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Abstract
We give a relatively simple coinductive proof of confluence, modulo equivalence of root-active
terms, of nearly orthogonal infinitary term rewriting systems. Nearly orthogonal systems allow
certain root overlaps, but no non-root overlaps. Using a slightly more complicated method we
also show confluence modulo equivalence of hypercollapsing terms. The condition we impose on
root overlaps is similar to the condition used by Toyama in the context of finitary rewriting.
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1 Introduction

Infinitary term rewriting extends term rewriting by infinite terms and transfinite reductions.
This enables the consideration of “limits” of terms under infinite reduction sequences. For
instance, in a term rewriting system with the rule

f(a)→ c(f(a))

the term f(a) “in the limit” reduces to an infinite term cω such that cω = c(cω). In fact,
cω is the normal form of f(a) in an infinitary term rewriting system (iTRS) containing the
above single rule.

In this paper we show confluence modulo equivalence of root-active terms of nearly
orthogonal iTRSs. This implies that nearly orthogonal iTRSs have the unique normal forms
property. Nearly orthogonal iTRSs allow certain root overlaps, but no non-root overlaps.
More precisely, for each root critical pair 〈t1, t2〉 we require that there exists s such that
t1 ⇒ s and t2 →∞ s, where →∞ is strongly convergent infinitary reduction and ⇒ is parallel
reduction. Since almost orthogonal (i.e. weakly orthogonal with no non-root overlaps) iTRSs
are nearly orthogonal, this shows that the failure of the unique normal forms property in
weakly orthogonal iTRSs (see [11, 10]) is due to the possibility of non-root overlaps.

Our proof method is different from [21, 22] and it is relatively simple, but it does not
easily generalise to confluence modulo equivalence of hypercollapsing terms. Using a bit
more complicated method similar to [21] we also prove confluence modulo equivalence of
hypercollapsing terms of nearly orthogonal iTRSs. Because of space limits the details of the
second proof were moved to an appendix.

Actually, confluence modulo equivalence of root-active terms follows easily from confluence
modulo equivalence of hypercollapsing terms. However, the method of the proof of confluence
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modulo equivalence of root-active terms is perhaps more interesting than the result itself,
and than the second method which is a coinductive adaptation of [21]. The first method is
also slightly simpler. For these reasons we chose to present this method in detail, despite it
being less general.

In the context of finitary rewriting, confluence of non-orthogonal TRSs was studied by
Huet, Toyama, Gramlich and van Oostrom in [18, 34, 17, 35, 36]. The condition we impose
on root critical pairs is similar to the conditions used by Toyama. It is not possible to
use conditions similar to those from the cited papers for non-root overlaps, because the
unique normal forms property fails already for weakly orthogonal iTRSs [11, 10]. As a
counterexample, consider the following weakly orthogonal iTRS from [11, 10].

P (S(x))→ x S(P (x))→ x

Then S(P 2(S3(P 4(. . .)))) has two distinct normal forms Pω and Sω.

1.1 Related work
Infinitary rewriting was introduced in [22]. For an introduction and a general overview
see [21, 13]. A coinductive definition of infinitary reductions which corresponds to strongly
convergent reductions was introduced in [15] for the infinitary lambda-calculus. The paper [12]
introduces a coinductive definition of infinitary reductions in iTRSs, capturing reductions
of arbitrary ordinal length. Our coinductive definition of infinitary reductions is based
on [15]. Coinductive techniques in infinitary lambda-calculus were investigated in [20]. In [7]
confluence, modulo equivalence of root-active terms, of infinitary lambda-calculus was proven
coinductively. A simpler proof method for confluence modulo equivalence of terms with
no head normal form was later found in [8]. In this paper the proof of confluence modulo
equivalence of root-active terms follows a strategy similar to [8]. It also bears some similarity
to the proof of the unique normal forms property of orthogonal iTRSs in [28]. The general
strategy of the proof of confluence modulo equivalence of hypercollapsing terms, as well as
proofs of some lemmas, are similar to [21]. Some other papers related to the methods of the
present work are [1, 2, 24, 25, 26, 27, 23, 14].

2 Coinduction

In this section we give a brief explanation of coinduction as it is used in the present paper.
Our style of writing coinductive proofs is perhaps not completely standard, but it is similar
to how such proofs are presented in e.g. [15, 4, 31, 30, 29]. However, in contrast to some of
these papers, we do not claim that our proofs are a paper presentation of proofs formalised
in a proof assistant (though they could probably be formalised in such a system).

First, we give an explanation of how our proofs of existential statements should be
interpreted. This is the only part that may be non-obvious to someone already well-
acquainted with coinduction. Then we shall give an elementary explanation of coinduction.
A reader not familiar with coinduction should perhaps skip the following example and return
to it after reading the rest of this section.

I Example 1. Let T be the set of all finite and infinite terms defined coinductively by

T : : = V ‖ A(T ) ‖ B(T, T )

where V is a countable set of variables, and A, B are constructors. By x, y, . . . we denote
variables, and by t, s, . . . we denote elements of T . Define a binary relation → on T
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108 Confluence of nearly orthogonal infinitary term rewriting systems

coinductively by the following rules.

x→ x (1)
t→ t′

A(t)→ A(t′)
(2) s→ s′ t→ t′

B(s, t)→ B(s′, t′)
(3) t→ t′

A(t)→ B(t′, t′)
(4)

We want to show: for all s, t, t′ ∈ T , if s→ t and s→ t′ then there exists s′ ∈ T with t→ s′

and t′ → s′. The idea is to skolemize this statement. So we need to find a Skolem function
f : T 3 → T which will allow us to prove the Skolem normal form:

(?) if s→ t and s→ t′ then t→ f(s, t, t′) and t′ → f(s, t, t′).
The rules for → suggest a definition of f :

f(x, x, x) = x

f(A(s), A(t), A(t′)) = A(f(s, t, t′))
f(A(s), A(t), B(t′, t′)) = B(f(s, t, t′), f(s, t, t′))
f(A(s), B(t, t), A(t′)) = B(f(s, t, t′), f(s, t, t′))

f(A(s), B(t, t), B(t′, t′)) = B(f(s, t, t′), f(s, t, t′))
f(B(s1, s2), B(t1, t2), B(t′1, t′2)) = B(f(s1, t1, t

′
1), f(s2, t2, t

′
2))

f(s, t, t′) = some arbitrary term if none of the above matches

The definition is guarded, so f is well-defined, i.e., there exists a unique function f : T 3 → T

satisfying the above equations.
We now proceed with a coinductive proof of (?). Assume s → t and s → t′. If

s = t = t′ = x then f(s, t, t′) = x, and x → x by rule (1). If s = A(s1), t = A(t1) and
t′ = A(t′1) with s1 → t1 and s1 → t′1, then by the coinductive hypothesis t1 → f(s1, t1, t

′
1)

and t′1 → f(s1, t1, t
′
1). We have f(s, t, t′) = A(f(s1, t1, t

′
1)). Hence t = A(t1) → f(s, t, t′)

and t = A(t′1) → f(s, t, t′), by rule (2). If s = B(s1, s2), t = B(t1, t2) and t′ = B(t′1, t′2),
with s1 → t1, s1 → t′1, s2 → t2 and s2 → t′2, then by the coinductive hypothesis we have
t1 → f(s1, t1, t

′
1), t′1 → f(s1, t1, t

′
1), t2 → f(s2, t2, t

′
2) and t′2 → f(s2, t2, t

′
2). Hence t =

B(t1, t2)→ B(f(s1, t1, t
′
1), f(s2, t2, t

′
2)) = f(s, t, t′) by rule (3). Analogously, t′ → f(s, t, t′)

by rule (3). Other cases are similar.
Usually, it is inconvenient to invent the Skolem function beforehand, because the definition

of the Skolem function and the coinductive proof of the Skolem normal form are typically
interdependent. Therefore, we adopt an informal style of doing a proof by coinduction of a
statement1

ψ(R1, . . . , Rm) = ∀x1,...,xn∈T . ϕ(~x)→
∃y∈T .R1(g1(~x), . . . , gk(~x), y) ∧ . . . ∧Rm(g1(~x), . . . , gk(~x), y)

with an existential quantifier. We intertwine the corecursive definition of the Skolem function f
with a coinductive proof of the Skolem normal form

∀x1,...,xn∈T . ϕ(~x)→
R1(g1(~x), . . . , gk(~x), f(~x)) ∧ . . . ∧Rm(g1(~x), . . . , gk(~x), f(~x))

1 Here ϕ(~x) is a statement/formula (whatever it means) with only x1, . . . , xn occuring free. We believe
that for explanatory purposes it is not necessary to make this any more precise. In general, we
abbreviate x1, . . . , xn with ~x. The symbols R1, . . . , Rm stand for coinductive relations on T , i.e.,
relations defined as greatest fixpoints of some monotone functions on the powerset of an appropriate
cartesian product of T . The symbols g1, . . . , gk denote some functions of ~x. The statement ϕ may
contain R1, . . . , Rm, but their occurences in ϕ are not affected by substituting different relations in ψ,
e.g., if ψ(R) = ∀x∈T .R(x)→ R(g(x)) then ψ(S) = ∀x∈T .R(x)→ S(g(x)).
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We pretend that the coinductive hypothesis2 is ψ(Rα1 , . . . , Rαm). Each element obtained
from the existential quantifier in the coinductive hypothesis is interpreted as a corecursive
invocation of the Skolem function. When later we exhibit an element to show the existential
subformula of ψ(Rα+1

1 , . . . , Rα+1
m ), we interpret this as the definition of the Skolem function

in the case specified by the assumptions currently active in the proof. Note that this exhibited
element may (or may not) depend on some elements obtained from the existential quantifier in
the coinductive hypothesis, i.e., the definition of the Skolem function may involve corecursive
invocations.

To illustrate our style of doing coinductive proofs of statements with an existential
quantifier, we redo the proof done above. For illustrative purposes, we indicate the arguments
of the Skolem function, i.e., we write s′s,t,t′ in place of f(s, t, t′). These subscripts s, t, t′ are
normally omitted.

We show by coinduction that if s → t and s → t′ then there exists s′ ∈ T with t → s′

and t′ → s′. Assume s→ t and s→ t′. If s = t = t′ = x then take s′x,x,x = x. If s = A(s1),
t = A(t1) and t′ = A(t′1) with s1 → t1 and s1 → t′1, then by the coinductive hypothesis
we obtain3 s′s1,t1,t′1

with t1 → s′s1,t1,t′1
and t′1 → s′s1,t1,t′1

. Hence t = A(t1) → A(s′s1,t1,t′1
)

and t = A(t′1) → A(s′s1,t1,t′1
), by rule (2). Thus we may take s′s,t,t′ = A(s′s1,t1,t′1

). If
s = B(s1, s2), t = B(t1, t2) and t′ = B(t′1, t′2), with s1 → t1, s1 → t′1, s2 → t2 and
s2 → t′2, then by the coinductive hypothesis we obtain s′s1,t1,t′1

and s′s2,t2,t′2
with t1 → s′s1,t1,t′1

,
t′1 → s′s1,t1,t′1

, t2 → s′s2,t2,t′2
and t′2 → s′s2,t2,t′2

. Hence t = B(t1, t2) → B(s′s1,t1,t′1
, s′s2,t2,t′2

)
by rule (3). Analogously, t′ → B(s′s1,t1,t′1

, s′s2,t2,t′2
) by rule (3). Thus we may take s′s,t,t′ =

B(s′s1,t1,t′1
, s′s2,t2,t′2

). Other cases are similar.
It is quite clear that the above informal proof, when interpreted in the way outlined

before, implicitly defines the Skolem function f . It should be kept in mind that in every case
the definition of the Skolem function needs to be guarded. We do not explicitly mention this
each time, but verifying this is part of verifying the proof.

At this point a foundationally minded reader might wonder what is exactly the coinduction
principle employed in our proofs. The answer to this is simple: whichever you like. With
enough patience one could, in principle, reformulate all proofs to directly employ the usual
coinduction principle in set theory based on the Knaster-Tarski fixpoint theorem [33]. Since
all our proofs and corecursive definitions are actually guarded, one could probably4 formalise
them in a proof assistant based on type theory with a syntactic guardedness check, e.g., in
Coq [6, 16]. Perhaps the most straightforward, but maybe not the foundationally nicest, way
of justifying our proofs is by reducing coinduction to transfinite induction, as outlined below.

Let T and → be as in Example 1. Formally, the relation → is the greatest fixpoint of a
monotone F : P(T × T )→ P(T × T ) defined by

F (R) = {〈t1, t2〉 | ∃x∈V (t1 = t2 = x) ∨ ∃t,t′∈T (t1 = A(t) ∧ t2 = B(t′, t′) ∧R(t, t′)) ∨ . . .} .

Alternatively, using the Knaster-Tarski fixpoint theorem, the relation → may be char-
acterised as the greatest binary relation on T (i.e. the greatest subset of T × T w.r.t. set

2 We use Rα1 , . . . , Rαm for the α-approximants of the coinductive relations R1, . . . , Rm. A reader confused
by this terminology should take a look at our explanation of coinduction after this example.

3 More precisely: by corecursively applying the Skolem function to s1, t1, t
′
1 we obtain s′

s1,t1,t
′
1
, and by

the coinductive hypothesis we have t1 → s′
s1,t1,t

′
1
and t′1 → s′

s1,t1,t
′
1
.

4 The author has not paid enough attention to the type theory specific details involved in such a
formalisation to claim this with complete certainty.
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110 Confluence of nearly orthogonal infinitary term rewriting systems

inclusion) such that → ⊆ F (→), i.e., such that for every t1, t2 ∈ T with t1 → t2 one of the
following holds:
1. t1 = t2 = x for some variable x ∈ V ,
2. t1 = A(t), t2 = A(t′) with t→ t′,
3. t1 = B(s, t), t2 = B(s′, t′) with s→ s′ and t→ t′,
4. t1 = A(t), t2 = B(t′, t′) with t→ t′.

Yet another way to think about → is that t1 → t2 holds if and only if there exists a
potentially infinite derivation tree of t1 → t2 built using the rules (1)− (4).

The rules (1)− (4) could also be interpreted inductively to yield the least fixpoint of F .
This is the conventional interpretation, and it is indicated with a single line in each rule
separating premises from the conclusion. A coinductive interpretation is indicated with
double lines.

The greatest fixpoint → of F may be obtained by transfinitely iterating F starting
with T × T . More precisely, define an ordinal-indexed sequence (→α)α by:
→0= T × T ,
→α+1= F (→α),
→λ=

⋂
α<λ →α for a limit ordinal λ.

Then there exists an ordinal ζ such that → = →ζ . Note also that →α ⊆ →β for α ≥ β

(we often use this fact implicitly). See e.g. [9, Chapter 8]. The relation →α is called the
α-approximant of →. Note that the α-approximants depend on a particular definition of →
(i.e. on the function F ), not solely on the relation → itself.

It is instructive to note that the coinductive rules for → may also be interpreted as giving
rules for the α+ 1-approximants, for any ordinal α.

x→α+1 x
(1) t→α t′

A(t)→α+1 A(t′)
(2) s→α s′ t→α t′

B(s, t)→α+1 B(s′, t′)
(3) t→α t′

A(t)→α+1 B(t′, t′)
(4)

In this paper we are interested in proving by coinduction statements of the form5

ψ(R1, . . . , Rm) = ∀x1 . . . xn.ϕ(~x)→ R1(g1(~x), . . . , gk(~x)) ∧ . . . ∧Rm(g1(~x), . . . , gk(~x)).

Statements with an existential quantifier may be reduced to statements of this form by
skolemizing, as explained in Example 1.

To prove ψ(R1, . . . , Rm) it suffices to show by transfinite induction that ψ(Rα1 , . . . , Rαm)
holds for each ordinal α ≤ ζ, where Rαi is the α-approximant of Ri. The reader may easily
check that because of the special form of ψ and the fact that R0

i is the full relation, the
base case α = 0 and the cases of α a limit ordinal are trivial. Hence it remains to show the
inductive step for α a successor ordinal. It turns out that a coinductive proof of ψ may be
interpreted as a proof of this inductive step for a successor ordinal, with the ordinals left
implicit and the phrase “coinductive hypothesis” used instead of “inductive hypothesis”.

I Example 2. On terms from T (see Example 1) we define the operation of substitution by
guarded corecursion.

y[t/x] = y if x 6= y (A(s))[t/x] = A(s[t/x])
x[t/x] = t (B(s1, s2))[t/x] = B(s1[t/x], s2[t/x])

5 See footnote 1.
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We show by coinduction: if s→ s′ and t→ t′ then s[t/x]→ s′[t′/x], where → is the relation
from Example 1. Formally, the statement we show by transfinite induction on α ≤ ζ is: for
s, s′, t, t′ ∈ T , if s → s′ and t → t′ then s[t/x] →α s′[t′/x]. For illustrative purposes, we
indicate the α-approximants with appropriate ordinal superscripts, but it is customary to
omit these superscripts.

Let us proceed with the proof. The proof is by coinduction with case analysis on
s → s′. If s = s′ = y with y 6= x, then s[t/x] = y = s′[t′/x]. If s = s′ = x then
s[t/x] = t →α+1 t′ = s′[t′/x] (note that → = →ζ ⊆ →α+1). If s = A(s1), s′ = A(s′1)
and s1 → s′1, then s1[t/x] →α s′1[t′/x] by the coinductive hypothesis. Thus s[t/x] =
A(s1[t/x]) →α+1 A(s′1[t′/x]) = s′[t′/x] by rule (2). If s = B(s1, s2), s′ = B(s′1, s′2) then
the proof is analogous. If s = A(s1), s′ = B(s′1, s′1) and s1 → s′1, then the proof is also
similar. Indeed, by the coinductive hypothesis we have s1[t/x] →α s′1[t′/x], so s[t/x] =
A(s1[t/x])→α+1 B(s′1[t′/x], s′1[t′/x]) = s′[t′/x] by rule (4).

The reduction of coinduction to transfinite induction outlined here gives a simple criterion
to check the correctness of coinductive proofs, using established principles. However, it is
perhaps not the best way to understand coinduction intuitively. The author’s intuition is
that, in the context of the present paper, coinduction formalises the “and so on” arguments
quite common when informally explaining proofs of properties of infinite discrete structures.6
Such intuitions are necessarily vague and can only be shaped through experience.

One thing that remains to be explained is what guarded corecursion is, and why the
equations given above define the substitution operation uniquely. However, the author hopes
this part is fairly standard and well-understood. Intuitively, guardedness means that each
corecursive invocation has to be fed directly as an argument to a constructor, and the result
of this cannot be manipulated further.

In practice, when doing proofs by coinduction the following simple but a bit informal
criteria need to be kept in mind.

When we conclude from the coinductive hypothesis that a certain relation R(t1, . . . , tn)
holds, this really means that only its approximant Rα(t1, . . . , tn) holds. Usually, we
need to infer that the next approximant Rα+1(s1, . . . , sn) holds (for some other ele-
ments s1, . . . , sn) by using Rα(t1, . . . , tn) as a premise of an appropriate rule. But we
cannot, e.g., inspect (do case reasoning on) Rα(t1, . . . , tn), use it in any lemmas, or
otherwise treat it as R(t1, . . . , tn).
An element e obtained from an existential quantifier in the coinductive hypothesis is not
really the element itself, but a corecursive invocation of the implicit Skolem function.
Usually, we need to put it inside some constructor c, e.g. producing c(e), and then
exhibit c(e) in the proof of an existential statement. Applying at least one constructor
to e is necessary to ensure guardedness of the implicit Skolem function. But we cannot,
e.g., inspect e, apply some previously defined functions to it, or otherwise treat it as if it
was really given to us.
In the proofs of existential statements, the implicit Skolem function cannot depend on the
ordinal α. However, this is the case as long as we do not violate the first point, because if
the ordinals are never mentioned and we do not inspect the approximants obtained from
the coinductive hypothesis, then there is no way in which we could possibly introduce a
dependency on α.

6 How does one show that a Böhm tree M of a finite lambda-term does not contain β-redexes? If M = ⊥
then it is obvious. Otherwise M = λx1 . . . xn.yM1 . . .Mm is not a β-redex. And so on, we continue the
argument for M1, . . . ,Mm.
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112 Confluence of nearly orthogonal infinitary term rewriting systems

The above explanation of coinduction is generalised and elaborated in much more detail
in [8]. Also [29] may be helpful as it gives many examples of coinductive proofs written in a
style similar to the one used here. The book [33] is an elementary introduction to coinduction
and bisimulation (but the proofs there are written in a different style than here). A good
way of learning coinduction is by doing non-trivial coinductive proofs. Some people may
initially find a proof assistant helpful for this purpose. The chapters [3, 5] explain coinduction
in Coq from a practical viewpoint. A reader interested in foundational matters should also
consult [19, 32] which deal with the coalgebraic approach to coinduction.

In the rest of this paper we shall freely use coinduction in the style explained above,
giving routine coinductive proofs in as much (or as little) detail as it is customary with
inductive proofs of analogous difficulty. After all, our aim is to prove results in infinitary
rewriting, not to give a mathematically trivial coinduction tutorial. A reader not familiar
with coinduction should treat the apparent difficulty of some proofs as an opportunity to
learn doing non-trivial proofs by coinduction.

3 Infinitary term rewiting systems

I Definition 3. A signature is a set of symbols with associated arities. By T (Σ) we denote
the set of finite terms over a signature Σ. By T∞(Σ) we denote the set of finite and infinite
terms over Σ. We denote the set of variables by V . Formally, a term t ∈ T∞(Σ) is a partial
function from N∗ to Σ ∪ V , satisfying appropriate conditions, see e.g. [21]. A position is an
element of N∗. A position p is below q if q is a prefix of p (not necessarily proper prefix – we
allow p = q). The subterm at a given position is defined in the standard way. See e.g. [21]
for details. The set of terms T∞(Σ) could also be defined coinductively, giving essentially
the same thing.

A rewrite rule is a pair 〈l, r〉 ∈ T (Σ) × T∞(Σ) such that l is not a variable and all
variables of r are present in l. Note that we require l to be finite. An infinitary term rewriting
system (iTRS) is a pair S = 〈Σ, S〉 where Σ is a signature and S a set of rewrite rules. We
often confuse S with S. A substitution is a function from V to T∞(Σ). A substitution σ is
extended to a function σ∗ : T∞(Σ)→ T∞(Σ) coinductively.

σ∗(x) = σ(x)
σ∗(f(t1, . . . , tn)) = f(σ∗(t1), . . . , σ∗(tn))

We often confuse σ∗ with σ.
In what follows by a term we mean a member of T∞(Σ), unless otherwise qualified. We

use = to denote identity of terms. Unless otherwise stated, we use t, s, r, . . . for terms, and
x, y, . . . for variables, and f, g, . . . for symbols in Σ, and σ, σ′, . . . for substitutions.

Let S be an iTRS. A term t is an S-redex by a rule 〈l, r〉 ∈ S with substitution σ, and s
is its S-reduct, if σ(l) = t and σ(r) = s. We define the relation S ⊆ T∞(Σ) × T∞(Σ) by:
〈t, s〉 ∈ S iff t is an S-redex and s its S-reduct. The compatible closure →S of S is defined
inductively by the following rules.

〈t, s〉 ∈ S
t→S s

t→S s

f(t1, . . . , tk−1, t, tk+1, . . . , tn)→S f(t1, . . . , tk−1, s, tk+1, . . . , tn)

By →∗S we denote the transitive-reflexive closure of →S , and by →=
S the reflexive closure

of →S . The parallel closure ⇒S of S is defined coinductively.

〈t, s〉 ∈ S
t⇒S s x⇒S x

ti ⇒S t
′
i for i = 1, . . . , n

f(t1, . . . , tn)⇒S f(t′1, . . . , t′n)
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Given a set U of terms we define the relation ∼U analogously to parallel closure except that
in the premise of the first rule we use t, s ∈ U . The infinitary closure →∞S of S is defined
coinductively by the following rules.

t→∗S x
t→∞S x

t→∗S f(t1, . . . , tn) ti →∞S t′i for i = 1, . . . , n
t→∞S f(t′1, . . . , t′n)

We define →2∞
S in an analogous way to →∞S except that in the first premise of the second

rule we use t→∞S f(t1, . . . , tn).
A term l is linear if no variable occurs in l more than once. A rule 〈l, r〉 ∈ S is left-linear

if l is linear. An iTRS S is left-linear if every rule in S is left-linear. Two rules 〈l1, r1〉
and 〈l2, r2〉 overlap if l1 unifies with a non-variable subterm of l2, or vice versa. We say
that 〈l1, r1〉 and 〈l2, r2〉 overlap at the root, or that they form a root overlap, when l1 unifies
with l2. An iTRS S is nearly orthogonal if it is left-linear, there are no non-root overlaps
and for all rules 〈l1, r1〉, 〈l2, r2〉 ∈ S overlapping at the root there is s such that σ(r1)→∞S s

and σ(r2)⇒S s, where σ is the mgu of l1 and l2 (note that this also implies that there is s′
with σ(r1)⇒S s

′ and σ(r2)→∞S s′).
A rule 〈l, r〉 ∈ S is collapsing if r is a variable. A term t is a collapsing redex if it is a

redex by a collapsing rule. A term t is collapse-stable if there is no collapsing redex s with
t→∞S s. A term t is hypercollapsing if there is no collapse-stable s with t→∞S s. In other
words, t is hypercollapsing if for every s with t→∞S s there is a collapsing redex u such that
s→∞S u. A term t is root-stable if there is no redex s with t→∞S s. A term t is root-active
if there is no root-stable s with t→∞S s. By H we denote the set of hypercollapsing terms,
and by R the set of root-active terms. Let U be a set of terms. An iTRS S is confluent
modulo ∼U when the following condition holds: if t ∼U s, t→∞S t′ and s→∞S s′ then there
exist t′′, s′′ such that t′′ ∼U s′′, t′ →∞S t′′ and s′ →∞S s′′. An iTRS S has the unique normal
forms property when the following condition holds: if t →∞S t′, t →∞S t′′ and t′, t′′ are in
normal form, then t′ = t′′.

The relation →S is often called the contraction relation of S, and →∗S the reduction
relation. A root contraction is a contraction t→S s such that t is the contracted redex. A
collapsing contraction is a contraction of a collapsing redex.

The standard notion of an infinitary reduction is that of a strongly convergent reduction.
In an appendix we prove that for left-linear iTRSs our coinductive definition corresponds,
in the sense of existence, to strongly convergent reductions. The proof of this fact is a
straightforward adaptation of [15, Theorem 3]. As a side-effect, this also yields a proof of
the Compression Lemma for left-linear iTRSs.

I Example 4. Let t1 = A(B(t1)) and t2 = A(C(t2)). The following is an example of a nearly
orthogonal iTRS. By capital letters we denote function symbols.

Z → t1 Z → t2 B(x)→ C(x) C(x)→ B(x) B(x)→ x C(x)→ x

Let s1 = M(A, s1) and s2 = M(B, s2). Here is another example of a nearly orthogonal iTRS.

Z → s1 Z → s2 A→ C B → C

The following iTRS is not nearly orthogonal.

Z → t1 Z → t2 B(x)→ A(x) C(x)→ A(x)

Neither is this one: Z → t1 Z → t2 B(x)→ C(x).
The standard counterexample shows that it is not sufficient to require joinability of root

critical pairs: A→ B B → A A→ C B → D.
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The following simple lemma will often be used implicitly.

I Lemma 5. Let P be a binary relation on terms, S an iTRS, and U a set of terms. Then
the following conditions hold for all terms t, s, s′:
1. t→∞P t and t ∼U t,
2. if t→∗P s→∞P s′ then t→∞P s′,
3. if t→∗P s then t→∞P s,
4. if t⇒P s then t→∞P s,
5. if t ∼U s then s ∼U t,
6. if t→S s (respectively t⇒S s or t→∞S s) then σ(t)→S σ(s) (respectively σ(t)⇒S σ(s)

or σ(t)→∞S σ(s)),
7. if σ(x) →∞P σ′(x) (respectively σ(x) ⇒P σ′(x)) for all variables x, then σ(t) →∞P σ′(t)

(respectively σ(t)⇒P σ
′(t)).

Proof. The first point follows by coinduction. The second point follows by case analysis on
s→∞P s′. The third point follows from the previous two. Points 4–6 follow by coinduction.
The last point follows by coinduction with case analysis on t. Note that the last point does
not hold with →∗P instead of →∞P , because t may contain infinitely many variables. J

4 Confluence

Our aim is to prove the following theorem.

I Theorem 34 (Confluence modulo ∼R of nearly orthogonal iTRSs).
Let S be a nearly orthogonal iTRS. If t ∼R s, t→∞S t′ and s→∞S s′ then there exist t′′, s′′

such that t′ →∞S t′′, s′ →∞S s′′ and t′′ ∼R s′′.

Because ∼R commutes with→∞S (Lemma 18) and ∼R is transitive (Lemma 20), it suffices
to prove the theorem in the case t = s. The general strategy of the proof is illustrated in
Figure 1. We show that for every term s′ there exists a term w such that s′  s w, i.e., s′
reduces to s via a certain “standard” auxiliary “normalizing” reduction which disregards
root-active subterms (see Definition 25 and Lemma 30). In contrast to infinitary N -reductions
from [8], this “standard” reduction need not be unique and it is not really normalizing, but
it is “regular” enough to show that it commutes with →∞S (Lemma 33). The “normal” forms
obtained through  s are not really in normal form, but they are closely related to Böhm
trees. They may differ only in root-active subterms. Our overall proof strategy is partly
similar to the strategy for the proof of the unique normal forms property of orthogonal iTRSs
in [28].

Subdiagram (1) in Figure 1 is obtained by showing that →∞S may be prepended to  s

(Corollary 29), i.e., if t→∞S s′  s w then t s w. Subdiagram (2) follows from commutation
of →∞S and  s (Lemma 33). Subdiagrams (3) and (4) follow from the fact that  s

decomposes into →∞ and ∼R (Lemma 31). Subdiagram (5) follows from the commutation
of →∞S and ∼R (Lemma 18).

We also give a proof of confluence modulo ∼H. In this case a different and a bit more
complicated method similar to [21] is necessary. Initially, we show some lemmas used in both
proofs. In the rest of this section we fix a nearly orthogonal iTRS S = 〈Σ, S〉. We write →,
⇒, →∞, etc., for →S , ⇒S , →∞S , etc.

I Lemma 6. Suppose l is finite and linear. If t→∞ σ(l) then there is a substitution σ′ such
that t→∗ σ′(l) and σ′(x)→∞ σ(x) for all variables x.
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Figure 1 Confluence modulo ∼R of nearly orthogonal iTRSs.

Proof. This follows from the definition of →∞ and the fact that l is finite and linear. Indeed,
we just need to go deep enough in the derivation tree of t →∞ σ(l) to get below variable
positions of l, concatenating the →∗ prefixes along the way. J

Note that the finiteness of l is crucial in the above lemma. As a counterexample consider
l = Aω, t = B and an iTRS with a single rule B → A(B).

I Lemma 7. If t→∞ s→ u then t→∞ u.

Proof. By coinduction. If s = x then u = x and thus t→∞ u. Otherwise s = f(s1, . . . , sn).
First assume that s is the redex contracted in s→ u. Suppose the contraction is by a rule
〈l, r〉 ∈ S with substitution σ. By Lemma 6 there is σ′ with t→∗ σ′(l) and σ′(x)→∞ σ(x)
for all variables x. Then t→∗ σ′(l)→ σ′(r)→∞ σ(r) = u. Hence t→∞ u.

So assume that s→ u is not a root contraction. Then u = f(s1, . . . , sk−1, s
′
k, sk+1, . . . , sn)

with sk → s′k. Also t →∗ f(t1, . . . , tn) with ti →∞ si for i = 1, . . . , n. By the coinductive
hypothesis tk →∞ s′k. Hence t→∞ u. J

I Lemma 8. If t→∞ s→∞ u then t→∞ u.

Proof. By coinduction. If u = x then t →∞ s →∗ u, so t →∞ u by Lemma 7. Otherwise
u = f(u1, . . . , un), s →∗ f(s1, . . . , sn) and si →∞ ui for i = 1, . . . , n. By Lemma 7 we
have t →∞ f(s1, . . . , sn). Thus t →∗ f(t1, . . . , tn) with ti →∞ si for i = 1, . . . , n. By the
coinductive hypothesis ti →∞ ui. Therefore t→∞ f(u1, . . . , un) = u. J

I Corollary 9. If t ∈ H (resp. t ∈ R, t is collapse-stable, t is root-stable) and t→∞ t′ then
t′ ∈ H (resp. t′ ∈ R, t′ is collapse-stable, t′ is root-stable).

I Corollary 10. If t⇒∗ s then t→∞ s.

I Lemma 11. If t→2∞ s then t→∞ s.

Proof. By coinduction, using Lemma 8. J

Note that the proofs of the above lemmas depend only on the left-linearity of S. The next
lemma is crucial in our proof. It fails for weakly orthogonal iTRSs. As a counterexample
consider the weakly orthogonal iTRS from the introduction and the term P (S(Pω)).

I Lemma 12. If 〈l, r〉 ∈ S and σ(l)→ t by a non-root contraction, then t is a redex by 〈l, r〉
with a substitution σ′ such that σ(x)→= σ′(x) for every variable x.
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Proof. The contraction σ(l)→ t must occur below a variable position of l, because there are
no non-root overlaps. Because S is left-linear, t is still a redex by 〈l, r〉, with a substitution σ′
satisfying the requirements of the lemma. J

I Lemma 13. If f(t1, . . . , tn) is a redex by a rule 〈f(l1, . . . , ln), r〉 ∈ S with substitution σ,
and ti →∞ t′i (respectively ti ⇒ t′i) for i = 1, . . . , n, then there is σ′ such that σ′(li) = t′i for
i = 1, . . . , n, and σ(x)→∞ σ′(x) (respectively σ(x)⇒ σ′(x)) for every variable x.

Proof. This follows from left-linearity and the fact that there are no non-root overlaps: all
contractions in ti →∞ t′i (respectively ti ⇒ t′i) must occur below variable positions of li.
Formally, one applies the definition of ti →∞ t′i (respectively ti ⇒ t′i) repeatedly until one
reaches variable positions of li, using Lemma 12 to show that the contractions in the →∗
prefixes occur below variable positions. J

I Lemma 14. If t⇒ t1 and t⇒ t2 then there is s with t1 ⇒ s and t2 →∞ s.

Proof. By coinduction. If t is a redex and t1, t2 are both its reducts, then there is s with
t2 →∞ s and t1 ⇒ s, because S is nearly orthogonal. Suppose t = f(u1, . . . , un) is a redex
by a rule 〈l, r〉 ∈ S with substitution σ, but t2 = f(w1, . . . , wn) with ui ⇒ wi for i = 1, . . . , n.
By Lemma 13 there is σ′ with σ′(l) = t2 and σ(x) ⇒ σ′(x) for every variable x. Then
t1 = σ(r)⇒ σ′(r) and t2 = σ′(l)→ σ′(r), so we may take s = σ′(r). The remaining cases,
when neither t⇒ t1 nor t⇒ t2 contracts at the root, are trivial or follow directly from the
coinductive hypothesis. J

I Lemma 15 (Infinitary Parallel Moves Lemma). If t→∞ t1 and t⇒ t2 then there is s with
t1 ⇒ s and t2 →∞ s.

Proof. By coinduction we show that if t →∞ t1 and t ⇒ t2 then there is s with t1 ⇒ s

and t2 →2∞ s. This suffices by Lemma 11. If t1 = x then t →∗ t1 and the claim follows
from Lemma 14 and Lemma 8. Otherwise t →∗ u = f(u1, . . . , un), t1 = f(w1, . . . , wn)
and ui →∞ wi for i = 1, . . . , n. By Lemma 14 and Lemma 8 there is t′2 with t2 →∞ t′2
and u ⇒ t′2. If u ⇒ t′2 is a root contraction by a rule 〈l, r〉 ∈ S with substitution σ, then
by Lemma 13 there is σ′ with t1 = σ′(l) and σ(x) →∞ σ′(x) for all variables x. Then
t1 = σ′(l) → σ′(r) and t2 →∞ t′2 = σ(r) →∞ σ′(r), so t2 →∞ σ′(r) by Lemma 8. Thus
we may take s = σ′(r). If u ⇒ t′2 does not contract at the root, then t′2 = f(v1, . . . , vn)
with ui ⇒ vi for i = 1, . . . , n. By the coinductive hypothesis we obtain s1, . . . , sn with
vi →2∞ si and wi ⇒ si for i = 1, . . . , n. Take s = f(s1, . . . , sn). Then t2 →2∞ s, because
t2 →∞ f(v1, . . . , vn), and t1 = f(w1, . . . , wn)⇒ s. J

In the following lemmas U stands for either H or R. We say that a term t is active if
t ∈ U . We say that a term is stable if it is collapse-stable and U = H, or it is root-stable and
U = R. An active redex is a collapsing redex if U = H, or just a redex if U = R. Note that:

t is stable iff there is no active redex s with t→∞ s,
t is active (t ∈ U) iff there is no stable s with t→∞ s,
t is active iff for every s with t→∞ s there is an active redex s′ with s→∞ s′.

I Lemma 16. If 〈l, r〉 ∈ S and s ∈ U is a proper subterm of σ(l), then s occurs in σ(l) below
a variable position of l.

Proof. Since s ∈ U , by Lemma 6 there is a redex u such that s→∗ u. Because s is a proper
subterm of σ(l), by Lemma 12 the term t, which is σ(l) with the subterm s replaced with u,
is a redex by 〈l, r〉. But then u (and thus also s) must occur below a variable position of l,
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because otherwise there would be a non-root overlap between 〈l, r〉 and the rule by which u
is a redex. J

I Lemma 17. If t→ t′ and t ∼U s then there is s′ with s→= s′ and t′ ∼U s′.

Proof. Induction on t→ t′. If t, s ∈ U then also t′ ∈ U , so t′ ∼U s and we may take s′ = s.
If t = x then t′ = s′ = x. Otherwise t = f(t1, . . . , tn), s = f(s1, . . . , sn) and ti ∼U si for
i = 1, . . . , n. First assume that t→ t′ is a root contraction, i.e., there are 〈l, r〉 ∈ S and σ such
that σ(l) = t and σ(r) = t′. By Lemma 16 all proper active subterms of t are below variable
positions of l. This implies that s = σ′(l) with some σ′ such that σ(x) ∼U σ′(x) for every
variable x. Then s = σ′(l)→ σ′(r) ∼U σ(r) = t′. Therefore we may take s′ = σ′(r). If t→ t′

is not a root contraction then the claim follows directly from the inductive hypothesis. J

I Lemma 18. If t→∞ t′ and t ∼U s then there is s′ with s→∞ s′ and t′ ∼U s′.

Proof. By coinduction. If t′ = x then t →∗ x and the claim follows from Lemma 17.
Otherwise t →∗ u = f(u1, . . . , un), t′ = f(t′1, . . . , t′n) and ui →∞ t′i for i = 1, . . . , n. By
Lemma 17 there is u′ with s →∗ u′ and u ∼U u′. If u, u′ ∈ U then t′ ∈ U by Corollary 9,
because u →∞ t′. Hence t′ ∼U u′ and we may take s′ = u′. Otherwise u′ = f(u′1, . . . , u′n)
with ui ∼U u′i for i = 1, . . . , n. By the coinductive hypothesis we obtain si with u′i →∞ si
and t′i ∼U si, for i = 1, . . . , n. Take s′ = f(s1, . . . , sn). Then t′ = f(t′1, . . . , t′n) ∼U s′ and
s→∞ s′. J

I Lemma 19. If t ∈ U and t ∼U s then s ∈ U .

Proof. Assume s→∞ s′. Then by Lemma 18 there is t′ with t→∞ t′ ∼U s′. Because t ∈ U ,
there is an active redex t′′ such that t′ →∞ t′′. By Lemma 18 there is s′′ such that s′ →∞
s′′ ∼U t′′. If t′′, s′′ ∈ U then there is another active redex u with s′ →∞ s′′ →∞ u, so s′ →∞ u

by Lemma 8, and thus s′ is not stable. Otherwise t′′ = f(t1, . . . , tn), s′′ = f(s1, . . . , sn)
and ti ∼U si for i = 1, . . . , n. Since t′′ is an active redex, there is a rule 〈l, r〉 ∈ S and a
substitution σ with σ(l) = t′′. By Lemma 16 all proper active subterms of t′′ are below
variable positions of l. This implies that s′′ is also an active redex by the rule 〈l, r〉. Hence s′
is not stable. Since s′ was arbitrary with s→∞ s′, we conclude that s ∈ U . J

I Lemma 20. If t ∼U s ∼U u then t ∼U u.

Proof. By coinduction, using Lemma 19 when t, s ∈ U or s, u ∈ U . J

I Corollary 21. The relation ∼U is an equivalence relation.

We write t→ncr s if t→ s and this is not a collapsing contraction at the root. So t→∗ncr s

if t→∗ s and there are no collapsing root contractions in the reduction.

I Lemma 22. If f(t1, . . . , tn) →∗ncr s and ti →∞ t′i for i = 1, . . . , n then s = g(s1, . . . , sm)
and there are s′1, . . . , s′m with f(t′1, . . . , t′n)⇒∗ g(s′1, . . . , s′m) and sj →∞ s′j for j = 1, . . . ,m.

Proof. Let t = f(t1, . . . , tn). It suffices to consider the case t→ncr s. The general case then
follows by induction.

If t is the redex contracted in t →ncr s then it is contracted by some non-collapsing
rule 〈l, r〉 ∈ S with substitution σ. Then r = g(r1, . . . , rm). By Lemma 13 there is σ′
such that f(t′1, . . . , t′i) = σ′(l) and σ(x) →∞ σ′(x) for every variable x. Thus σ(rj) →∞
σ(r′j) for j = 1, . . . ,m. Since s = σ(r) = g(σ(r1), . . . , σ(rm)) →∞ g(σ′(r1), . . . , σ′(rm))
and f(t′1, . . . , t′i) = σ′(l) → σ′(r) = g(σ′(r1), . . . , σ′(rm)), we may take s′j = σ′(rj) for
j = 1, . . . ,m.
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So assume the contraction t→ncr s does not occur at the root. Then s = f(s1, . . . , sn)
with ti →= si for i = 1, . . . , n. By Lemma 15 there are s′1, . . . , s′n with t′i ⇒ s′i and si →∞ s′i
for i = 1, . . . , n. Then f(t′1, . . . , t′n)⇒ f(s′1, . . . , s′n), so we may take g = f and m = n. J

I Lemma 23. If for every s with t→∗ s there is an active redex u with s→∞ u, then t ∈ U .

Proof. Assume t satisfies the antecedent and t →∞ t′. Then t →∗ f(t1, . . . , tn), t′ =
f(t′1, . . . , t′n) and ti →∞ t′i for i = 1, . . . , n. By assumption and Lemma 6 there is an
active redex s = g(s1, . . . , sm) such that f(t1, . . . , tn) →∗ncr s. By Lemma 22 there are
s′1, . . . , s

′
m such that t′ = f(t′1, . . . , t′n)⇒∗ g(s′1, . . . , s′m) and sj →∞ s′j for j = 1, . . . ,m. Let

s′ = g(s′1, . . . , s′m). By Lemma 13 we conclude that s′ is a redex by the same rule as s, i.e.,
s′ is an active redex. By Corollary 10 we have t′ →∞ s′. Hence t′ is not stable. Since t′ was
arbitrary with t→∞ t′, we conclude that t ∈ U . J

I Lemma 24. If t→∞ t′ and t′ ∈ U then t ∈ U .

Proof. Suppose t →∗ s. By Lemma 15 there is s′ with s →∞ s′ and t′ ⇒∗ s′. We have
t′ →∞ s′ by Corollary 10. Since also t′ ∈ U , there is an active redex u with s→∞ s′ →∞ u.
Then s→∞ u by Lemma 8. By Lemma 23 this implies t ∈ U . J

4.1 Confluence modulo ∼R

We now proceed to show that nearly orthogonal iTRSs are confluent modulo ∼R. None of
the lemmas in this subsection are needed in the proof of confluence modulo ∼H. The method
of the present section does not work if H is used instead of R, because then the proof of
Lemma 33 does not go through.

I Definition 25. The relation  s is defined coinductively.

t→∗ x
t s x

t, s ∈ R
t s s

t→∗ f(t1, . . . , tn) ti  s t
′
i for i = 1, . . . , n f(t1, . . . , tn) is root-stable
t s f(t′1, . . . , t′n)

The relation  a is defined coinductively in the same way as  s except that in the first
premise of the last rule we use t→∞ f(t1, . . . , tn) instead of t→∗ f(t1, . . . , tn).

The relation  s denotes a “standard” reduction to “normal” form. The “normal” forms
are not really in normal form, but they are closely related to Böhm trees. In fact, it
is not difficult to show by coinduction that if t  s s →∞ s′ then s ∼R s′. Bahr and
Ketema [1, 2, 24] define similar reductions to Böhm-like trees, but they do not seem to use
them to obtain new proofs of infinitary confluence. The author has not studied the mentioned
papers in enough depth to give a detailed comparison.

The relation a, which turns out to be the same as s (Lemma 28), is a technical notion
needed to help in some proofs.

I Lemma 26. If t→∞ s a u then t a u.

Proof. If s, u ∈ R then also t ∈ R by Lemma 24, so t a u. If u = x then s→∗ x, and thus
t→∞ x by Lemma 7, so t a u. Otherwise u = f(u1, . . . , un), s→∞ f(s1, . . . , sn), si  a ui
for i = 1, . . . , n, and f(s1, . . . , sn) is root-stable. By Lemma 8 we have t→∞ f(s1, . . . , sn).
Thus t a f(u1, . . . , un) = u. J
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I Lemma 27. If s = f(s1, . . . , sn) is root-stable and ti →∞ si for i = 1, . . . , n, then
t = f(t1, . . . , tn) is also root-stable.

Proof. Suppose t is not root-stable. Hence by Lemma 6 there is a redex u such that
t→∗ncr u = g(u1, . . . , um). By Lemma 22 there is u′ = g(u′1, . . . , u′m) such that uj →∞ u′j for
j = 1, . . . ,m and s⇒∗ u′. By Lemma 13 we conclude that u′ is still a redex. Since s→∞ u′

by Corollary 10, we conclude that s is not root-stable. Contradiction. J

I Lemma 28. t s s iff t a s.

Proof. The implication from left to right follows by straightforward coinduction. We show
the other direction by coinduction. If s = x then t→∗ x, so t s s. If t, s ∈ R then t s s.
Otherwise t →∞ f(t1, . . . , tn), s = f(s1, . . . , sn), f(t1, . . . , tn) is root-stable, and ti  a si
for i = 1, . . . , n. Then t→∗ f(t′1, . . . , t′n) with t′i →∞ ti for i = 1, . . . , n. By Lemma 27 we
conclude that f(t′1, . . . , t′n) is root-stable. By Lemma 26 we have t′i  a si for i = 1, . . . , n.
By the coinductive hypothesis t′i  s si for i = 1, . . . , n. Thus t s f(s1, . . . , sn) = s. J

I Corollary 29. If t→∞ s s u then t s u.

Proof. Follows from Lemma 26 and Lemma 28. J

At this point a reader might conjecture that the following may be easily shown:
(?) if t s t1 and t s t2 then t1 ∼R r2.
However, this is not the case, because a priori t might reduce to two essentially different
root-stable terms. Thus it is not clear how to prove (?) coinductively. Using Lemma 14 it is
not difficult to show that if t→∗ s1, t→∗ s2 and s1, s2 are root-stable then s1 and s2 have
the same root symbol. But they may still differ below the root.

Note that confluence modulo ∼R would easily follow from (?), Lemma 30 and Lemma 31.
There are two methods which could probably be used to show (?), though the author doubts
whether any of them would lead to a much simpler confluence proof than via Lemma 33.
The first method would be to adapt the proof of [28, Theorem 15]. The fact that the terms
obtained through  s need not be in normal form might complicate this slightly. The second
method would be to prove some standardisation result and proceed similarly to [8], using
finitary standard reduction to a root-stable term in the definition of  s instead of ordinary
finitary reduction. Then the proof of Corollary 29 would become more difficult, because
there would be less freedom in the finitary reduction to a root-stable term in  s.

I Lemma 30. For every term t there is s with t s s.

Proof. By coinduction. If t ∈ R then t  s t. Otherwise t →∗ t′ for some root-stable t′,
by Lemma 23. If t′ = x then t  s x. Otherwise t′ = f(t1, . . . , tn). By the coinductive
hypothesis we obtain s1, . . . , sn with ti  s si for i = 1, . . . , n. Thus t s f(s1, . . . , sn). J

I Lemma 31. If t s s then there is u with t→∞ u ∼R s.

Proof. By coinduction. If t, s ∈ R then t ∼R s and we may take u = t. If s = x then t→∗ x,
so t →∞ s and we may take u = s. Otherwise s = f(s1, . . . , sn), t →∗ f(t1, . . . , tn) and
ti  s si for i = 1, . . . , n. By the coinductive hypothesis we obtain ui with ti →∞ ui ∼R si,
for i = 1, . . . , n. Take u = f(u1, . . . , un). Then t→∞ u ∼R s. J

I Lemma 32. If t⇒ t′ and t s t
′′ then there is s with t′  s s and t′′ ⇒ s.
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Proof. By Lemma 28 it suffices to show that if t ⇒ t′ and t  s t
′′ then there is s with

t′  a s and t′′ ⇒ s. We proceed by coinduction. If t′′ = x then the claim follows from
Lemma 15. If t, t′′ ∈ R then by Corollary 9 we have t′ ∈ R, so t′  s t

′′ and we may take
s = t′′. Otherwise t →∗ f(t1, . . . , tn), t′′ = f(t′′1 , . . . , t′′n), f(t1, . . . , tn) is root-stable and
ti  s t

′′
i for i = 1, . . . , n. By Lemma 15 there is u with t′ →∞ u and f(t1, . . . , tn) ⇒ u.

Because f(t1, . . . , tn) is root-stable, u is also root-stable and u = f(u1, . . . , un) with ti ⇒ ui
for i = 1, . . . , n. By the coinductive hypothesis we obtain s1, . . . , sn with ui  a si and
t′′i ⇒ si. Take s = f(s1, . . . , sn). Then t′  a s and t′′ ⇒ s. J

The proof of the following lemma fails if H is used instead of R. This is because a
collapse-stable term may contract at the root, in contrast to a root-stable term.

I Lemma 33. If t s t
′ and t→∞ t′′ then there is s with t′ →∞ s and t′′  s s.

Proof. By Lemma 11 and Lemma 28 it suffices to show that if t  s t
′ and t →∞ t′′ then

there is s with t′ →2∞ s and t′′  a s. We proceed by coinduction. If t′ = x then the
claim follows from Lemma 15. If t, t′ ∈ R then also t′′ ∈ R by Corollary 9, so t′′  a t

′

and we may take s = t′. Otherwise t →∗ f(t1, . . . , tn), t′ = f(t′1, . . . , t′n), f(t1, . . . , tn) is
root-stable and ti  s t

′
i for i = 1, . . . , n. By Lemma 15 there is u with t′′ ⇒∗ u and

f(t1, . . . , tn) →∞ u. Hence f(t1, . . . , tn) →∗ u′ = g(u′1, . . . , u′m), u = g(u1, . . . , um) and
u′j →∞ uj for j = 1, . . . ,m. Because f(t1, . . . , tn) is root-stable, none of the contractions
in f(t1, . . . , tn) →∗ u′ may occur at the root. Thus m = n, g = f and ti →∗ u′i for
i = 1, . . . , n. By Lemma 32 there are w1, . . . , wn with u′i  s wi and t′i ⇒∗ wi. By the
coinductive hypothesis we obtain s1, . . . , sn with ui  a si and wi →2∞ si for i = 1, . . . , n.
Note that u = f(u1, . . . , un) is root-stable by Corollary 9, because f(t1, . . . , tn) is root-stable
and f(t1, . . . , tn) →∞ u. Since t′′ ⇒∗ u, by Corollary 10 we have t′′ →∞ u, and thus
t′′  a f(s1, . . . , sn). Because t′ = f(t′1, . . . , t′n)⇒∗ f(w1, . . . , wn), by Corollary 10 we have
t′ →∞ f(w1, . . . , wn), and thus t′ →2∞ f(s1, . . . , sn). So we may take s = f(s1, . . . , sn). J

I Theorem 34 (Confluence modulo ∼R of nearly orthogonal iTRSs).
Let S be a nearly orthogonal iTRS. If t ∼R s, t→∞S t′ and s→∞S s′ then there exist t′′, s′′

such that t′ →∞S t′′, s′ →∞S s′′ and t′′ ∼R s′′.

Proof. See Figure 1 and the discussion just before it. J

I Corollary 35. Any nearly orthogonal iTRS has the unique normal forms property.

4.2 Confluence modulo ∼H

We only mention the following results, delegating the proofs to an appendix.

I Theorem 36 (Confluence modulo ∼H of nearly orthogonal iTRSs).
Let S be a nearly orthogonal iTRS. If t ∼H s, t→∞S t′ and s→∞S s′ then there exist t′′, s′′

such that t′ →∞S t′′, s′ →∞S s′′ and t′′ ∼H s′′.

I Corollary 37. Any nearly orthogonal iTRS with no collapsing rules is confluent.
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A Proof of Theorem 36

It turns out that because nearly orthogonal iTRSs allow no non-root overlaps, all root
overlaps with a collapsing rule must have a special form.

I Lemma 38. Let 〈l1, x〉, 〈l2, r2〉 ∈ S and let σ be the mgu of l1 and l2. Then σ(r2)⇒ σ(x).

Proof. Because S is nearly orthogonal, there is s such that σ(r2)⇒ s and σ(x)→∞ s. It
suffices to show that s = σ(x). If σ(x) is a variable then this is obvious. Otherwise, because σ
is an mgu of two linear terms, we may assume that σ(x) is a proper subterm of l2 (we may
assume the subterm is proper because l1 is not a variable). But then σ(x) cannot contain
any redexes, because they would constitute a non-root overlap with the rule 〈l2, r2〉. Hence
σ(x) = s. J

I Definition 39. A hypercollapsing sequence for a term t is an infinite sequence (tn)n∈N of
terms satisfying:

t→∞ t0, and
for each n ∈ N there is a collapsing rule 〈l, x〉 ∈ S and a substitution σ such that
tn = σ(l)→ σ(x)→∞ tn+1.

The following lemma was shown for orthogonal iTRSs in [21, Lemma 12.8.4], by essentially
the same proof.

I Lemma 40. If there exists a hypercollapsing sequence for t then t ∈ H.

Proof. Assume that (tn)n∈N is a hypercollapsing sequence for t. It suffices to show that if
t → s then there is a hypercollapsing sequence for s. Then it will follow from Lemma 23
that t ∈ H.

Assume t → s. We describe the construction of a hypercollapsing sequence (sn)n∈N
for s. Assume the elements s0, . . . , sn−1 of the sequence have been defined, and u, v are such
that u ⇒ v, u →∞ tn. In the base case n = 0 we take u = t and v = s. By Lemma 15
there is v′ with v →∞ v′ and tn ⇒ v′. By the definition of a hypercollapsing sequence
there are 〈l, x〉 ∈ S and σ such that tn = σ(l) → σ(x) →∞ tn+1. If tn ⇒ v′ by a root
contraction, then v′ →∞ σ(x) by Lemma 38. Hence v →∞ v′ →∞ σ(x) →∞ tn+1, so
v →∞ tn+1 by Lemma 8. Then take sm = tm+1 for m ≥ n and finish the construction. So
assume tn ⇒ v′ is not a root contraction. Then tn = f(w1, . . . , wk), v′ = f(w′1, . . . , w′k) and
wi ⇒ w′i for i = 1, . . . , k. By Lemma 13 there is σ′ such that v′ = σ′(l) and σ(x)⇒ σ′(x).
Hence v →∞ v′ → σ′(x). Take sn = v′ and continue the construction with u := σ(x) and
v := σ′(x).

It follows by construction that (sn)n∈N is a hypercollapsing sequence for s. J

I Definition 41. The relation  is defined coinductively.

t→∗ x
t x

t→∗ f(t1, . . . , tn) ti  t′i for i = 1, . . . , n
t f(t′1, . . . , t′n)

t, s ∈ H
t s

The relation  ∞ is defined coinductively in the same way as  except that in the first
premise of the second rule we use t→∞ f(t1, . . . , tn) instead of t→∗ f(t1, . . . , tn).
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The intuitive interpretation of  is quite different from the intuitive interpretation of  s

in Section 4.1. If t  s then s need not be “normal” in any sense. The crucial difference
is that in the second rule we do not require f(t1, . . . , tn) to be collapse-stable. Essentially,
t s means that t infinitarily reduces to s, up to equivalence of hypercollapsing subterms.
This intuition is validated by the following lemma.

I Lemma 42. The following conditions are equivalent:
1. t→∞ u ∼H s for some term u,
2. t s,
3. t ∞ s.

Proof.
(1⇒ 2) By coinduction, analysing u ∼H s. If u, s ∈ H then t ∈ H by Lemma 24, so t s.

If u = s = x then t→∗ x, so t s. If u = f(u1, . . . , un), s = f(s1, . . . , sn) and ui ∼H si
for i = 1, . . . , n, then t →∗ f(t1, . . . , tn) with ti →∞ ui. By the coinductive hypothesis
ti  si for i = 1, . . . , n. Thus t f(s1, . . . , sn) = s.

(2⇒ 3) Straightforward coinduction.
(3⇒ 1) We show by coinduction that if t ∞ s then there is u with t→2∞ u ∼H s. This

suffices by Lemma 11. If s = x then t →∗ x ∼H x, so we may take u = x. If t, s ∈ H
then t ∼H s and we may take u = t. Otherwise t →∞ f(t1, . . . , tn), s = f(t′1, . . . , t′n)
and ti  ∞ t′i for i = 1, . . . , n. By the coinductive hypothesis we obtain u1, . . . , un with
ti →2∞ ui ∼H t′i. Take u = f(u1, . . . , un). Then t→2∞ u ∼H s.

J

I Lemma 43. If s ∼H t⇒ t′ then there is s′ with s⇒ s′ ∼H t′.

Proof. By coinduction. If t, s ∈ H then t′ ∈ H by Corollary 9, so t′ ∼H s and we may
take s′ = s. If t = x then t′ = x and we may take s′ = s. Otherwise s = f(s1, . . . , sn),
t = f(t1, . . . , tn) and si ∼H ti for i = 1, . . . , n. If t⇒ t′ is a root contraction then the claim
follows from Lemma 17. If t ⇒ t′ does not contract at the root, then the claim follows
directly from the coinductive hypothesis. J

I Lemma 44. If t⇒ t1 and t t2 then there is s with t1  s and t2 ⇒ s.

Proof. Follows from Lemma 42, Lemma 15 and Lemma 43. J

The construction of a hypercollapsing sequence in the proof of the following lemma is
similar to the construction in [21, Lemma 12.8.14].

I Lemma 45. If t /∈ H, t→∞ t′ and t u then one of the following holds:
1. t′ →∗ x and u→∗ x for some variable x, or
2. there are s = f(s1, . . . , sn), u′ = f(u1, . . . , un) and w = f(w1, . . . , wn) such that t→∗ s,

t′ →∞ w, u→∞ u′, si →∞ wi and si  ui for i = 1, . . . , n.

Proof. By Lemma 40 it suffices to show that if neither 1 nor 2 holds then a hypercollapsing
sequence (vk)k∈N for t may be constructed.

If t′ = x then by Lemma 44 we have u→∗ x, so 1 holds. If t′ is not a variable then we
have t′ = f(t′1, . . . , t′n). Because t →∞ t′, there are t1, . . . , tn with t →∗ t0 = f(t1, . . . , tn)
and ti →∞ t′i for i = 1, . . . , n. By Lemma 44 and Corollary 10 there is u′ with u →∞ u′

and t0  u′. If u′ = x then u →∗ x and t0 →∗ x, and thus t′ →∗ x, by Lemma 15 and
Corollary 10, so point 1 is true. Hence assume u′ = g(u1, . . . , um). Because t /∈ H, also
t0 /∈ H by Lemma 24. Thus t0 →∗ s = g(s1, . . . , sm) with sj  uj for j = 1, . . . ,m.
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If t0 →∗ncr s then by Lemma 22 and Corollary 10 there is w = g(w1, . . . , wm) with t′ →∞ w

and sj →∞ wj for j = 1, . . . ,m. Since also t→∗ s, u→∞ u′ and sj →∞ uj for j = 1, . . . ,m,
then point 2 is true.

So suppose there is a collapsing root contraction in the reduction t0 →∗ s, i.e., t0 →∗
σ(l) → σ(x) →∗ s for some collapsing rule 〈l, x〉 ∈ S and some substitution σ. Since
t0 →∗ σ(x) and t0 →∞ t′, by Lemma 15 and Corollary 10 there is t′′ with t′ →∞ t′′ and
σ(x) →∞ t′′. Note that also σ(x) /∈ H and σ(x)  u′, by Lemma 24 because t →∗ σ(x).
Note that if the points 1-2 hold for σ(x), t′′, u′ then they also hold for t, t′, u, by Lemma 8.
So we may take vk = σ(l) as the next element of the hypercollapsing sequence, and continue
the construction with t := σ(x), t′ := t′′ and u := u′.

Ultimately, we will either conclude that 1 or 2 holds, or we will construct a hypercollapsing
sequence (vk)k∈N for t. J

I Lemma 46. If t→∞ t1 and t t2 then there is s with t1  ∞ s and t2 →2∞ s.

Proof. By coinduction. If t ∈ H then t1, t2 ∈ H by Corollary 9, Lemma 42 and Lemma 19,
so t1  ∞ t2 and we may take s = t2. So assume t /∈ H. Then by Lemma 45 either
t1, t2 →∗ x for some variable x, and then we may take s = x, or there are v = f(v1, . . . , vn),
u = f(u1, . . . , un) and w = f(w1, . . . , wn) such that t1 →∞ w, t2 →∞ u, and vi →∞ wi and
vi  ui for i = 1, . . . , n. By the coinductive hypothesis we obtain s1, . . . , sn with wi  ∞ si
and ui →2∞ si for i = 1, . . . , n. Take s = f(s1, . . . , sn). Then t1  ∞ s and t2 →2∞ s. J

I Theorem 36 (Confluence modulo ∼H of nearly orthogonal iTRSs).
Let S be a nearly orthogonal iTRS. If t ∼H s, t→∞S t′ and s→∞S s′ then there exist t′′, s′′

such that t′ →∞S t′′, s′ →∞S s′′ and t′′ ∼H s′′.

Proof. Assume t ∼H s, t→∞ t′ and s→∞ s′. By Lemma 18 there is u with s→∞ u ∼H t′.
Hence s t′ by Lemma 42. By Lemma 46, Lemma 42 and Lemma 11 there are t′′, s′′ with
t′ →∞ t′′ and s′ →∞ s′′ ∼H t′′. J

B Strongly convergent reductions

In this section we prove that for left-linear iTRSs the existence of coinductive infinitary
reductions is equivalent to the existence of strongly convergent reductions. As a corollary,
this also yields ω-compression of strongly convergent reductions. The equivalence proof is
virtually the same as in [15]. The notion of strongly convergent reductions is the standard
notion of infinitary reductions used in non-coinductive treatments of infinitary rewriting. See
e.g. [21] for details. In the rest of this section we fix a left-linear iTRS S = 〈Σ, S〉.

I Definition 47. On the set of terms we define a metric d by

d(t, s) = inf{2−n | t�n = s�n}

where r�n for r ∈ T∞(Σ) is defined as the term obtained by replacing all subterms of r at
depth n by a fresh constant ⊥. This defines a metric topology on the set of terms. Let α be an
ordinal. A map φ : {β ≤ α} → T∞(Σ) together with contraction steps σβ : φ(β)→S φ(β+ 1)
for β < α is a strongly convergent S-reduction sequence of length α from φ(0) to φ(α) if the
following conditions hold:
1. if γ ≤ α is a limit ordinal then f(γ) is the limit in the metric topology on infinitary terms

of the ordinal-indexed sequence (φ(β))β<γ ,
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2. if γ ≤ α is a limit ordinal then for every d ∈ N there exists β < γ such that for all β′
with β ≤ β′ < γ the redex contracted in the step σβ′ occurs at depth greater than d.

We write s Q,α−−→S t if Q is a strongly convergent S-reduction sequence of length α from s

to t.

I Theorem 48.
1. If s →∞S t then there exists a strongly convergent R-reduction sequence from s to t of

length at most ω.
2. If there exists a strongly convergent S-reduction sequence from s to t then s→∞S t.

Proof. The proof is a straightforward adaptation of the proof of Theorem 3 in [15].
Suppose that s →∞S t. By traversing the infinite derivation tree of s →∞S t and accu-

mulating the finite prefixes by concatenation, we obtain a reduction sequence of length at
most ω which satisfies the depth requirement by construction.

For the other direction, by induction on α we show that if s Q,α−−→S t then s→2∞
S t, which

suffices for s→∞S t by Lemma 11 (recall that the proofs of lemmas 6-11 depended only on
the left-linearity of S). There are three cases.

α = 0. If s Q,0−−→S t then s = t, so s→2∞
S t.

α = β + 1. If s S,β+1−−−−→S t then s
Q′,β−−−→S s′ →S t. Hence s →2∞

S s′ by the inductive
hypothesis. Then s→∞S s′ →S t by Lemma 11. So s→∞S t by Lemma 7.
α is a limit ordinal. By coinduction we show that if s Q,α−−→S t then s →2∞

S t. By the
depth condition there is β < α such that for every γ ≥ β the redex contracted in S at γ
occurs at depth greater than zero. Let tβ be the term at index β in Q. Then by the
inductive hypothesis we have s→2∞

S tβ , and thus s→∞S tβ by Lemma 11. There are two
cases.
tβ = x. This is impossible because then there can be no contraction of tβ at depth
greater than zero.
tβ = f(t1, . . . , tn). Then t = f(u1, . . . , un) and the tail of the reduction S past β may
be split into n parts: ti

Qi,δi−−−→S ui with δi ≤ α for i = 1, . . . , n. Then ti →2∞
S ui by

the inductive and/or the coinductive hypothesis. Since s→∞S f(t1, . . . , tn) we obtain
s→2∞

S f(u1, . . . , un) = t.
J

I Corollary 49 (ω-compression). If there exists a strongly convergent S-reduction sequence
from s to t then there exists such a sequence of length at most ω.
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