
Infinitary Rewriting Coinductively
Jörg Endrullis1 and Andrew Polonsky2

1 Department of Computer Science, VU University Amsterdam
De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands.
j.endrullis@vu.nl

2 Institute for Computing and Information Sciences, Radboud University
Nijmegen,
P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
andrew.polonsky@gmail.com

Abstract
We provide a coinductive definition of strongly convergent reductions between infinite lambda
terms. This approach avoids the notions of ordinals and metric convergence which have appeared
in the earlier definitions of the concept. As an illustration, we prove the existence part of the
infinitary standardization theorem. The proof is fully formalized in Coq using coinductive types.
The paper concludes with a characterization of infinite lambda terms which reduce to themselves
in a single beta step.

1998 ACM Subject Classification D.1.1 Applicative (Functional) Programming, D.3.1 Formal
Definitions and Theory, F.4.1 Mathematical Logic, F.4.2 Grammars and Other Rewriting Sys-
tems, I.1.1 Expressions and Their Representation, I.1.3 Languages and Systems

Keywords and phrases infinitary rewriting, coinduction, lambda calculus, standardization

Digital Object Identifier 10.4230/LIPIcs.TYPES.2011.16

1 Introduction

In the untyped lambda calculus [1], one observes that the fixed point combinator Y has
Böhm tree

λf.f(f(f · · ·))

which looks like a “limit” of the infinite reduction sequence

Y → λf.Y f → λf.f(Y f)→ . . .

Infinitary rewriting [6, 13, 2, 3, 17, 9] makes such statements precise by considering
infinite reduction sequences together with the topology on infinite terms generated by finite
prefixes: the basic opens are of the form

OC[] = {t | ∃t1, . . . , tn. t = C[t1, . . . , tn]}

where C[] is a finite multi-hole context. Alternatively, this topology is given by the metric d
where

d(s, t) = inf{2−n | s and t have the same symbols up to depth n}

Since the infinite terms can themselves be seen as formal limits of Cauchy sequences of
finite terms with the metric above, it is natural to consider rewriting sequences together with
this topological structure. Specifically, a reduction sequence

t0 → t1 → t2 → · · · → tn → · · ·
© J. Endrullis and A. Polonsky;
licensed under Creative Commons License BY-ND

18th International Workshop on Types for Proofs and Programs (TYPES 2011).
Editors: Nils Anders Danielsson, Bengt Nordström; pp. 16–27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62917582?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.TYPES.2011.16
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

J. Endrullis and A. Polonsky 17

is said to converge weakly to the limit t if the sequence {ti} converges to t in the metric d.
For example, reducing Curry’s fixed point combinator Y f = WW , where W = λx.f(xx),

yields the infinite sequence

Y f = WW → f(WW)→ f2(WW)→ · · · → fn(WW)→ . . .

which converges to the limit fω.
However, the above notion of infinite reductions does not yet yield a satisfactory rewriting

theory (intuitively, because topology does not respect the “rewriting structure” in any way).
As has been often stressed by Jan Willem Klop, a much superior notion of transfinite
reduction is the so-called strongly convergent reduction. This is a reduction as above which
satisfies the additional condition that the depth of redexes contracted in the infinite sequence
must tend to infinity. This constraint is sufficient to recover fundamental rewriting notions,
including descendants, projections of reductions, and standardization.

In the present paper, we observe that an alternative, “coordinate-free” definition of
strongly convergent reductions results from interpreting the binary reduction relation as a
coinductive type family.

1.0.0.1 Related Work.

Catarina Coquand and Thierry Coquand have explored a similar approach in [4], giving a
coinductive definition of standard reductions in infinitary combinatory logic. In his PhD
thesis [11] and the paper [12], Felix Joachimski investigates finite reductions between coin-
ductively defined infinite terms. To prove confluence, Joachimski introduces a coinductive
definition of infinite developments, but not infinite reductions in general. Our proof of stand-
ardization for infinite reductions is a generalization of Plotkin’s proof of standardization [15]
for finitary rewriting; see also [19].

2 Setup

The set of infinite lambda terms is generated coinductively by the grammar

Λ∞ ::= x | Λ∞Λ∞ | λx.Λ∞

For infinite terms s and t, we write s = t if s and t are bisimilar, that is, the predicate = is
coinductively defined by:

x = x

s = s′ t = t′

st = s′t′
r = r′

λx.r = λx.r′

Thus = is the largest relation R such that every s R t is of one of the forms:

1. x R x,
2. st R s′t′ for terms s, s′, t, t′ with s R s′ and t R t′, or
3. λx.r R λx.r′ for terms r, r′ and a variable x with r R r′.

Here and henceforth, we use double inference lines to emphasize that the given derivation
system defines a predicate or type family by coinduction rather than by induction.

We frequently denote regular infinite terms by systems of equations, e.g.:

M = (λx.x)M

It is to be understood that the term M is the infinite tree unfolding of this equation, see
Figure 1.

TYPES 2011

18 Infinitary Rewriting Coinductively

@

λx

x

@

λx

x

@

λx

x

@

λx

x

...

Figure 1 A regular infinite term.

The operation of capture-avoiding substitution, written s[u/x], is defined by guarded
corecursion

s s[u/x]
x u

y y y 6= x

s1s2 s1[u/x]s2[u/x]
λy.r λy.r[u/x] y /∈ FV(u)

We will not discuss here the problem of implementing Barendregt’s variable convention
in the infinitary setting. It does present an interesting issue: if the variables are represented
by a countable set, then each variable might occur freely in a lambda term. Then it is not
possible to find a fresh name which does not occur in it. (We note that the trick of Hilbert’s
Hotel is not applicable here, since we cannot rename free variables.)

In our Coq formalization, we have used classical deBruijn representation which successfully
solves this problem, but it entails proving a number of lifting lemmas. Perhaps the most
natural approach to formalizing infinitary rewriting would be to use an explicit substitution
calculus based on explicit scope delimiters, as in [10], [18].

The substitution operator satisfies the following, provided that x /∈ FV(u):

s[t/x][u/y] = s[u/y][t[u/y]/x] (1)

The one-step beta reduction is a binary relation on Λ∞, defined inductively by the rules

(λx.r)t −→ r[t/x]
s −→ s′

st −→ s′t
t −→ t′

st −→ st′
r −→ r′

λx.r −→ λx.r′

The relation −→−→ of a finite beta reduction is the reflexive-transitive closure of −→,
defined inductively by the rules

t −→−→ t
s −→−→ t t −→ t′

s −→−→ t′

(We note that we could also append the single beta step on the left.)
The notion of one-step weak head reduction −→w is obtained by restricting −→ to only

the first two rules:

(λx.r)t −→w r[t/x]
s −→w s

′

st −→w s
′t

Correspondingly, −→−→w is the reflexive-transitive closure of −→w.
The infinite beta reduction −→−→−→ is defined coinductively by requiring that every node

in the syntax tree becomes “frozen” after finitely many steps. This is made explicit by the
following derivation rules, which are this time interpreted coinductively:

J. Endrullis and A. Polonsky 19

s −→−→ x
s −→−→−→ x

s −→−→ t1t2 t1 −→−→−→ t′1 t2 −→−→−→ t′2

s −→−→−→ t′1t
′
2

s −→−→ λx.r r −→−→−→ r′

s −→−→−→ λx.r′

I Example 1. Let us reconsider Curry’s fixed point combinator Y = λf.WW with W =
λx.f(xx). Then the infinite rewrite sequence Y f −→−→−→ fω with fω = f(fω) can be derived
as follows:

Y f −→−→ f(WW) f −→−→−→ f

WW −→−→ f(WW) f −→−→−→ f WW −→−→ fω

WW −→−→−→ fω

Y f −→−→−→ fω

Note that this is an infinite proof term, as indicated by the loop .

Classically, transfinite reduction sequences are defined as follows (here we view ordinals
α as the set of all smaller ordinals α = {β | β < α}):

I Definition 2. Let s ∈ Λ∞, and let α be an ordinal.
A map t : (α∪{α})→ Λ∞, together with steps σβ : t(β)→ t(β+ 1))β<α for every β < α,

is a strongly convergent reduction of length α from t(0) to t(α), if the following conditions
hold:

1. If γ ≤ α is a limit ordinal, then t(γ) is the limit, in the metric topology on infinite terms,
of the ordinal-indexed sequence (t(β))β<γ ;

2. If γ ≤ α is a limit ordinal, then for every d ∈ N, there exists β < γ, such that, for all β′
with β ≤ β′ < γ , the redex contracted in the step σβ′ occurs at depth greater than d.

The proof of the following theorem will be given in Section 4.

I Theorem 3. s −→−→−→ t if and only if s reduces to t via a strongly convergent reduction
sequence.

One advantage of the coinductive approach is that it provides a simple and natural
definition of standard reductions.

The infinitary standard reduction is obtained by the same rules as the infinite beta
reductions, except that the finite prefixes are now required to be weak head reductions.

s −→−→w x
s −→−→−→s x

s −→−→w t1t2 t1 −→−→−→s t
′
1 t2 −→−→−→s t

′
2

s −→−→−→s t
′
1t
′
2

s −→−→w λx.r r −→−→−→s r
′

s −→−→−→s λx.r
′

TYPES 2011

20 Infinitary Rewriting Coinductively

3 Standardization

We now seek to prove the following fact:

s −→−→−→ t =⇒ s −→−→−→s t

The intuition is as follows. In order to replace beta-prefixes with weak head-prefixes, we
standardize the beta prefix, extract the initial weak head reduction, and absorb the remainder
into the coinductive call. However, the standardization of a finite beta reduction can give rise
to an infinite reduction, as in the following counterexample to the Church–Rosser theorem
for finite reductions between infinite terms:

(λf.fω)(Ix) −→ (λf.fω)x −→ xω

when standardized, yields

(λf.fω)(Ix) −→ (Ix)ω −→−→−→ xω

As an intermediate step, we therefore first convert the prefixes to infinite standard
reductions. This suggests the introduction of one more auxiliary reduction −→−→−→a, which
follows the above scheme but takes for prefixes infinite standard reductions defined previously.

s −→−→−→s x
s −→−→−→a x

s −→−→−→s t1t2 t1 −→−→−→a t
′
1 t2 −→−→−→a t

′
2

s −→−→−→a t
′
1t
′
2

s −→−→−→s λx.r r −→−→−→a r
′

s −→−→−→a λx.r
′

Infinitary standardization theorem now follows by a series of simple lemmas:

I Lemma 4. We have

1. s −→−→w t, t −→−→w u =⇒ s −→−→w u

2. s −→−→w t, t −→−→−→s u =⇒ s −→−→−→s u

3. s −→−→−→s s
′, t −→−→−→s t

′ =⇒ s[t/x] −→−→−→s s
′[t′/x]

4. For −→R∈ {−→,−→−→,−→−→w},

s −→−→−→s t, t −→R u =⇒ s −→−→−→s u

5. s −→−→−→s t, t −→−→−→s u =⇒ s −→−→−→s u

Proof. 1. By induction.
2. By case distinction, using 1 to concatenate the prefix.
3. By coinduction, using that

s −→w t =⇒ s[u/x] −→w t[u/x]
s −→−→w t =⇒ s[u/x] −→−→w t[u/x]

4. By induction on t −→R u, using 3 for the redex base case.
5. By coinduction on t −→−→−→s u

Case 1 t −→−→w x = u. Then s −→−→−→s x by 4.
Case 2 u = u1u2, t −→−→w t1t2, and ti −→−→−→s ui. By 4, s −→−→−→s t1t2. Hence s −→−→w t′1t

′
2,

with t′i −→−→−→s ti. By coinduction, t′i −→−→−→s ui. Using that s −→−→w t′1t
′
2, we get

s −→−→−→s u1u2.

J. Endrullis and A. Polonsky 21

Case 3 u = λx.v, t −→−→w λx.r, and r −→−→−→s v. By 4, s −→−→−→s λx.r. Hence s −→−→w λx.r
′,

with r′ −→−→−→s r. By coinduction, r′ −→−→−→s v. Using that s −→−→w λx.r′, we get
s −→−→−→s λx.v. J

I Lemma 5. We have

1. s −→−→−→s t, t −→−→−→s u =⇒ s −→−→−→s u

2. s −→−→−→s t, t −→−→−→a u =⇒ s −→−→−→a u.
3. s −→−→−→a s

′, t −→−→−→a t
′ =⇒ s[t/x] −→−→−→a s

′[t′/x]
4. For −→R∈ {−→,−→−→,−→−→w,−→−→−→s},

s −→−→−→a t, t −→R u =⇒ s −→−→−→a u

5. s −→−→−→a t, t −→−→−→a u =⇒ s −→−→−→a u

Proof. 1 was proved in the previous lemma. The rest follows the proof there mutatis
mutandis. J

I Lemma 6. We have

1. s −→−→−→s t =⇒ s −→−→−→ t

2. s −→−→ t =⇒ s −→−→−→s t

3. s −→−→−→ t =⇒ s −→−→−→a t

4. s −→−→−→s t =⇒ s −→−→−→a t

5. s −→−→−→a t =⇒ s −→−→−→s t

Proof. 1. Immediate: every weak head prefix is also a beta prefix.
2. By induction on s −→−→ t, using Lemma 4.4 and reflexively of −→−→−→s.
3. Immediate by 2.
4. By composition of 1 and 3.
5. By coinduction on s −→−→−→a t:

Case 1 s −→−→−→s x = t. Done.
Case 2 t = t1t2, s −→−→−→s s1s2, and si −→−→−→a ti. Hence s −→−→w s

′
1s
′
2, with s′i −→−→−→s si. By

4, s′i −→−→−→a si. By Lemma 5.5, s′i −→−→−→a ti. By coinduction, s′i −→−→−→s ti. Using that
s −→−→w s

′
1s
′
2, we get s −→−→−→s t1t2 by constructor.

Case 3 t = λx.v, s −→−→−→s λx.r, and r −→−→−→a v. Hence s −→−→w λx.r
′, with r′ −→−→−→s r. By

4, r′ −→−→−→a r. By Lemma 5.5, r′ −→−→−→a v. By coinduction, r′ −→−→−→s v. Using that
s −→−→w λx.r

′, we get s −→−→−→s λx.v.
J

I Theorem 7. s −→−→−→ t =⇒ s −→−→−→s t

Proof. By composing parts 3 and 5 of Lemma 6. J

I Remark. Technically speaking, we have only proved the existence part of Curry’s standard-
ization theorem; as some rewriting theorists would argue, in the finitary case, the theorem
also asserts that the standard reduction is strongly equivalent with the given one in the sense
of Lévy, and is furthermore a unique representative of this equivalence class.

We find it an interesting problem to give a coinductive formulation of the notion of
Lévy-equivalence for infinite reductions.

The Coq formalization of the coinductive treatment of infinitary rewriting — in particular,
the proof of standardization — can be downloaded from http://joerg.endrullis.de. All
coinductive proofs in Coq have to adhere to a strict syntactic guardedness condition [5]
for guaranteeing constructive well-definedness, also known as productivity [7]. We have
employed a proof transformation method from [8], in order to transform productive into
guarded proofs.

TYPES 2011

http://joerg.endrullis.de

22 Infinitary Rewriting Coinductively

4 Coinductive Reductions are Strongly Convergent

We now prove Theorem 3:

s −→−→−→ t ⇐⇒ s reduces to t via a strongly convergent reduction sequence

Theorem 3. (⇒) Suppose that s −→−→−→ t. By traversing the infinite derivation tree of s −→−→−→ t

in the breadth-first order, and accumulating the finite beta-prefixes by concatenation, we get
a reduction sequence of length ω which satisfies the depth requirement by construction.

(⇐) Let R be a strongly convergent reduction sequence from s to t of length α; we write
this as s R−→α t. By induction on α, we show that s −→−→−→a t. This suffices for s −→−→−→ t by
Lemma 6.5 and 6.1.
Zero case: s R−→0 t. Then s = t, hence s −→−→−→s t and s −→−→−→a t.
Successor: s R−→α+1 t. Then s R−→α s

′ −→ t. Then s′ −→−→−→s t and s′ −→−→−→a t, and by the
induction hypothesis, s −→−→−→a s

′. Thus s −→−→−→a t by Lemma 5.5.
Limit: s R−→α t, α a limit ordinal. We define an infinite derivation of s −→−→−→ t coinductively.

By the depth condition, there exists β < α such that, for every γ ≥ β, the redex contracted
by R at γ occurs at depth greater than zero. Let tβ be the term at index β in R. Then by
induction hypothesis we have s −→−→−→a tβ , and s −→−→−→s tβ by Lemma 6.5. We distinguish
three possible shapes of tβ .
Variable: tβ = x. This is impossible, since then tβ cannot reduce to anything, while we

assumed that β < γ.
Abstraction: tβ = λx.r. Then t = λx.u, and r −→≤α u. Then r −→−→−→a u by coinduction.

Now s −→−→−→ λx.u by the abstraction constructor of −→−→−→a.
Application: tβ = t1t2. Then t = u1u2 and the tail of reduction R past β can be split

into two parts {ti −→≤α ui | i = 0, 1} of length at most α. Then t0 −→−→−→a u0 and
t1 −→−→−→a u1 by coinduction. Now s −→−→−→ u1u2 by the application constructor of −→−→−→a.

J

5 Loops Loops Loops Loops Loops Loops Loops Loops Loops Loops

One might wonder which infinite reductions converge in the weak sense of topology but
not in the strong/coinductive sense above. One example is the infinite head reduction of
Ω = (λx.xx)(λx.xx).

Ω→ Ω→ Ω→ · · · (2)

which converges to Ω in the metric on infinite terms, but is not strongly convergent. Here we
nevertheless have Ω −→−→−→ Ω due to finite prefixes of the infinite reduction (in particular, the
empty reduction). Not every topologically convergent reduction has a strongly convergent
counterpart. This is illustrated by the following reduction:

M = (λx0.(λx1.(λx2. . . .)(x1I))(x0I))I
→ (λx0.(λx1.(λx2. . . .)(x1I))(x0I))(II)
→ (λx0.(λx1.(λx2. . . .)(x1I))(x0I))(III) (3)
...

→ (λx0.(λx1.(λx2. . . .)(x1I))(x0I))(Iω) = N

This reduction converges only topologically, every rewrite step occurs at the root. In fact,
there exists no strongly convergent reduction from M to N , we do not have M −→−→−→ N .

J. Endrullis and A. Polonsky 23

We note that both examples of topologically convergent reductions (2) and (3) contain a
term that admits a loop: Ω→ Ω and N → N , respectively. A recent theorem of [16] states
that these examples are paradigmatic: if R is a reduction sequence which is weakly, but not
strongly, convergent, then R contains a term which reduces to itself in one beta-reduction
step.

We conclude this paper by giving a characterization of all such terms.

I Definition 8. For M ∈ Λ∞, we define:

1. A one-cycle is a rewrite step M →M .
2. A loop is a rewrite step M →M at the root of the term.
Note that every one-cycle M →M is of the form M ≡ C[M ′]→ C[M ′] for some context C
and a loop M ′ →M ′. As a consequence, the interesting objects are the loops, and we are
interested in a characterization of terms that admit loops. For the case of (ordinary) finitary
λ-calculus, this problem has been studied and solved by Lercher in 1976 [14] who showed
that Ω is the only finite looping λ-term:

I Theorem 9 (Lercher). The only finite λ-term M such that M → M via a root step is
Ω ≡ (λx. xx)(λx. xx).

In infinitary lambda calculus, the situation becomes more involved. It turns out, that
there are 3 looping terms with a finite spine (among which of course Ω), and there is a whole
scheme of uncountably many terms with an infinite spine.

I Theorem 10. The looping terms in infinitary λ-calculus are precisely the terms that are
of one of the following forms:

1. Iω,
2. Ω ≡ (λx. xx)(λx. xx),
3. BB where B is the infinite solution of B ≡ λx.xB, or
4. (λx0.(λx1.(λx2....)s2)s1)s0 such that for every i ∈ N, the term si+1 is obtained from si

by replacing all xj by xj+1 followed by replacing an arbitrary (possibly infinite) number
of occurrences of s0 by x0. We call such a term a cascade.

The terms in cases (1), (2) and (3) are displayed in Figure 2.

Ω ≡ (λx. xx)(λx. xx)

@

λx

@

x x

λx

@

x x

Iω ≡ (λx.x) Iω

@

λx

x

@

λx

x

@

λx

x

@

λx

x

...

BB where B ≡ λx.xB

@

λx

@

x λx

@

x λx

@

x ...

λx

@

x λx

@

x λx

@

x ...

Figure 2 Looping terms in infinitary λ-calculus, except for cascades.

TYPES 2011

24 Infinitary Rewriting Coinductively

The case (4) of cascades is illustrated in Figure 3, and an example of a cascade is shown in
Figure 4. A cascade (λx0.(λx1.(λx2....)s2)s1)s0 can equivalently be characterized as follows:
for every n ∈ N, the term si is obtained from si+1 by a substitution replacing x0 by s0 and
all variables xj+1 by xj .

4th (class of) solution(s): M ≡ (λx0.(λx1.(λx2. . . .)s2)s1)s0
with si = si+1[x0 = s0, x1 = x0, . . . , xi+1 = xi] for i ≥ 1

@

λx0

@

λx1

@

λx2

...

s0

s0
s0

s0
s0

s0

s0

s0

s0
s0

s0
x0s0

s0
x0

s0
x1

The recipe for cascades:
take any term s0
obtain si+1 from si by:
(a) replacing all occurrences of
xi by xi+1 (for all i ∈ N in par-
allel),
(b) replacing some (zero or
more) occurrences of subterms
s0 by x0

Figure 3 The structure of cascades in infinitary λ-calculus. The gray occurrences s0 indicate that
this term is obtained from s0 by replacing subterms by variables.

@

λx0

@

λx1

@

λx2

@

λx3

...

@

Ω x2

@

Ω x1

@

Ω x0

@

Ω @

Ω @

Ω @

Ω ...

Figure 4 Example of a cascade.

Proof of Theorem 10. Let M ∈ Λ∞ be a term that admits a loop M →M . Then M has a
redex at the root, thus M ≡ (λx.M ′)C for some M ′, C ∈ Λ∞. We distinguish the following
cases for M ′:

J. Endrullis and A. Polonsky 25

(ia) M ′ is a variable, M ′ ≡ x. Then M ≡ (λx.x)C → C ≡ M , and hence M ≡ Iω. This is
case (1) in the theorem.

(ia) M ′ is a variable, M ′ ≡ y 6= x. Then M ≡ (λx.y)C → y 6≡M , contradiction.
(ii) M ′ is an abstraction. Then the reduct would be an abstraction, contradiction
(iii) M ′ is an application, M ≡ AB. We analyse this case below.
For (iii) we have: M ≡ (λx.AB)C and by assumption M ≡ (AB)[x := C]. Hence

(a) A[x := C] ≡ λx.AB, and
(b) C ≡ B[x := C].
We consider the left spine L of A, depicted thick and red in the following picture:

M
≡

@

λx

@

A B

C

→
@

A[x=C] B[x=C]

Now there are two possibilities, either the spine L is finite or infinite:

(1) L is finite.

Assume that the spine would end in a variable y 6≡ x. This assumption yields a
contradiction by (a) since then the spine of A[x := C] in the reduct would be shorter
than the left spine of (λx.AB).
As a consequence, the spine ends in the variable x. This situation is surveyed in the
following picture:

M
≡

@

λx

@

A B

C

→
@

A[x=C] B[x=C]

x

bo
un
d
by

→
@

A[x=C] B[x=C]

C

λz

z

λz

z

We conclude that A ≡ x as otherwise the variable at the end of the spine in A[x := C]
cannot be bound at the root as in (λx.AB). Then C ≡ λx.xB by (a) and together with
(b) we get:

λx.xB ≡ B[x := λx.xB] (†)

We consider the right spine R of B, displayed red in the following picture:

TYPES 2011

26 Infinitary Rewriting Coinductively

M
≡

@

λx

@

x

B

λx

@

x

B

→
@

λx

@

x

B

B
[x

=
λ
x
. x
B

]

Again, there are the following possibilities:

(i) R is finite. As before, it follows that B ≡ x since otherwise the right spine of
the reduct would be shorter than the right spine of M . Hence we have found the
well-known looping term M ≡ Ω ≡ (λ.xx)(λ.xx).

(ii) R is infinite. Then the right spine of λx.xB is the same as that of B, and hence is
an alternation of abstraction and application. Thus:

B ≡ λx0.s0(λx1.s1(λx2.s2(. . .)))

for some terms si. From (†) it follows s0 ≡ x0, and this in turn implies that
s1 ≡ x1, and then s2 ≡ x2, ans so forth. Using induction we obtain si ≡ xi. Thus
B ≡ λx.xB, C ≡ B and M ≡ (λx.xB)B ≡ BB.

(2) L is infinite.

Then the spine of A must be the same as that of (λx.AB), and thus is an alteration of
lambda and application. As a consequence, we have

M ≡ (λx0.(λx1.(λx2....)s2)s1)s0

for some terms si. As a consequence the loop M →M , it follows that:

M ≡ (λx0.(λx1.(λx2....)s2)s1)s0 =α (λx1.(λx2....)s2)s1)[x0 := s0]

Thus, for every i ≥ 1 we have that si is be obtained from si+1 by replacing x0 by s0 and
all variables xj+1 by xj (the α-renaming).

J

References
1 H.P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. Elsevier Science, revised

edition, 1985.
2 A. Berarducci. Infinite λ-Calculus and Non-Sensible Models. In Logic and Algebra (Pon-

tignano, 1994), pages 339–377. Dekker, New York, 1996.
3 A. Berarducci and B. Intrigila. Church–Rosser λ-theories, Infinite λ-calculus and Consist-

ency Problems. Logic: From Foundations to Applications, pages 33–58, 1996.
4 C. Coquand and T. Coquand. On the Definition of Reduction for Infinite Terms. Comptes

Rendus de l’Académie des Sciences. Série I, 323(5):553–558, 1996.
5 Th. Coquand. Infinite objects in type theory. In Henk Barendregt and Tobias Nipkow,

editors, Types for Proofs and Programs, International Workshop TYPES’93, Nijmegen, The
Netherlands, May 24–28, 1993, Selected Papers, volume 806 of Lecture Notes in Computer
Science, pages 62–78. Springer, 1994.

J. Endrullis and A. Polonsky 27

6 N. Dershowitz, S. Kaplan, and D.A. Plaisted. Rewrite, Rewrite, Rewrite, Rewrite, Re-
write,. . . . Theoretical Computer Science, 83(1):71–96, 1991.

7 J. Endrullis, C. Grabmayer, D. Hendriks, A. Isihara, and J.W. Klop. Productivity of
Stream Definitions. Theoretical Computer Science, 411:765–782, 2010.

8 J. Endrullis, D. Hendriks, and M. Bodin. Circular Coinduction in Coq using Bisimulation-
Up-To Techniques. Unpublished note.

9 J. Endrullis, D. Hendriks, and J.W. Klop. Highlights in Infinitary Rewriting and Lambda
Calculus. Theoretical Computer Science, 464:48–71, 2012.

10 D. Hendriks and V. van Oostrom. Adbmal. In Proc. Conf. on Automated Deduction
(CADE 2003), volume 2741 of Lecture Notes in Artificial Intelligence, pages 136–150.
Springer, 2003.

11 F. Joachimski. Reduction Properties of ΠIE-Systems. PhD thesis, LMU München, 2001.
12 F. Joachimski. Confluence of the Coinductive [Lambda]-Calculus. Theoretical Computer

Science, 311(1-3):105–119, 2004.
13 J.R. Kennaway, J.W. Klop, M.R. Sleep, and F.-J. de Vries. Transfinite Reductions in

Orthogonal Term Rewriting Systems. Information and Computation, 119(1):18–38, 1995.
14 B. Lercher. Lambda-Calculus Terms That Reduce To Themselves. Notre Dame Journal of

Formal Logic, 17(2):291–292, 1976.
15 G.D. Plotkin. Call-by-Name, Call-by-Value and the Lambda-Calculus. Theoretical Com-

puter Science, 1(2):125–159, 1975.
16 J.G. Simonsen. Weak Convergence and Uniform Normalization in Infinitary Rewriting. In

Proc. 20th Int. Conf. on Rewriting Techniques and Applications (RTA 2009), volume 6 of
Leibniz International Proceedings in Informatics, pages 311–324. Schloss Dagstuhl, 2010.

17 Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 2003.

18 V. van Oostrom. Explicit Substitution for Graphs. In Nieuwsbrief van de Nederlandse
Vereniging voor Theoretische Informatica, number 9, pages 34–39, 2005.

19 H. Xi. Upper bounds for standardizations and an application. J. Symb. Log., 64(1):291–303,
1999.

TYPES 2011

	Introduction
	Setup
	Standardization
	Coinductive Reductions are Strongly Convergent
	Loops

