107 research outputs found

    Contents

    Get PDF

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: vehicular ad-hoc networks, security and caching, TCP in ad-hoc networks and emerging applications. It is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    The Internet of Everything

    Get PDF
    In the era before IoT, the world wide web, internet, web 2.0 and social media made people’s lives comfortable by providing web services and enabling access personal data irrespective of their location. Further, to save time and improve efficiency, there is a need for machine to machine communication, automation, smart computing and ubiquitous access to personal devices. This need gave birth to the phenomenon of Internet of Things (IoT) and further to the concept of Internet of Everything (IoE)

    The Internet of Everything

    Get PDF
    In the era before IoT, the world wide web, internet, web 2.0 and social media made people’s lives comfortable by providing web services and enabling access personal data irrespective of their location. Further, to save time and improve efficiency, there is a need for machine to machine communication, automation, smart computing and ubiquitous access to personal devices. This need gave birth to the phenomenon of Internet of Things (IoT) and further to the concept of Internet of Everything (IoE)

    Trust Evaluation in the IoT Environment

    Get PDF
    Along with the many benefits of IoT, its heterogeneity brings a new challenge to establish a trustworthy environment among the objects due to the absence of proper enforcement mechanisms. Further, it can be observed that often these encounters are addressed only concerning the security and privacy matters involved. However, such common network security measures are not adequate to preserve the integrity of information and services exchanged over the internet. Hence, they remain vulnerable to threats ranging from the risks of data management at the cyber-physical layers, to the potential discrimination at the social layer. Therefore, trust in IoT can be considered as a key property to enforce trust among objects to guarantee trustworthy services. Typically, trust revolves around assurance and confidence that people, data, entities, information, or processes will function or behave in expected ways. However, trust enforcement in an artificial society like IoT is far more difficult, as the things do not have an inherited judgmental ability to assess risks and other influencing factors to evaluate trust as humans do. Hence, it is important to quantify the perception of trust such that it can be understood by the artificial agents. In computer science, trust is considered as a computational value depicted by a relationship between trustor and trustee, described in a specific context, measured by trust metrics, and evaluated by a mechanism. Several mechanisms about trust evaluation can be found in the literature. Among them, most of the work has deviated towards security and privacy issues instead of considering the universal meaning of trust and its dynamic nature. Furthermore, they lack a proper trust evaluation model and management platform that addresses all aspects of trust establishment. Hence, it is almost impossible to bring all these solutions to one place and develop a common platform that resolves end-to-end trust issues in a digital environment. Therefore, this thesis takes an attempt to fill these spaces through the following research work. First, this work proposes concrete definitions to formally identify trust as a computational concept and its characteristics. Next, a well-defined trust evaluation model is proposed to identify, evaluate and create trust relationships among objects for calculating trust. Then a trust management platform is presented identifying the major tasks of trust enforcement process including trust data collection, trust data management, trust information analysis, dissemination of trust information and trust information lifecycle management. Next, the thesis proposes several approaches to assess trust attributes and thereby the trust metrics of the above model for trust evaluation. Further, to minimize dependencies with human interactions in evaluating trust, an adaptive trust evaluation model is presented based on the machine learning techniques. From a standardization point of view, the scope of the current standards on network security and cybersecurity needs to be expanded to take trust issues into consideration. Hence, this thesis has provided several inputs towards standardization on trust, including a computational definition of trust, a trust evaluation model targeting both object and data trust, and platform to manage the trust evaluation process

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of-the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: quality-of-service and video communication, routing protocol and cross-layer design. A few interesting problems about security and delay-tolerant networks are also discussed. This book is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    Smart Wireless Sensor Networks

    Get PDF
    The recent development of communication and sensor technology results in the growth of a new attractive and challenging area - wireless sensor networks (WSNs). A wireless sensor network which consists of a large number of sensor nodes is deployed in environmental fields to serve various applications. Facilitated with the ability of wireless communication and intelligent computation, these nodes become smart sensors which do not only perceive ambient physical parameters but also be able to process information, cooperate with each other and self-organize into the network. These new features assist the sensor nodes as well as the network to operate more efficiently in terms of both data acquisition and energy consumption. Special purposes of the applications require design and operation of WSNs different from conventional networks such as the internet. The network design must take into account of the objectives of specific applications. The nature of deployed environment must be considered. The limited of sensor nodes� resources such as memory, computational ability, communication bandwidth and energy source are the challenges in network design. A smart wireless sensor network must be able to deal with these constraints as well as to guarantee the connectivity, coverage, reliability and security of network's operation for a maximized lifetime. This book discusses various aspects of designing such smart wireless sensor networks. Main topics includes: design methodologies, network protocols and algorithms, quality of service management, coverage optimization, time synchronization and security techniques for sensor networks

    A Survey on Security and Privacy of 5G Technologies: Potential Solutions, Recent Advancements, and Future Directions

    Get PDF
    Security has become the primary concern in many telecommunications industries today as risks can have high consequences. Especially, as the core and enable technologies will be associated with 5G network, the confidential information will move at all layers in future wireless systems. Several incidents revealed that the hazard encountered by an infected wireless network, not only affects the security and privacy concerns, but also impedes the complex dynamics of the communications ecosystem. Consequently, the complexity and strength of security attacks have increased in the recent past making the detection or prevention of sabotage a global challenge. From the security and privacy perspectives, this paper presents a comprehensive detail on the core and enabling technologies, which are used to build the 5G security model; network softwarization security, PHY (Physical) layer security and 5G privacy concerns, among others. Additionally, the paper includes discussion on security monitoring and management of 5G networks. This paper also evaluates the related security measures and standards of core 5G technologies by resorting to different standardization bodies and provide a brief overview of 5G standardization security forces. Furthermore, the key projects of international significance, in line with the security concerns of 5G and beyond are also presented. Finally, a future directions and open challenges section has included to encourage future research.European CommissionNational Research Tomsk Polytechnic UniversityUpdate citation details during checkdate report - A

    Machine Learning based Trust Computational Model for IoT Services

    Get PDF
    The Internet of Things has facilitated access to a large volume of sensitive information on each participating object in an ecosystem. This imposes many threats ranging from the risks of data management to the potential discrimination enabled by data analytics over delicate information such as locations, interests, and activities. To address these issues, the concept of trust is introduced as an important role in supporting both humans and services to overcome the perception of uncertainty and risks before making any decisions. However, establishing trust in a cyber world is a challenging task due to the volume of diversified influential factors from cyber-physical-systems. Hence, it is essential to have an intelligent trust computation model that is capable of generating accurate and intuitive trust values for prospective actors. Therefore, in this paper, a quantifiable trust assessment model is proposed. Built on this model, individual trust attributes are then calculated numerically. Moreover, a novel algorithm based on machine learning principles is devised to classify the extracted trust features and combine them to produce a final trust value to be used for decision making. Finally, our model’s effectiveness is verified through a simulation. The results show that our method has advantages over other aggregation methods
    corecore