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Abstract. We introduce a coinductive definition of infinitary term rewriting. The

setup is surprisingly simple, and has in contrast to the usual definitions of infinitary
rewriting, neither need for ordinals nor for metric convergence. While the idea of a

coinductive treatment of infinitary rewriting is not new, all previous approaches were

limited to reductions of length ≤ ω. The approach presented in this paper is the
first to capture the full infinitary term rewriting with reductions of arbitrary ordinal

length. Apart from an elegant reformulation of known concepts, our approach gives

rise — in a very natural way — to a novel notion of infinitary equational reasoning.

1. Introduction

Infinitary rewriting is a generalization of the ordinary finitary rewriting to infinite terms
and infinite reductions (including reductions of ordinal lengths larger than ω). We present
a coinductive treatment of infinitary rewriting free of ordinals, metric convergence and
partial orders which have been essential in earlier definitions of the concept [11, 21, 23,
12, 28, 24, 22, 25, 20, 4, 3, 5, 14]. In a slogan one could say: Infinitary rewriting has never
been easier!

Let us describe the idea. Let R be a term rewriting system (TRS). We write→ε for root
steps with respect to R, that is, we define→ε = { (`σ, rσ) | `→ r ∈ R, σ a substitution }.
The crucial ingredient of our definition of infinitary rewriting→→→ are the coinductive rules

s (→ε ∪⇁⇁⇁)∗ t

s→→→ t

s1 →→→ t1 . . . sn →→→ tn

f(s1, s2, . . . , sn) ⇁⇁⇁ f(t1, t2, . . . , tn)
(1)

Here →→→ and ⇁⇁⇁ stand for finite and infinite reductions where ⇁⇁⇁ contains only steps
below the root. Note that these relations are defined mutually. The coinductive nature
of the rules means that the derivation trees, the proof trees, need not be well-founded.
(As we shall see, for the standard notion of infinitary rewriting, we need to restrict the
derivation trees.)

To illustrate the use of the rules, let us immediately consider an example.

Example 1.1. Let R be the TRS consisting solely of the following rewrite rule a→ C(a).
We write Cω to denote the infinite term C(C(C(. . .))), the solution of the equation Cω =
C(Cω). We then have a→→→ Cω, that is, an infinite reduction from a to Cω in the limit:

a→ C(a)→ C(C(a))→ C(C(C(a)))→ . . .→ω Cω

Using the rules above, we can derive a →→→ Cω as shown in Figure 1. This is an infinite
proof tree as indicated by the loop in which the rewrite sequence a →ε C(a) ⇁⇁⇁ Cω

is written in the form a →ε C(a) C(a) ⇁⇁⇁ Cω, that is, two separate steps such that the
target of the first equals the source of the second step; this is made precise in Notation 1.2,
below.
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a→ε C(a)

a→→→ Cω

C(a) ⇁⇁⇁ Cω

a→→→ Cω

Figure 1. A reduction a→→→ Cω of length ω.

Put in words, the proof tree in Figure 1 can be described as follows. We have an
infinitary rewrite sequence →→→ from a to Cω since we have a root step from a to C(a),
and an infinitary reduction below the root ⇁⇁⇁ from C(a) to Cω. The latter reduction
C(a) ⇁⇁⇁ Cω is in turn witnessed by the infinitary rewrite sequence a→→→ Cω on the direct
subterms. �

Notation 1.2. Instead of introducing derivation rules for transitivity, in particular for
(→ε ∪⇁⇁⇁)∗, we will write rewrite sequences s0  0 s1  1 . . . n−1 sn where  i ∈ {→ε

,⇁⇁⇁} as sequence of single steps s0  0 s1 s1  1 s2 . . . sn−1  n−1 sn. That is:

s0  0 s1 s1  1 s2 . . . sn−1  n−1 sn
s0 →→→ sn

This notation is more convenient since it avoids the need for explicitly introducing rules
for transitivity, and thereby keeps the proof trees small.

As a second example, let us consider a rewrite sequence of length beyond ω.

Example 1.3. We consider the term rewriting system consisting of the following rules:

f(x, x)→ D a→ C(a) b→ C(b)

Then we have the following reduction of length ω + 1:

f(a, b)→ f(C(a), b)→ f(C(a),C(b))→ . . .→ω f(Cω,Cω)→ D

That is, after an infinite rewrite sequence of length ω, we reach the limit term f(Cω,Cω),
and we then continue with a rewrite step from f(Cω,Cω) to D. Figure 2 shows how this
rewrite sequence f(a, b) →→→ D can be derived in our setup. The precise meaning of the

symbol ⇁
<
⇁⇁ in the figure will be explained later; for the moment, we may think of ⇁

<
⇁⇁ to

be ⇁⇁⇁.

a→ε C(a)

a→→→ Cω

C(a) ⇁⇁⇁ Cω

a→→→ Cω
b→ε C(b)

b→→→ Cω

C(b) ⇁⇁⇁ Cω

b→→→ Cω

f(a, b) ⇁
<
⇁⇁ f(Cω,Cω) f(Cω,Cω)→ε D

f(a, b)→→→ D

Figure 2. A reduction f(a, b)→→→ D of length ω + 1.

We note that the rewrite sequence f(a, b)→→→ D cannot be ‘compressed’ to length ω. That
is, there exists no reduction f(a, b)→≤ω D. �

For the definition of rewrite sequences of ordinal length, there is a design choice concern-
ing the connectedness at limit ordinals: (a) metric convergence, or (b) strong convergence.
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The purpose of the connectedness condition is to exclude jumps at limit ordinals, as illus-
trated in the following non-connected rewrite sequence (where R = { a→ a, b→ b }):

a→ a→ a→ . . .︸ ︷︷ ︸
ω-many steps

b→ b

The rewrite sequence stays ω steps at a and in the limit step ‘jumps’ to b.
The connectedness condition with respect to metric convergence requires that for every

limit ordinal γ, the terms tα converge with limit tγ as α approaches γ from below. The
strong convergence requires additionally that the depth of the rewrite steps tα → tα+1

tends to infinity as α approaches γ from below. The standard notion of infinitary rewrit-
ing [31, 14] is based on strong convergence as it gives rise to a more elegant rewriting
theory; for example, allowing to trace symbols and redexes over limit ordinals. This is
the notion that we are concerned with in this paper.

The rules (1) give rise to infinitary rewrite sequences in a very natural way, without
the need for ordinals, metric convergence, or depth requirements. The depth requirement
in the definition of strong convergence arises naturally in the rules (1) by employing
coinduction over the term structure. Indeed, it is not difficult to see that the coinductive
rules (1) capture all infinitary strongly convergent reductions s→→→ t. This is a consequence
of a result due to [23] which states that every strongly convergent rewrite sequence contains
only a finite number of steps at any depth d ∈ N. Thus, in particular, only a finite
number of root steps →ε, and before, in-between and after these root steps, there are
strongly convergent rewrite sequences on the arguments. As a consequence, every strongly
convergent rewrite sequence is of the shape (⇁⇁⇁ ◦ →ε)

∗◦ ⇁⇁⇁. Since strongly convergent
rewrite sequences are closed under transitivity, we allow the slightly more general (→ε

∪⇁⇁⇁)∗ in (1).
While this argument shows that every strongly convergent reduction s →→→ t can be

derived using the rules (1), it does not guarantee that we can derive precisely the strongly
convergent reductions. Actually, the rules do allow to derive more, as the following ex-
ample shows.

Example 1.4. Let R consist of the rewrite rule C(a) → a. Using the rules (1), we can
derive Cω →→→ a as shown in Figure 3.

Cω →→→ a

Cω ⇁
<
⇁⇁ C(a) C(a)→ε a

Cω →→→ a

Figure 3. A derivation of Cω →→→ a.

We emphasize that with respect to the standard notion of infinitary rewriting →→→ in
the literature we do not have Cω →→→ a since Cω is a normal form (does not contain an
occurrence of the left-hand side C(a) of the rule). Note that the rule C(x)→ x also gives
rise to Cω →→→ a by the same derivation as in Figure 3. �

This example illustrates that, without further restrictions, the rules (1) give rise to a
notion of infinitary rewriting that allows rewrite sequences to extend infinitely forwards,
but also infinitely backwards. Here backwards does not refer to reversing the arrow ←ε.
While this is a non-standard notion of infinitary rewriting, it is nevertheless interesting,
especially for a theory of infinitary equational reasoning, a field that has remained largely
underdeveloped.
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From the rules (1), a theory of infinitary equational reasoning arises naturally by re-
placing →ε with ←ε ∪ →ε in the first rule. This notion of infinitary equational reasoning
has the property of strong convergence built in, and thereby allows to trace redex occur-
rences forwards as well as backwards over rewriting sequences of arbitrary length. As a
consequence, this concept can profit from the well-developed theory of term rewriting and
infinitary term rewriting.

The focus of this paper is the standard notion of infinitary rewriting. How to obtain
the strongly convergent rewrite sequences s→→→ t? For this purpose it suffices to impose a
syntactic restriction on the shape of the proof trees obtained from the rules (1). The idea
is that all rewrite sequences ⇁⇁⇁ in (→ε ∪⇁⇁⇁)∗, that are before a root step→ε, should be
shorter than the rewrite sequence that we are defining. To this end, we change (→ε ∪⇁⇁⇁)∗

to (→ε ∪⇁
<
⇁⇁)∗ ◦⇁⇁⇁ where ⇁

<
⇁⇁ is a marked equivalent of ⇁⇁⇁, and we employ the marker

to exclude infinite nesting of ⇁
<
⇁⇁. Then we have an infinitary strongly convergent rewrite

sequence from s to t if and only if s→→→ t can be derived by the rules

s (→ε ∪⇁
<
⇁⇁)∗ ◦⇁⇁⇁ t

s→→→ t

s1 →→→ t1 . . . sn →→→ tn

f(s1, s2, . . . , sn)
(<)
⇁⇁⇁ f(t1, t2, . . . , tn) s

(<)
⇁⇁⇁ s

(2)

in a (not necessarily well-founded) proof tree without infinite nesting of ⇁
<
⇁⇁. In other

words, we only allow those proof trees in which all paths (ascending through the proof

tree) contain only finitely many occurrences of ⇁
<
⇁⇁.

We note that the second and third rule are abbreviations for two rules each: the

symbol
(<)
⇁⇁⇁ stands for ⇁⇁⇁ and for ⇁

<
⇁⇁. Intuitively, ⇁

<
⇁⇁ can be thought of as infinitary

rewrite sequence below the root that is ‘smaller’ than the sequence we are defining. Here

‘smaller’ refers to the nesting depth of ⇁
<
⇁⇁, but can equivalently be thought of the length

of the reduction (in some well-founded order).

Example 1.5. Let us revisit Examples 1.1, 1.3 and 1.4. Example 1.1 contains no oc-

currences of ⇁
<
⇁⇁. The proof tree in Example 1.3 has a single occurrence of ⇁

<
⇁⇁, but this

occurrence is not contained in the indicated loops, and thus not infinitely nested. Only

Example 1.4 contains a symbol ⇁
<
⇁⇁ on a loop, and hence a path with infinitely many

occurrences of ⇁
<
⇁⇁, and thus the proof tree is excluded by the syntactic restriction. �

Related Work. The basic idea of a coinductive treatment of infinitary rewriting is not
new. Already in 1996, Catarina Coquand and Thierry Coquand [9] have given a coin-
ductive definition of standard reductions in infinitary combinatory logic. Felix Joachim-
ski [18, 19] introduces a coinductive definition of infinite developments, a very restrictive
form of infinite reductions. In [15], Jörg Endrullis and Andrew Polonsky present a coin-
ductive definition of infinite rewrite sequences in infinitary λ-calculus. All previous coin-
ductive definitions have in common that they do not capture rewrite sequences of length
> ω. The coinductive treatment presented here captures all strongly convergent rewrite
sequences of arbitrary ordinal length.

From the topological perspective, various notions of infinitary rewriting and infinitary
equational reasoning have been studied in [20]. However, in contrast to the topological
notions, our setup captures strong convergence which yields an elegant rewriting theory,
and is the basic standard notion of infinitary rewriting in the literature. We note that
none of the rewrite notions (→→→, =∞ and ∞→∞) considered in this paper are continuous
(forward closed) in general. Here→ is continuous means that limi→∞ ti = t and ∀i.s→ ti



A COINDUCTIVE TREATMENT OF INFINITARY REWRITING 5

implies s→ t. However, continuity might hold for certain classes of term rewrite systems;
see further [14] for continuity for strongly convergent infinitary rewriting →→→.

Outline. In Section 2 we introduce infinitary rewriting in the usual way with ordinal-
length rewrite sequences, and convergence at every limit ordinal. We then continue in
Section 3 with an introduction to coinduction. In Section 4 we present a novel notion
of infinitary equational reasoning, and bi-infinite rewriting, both based on a coinductive
treatment. We give two definitions of infinitary rewriting based on mixing induction and
coinduction in Section 5. We then discuss these definitions, with particular focus on their
formalization in theorem provers, in Section 6. In Section 7, we prove the equivalence of
our coinductive definitions of infinitary rewriting with the standard definition.

2. Preliminaries

We give a brief introduction to infinitary rewriting. For further reading on infinitary
rewriting we refer to [28, 31, 7, 14], for an introduction to finitary rewriting to [27, 31, 2, 6].

A signature Σ is a set of symbols f each having a fixed arity #(f) ∈ N. Let X be
an infinite set of variables such that X ∩ Σ = ∅. The set of (finite and) infinite terms
Ter∞(Σ,X ) over Σ and X is coinductively (see further [8]) defined by the grammar:

T ::=co x | f(T, . . . , T︸ ︷︷ ︸
#(f) times

) (x ∈ X , f ∈ Σ) (3)

Intuitively, coinductively means that the grammar rules may be applied an infinite number
of times. The equality on the terms is bisimilarity. For a brief introduction to coinduction,
we refer to Section 3.

We define the identity relation on terms by id = {〈s, s〉 | s ∈ Ter∞(Σ,X )}.

Remark 2.1. Alternatively, the infinite terms arise from the set of finite terms, Ter(Σ,X ),
by metric completion, using the well-known distance function d such that for t, s ∈
Ter(Σ,X ), d(t, s) = 2−n if the n-th level of the terms t, s (viewed as labeled trees) is
the first level where a difference appears, in case t and s are not identical; furthermore,
d(t, t) = 0. It is standard that this construction yields 〈Ter(Σ,X ), d〉 as a metric space.
Now infinite terms are obtained by taking the completion of this metric space, and they
are represented by infinite trees. We will refer to the complete metric space arising in this
way as 〈Ter∞(Σ,X ), d〉, where Ter∞(Σ,X ) is the set of finite and infinite terms over Σ.

Let t ∈ Ter∞(Σ,X ) be a finite or infinite term. The set of positions Pos(t) ⊆ N∗ of t
is defined coinductively by:

Pos(x) = {ε} Pos(f(t1, . . . , tn)) = {ε} ∪ {ip | 1 ≤ i ≤ n, p ∈ Pos(ti)}

For p ∈ Pos(t), the subterm t|p of t at position p is defined by:

t|ε = t f(t1, . . . , tn)|ip = ti|p
The set of variables Var(t) ⊆ X of t is defined by Var(t) = {x ∈ X | ∃ p ∈ Pos(t). t|p = x}.

A substitution σ is a map σ : X → Ter∞(Σ,X ). We extend the domain of substitu-
tions σ to Ter∞(Σ,X ) by coinduction, as follows: σ(f(t1, . . . , tn)) = f(σ(t1), . . . , σ(tn)).
For terms s and substitutions σ, we write sσ for σ(s). We write x 7→ s for the substitution
defined by σ(x) = s and σ(y) = y for all y 6= x. Let � be a fresh variable. A context
C is a term Ter∞(Σ,X ∪ {�}) containing precisely one occurrence of the variable �. For
contexts C and terms s we write C[s] for C(x 7→ s).
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A rewrite rule `→ r over Σ and X is a pair (`, r) ∈ Ter∞(Σ,X )×Ter∞(Σ,X ) of terms
such that the left-hand side ` is not a variable (` 6∈ X ), and all variables in the right-hand
side r occur in ` (Var(r) ⊆ Var(`)). Note that we do neither require the left-hand side
nor the right-hand side of a rule to be finite.

A term rewrite system (TRS) R over Σ and X is a set of rewrite rules over Σ and X .
A TRS induces a rewrite relation on the set of terms as follows. For p ∈ N∗ we define
→R,p ⊆ Ter∞(Σ,X )× Ter∞(Σ,X ), a rewrite step at position p, by

C[`σ]→R,p C[rσ] if C a context with C|p = �, `→ r ∈ R, σ : X → Ter∞(Σ,X )

We write s →R t if s →R,p t for some p ∈ N∗. A normal form is a term without a
redex occurrence, that is, a term that is not of the form C[`σ] for some context C, rule
`→ r ∈ R and substitution σ.

A natural consequence of this construction is the emergence of the notion of metric
convergence: we say that t0 → t1 → t2 → . . . is an infinite reduction sequence with limit t,
if t is the limit of the sequence t0, t1, t2, . . . in the usual sense of metric convergence. Metric
convergence is sometimes also called weak convergence. In fact, we will use throughout a
stronger notion that has better properties. This is strong convergence, which in addition
to the stipulation for metric (or weak) convergence, requires that the depth of the redexes
contracted in the successive steps tends to infinity when approaching a limit ordinal from
below. So this rules out the possibility that the action of redex contraction stays confined
at the top, or stagnates at some finite level of depth. See further Figure 4 for an intuitive
illustration.

ω ·1 ω ·2 ω ·3 ω ·4 ω ·5 ω ·6 ω ·7 ω ·8 ω ·9 ω ·10 ω ·11 ω ·12 ω ·13ω ·14ω ·15ω ·16ω ·17ω ·18ω ·19

0 ω2

convergence of depths towards ω2

Figure 4. Depth of redex contractions tends to infinity at each limit ordinal.

A more precise definition is as follows:

Definition 2.2. A transfinite rewrite sequence (of ordinal length α) is a sequence of
rewrite steps (tβ →R,pβ tβ+1)β<α such that for every limit ordinal λ < α we have that if
β approaches λ from below, then

(i) the distance d(tβ , tλ) tends to 0 and, moreover,
(ii) the depth of the rewrite action, i.e., the length of the position pβ , tends to infinity.

The sequence is called strongly convergent if α is a successor ordinal, or there exists a
term tα such that the conditions i and ii are fulfilled for every limit ordinal λ ≤ α. In
this case we write t0 →→→ord,R tα, or t0 →α tα to explicitly indicate the length α of the
sequence. The sequence is called divergent if it is not strongly convergent.
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There are several reasons why strong convergence is beneficial; the foremost being that
in this way we can define the notion of descendant (also residual) over limit ordinals.
Also the well-known Parallel Moves Lemma and the Compression Lemma fail for weak
convergence, see [30] and [11] respectively. It is further easy to establish that strongly
convergent reductions can have any countable length; weakly convergent reductions can
have any length, as the one-rule TRS with c→ c demonstrates.

3. Introduction to Coinduction

We briefly introduce the relevant concepts from (co)algebra and (co)induction that will
be used later throughout this paper. For a more thorough introduction, we refer to [17].
There will be two main points where coinduction will play a role, in the definition of terms
and in the definition of the term rewriting.

Terms are usually defined with respect to a signature Σ. For instance, consider the
type of lists with elements in a given set A.

type List a = Empty | Cons a (List a)

The above grammar corresponds to the signature (or type constructor) Σ(X) = 1+A×X
where the 1 is used as a placeholder for the empty list Empty and the second component
represents the Cons constructor. Such a grammar can be interpreted in two ways: The
inductive interpretation yields as terms the set of finite lists, and corresponds to the least
fixed point of Σ. The coinductive interpretation yields as terms the set of all finite or
infinite lists, and corresponds to the greatest fixed point of Σ. More generally, the induc-
tive interpretation of a signature yields finite terms (with well-founded syntax trees), and
dually, the coinductive interpretation yields possibly infinite terms. For readers famil-
iar with the categorical definitions of algebras and coalgebras, these two interpretations
amount to defining finite terms as the initial Σ-algebra, and possibly infinite terms as the
final Σ-coalgebra.

Equality on finite terms is the expected syntactic/inductive definition. Equality of
possibly infinite terms is observational equivalence (or bisimilarity). For instance, in the
above example, two infinite lists σ and τ are equal if and only if they are related by a
List-bisimulation. A relation R ⊆ List a× List a is a List-bisimulation if and only if for
all pairs (Cons a σ, Cons b τ) ∈ R, it holds that a = b and (σ, τ) ∈ R.

Formally, term rewriting is a relation on a set T of terms, and hence an element of
the complete lattice L := P(T × T ), i.e., the powerset of T × T . Relations on terms can
thus be defined using least and greatest fixed points of monotone operators on L. In this
setting, an inductively defined relation is a least fixed point µF of a monotone F : L→ L;
and dually, a coinductively defined relation is a greatest fixed point νF of a monotone
F : L→ L. These notions of induction and coinduction are, in fact, also instances of the
more abstract categorical definitions. This can be seen by viewing L as a partial order
(ordered by set inclusion). In turn, a partial order (P,≤) can be seen as a category whose
objects are the elements of P and there is a unique arrow X → Y if X ≤ Y . A functor on
(P,≤) is then nothing but a monotone map F ; an F -coalgebra X → F (X) is a post-fixed
point of F ; and a final F -coalgebra is a greatest fixed point of F . The existence of the
final F -coalgebra is guaranteed by the Knaster-Tarski fixed point theorem. Coinduction,
and similarly induction, can now be formulated as proof rules:

X ≤ F (X)

X ≤ νF
(ν-rule)

F (X) ≤ X
µF ≤ X

(µ-rule) (4)
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that express the fact that νF is the greatest post-fixed point of F , and µF is the least
pre-fixed point of F .

4. Infinitary Equational Reasoning

From the basic rules (1) arises in a very natural way a novel notion of infinitary equa-
tional reasoning =∞. This notion is the natural counterpart of strongly convergent in-
finitary rewriting. Like infinitary strongly convergent reductions, the theory of infinitary
equational reasoning has the property that every derivation contains only a finite number
of reasoning steps at any depth d ∈ N. We consider an equational specification (ES) as a
TRS.

Definition 4.1. Let E be an equational specification over Σ. We define infinitary equa-
tional reasoning =∞ ⊆ T × T on terms T = Ter∞(Σ,X ) by the following coinductive
rules

s (←ε ∪ →ε ∪ =̀∞)∗ t

s =∞ t

t1 =∞ t′1 . . . tn =∞ t′n

f(t1, t2, . . . , tn) =̀∞ f(t′1, t
′
2, . . . , t

′
n)

where =̀∞ ⊆ T × T stands for infinitary equational reasoning below the root. �

Example 4.2. Let E be an equational specification consisting of the equations (rules):

a = f(a) b = f(b) C(b) = C(C(a))

Then a =∞ b as derived in Figure 5 (top), and C(a) =∞ Cω as in Figure 5 (bottom).

a→ε f(a)

a→ε f(a)

a =∞ fω

f(a) =̀∞ fω

a =∞ fω

f(a) =̀∞ fω

fω =∞ b

fω =̀∞ f(b) f(b)←ε b

fω =∞ b

fω =̀∞ f(b) f(b)←ε b

a =∞ b

(as above)

a =∞ b

C(a) =̀∞ C(b) C(b)→ε C(C(a))

C(a) =∞ Cω

C(C(a)) =̀∞ Cω

C(a) =∞ Cω

Figure 5. Infinitary equational reasoning.

It is easy to see that ( →→→◦ →→→)∗ ⊆ =∞, and C(a) =∞ Cω shows that this inclusion is
strict.

Definition 4.1 of =∞ can be equivalently be defined using a greatest fixed point as
follows.

Definition 4.3. Let E be an equational specification over Σ, and T = Ter∞(Σ,X ). For
R ∈ P(T × T ), we define its lifting as

R = { 〈f(s1, . . . , sn), f(t1, . . . , tn)〉 | s1 R t1, . . . , sn R tn } ∪ id

We define the relation =∞ as ν x. (←ε ∪ →ε ∪ x)∗. �
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It is easy to verify that the function x 7→ (←ε ∪ →ε ∪ x)∗ is monotone, and conse-
quently the greatest fixed point in Definition 4.3 exists.

Another notion that arises naturally in our setup is that of bi-infinite rewriting, allowing
rewrite sequences to extend infinitely forwards and backwards. We emphasize that each
of the steps →ε in such sequences is a forward step.

Definition 4.4. Let R be a term rewriting system over Σ, and let T = Ter∞(Σ,X ). We
define bi-infinite rewrite relation ∞→∞ ⊆ T × T by the following coinductive rules

s (→ε ∪ ∞→̀∞)∗ t

s ∞→∞ t

t1
∞→∞ t′1 . . . tn

∞→∞ t′n

f(t1, t2, . . . , tn) ∞→̀∞ f(t′1, t
′
2, . . . , t

′
n)

where ∞→̀∞ ⊆ T × T stands for bi-infinite rewriting below the root. �

Examples 1.1, 1.3 and 1.4 are illustrations of this rewrite relation. Note that these
examples employ the symbols →→→ and ⇁⇁⇁ instead of ∞→∞ and ∞→̀∞, respectively. In
the infinitary conversion in Example 4.2 we need to reverse the rule b = f(b) in order to
obtain a bi-infinite rewrite sequence a ∞→∞ b.

5. Infinitary Term Rewriting

We present two – ultimately equivalent – definitions of infinitary rewriting s →→→ t,
based on mixing induction and coinduction. We summarize the definitions:

A. Derivation Rules. First, we define s →→→ t via a syntactic restriction on the proof
trees that arise from the coinductive rules (2). The restriction excludes all proof trees
that contain ascending paths with an infinite number of marked symbols. This can be
viewed as a two phase process: first generating all finite and infinite proof trees with
respect to (2), and in a post-processing step we filter all well-formed proof terms.

B. Mixed Induction and Coinduction. Second, we define s→→→ t based on mutually mixing
induction and coinduction, that is, least fixed points µ and greatest fixed points ν.
This rendering allows for the surprisingly succinct definition:

→→→ = µx. ν y. (→ε ∪ x)∗ ◦ y

where R = { 〈f(s1, . . . , sn), f(t1, . . . , tn)〉 | s1 R t1, . . . , sn R tn } ∪ id.

In contrast to previous coinductive definitions [9, 18, 19, 15], the setup proposed here
captures all strongly convergent rewrite sequences (of arbitrary ordinal length).

Throughout this section, we fix a signature Σ and a term rewriting system R over Σ.
The notation →ε denotes a root step with respect to R.

5.1. Derivation Rules. The first definition has already been discussed in the introduc-
tion. The strongly convergent rewrite sequences are obtained by a syntactic restriction
on the formation of the proof trees that arise from rules (1).

Definition 5.1. We define the relation →→→ on terms T = Ter∞(Σ,X ) as follows. We
have s→→→ t if there exists a (finite or infinite) proof tree δ deriving s→→→ t using the rules

s (→ε ∪⇁
<
⇁⇁)∗ ◦⇁⇁⇁ t

s→→→ t
split

s1 →→→ t1 . . . sn →→→ tn

f(s1, s2, . . . , sn)
(<)
⇁⇁⇁ f(t1, t2, . . . , tn)

lift
s

(<)
⇁⇁⇁ s

id
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such that δ does not contain infinite nesting1 of ⇁
<
⇁⇁. The symbol

(<)
⇁⇁⇁ stands for ⇁⇁⇁ or

⇁
<
⇁⇁; so the second rule is an abbreviation for two rules; similarly for the third rule. �

Let us give some intuition for the rules in Definition 5.1. The relation ⇁
<
⇁⇁ can be

thought of as an infinitary reduction below the root, that is ‘shorter’ than the reduction
that we are deriving. The three rules (split, lift and id) can be interpreted as follows:

(i) The split-rule: the term s rewrites infinitarily to t, s →→→ t, if s rewrites to t using
a finite sequence of (a) root steps, and (b) infinitary reductions ⇁⇁⇁ below the root
(where infinitary reductions preceding root steps must be shorter than the derived
reduction).

(ii) The lift-rule: the term s rewrites infinitarily to t below the root, s
(<)
⇁⇁⇁ t, if the

terms are of the shape s = f(t1, t2, . . . , tn) and t = f(t′1, t
′
2, . . . , t

′
n) and there exist

infinitary reductions →→→ on the arguments: t1 →→→ t′1, . . . , tn →→→ t′n.

(iii) The id-rule allows the rewrite relation
(<)
⇁⇁⇁ to be reflexive, and this in turn yields

reflexivity of →→→. For variable-free terms, reflexivity can already be derived using
the first two rules. However, for terms with variables, this third rule is needed (unless
we treat variables as function symbols of arity 0).

For example proof trees using the rules from Definition 5.1, we refer to Examples 1.1
and 1.3 in the introduction.

5.2. Mixed Induction and Coinduction. The next definition is based on mixing in-
duction and coinduction. The inductive part is used to model the restriction to finite

nesting of ⇁
<
⇁⇁ in the proofs in Definition 5.1. The induction corresponds to a least fixed

point µ, while a coinductive rule to a greatest fixed point ν.

Definition 5.2. Let T = Ter∞(Σ,X ) be the set of terms, and let L be the set of all
relations on terms L = P(T × T ). For R ∈ P(T × T ), we define its lifting as

R = { 〈f(s1, . . . , sn), f(t1, . . . , tn)〉 | s1 R t1, . . . , sn R tn } ∪ id

We define the relation →→→ by

→→→ = µx. ν y. (→ε ∪ x)∗ ◦ y
We define functions G : L× L→ L and F : L→ L by

G(x, y) = (→ε ∪ x)∗ ◦ (y) and F (x) = ν y. G(x, y) = ν y. (→ε ∪ x)∗ ◦ (y) (5)

We then have →→→ = µx. F (x) = µx. ν y. G(x, y) = µx. ν y. (→ε ∪ x)∗ ◦ y �

It can easily be verified that F and G are monotone (in all their arguments). Recall
that a function f over sets is monotone if X ⊆ Y =⇒ f(. . . , X, . . .) ⊆ f(. . . , Y, . . .).
Hence F and G have unique least and greatest fixed points.

The reflexive, transitive closure (·)∗ in Definition 5.2 can, of course, also be defined
using a least fixed point, for example, as follows:

R∗ = µ z. (id ∪R ◦ z) or equivalently R∗ = µ z. (id ∪R ∪ z ◦ z)
Unfolding this definition of the reflexive, transitive closure in Definition 5.2 we obtain:
→→→= µx. ν y. (µ z. id ∪ (→ε ∪ x) ◦ z) ◦ y

1No infinite nesting of ⇁
<
⇁⇁ means that there exists no path ascending through the proof tree that meets

an infinite number of symbols ⇁
<
⇁⇁.
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5.3. Comparing Definitions 5.1 and 5.2. We emphasize the close connection between
Definitions 5.1 and 5.2. Observe that the clause (→ε ∪ x)∗ ◦ (y) in Definition 5.2 models

(→ε ∪⇁
<
⇁⇁)∗ ◦ ⇁⇁⇁ in the first rule of Definition 5.1. Here x corresponds to ⇁

<
⇁⇁, and y to

⇁⇁⇁. The least fixed point µx caters for the restriction of the proof tree formation to finite

nesting of ⇁
<
⇁⇁.

Definitions 5.1 and 5.2 of the rewrite relation→→→ both have their merits. Definition 5.2,
which is based on mixing induction and coinduction, is a succinct, mathematically precise
formulation of →→→. The derivation rules, Definition 5.1, on the other hand, are easy to
understand, and easy to use for humans.

6. Towards a Formalization

One of the advantages of the definitions we propose, over the standard definition, is
that they are suitable for formalization in theorem provers. The standard definition of
infinitary rewriting, using ordinal length rewrite sequences and strong convergence at limit
ordinals, appears to be difficult to formalize. Martijn Vermaat has formalized infinitary
rewriting using metric convergence in the Coq proof assistant [32], and proved that weakly
orthogonal infinitary rewriting does not have the property UN of unique normal forms,
see [13]. While his formalization could be extended to strong convergence, it remains to
be investigated to what extent it can be used for the further development of the theory of
infinitary rewriting. Another route is the formalization of restricted variants of infinitary
rewriting. One such variant is that of ‘computable infinite reductions’ [26], where terms
as well as reductions are computable; there is no formalization yet, but they have an
implementation of the Compression Lemma in Haskell.

Agda has support for mixed inductive and coinductive definitions. Unfortunately, it
still has a restriction that the coinduction has to be on the outside. If this restriction is
lifted, then Definition 5.2 would be a perfect candidate for a formalization. The theorem
prover Coq has regrettably no support for mutual inductive and coinductive definitions.

There are several papers on studying mixing induction and conduction [1, 10, 16, 29],
most of them in the context of extending proof assistants with the capability of doing
proofs by (co)induction. Our setting is very specific to infinitary term rewriting and
the form of coinduction we use here is very concrete, not requiring general formulations,
parametric on the functor type.

In principle, Definition 5.1 can be formalized as follows:

(i) First, we define all coinductive proof trees derivable using the rules (a purely coin-
ductive definition poses no problems).

(ii) Afterwards, define an accessibility relation on the proof trees in order to filter out

those proof trees where ⇁
<
⇁⇁ has a well-founded nesting.

Then a proof of s→→→ t is a pair of a proof tree δ deriving s→→→ t and proof of accessibility
of δ. While this works in principle, and the definition is accepted in Coq, problems
arise when trying to work with this definition. The transitivity in the split-rule harms
the guardedness of the proof terms, and makes it basically impossible to define actual
reductions.

This problem can be solved by avoiding the explicit corecursion in the formalization.
The idea is to employ the largest relation semantics of coinductive definitions. We can
render Definition 4.1 of infinitary equational reasoning as follows:

Definition 6.1. Let E be an equational specification over Σ. We define =∞ ⊆ T × T by
s =∞ t if there exists a relation X ⊆ T × T such that s X t and
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– for all s′, t′ ∈ T we have that s′ X t′ implies s′ (←ε ∪ →ε ∪ X)∗ t′

where X is the lifting as in Definition 4.3. �

This definition can be straightforwardly formalized in Coq, Agda or other theorem
provers. For infinitary rewriting, we additionally need to ensure well-foundedness of cer-
tain paths. This can be achieved by taking a family of relations {Xi}i∈I indexed by a
well-founded order (I,>). The well-foundedness along certain paths is then no longer
imposed on top of the definition of the proof trees, but built into the proof tree right from
the start. Definition 5.1 of infinitary rewriting can now be rendered as follows:

Definition 6.2. We define the relation →→→ on terms T = Ter∞(Σ,X ) as follows. We
have s→→→ t if there exists a well-founded order (I,>) together with a family of relations
{Xi}i∈I such that s Xi t for some i ∈ I and

– for all i ∈ I and all s′, t′ ∈ T we have that s′ Xi t
′ implies s′ (→ε ∪ X<i)

∗ ◦ Xi t
′

where X<i =
⋃
j<iXj . �

This definition can be formalized directly in Coq or other theorem provers, and this
formalization is infinitely easier than a formalization of the standard definition employing
ordinal length rewrite sequences with convergence at every limit ordinal.

Although the formalizations above are succinct and easy to work with, we think that
the coinductive rules are more elegant. We therefore plan, for future work, to investigate
whether there are ways to overcome the problems (e.g. with transitivity and guardedness)
in order to get the coinductive definitions to work in theorem provers. As mentioned
before, there is work [1, 10, 29] addressing this problem, and we are interested in knowing
whether these solutions are applicable in our setting.

7. Equivalence with the Standard Definition

In this section we prove the equivalence of the coinductively defined infinitary rewrite
relations →→→ from Definitions 5.1, and 5.2 with the standard definition based on ordi-
nal length rewrite sequences with metric and strong convergence at every limit ordinal
(Definition 2.2).

7.1. Derivation Rules. Let →→→ be the relation defined in Definition 5.1. The definition
requires that the nesting structure of ⇁

<
⇁⇁ in proof trees is well-founded. As a consequence,

we can associate to every proof tree a (countable) ordinal that allows to embed the nesting
structure in an order-preserving way. We use ω1 to denote the first uncountable ordinal,
and we view ordinals as the set of all smaller ordinals (then the elements of ω1 are all
countable ordinals).

Definition 7.1. Let δ be a proof tree as in Definition 5.1, and let α be an ordinal. An

α-labeling of δ is a labeling of all symbols ⇁
<
⇁⇁ in δ with elements from α such that each

label is strictly greater than all labels occurring in the subtrees (all labels above). �

Lemma 7.2. Every proof tree as in Definition 5.1 has an α-labeling for some α ∈ ω1. �

Definition 7.3. Let δ be a proof tree as in Definition 5.1. We define the nesting depth
of δ as the least ordinal α ∈ ω1 such that δ admits an α-labeling. For every α ≤ ω1, we
define a relation →→→α ⊆ →→→ as follows: s →→→α t whenever s →→→ t can be derived using a

proof with nesting depth < α. Likewise we define relations ⇁⇁⇁α and ⇁
<
⇁⇁α. �

As a direct consequence of Lemma 7.2 we have:
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Corollary 7.4. We have →→→ω1
=→→→. �

We will now show that the coinductively defined infinitary rewrite relation→→→ (Defini-
tion 5.1) coincides with the standard definition of →→→ord (Definition 2.2) based on ordinal
length rewrite sequences with metric and strong convergence at every limit ordinal. The
crucial observation is the following theorem from [28]:

Theorem 7.5 (Theorem 2 of [28]). A transfinite reduction is divergent if and only if for
some N there are infinitely many steps at depth N .

We are now ready to prove the equivalence of both notions:

Theorem 7.6. We have →→→ =→→→ord.

Proof. We write ⇁ for steps that are not at the root, and ⇁⇁⇁ord to denote a reduction
⇁⇁⇁ without root steps.

We begin with the direction →→→ord ⊆ →→→. We show by induction on the ordinal length

α that we have both →α
ord ⊆ →→→ and ⇁α ⊆ (<)

⇁⇁⇁. Let α be an ordinal and s, t terms. We
proceed by coinduction on the structure of the proof tree to derive →→→:

(i) Assume that s→α
ord t, that is, we have a strongly convergent reduction σ from s to t

of length α. By Theorem 7.5 the rewrite sequence σ contains only a finite number of
root steps. As a consequence, σ is of the form: s (→ε ∪⇁<α)∗◦⇁≤α t. Note that
the reductions ⇁⇁⇁ord preceding root steps must be shorter than α since the last root
step is contracted at an index < α in the reduction σ. By induction hypothesis we

have ⇁<α ⊆⇁
<
⇁⇁. Then s (→ε ∪⇁

<
⇁⇁)∗◦⇁≤α t. Hence, s→→→ t can be derived using

the split-rule since by coinduction hypothesis we have ⇁≤α ⊆ →→→. Observe that the

thereby constructed proof tree for s→→→ t contains no infinite nesting of ⇁
<
⇁⇁ because

every marker ⇁
<
⇁⇁ occurs in a node where the induction hypothesis has been applied.

An infinite nesting of markers would thus give rise to an infinite descending chain of
ordinals, which is impossible by well-foundedness of α.

(ii) Assume that s ⇁α t, that is, we have a strongly convergent reduction σ without
root steps from s to t of length α. Then the terms s, t must be of the shape s =
f(s1, . . . , sn) and t = f(t1, . . . , tn), and σ can be split in reductions s1 →≤αord t1, . . . ,

sn →≤αord tn on the arguments. By (i) we have s1 →→→ t1, . . . , sn →→→ tn. Hence by the

lift-rule we obtain s ⇁⇁⇁ t and s ⇁
<
⇁⇁ t (the nesting of ⇁

<
⇁⇁ stays well-founded).

We now show →→→ ⊆ →→→ord. We prove by well-founded induction on α ≤ ω1 that →→→α ⊆
→→→ord. This suffices since →→→ =→→→ω1

. Let α ≤ ω1 and assume that s→→→α t. Let δ be a
proof tree of nesting depth ≤ α deriving s→→→α t. The only possibility to derive s→→→ t is

an application of the split-rule with the premise s (→ε ∪⇁
<
⇁⇁)∗ ◦⇁⇁⇁ t. Since s→→→α t, we

have s (→ε ∪⇁
<
⇁⇁α)∗ ◦⇁⇁⇁α t. By induction hypothesis we have s (→ε ∪ →→→ord)∗ ◦⇁⇁⇁α t,

and thus s→→→ord ◦⇁⇁⇁α t. We have ⇁⇁⇁α =→→→α , and consequently s→→→ord s1 →→→α t for

some term s1. Repeating this argument on s1 →→→α t, we get s→→→ord s1 →→→ord s2 →→→α t.
After n iterations, we obtain

s→→→ord s1 →→→ord s2 →→→ord s3 →→→ord s4 · · · (→→→α)−(n−1) sn (→→→α)−n t

where (→→→α)−n denotes the n’th iteration of x 7→ x on →→→α.
Clearly, the limit of {sn} is t. Furthermore, each of the reductions sn →→→ord sn+1 are

strongly convergent and take place at depth greater than or equal to n. Thus, the infinite
concatenation of these reductions yields a strongly convergent reduction from s to t (there
is only a finite number of rewrite steps at any depth n). �
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7.2. Mixed Induction and Coinduction.

Theorem 7.7. The Definitions 5.1 and 5.2 give rise to the same relation →→→.

Proof. To avoid confusion we write →→→nest for the relation →→→ defined in Definition 5.1,
and →→→fp for the relation →→→ defined in Definition 5.2. We show →→→nest =→→→fp.

We begin with →→→fp ⊆ →→→nest. Employing the µ-rule from (4), it suffices to show that
F (→→→nest) ⊆ →→→nest. We prove this fact by coinduction on the structure of coinductively

defined proof trees (Definition 5.1). We have ⇁⇁⇁nest = ⇁
<
⇁⇁nest =→→→nest , and thus

F (→→→nest) = (→ε ∪ →→→nest )∗ ◦ F (→→→nest) = (→ε ∪⇁
<
⇁⇁nest)

∗ ◦ F (→→→nest)

F (→→→nest) = id ∪ { 〈f(~s), f(~t)〉 | ~s F (→→→nest) ~t }

where ~s, ~t abbreviate s1, . . . , sn and t1, . . . , tn, respectively, and we write ~s R ~t if we have

s1 R t1, . . . , sn R tn. Now we apply the split-rule to derive (→ε ∪ ⇁
<
⇁⇁nest)

∗ ◦ F (→→→nest)

and F (→→→nest) can be derived via the id-rule, or the lift-rule; for the arguments ~s, ~t of the
lift-rule we have by coinduction that ~s→→→nest ~t since ~s F (→→→nest) ~t.

We now show that→→→nest ⊆ →→→fp. We prove by well-founded induction on α ≤ ω1 that
→→→α,nest ⊆ →→→fp. This yields the claim →→→ω1,nest = →→→nest by Corollary 7.4. Since →→→fp

is a fixed point of F , we obtain →→→fp = F (→→→fp), and since F (→→→fp) is a greatest fixed
point, using the ν-rule from (4), it suffices to show that (∗)→→→α,nest ⊆ G(→→→fp,→→→α,nest).
Thus assume that s →→→α,nest t, and let δ be a proof tree of nesting height ≤ α deriving
s→→→α,nest t. The only possibility to derive s→→→nest t is an application of the split-rule with

the premise s (→ε ∪⇁
<
⇁⇁nest)

∗ ◦⇁⇁⇁nest t. Since s→→→α,nest t, we have s (→ε ∪⇁
<
⇁⇁α,nest)

∗

◦ ⇁⇁⇁α,nest t. Let τ be one of the steps ⇁
<
⇁⇁α,nest displayed in the premise. Let u be the

source of τ and v the target, so τ : u ⇁
<
⇁⇁α,nest v. The step τ is derived either via the

id-rule or the lift-rule. The case of the id-rule is not interesting since we then can drop
τ from the premise. Thus let the step τ be derived using the lift-rule. Then the terms
u, v are of form u = f(u1, . . . , un) and v = f(v1, . . . , vn) and for every 1 ≤ i ≤ n we have
ui →→→β,nest vi for some β < α. Thus by induction hypothesis we obtain ui →→→fp vi for
every 1 ≤ i ≤ n, and consequently u→→→fp v. We then have s (→ε ∪ →→→fp )∗ ◦⇁⇁⇁α,nest t,
and hence s G(→→→fp,→→→α,nest) t. This concludes the proof. �

8. Conclusion

We have proposed a coinductive framework of infinitary rewriting. From the framework
arise three natural variants of infinitary rewriting:

(a) infinitary equational reasoning,
(b) bi-infinite rewriting, and
(c) infinitary rewriting,

of which (c) is the standard definition of infinitary rewriting with respect to strong conver-
gence. The variants (a) and (b) are novel and have to the best knowledge of the authors
not yet been studied. For example, we are interested in a comparison of the Church-
Rosser properties =∞ ⊆ →→→ ◦ →→→and ( →→→◦ →→→)∗ ⊆ →→→ ◦ →→→. As a consequence of
the coinduction over the term structure, all of the infinitary rewriting notions (a), (b)
and (c) have the strong convergence built in, and thus can profit from the well-developed
techniques (such as tracing) in infinitary rewriting.
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We emphasize that our framework captures the full infinitary rewriting with rewrite
sequences of arbitrary ordinal length. Previously, coinductive definitions of infinitary
rewriting have been limited to rewrite sequences of length at most ω.

Last but not least, our work contributes towards a formalization of infinitary rewriting
in theorem provers. As discussed in Section 6, variants of the definitions we propose are
very suitable for a formalization.

Acknowledgments. We thank Patrick Bahr and Jeroen Ketema for fruitful discussions
and comments to earlier versions of this paper.
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