22 research outputs found

    SDDV: scalable data dissemination in vehicular ad hoc networks

    Get PDF
    An important challenge in the domain of vehicular ad hoc networks (VANET) is the scalability of data dissemination. Under dense traffic conditions, the large number of communicating vehicles can easily result in a congested wireless channel. In that situation, delays and packet losses increase to a level where the VANET cannot be applied for road safety applications anymore. This paper introduces scalable data dissemination in vehicular ad hoc networks (SDDV), a holistic solution to this problem. It is composed of several techniques spread across the different layers of the protocol stack. Simulation results are presented that illustrate the severity of the scalability problem when applying common state-of-the-art techniques and parameters. Starting from such a baseline solution, optimization techniques are gradually added to SDDV until the scalability problem is entirely solved. Besides the performance evaluation based on simulations, the paper ends with an evaluation of the final SDDV configuration on real hardware. Experiments including 110 nodes are performed on the iMinds w-iLab.t wireless lab. The results of these experiments confirm the results obtained in the corresponding simulations

    Performance Analysis for Uniform and Binomial Distribution on Contention Window using DSRC and Wi-Fi Direct Standard

    Get PDF
    In this paper, we present a mathematical analysis on the performance and behavior of uniformly distributed and non-uniformly distributed backoff timer based on binomial algorithm by using two standards which is the conventional DSRC and the latest Wi-Fi Direct. DSRC is a well-known technology being considered as the most promising wireless standard in VANET. On the other hand, as the latest wireless networking standard, the potential of Wi-Fi Direct technology should be concerned. We evaluates these standards using uniform and binomial distribution for contention window under mathematical modelling in order to analyze the average throughput and collision probability performance. The results show that binomial distribution in Wi-Fi Direct standard is 7.05% and 97.13% better than uniform distribution, in terms of average throughput and collision probability, respectively. Thus we can defer that Wi-Fi Direct is feasible to be used as an alternative standard since it has been considered as potential competitor of DSRC in VANET

    Approximate reinforcement learning to control beaconing congestion in distributed networks

    Get PDF
    In vehicular communications, the increase of the channel load caused by excessive periodical messages (beacons) is an important aspect which must be controlled to ensure the appropriate operation of safety applications and driver-assistance systems. To date, the majority of congestion control solutions involve including additional information in the payload of the messages transmitted, which may jeopardize the appropriate operation of these control solutions when channel conditions are unfavorable, provoking packet losses. This study exploits the advantages of non-cooperative, distributed beaconing allocation, in which vehicles operate independently without requiring any costly road infrastructure. In particular, we formulate the beaconing rate control problem as a Markov Decision Process and solve it using approximate reinforcement learning to carry out optimal actions. Results obtained were compared with other traditional solutions, revealing that our approach, called SSFA, is able to keep a certain fraction of the channel capacity available, which guarantees the delivery of emergency-related notifications with faster convergence than other proposals. Moreover, good performance was obtained in terms of packet delivery and collision ratios.This research has been supported by the projects AIM, ref. TEC2016-76465-C2-1-R, ARISE2 “Future IoT Networks and Nano-networks (FINe)” ref. PID2020-116329GB-C22, ONOFRE-3, ref. PID2020-112675RB-C41 [Agencia Estatal de Investigación (AEI), European Regional Development Fund (FEDER), European Union (EU)], ATENTO, ref. 20889/PI/18 (Fundación Séneca, Región de Murcia), and LIFE [Fondo SUPERA Covid-19, funded by Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Universidades Españolas and Banco Santander]. J.A.P. thanks the Spanish MECD for an FPI grant ref. BES-2017-081061. Finally, the authors acknowledge Laura Wettersten for her contribution in reviewing the grammar and spell of the manuscript

    The Mobility Impact in IEEE 802.11p Infrastructureless Vehicular Networks

    Get PDF
    Vehicular ad hoc networks (VANETs) are an extreme case of mobile ad hoc networks (MANETs). High speed and frequent network topology changes are the main characteristics of vehicular networks. These characteristics lead to special issues and challenges in the network design, especially at the medium access control (MAC) layer. Due to high speed of nodes and their frequent disconnections, it is difficult to design a MAC scheme in VANETs that satisfies the quality-of-service requirements in all networking scenarios. In this thesis, we provide a comprehensive evaluation of the mobility impact on the IEEE 802.11p MAC performance. The study evaluates basic performance metrics such as packet delivery ratio, throughput, and delay, as well as the impact of mobility factors. The study also presents a relation between the mobility factors and the respective medium access behavior. Moreover, a new unfairness problem according to node relative speed is identified for both broadcast and unicast scenarios. To achieve better performance, we propose two dynamic contention window mechanisms to alleviate network performance degradation due to high mobility. Extensive simulation results show the significant impact of mobility on the IEEE 802.11p MAC performance, an identification of a new unfairness problem in the vehicle-to-vehicle (V2V) communications, and the effectiveness of the proposed MAC schemes

    A Survey and Comparative Study of Broadcast Warning Message Dissemination Schemes for VANETs

    Get PDF
    © 2016 Julio A. Sanguesa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Vehicle-to-vehicle (V2V) communications also known as vehicular ad hoc networks (VANETs) allow vehicles to cooperate to increase driving efficiency and safety on the roads. In particular, they are forecasted as one of the key technologies to increase traffic safety by providing useful traffic services. In this scope, vehicle-to-vehicle dissemination of warning messages to alert nearby vehicles is one of the most significant and representative solutions. The main goal of the different dissemination strategies available is to reduce the message delivery latency of such information while ensuring the correct reception of warning messages in the vehicle's neighborhood as soon as a dangerous situation occurs. Despite the fact that several dissemination schemes have been proposed so far, their evaluation has been done under different conditions, using different simulators, making it difficult to determine the optimal dissemination scheme for each particular scenario. In this paper, besides reviewing the most relevant broadcast dissemination schemes available in the recent literature, we also provide a fair comparative analysis by evaluating them under the same environmental conditions, focusing on the same metrics, and using the same simulation platform. Overall, we provide researchers with a clear guideline of the benefits and drawbacks associated with each scheme.This work was partially supported by the Ministerio de Economia y Competitividad, Programa Estatal de Investigacion, Desarrollo e Innovacion Orientada a los Retos de la Sociedad, Proyectos I+D+I 2014, Spain, under Grant TEC2014-52690-R, and by the Government of Aragon and the European Social Fund (T91 Research Group).Sangüesa-Escorihuela, JA.; Fogue, M.; Garrido, P.; Martinez Dominguez, FJ.; Cano Escribá, JC.; Tavares De Araujo Cesariny Calafate, CM. (2016). A Survey and Comparative Study of Broadcast Warning Message Dissemination Schemes for VANETs. Mobile Information Systems. 2016:1-18. https://doi.org/10.1155/2016/8714142S118201

    Channel-Aware Congestion Control in Vehicular Cyber-Physical Systems

    Get PDF
    In vehicular cyber-physical systems, cars are connected to create a mobile network called a vehicular ad hoc network (VANET) to perform various functions, including improved awareness of the surrounding environment. Moving vehicles continually broadcast beacon signals containing information such as position, heading, acceleration, steering angle, vehicle size, and accident notification. However, channel congestion in dense traffic conditions adversely affects network performance. To resolve congestion in VANETs, several works in the literature have studied congestion control. However, they have considered packet loss only as an indication of channel congestion regardless of channel condition. In this paper, we present a channel-aware congestion control algorithm (CACC) that controls the transmission power and data rate. We take into account the received signal strength (RSS) when diagnosing packet loss to determine channel conditions, such as severe fading or channel congestion. In the case of severe fading, we decrease the data rate for a more robust modulation and coding scheme. Additionally, we adjust the transmission power to maintain a desirable packet error rate. Our simulation results show that CACC significantly outperforms other distributed congestion control algorithms by reducing the packet loss rate and increasing the packet delivery ratio.1

    Placement of Road Side Units for Floating Car Data Collection in Highway Scenario

    Get PDF

    Survey on Congestion Detection and Control in Connected Vehicles

    Full text link
    The dynamic nature of vehicular ad hoc network (VANET) induced by frequent topology changes and node mobility, imposes critical challenges for vehicular communications. Aggravated by the high volume of information dissemination among vehicles over limited bandwidth, the topological dynamics of VANET causes congestion in the communication channel, which is the primary cause of problems such as message drop, delay, and degraded quality of service. To mitigate these problems, congestion detection, and control techniques are needed to be incorporated in a vehicular network. Congestion control approaches can be either open-loop or closed loop based on pre-congestion or post congestion strategies. We present a general architecture of vehicular communication in urban and highway environment as well as a state-of-the-art survey of recent congestion detection and control techniques. We also identify the drawbacks of existing approaches and classify them according to different hierarchical schemes. Through an extensive literature review, we recommend solution approaches and future directions for handling congestion in vehicular communications
    corecore