93 research outputs found

    Infinitary λ\lambda-Calculi from a Linear Perspective (Long Version)

    Get PDF
    We introduce a linear infinitary λ\lambda-calculus, called ℓΛ∞\ell\Lambda_{\infty}, in which two exponential modalities are available, the first one being the usual, finitary one, the other being the only construct interpreted coinductively. The obtained calculus embeds the infinitary applicative λ\lambda-calculus and is universal for computations over infinite strings. What is particularly interesting about ℓΛ∞\ell\Lambda_{\infty}, is that the refinement induced by linear logic allows to restrict both modalities so as to get calculi which are terminating inductively and productive coinductively. We exemplify this idea by analysing a fragment of ℓΛ\ell\Lambda built around the principles of SLL\mathsf{SLL} and 4LL\mathsf{4LL}. Interestingly, it enjoys confluence, contrarily to what happens in ordinary infinitary λ\lambda-calculi

    Relational semantics of linear logic and higher-order model-checking

    Full text link
    In this article, we develop a new and somewhat unexpected connection between higher-order model-checking and linear logic. Our starting point is the observation that once embedded in the relational semantics of linear logic, the Church encoding of any higher-order recursion scheme (HORS) comes together with a dual Church encoding of an alternating tree automata (ATA) of the same signature. Moreover, the interaction between the relational interpretations of the HORS and of the ATA identifies the set of accepting states of the tree automaton against the infinite tree generated by the recursion scheme. We show how to extend this result to alternating parity automata (APT) by introducing a parametric version of the exponential modality of linear logic, capturing the formal properties of colors (or priorities) in higher-order model-checking. We show in particular how to reunderstand in this way the type-theoretic approach to higher-order model-checking developed by Kobayashi and Ong. We briefly explain in the end of the paper how his analysis driven by linear logic results in a new and purely semantic proof of decidability of the formulas of the monadic second-order logic for higher-order recursion schemes.Comment: 24 pages. Submitte

    Confluence of nearly orthogonal infinitary term rewriting systems

    Get PDF
    We give a relatively simple coinductive proof of confluence, modulo equivalence of root-active terms, of nearly orthogonal infinitary term rewriting systems. Nearly orthogonal systems allow certain root overlaps, but no non-root overlaps. Using a slightly more complicated method we also show confluence modulo equivalence of hypercollapsing terms. The condition we impose on root overlaps is similar to the condition used by Toyama in the context of finitary rewriting

    Infinitary Rewriting Coinductively

    Get PDF
    We provide a coinductive definition of strongly convergent reductions between infinite lambda terms. This approach avoids the notions of ordinals and metric convergence which have appeared in the earlier definitions of the concept. As an illustration, we prove the existence part of the infinitary standardization theorem. The proof is fully formalized in Coq using coinductive types. The paper concludes with a characterization of infinite lambda terms which reduce to themselves in a single beta step
    • …
    corecore