6 research outputs found

    Uncertainty Theory Based Reliability-Centric Cyber-Physical System Design

    Get PDF
    Cyber-physical systems (CPSs) are built from, and depend upon, the seamless integration of software and hardware components. The most important challenge in CPS design and verification is to design CPS to be reliable in a variety of uncertainties, i.e., unanticipated and rapidly evolving environments and disturbances. The costs, delays and reliability of the designed CPS are highly dependent on software-hardware partitioning in the design. The key challenges in partitioning CPSs is that it is difficult to formalize reliability characterization in the same way as the uncertain cost and time delay. In this paper, we propose a new CPS design paradigm for reliability assurance while coping with uncertainty. To be specific, we develop an uncertain programming model for partitioning based on the uncertainty theory, to support the assured reliability. The uncertainty effect of the cost and delay time of components to be implemented can be modeled by the uncertainty variables with uncertainty distributions, and the reliability characterization is recursively derived. We convert the uncertain programming model and customize an improved heuristic to solve the converted model. Experiment results on some benchmarks and random graphs show that the uncertain method produces the design with higher reliability. Besides, in order to demonstrate the effectiveness of our model for in coping with uncertainty in design stage, we apply this uncertain framework and existing deterministic models in the design process of a sub-system that is used in real world subway control. The system implemented based on the uncertain model works better than the result of deterministic models. The proposed design paradigm has the potential to be generalized to the design of CPSs for greater assurances of safety and security under a variety of uncertainties

    Cyber-Physical Systems and Smart Cities in India: Opportunities, Issues, and Challenges

    Get PDF
    A large section of the population around the globe is migrating towards urban settlements. Nations are working toward smart city projects to provide a better wellbeing for the inhabitants. Cyber-physical systems are at the core of the smart city setups. They are used in almost every system component within a smart city ecosystem. This paper attempts to discuss the key components and issues involved in transforming conventional cities into smart cities with a special focus on cyber-physical systems in the Indian context. The paper primarily focuses on the infrastructural facilities and technical knowhow to smartly convert classical cities that were built haphazardly due to overpopulation and ill planning into smart cities. It further discusses cyber-physical systems as a core component of smart city setups, highlighting the related security issues. The opportunities for businesses, governments, inhabitants, and other stakeholders in a smart city ecosystem in the Indian context are also discussed. Finally, it highlights the issues and challenges concerning technical, financial, and other social and infrastructural bottlenecks in the way of realizing smart city concepts along with future research directions

    Octopus++: an enhanced mutual authentication security protocol and lightweight encryption and decryption algorithm based on DNA in fog computing

    Get PDF
    The Internet of Things (IoT) envisions a world wherein everyday objects may connect to the internet and exchange data, analyse, store, and gather data from their environment and efficiently mediate on it. Fog computing, closer to the IoT, is formulated in data processing, filtering, aggregating, and storing. In fog IoT network one of the main challenges is security. The existing security solutions are based on modern cryptography algorithms are computationally complex which causes the fog IoT network to slow down. Therefore, in fog IoT the operations must be lightweight and secure. The security considerations include attacks, especially Man in the Middle attack (MitM), challenges, requirements, and existing solutions that are deeply analyzed and reviewed. Hence, omega network key generation based on deoxyribonucleic acid (ONDNA) is proposed, which provides lightweight encryption and decryption in fog computing. The security level of ONDNA is tested using NIST test suite. ONDNA passes all the 17 recommended NIST Test Suite tests. Next, we proposed a modified security protocol based on ONDNA and hash message authentication code with secure hash algorithm 2. The modified protocol is noted as OCTOPUS++. We proved that the OCTOPUS++ provides confidentiality, mutual authentication, and resistance to MitM attack using the widely accepted Burrows Abdi Needham (BAN) logic. The OCTOPUS++ is evaluated in terms of execution time. The average execution time for 20-time execution of OCTOPUS++ is 1.018917 milliseconds. The average execution time for Octopus, LAMAS and Amor is 2.444324, 20.1638 and 14.1152 milliseconds respectively. The results show that the OCTOPUS++ has less execution time than other existing protocol

    Big Data Analytics for Manufacturing Internet of Things: Opportunities, Challenges and Enabling Technologies

    Full text link
    The recent advances in information and communication technology (ICT) have promoted the evolution of conventional computer-aided manufacturing industry to smart data-driven manufacturing. Data analytics in massive manufacturing data can extract huge business values while can also result in research challenges due to the heterogeneous data types, enormous volume and real-time velocity of manufacturing data. This paper provides an overview on big data analytics in manufacturing Internet of Things (MIoT). This paper first starts with a discussion on necessities and challenges of big data analytics in manufacturing data of MIoT. Then, the enabling technologies of big data analytics of manufacturing data are surveyed and discussed. Moreover, this paper also outlines the future directions in this promising area.Comment: 14 pages, 6 figures, 3 table
    corecore