. The parameters used in MOIM, i.e. security parameters r, the number of rounds 
can be adjusted to fit application’s purposes.   
• Familiarity of MOIM due to the familiarity of Rijndael design. Rijndael design proved its 
advantageous through cryptographers analysis. Since, MOIM compression function is 
inspired from Grøstl which is originally inspired by Rijndael design, consequently, MOIM 

gained the familiarity feature from Rijndael design.  
 

4.1 The security of the construction 
Generally, the estimation of the security level of hash functions can be measured with 

respect to the standard properties such as collision resistance and (second) preimage 
resistance. Also, this estimation includes the indifferentiability from the random oracle or the 
random sponge. The compression functions used in MOIM is provably collision resistant and 
(second) preimage resistant assuming that the permutations P and Q are ideal [23]. The 
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security proof states that at least 2l/4 evaluations of P and/or Q are required to find a collision 
for the hash function that iterates C, and that at least 2l/2 evaluations are required to find a 
preimage. Note that these levels are the square root of the security levels for an ideal 
compression function. However, since l ≥ n/2 internal collision and preimage attacks on the 
hash functions have complexities of at least 2

n/2 and 2n. This analysis assumes that the l 
output bits of the last call to C are the final output of the hash function [18]. However, in 
MOIM, an output transformation is applied. We discuss this output transformation in Section 
4.8.  

The MOIM construction (FWP) was also proved to be indifferentiable from random 
oracle up to bound to 2n/3 bits (up to an additive constant in one side of MOIM) [10]. This 
result states that when permutations P and Q are assumed ideal and independent from each 
other, MOIM behaves like a random oracle up to O(2n/3+2n/3) queries.  

 

4.2 Mixing between FWP1 and FWP2 constructions 
 MOIM mixes the intermediate chaining values between the two parallel FWP 
constructions as Figure 2 shows. After obtaining the fifth intermediate chaining value in each 
side, MOIM exchange these intermediate chaining values with each other. This means, the 
fifth intermediate chaining value obtained by FWP1 compression function is exchanged with 
the fifth intermediate chaining value obtained by FWP2 compression function. The idea 
behind mixing (or exchanging) process is to thwart Joux attack. More particularly, Joux 
stated that finding multicollisions, i.e. r-tuples of messages that all hash to the same value, is 
not much harder than finding ordinary collisions, i.e. pairs of collisions, even for extremely 
large values of r [6]. To illustrate the idea of MOIM mixing process, we assume the exchange 
of the two intermediate chaining values occurs after the fifth output of the compression 
function in each side of MOIM. At this point, Joux attack in not applicable since we cannot 
obtain multicollisions more than five consecutive messages due to the mixing process 
performed between the two parallel FWP constructions. This is the first defense line of 
MOIM against Joux attack, where another defense line for the same attack is presented in 
section 4.3.   
 

4.3 Concatenation of MAC1 and MAC2 

In the past few years, hash functions designers does not prefer to design concatenated 
hash functions due to Joux attack presented in Crypto 2004 [6]. Basically, Joux stated that 
multicollisions attack in one of hash functions of a concatenated hash function can be 
extended to a collision on the overall design, i.e. FIIG is not really secure than F or G itself. 
MOIM design is based on concatenating two parallel FWP constructions. FWP construction 
adopts the idea of widening the size of the internal state, i.e. 2n, of hash functions and 
truncates the final output with output transformation function, i.e. n as stated in section 3.3. 
Accordingly, the design of FWP thwarts Joux attack [10]. So, this is the second defense line 
of MOIM against Joux attack. However, the final output of MOIM is obtained by 
concatenating two independent outputs of the two parallel FWP constructions which is 1024-

bits long. In cryptography folklore, the longer hash digests the more secure hash function. 
But, unfortunately, there is a price to pay for this security. The tradeoff between security and 
efficiency is the most important issue in the design of cryptographic algorithms. 
Cryptographic algorithms should be suitable to implement in a variety of platforms and have 
reasonable performance with an adequate security margin. Most of functions designed that 
way need longer digests to achieve the desired level of security. With MOIM design, we 
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preferred to increase the security margin by having a longer hash digest, at the same time, we 
used two constructions of the fast wide pipe (FWP) to balance the gap between the 
performance and security margin. As Figure 2 shows that the two MACs values of MAC1 and 
MAC2 in each side of the two parallel FWP hash constructions are concatenated together to 
form MAC1II MAC2. MAC1II MAC2 are 1024-bits long which imply that MAC1 and MAC2 

are 512-bits long each.  
 

4.4 AddRoundConstant 
The purpose of adding round constants is to make each round different and at the 

same time this provides a natural opportunity to make P and Q independent from each other 
[18]. Hence, MOIM uses each of these permutations in each side of the design to achieve the 
independency of the two parallel FWP constructions.  In addition, by having different round 
constants for AddRoundConstant in P and Q, the internal differential attack, which considers 
differences between the permutations P and Q, can be made infeasible [18]. 

 

4.5 SubBytes 

The SubBytes transformation is the only non-linear transformation in MOIM. It uses 
the same s-box as used in Rijndael. For a walk-through of its properties, we refer to one of 
[18, 21, 22]. The choice for this particular transformation was driven by the following 
reasoning: 

• Size: 8-bit s-boxes are a convenient trade-off between implementation aspects 
(smallest word size on popular platforms) and cryptanalytic considerations. On the 
other hand, there are 28! different permutations to choose from [18]. 

• Single s-box rather than many different s-boxes: this is again a trade-off between 
implementation and cryptanalytic considerations [18].  

• No random s-box: A structured s-box allows for significantly more efficient 
hardware implementation than random s-box [18].  

• The particular structure of the chosen s-box was already proposed in 1993 [24] and 
has therefore undergone a long period of study [18]. 

• Since the s-box is inherited from the AES, implementation aspects (especially in 
hardware) are well studied [18]. 

 

4.6 ShiftBytesWide 
The ShiftBytesWide used in MOIM is the same used in Grøstl hash function. To 

illustare the idea of this transformation, we needed shift values which result in optimal 
diffusion. Let vt,c(ai,j) be the number of times that a state byte ai,j affects every state byte of 
column c after t rounds. In detail, vt,c(ai,j) defines how often (or in how many ways) every 
state byte of column c depends on ai,j. Hence, we have full diffusion after t rounds if vt,c(ai,j) ≥ 
1for all columns c and state bytes ai,j. In other words, each state byte is affected by every state 
byte ai,j at least once. Let t* be the value of t for which this happens. Then we get optimal 
diffusion, if min(vt*,c(ai,j)) is maximal for a specific geometry [18]. Second, to make P and Q 
more independent form each other, they use different shift values in P and Q. In more detail, 
we use shift values in Q such that no row is shifted by the same amount as in P, and such that 
the resulting states in P and Q are not simply shifted versions of each other. This way, it 
becomes much more differences or any other pattern in P and Q may line-up or cancel each 
other. We achieve this property using shift values in Q with a different (halved or doubled) 
slope than in P. For P1024 and Q1024 (ShiftBytesWide) we have searched for shift values with 
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optimal diffusion after three rounds (two rounds is not possible) and get optimal diffusion if 
min(v3,c(ai,j)) = 2. For P1024, we have chosen the first set of such values when sorted in 
lexicographical order. Again for Q1024, we used the same shift values as in P1024 in a different 
order to get optimal independence (see Figure 6) [18]. 

 

4.7 MixBytes 

The main design goal of the MixBytes transformation is to follow the wide trail 
strategy. Hence, the MixBytes transformation is based on an error-correcting code with the 
MDS (maximum distance separable) property. This ensures that both the differential and 
linear branch number is 9. In other words, a difference in k > 0 bytes of a column will result 
in a difference of at least 9-k bytes after one MixBytes application [18].  

 

4.8 The output transformation (final) 
The output transformation is the last compression function denoted with final which 

truncates the large size of the chaining variables, i.e. 1024-bits, to the required output size, 
i.e. 512-bits. Inside the final compression function, let φ be the operation that discards all but 
the trailing n bits. The output transformation MAC1 illustrated in Figure 3 is then defined by 

 

MAC1= truncn P 
 

 On the other side of MOIM, the same aforementioned process will occur in parallel 
fashion to produce MAC2 except of using Q permutation on this half of MOIM where we 
used P permutation on the first half. The output transformation MAC2 illustrated in Figure 3 
is then defined by 

MAC2 = truncn Q 

 

4.9 Number of rounds 
The choice of the number of rounds is primarily based on the cryptanalysis results 

described in section 6. These results were originally obtained from the cryptanalysis of P and 
Q permutations of Grøstl hash function. The square/integral attack indicates that the 
permutations might be distinguishable from ideal if the number of rounds is 9 or less in the 
MOIM keyed hash function. The final choice of number of rounds to be 14 provides a 
reasonably large security margin for MOIM keyed hash function.  

 

5. ALTERNATIVE DESCRIPTIONS OF MOIM 
 
This section provides alternative descriptions of MOIM which serve multiple 

purposes. It helps cryptanalysists to analysis MOIM to lead for better implementation. In the 
standard description of MOIM, the hash function iterates a permutation-based compression 
function P and Q in two parallel FWP constructions, and then applies an output 
transformation in each side to form the final hash of a message MAC1II MAC2. However, in 
next sections, we describe MOIM in different manner.  

 

 5.1 The mixing process of FWP1 and FWP2 

 Mixing (or exchanging) the two output chaining variables after every five outputs of 
the two parallel FWPs construction increases the avalanche effect property. For example, if a 
one single bit changes in the input that will change the output significantly, i.e. half the 
output bits flip. As explained in section 4.2, also the mixing process thwarts Joux attack since 
an adversary cannot generate a multicollisions attack more than five consecutive messages.     
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5.2 The output transformations  
The output transformations are defined as MAC1 = truncn P  hi-2 and MAC2 = 

truncn Q  hi-2. The truncation process performed in MOIM clearly protects against length 
extension attack as described in section 6.7. Basically, this attack is based on the observation 
of the truncation from l to n bits. Since at least n bits are dropped in each side of MOIM, the 
probability of correctly guessing those bits is about 2-n

+2
-n.  The alternative description can 

also be seen as an indication that MOIM is in fact an instance of the FWP construction, which 
prevents length extension attacks [10]. Indeed, we can strictly state that the output 
transformations of MOIM improves the security of the hash function.   

 

6. CRYPTANALYSIS NOTATIONS 
 
In this section, we describe some cryptanalysis notations on MOIM, and we state our 

security claims. 
 

6.1 Attacks exploiting properties of the permutations 

We first consider well known attack methods that aim to exploit potential weaknesses 
in the permutations P and Q. 

 

6.1.1 Differential cryptanalysis 
The permutations P and Q have diffusion properties according to the wide trail design 

strategy. Since the MixBytes transformation has branch number 9, and ShiftWideBytes is 
diffusion optimal (moves the bytes in each column to sixteen different columns), it is 
guaranteed that for MOIM in each side, there are at least 92 = 81 active s-boxes in any four-
round differential trail [22, Theorem 9.5.1]. Hence, there are at least 3 · 81 = 243 active s-
boxes in any twelve-round differential trail. This, combined with the maximum difference 
propagation probability of the s-box of 2-6, means that the probabilities of any differential 
trail (assuming independent rounds) over twelve rounds (for either P or Q) are expected to be 
at most 2-6.243= 2-1458 [18]. Therefore, in a classical differential attack where one specifies a 
differential trail for every round for both P and Q, there is only a very small chance that this 
would lead to a successful attack for MOIM [18]. 

 

6.1.2 Rebound attacks 
The rebound attack [23, 24] is a new attack method for the cryptanalysis of hash 

functions. It gives the best known results for a number of AES-based hash functions and 
many SHA-3 candidates [25, 26, 27, 28, 29, 30, 31]. In general, the rebound attack works 
with any differential or truncated differential. However, the diffusion properties of AES 
based hash functions allow a very simple construction of good truncated differential paths, 
which facilitates the analysis. The rebound attack is most successful if a high number of 
degrees of freedom is available. Therefore, attacks on hash functions with a key schedule to 
the underlying block cipher or other sources of freedom are more likely to succeed (see the 
attacks on ECHO [32], LANE [33] or Whirlpool [34]). However, MOIM has been designed 
to limit the degrees of freedom available to an attacker. Moreover, in attacks on the hash 
function, much fewer degrees of freedom are available (compared to an attack on the 
compression function or permutation). The best attack on the hash function for MOIM is for 3 
rounds 14 [18]. 

 



International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-

6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 4, July-August (2013), © IAEME 

16 
 

6.1.3 Linear cryptanalysis 
Linear and differential trails propagate in a very similar way. Since the MixBytes 

transformation has linear branch number 9, it is guaranteed that for MOIM in each side, there 
are at least 92 = 81 active s-boxes in any four-round linear trail [22, Theorem 9.5.1]. Hence, 
there are at least 3·81 = 243 active s-boxes in any twelve-round linear trail. Since the s-box 
has maximum correlation of 2-3, the maximum correlation for any four-round linear trial is 2-

3.81= 2-243. This means that the correlation of any linear trail over twelve rounds (for either P 
or Q) is expected to be at most 2-279 [18]. 

 

6.2 Collision attacks on the compression function 
This attack has complexity 2l/3, and hence is faster than a birthday attack on the 

compression function. Note that this is still above the proven bound of 2l/4 and above the 
complexity of a birthday attack on the hash function, since n ≤ l/2. The attack does not 
provide the attacker with much control over the chaining input, and hence we do not see any 
methods to extend the attack to the full hash function [18]. 

 

6.3 Collision attacks on the hash function 
The construction of Figure 1 is provably collision resistant up to the level of 2l/4 

permutation calls. Still, no collision attack of this complexity is known when the 
permutations are assumed to be ideal. The best known collision attack requires 23l/8 

permutation calls, but the true complexity in terms of compression function call equivalents is 
higher than 2l/2. Hence, a large security margin remains [18]. 

 

6.4 Generic attacks on the iteration 
The internal state being at least twice the size of the hash value for MOIM, generic 

attacks applying to the Merkle-Damgård construction cannot be applied to MOIM directly via 
brute force or birthday attacks. However, since the construction used for MOIM does not 
achieve security comparable to an ideal iterated hash function with the same internal state 
size, we do not claim that generic attacks do not apply using some other methods than the 
standard brute force and birthday attacks [18]. 

 

6.5 Multicollision attack 
Joux stated that finding multicollisions, i.e. r-tuples of messages that all hash to the 

same value, is not much harder than finding ordinary collisions, i.e. pairs of collisions, even 
for extremely large values of r [6]. Joux attack is not applicable in MOIM since we cannot 
obtain multicollisions more than five consecutive messages due to the mixing process 
performed between the two parallel FWP constructions. This is the first defense line of 
MOIM against Joux attack. Also, FWP construction adopts the idea of widening the size of 
the internal state, i.e. 2n, of hash functions and truncates the final output with output 
transformation function, i.e. n as stated in section 3.3. Accordingly, the design of FWP 
thwarts Joux attack.  

 

6.6 Second preimage attack 
The second preimage attack of Kelsey and Schneier [35] on the Merkle-Damgård 

construction also seems to be complicated by the large internal state size. For an n-bit iterated 
hash function based on an n-bit compression function, given a first preimage of length 2k 
message blocks this attack finds a second preimage of the same length in 2n-k evaluations of 
the compression function. A variant of this attack was published in [36]. Using the techniques 
of [35, 36], the complexity of carrying out the second preimage attack on MOIM given a 264-
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block first preimage is about 2l-64. For all the message digest sizes of MOIM, this complexity 
is well above 2n-k. Hence, our claimed security level for the second preimage resistance is at 
least 2n-k for any first message of at most 2k blocks. However, we do not know of an attack 
with complexity below 2n [18]. 

 

6.7 Length extension attack 

The length extension attack on Merkle-Damgård hash functions works as follows. Let 

(M, M*) be a collision for the hash function H, with |M| = |M*|. H pads M and M* to ��  and 

��* before hashing, and by choosing any message suffix y, we have that B = ��IIy and B = 

��IIy also collide. Hence, a single collision gives rise to many new collisions that “come for 
free”. The length extension method is not trivial to carry out in MOIM, unless the messages 
collide before the output transformation. Finding a collision before the output transformation 
takes time 2l/2≥2n by the birthday attack. A related weakness of the Merkle-Damgård 
transformation is the following. Assume the two values H(M) and |M| are known, but M itself 
is not. Knowing |M|, one also knows how M was padded, and hence for any suffix y, one may 

compute ����IIy), where �� is the padded version of M, without knowing M. This weakness 
leads to attacks when Merkle-Damgård hash function underlies a secret prefix MAC. In 
MOIM, this attack does not seem possible due to the output transformation [18]. 

 

7. CONCLUSION 
 
This paper gives a proposal for new concrete novel design based on permutation hash 

function named MOIM. MOIM is based on concatenating two FWP constructions and the 
permutations P and Q used in SHA-3 finalist Grøstl hash function. We claimed that it is hard 
to attack MOIM with complexities significantly less than brute force. MOIM has two defense 
level of security to thwarts generic and Joux attacks. We leave the software implementation 
of MOIM as a future work. 
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