
Publications

2019

Uncertainty Theory Based Reliability-Centric Cyber-Physical Uncertainty Theory Based Reliability-Centric Cyber-Physical

System Design System Design

Houbing Song
Embry-Riddle Aeronautical University, songh4@erau.edu

Ya Jiang
Tsinghua University

Mingzhe Wang
Tsinghua University

Xun Jiao
University of California - San Diego

Hui Kong
Tsinghua University

See next page for additional authors

Follow this and additional works at: https://commons.erau.edu/publication

 Part of the Hardware Systems Commons

Scholarly Commons Citation Scholarly Commons Citation
Song, H., Jiang, Y., Wang, M., Jiao, X., Kong, H., Wang, R., Liu, Y., Wang, J., & Sun, J. (2019). Uncertainty
Theory Based Reliability-Centric Cyber-Physical System Design. , (). Retrieved from
https://commons.erau.edu/publication/1324

This Article is brought to you for free and open access by Scholarly Commons. It has been accepted for inclusion in
Publications by an authorized administrator of Scholarly Commons. For more information, please contact
commons@erau.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Embry-Riddle Aeronautical University

https://core.ac.uk/display/232602754?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/publication
https://commons.erau.edu/publication?utm_source=commons.erau.edu%2Fpublication%2F1324&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/263?utm_source=commons.erau.edu%2Fpublication%2F1324&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/publication/1324?utm_source=commons.erau.edu%2Fpublication%2F1324&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu

Authors Authors
Houbing Song, Ya Jiang, Mingzhe Wang, Xun Jiao, Hui Kong, Rui Wang, Yongxin Liu, Jian Wang, and
Jiaguang Sun

This article is available at Scholarly Commons: https://commons.erau.edu/publication/1324

https://commons.erau.edu/publication/1324

1

Uncertainty Theory Based Reliability-Centric
Cyber-Physical System Design

Yu Jiang∗, Mingzhe Wang∗, Xun Jiao†, Houbing Song‡, Hui Kong∗, Rui Wang∗, Yongxin Liu‡, Jian Wang‡

and Jiaguang Sun∗
∗School of Software, Tsinghua university, Beijing

†School of Computer Science and Technology, UCSD, USA.
§ Department of ECSSE, Embry-Riddle Aeronautical University, USA.

Abstract—Cyber-physical systems (CPSs) are built from,
and depend upon, the seamless integration of software and
hardware components. The most important challenge in CPS
design and verification is to design CPS to be reliable in
a variety of uncertainties, i.e., unanticipated and rapidly
evolving environments and disturbances. The costs, delays
and reliability of the designed CPS are highly dependent
on software-hardware partitioning in the design. The key
challenges in partitioning CPSs is that it is difficult to
formalize reliability characterization in the same way as the
uncertain cost and time delay.

In this paper, we propose a new CPS design paradigm
for reliability assurance while coping with uncertainty. To
be specific, we develop an uncertain programming model for
partitioning based on the uncertainty theory, to support the
assured reliability. The uncertainty effect of the cost and
delay time of components to be implemented can be modeled
by the uncertainty variables with uncertainty distributions,
and the reliability characterization is recursively derived. We
convert the uncertain programming model and customize an
improved heuristic to solve the converted model. Experiment
results on some benchmarks and random graphs show that the
uncertain method produces the design with higher reliability.
Besides, in order to demonstrate the effectiveness of our model
for in coping with uncertainty in design stage, we apply
this uncertain framework and existing deterministic models
in the design process of a sub-system that is used in real
world subway control. The system implemented based on the
uncertain model works better than the result of deterministic
models. The proposed design paradigm has the potential to
be generalized to the design of CPSs for greater assurances
of safety and security under a variety of uncertainties.

Index Terms—cyber-physical system; hardware-software
partitioning; uncertain programming; reliability-centric.

I. INTRODUCTION

CYber-physical systems (CPSs) are built from, and
depend upon, the seamless integration of software and

hardware components with embedded sensors, processors
and actuators [1], [2], [3]. In [4] a significant cloud-
edge computing framework is proposed for cyber-Physical-
Social System services including the cyber-physical sys-
tems design. Furthermore, a systematic big data-as-a-
service CPS framework was presented in [5], where there
are many challenges about data processing were discussed.
The most important challenge in CPS design and verifica-
tion is to design CPS to be reliable in a variety of uncertain-
ties, i.e., unanticipated and rapidly evolving environments

and disturbances. How to find an efficient partition for the
hardware implementation and software implementation of
the CPS remains challenging.

Recently, many research efforts have been undertaken to
automate this task. Those efforts include exact partitioning
[6], [7], [8] and heuristic partitioning models[9], [10], [11],
[12], [13]. But few algorithms address the issue that we
cannot accurately determine the cost and time of system
components, and few works take the reliability characteri-
zation into account. Reliability analysis is complex but has
significant benefits in terms of design quality of complex
safety-critical CPS. These drawbacks limit the application
to many real system designs. Hence, there has been a recent
surge for methods to handle those uncertainty effects with
reliability in consideration.

In this paper, we propose a new CPS design paradigm
for reliability assurance while coping with uncertainty. To
be specific, we develop an uncertain programming model
to cope with uncertainty and to characterize reliability
in partitioning. In our model, the partitioning problem is
formulated as a mathematical optimization equation, where
the delay related constraints and the cost related objective
are defined on uncertain variables, and the reliability char-
acterization is recursively derived from the task graph of the
system. The proposed design model has the potential to be
generalized to the design of CPSs for greater assurances
of safety and security under a variety of uncertainties. Ex-
periments on benchmarks with all parameters deterministic
demonstrate the compatibility and reliability improvement
of the uncertain model with the existing models, and
experiments on a real-world subway control system design
with all parameters unknown demonstrates the effectiveness
of our model for the uncertainty effects in design.

The paper is organized as follows: related work is
presented in II. The proposed uncertainty model and the
model conversion are presented in Section III. Section III-C
presents the solution of the proposed model. Empirical
results on some benchmarks and a real system design are
given in Section IV, and we conclude in Section V.

II. RELATED WORK

There are many existing models and algorithms for
partitioning, typically can be classified as exact partitioning

2

and heuristic partitioning models. The family of exact
algorithm includes branch-and bound [6], integer linear
programming [7] and dynamic programming [14], [8],
and the heuristic algorithm includes genetic algorithm and
simulated annealing [15], [16], [17], [18].

All these algorithms presented above work perfectly
within their own co-design environments. But their parame-
ters of components are all deterministic, while in the design
stage, the cost and time of those components cannot be
determined in the design stage, especially for the software
components. Some people think that they are subjective
probability, and make use of this theory in system level
partitioning [19], [20]. However, they focus on the project
management, about the probabilistic implementation cost
and delay time of different develop teams for each system
module. They do not consider the actual implemented
system. They may consider the communication time be-
tween two develop team, and do not consider the actual
communication time between two task modules.

Besides, few prior studies take the reliability [21], [22],
[23] in account in partitioning. A lot of surveys presented in
[24] showed that those imprecise quantities behave neither
like randomness nor like fuzziness. Hence, based on some
preliminary idea presented in our previous work [25], we
will conduct the system partitioning with the reliability
in consideration. Based on the uncertainty theory [24],
[26], [27], we can measure the belief degree of uncertain
events. Other factors like balanced performance or social
utility of CPS are also considered for the system design. A
comprehensive framework for data process is proposed in
[28], where the balanced benefits for multiple stakeholders
are guaranteed in multiple scenarios. Meanwhile, the study
in [29], [30], [31] presents an efficient heuristic method for
physical data processing, providing a thorough considera-
tion between the physical and social aspects of CPS.

III. UNCERTAINTY MODEL
This section presents the CPS reliability-centric partition-

ing problem statement and the proposed model.

A. Problem Definition
Based on the uncertainty theory [24], the system is

formalized as G(V,E), where V is the set of nodes
{v1, v2 · · · vn} and E is the set of edges {eij |1 ≤ i, j ≤ n}:

1) ξhi denotes the cost of node i in the hardware imple-
mentation ways that in hardware or software.

2) Φh
ci is the linear uncertainty distribution of uncertain

variables ξhi , denoted by ζ(ahci, b
h
ci), where ahci, b

h
ci

are nonnegative real numbers.
3) thi denotes the execution time of node i in hardware

implementation, and tsi denotes the execution time of
node i in software implementation.

4) Φh
ti, Φs

ti are uncertain distributions of uncertain vari-
ables thi , tsi , denoted by ζ(ahti, b

h
ti), ζ(asti, b

s
ti), where

ahti, b
h
ti, a

s
ti, b

s
ti are real numbers.

5) cij denotes the communication time between node i
and j. The value of cij is given in the context of the
two nodes implemented differently.

6) rhi denotes the reliability of node i in hardware
implementation, and rsi denotes the reliability of node
i in software implementation.

The partitioning problem is to find a bipartition P, where
P = (Vh, Vs) such that Vh

⋃
Vs = V and Vh

⋂
Vs = ∅.

In this paper, partitioning is scaled as: T0 is the given
execution time constraint, and R0 is the given system
reliability constraint. The objective is to find a hardware-
software partition P such that TX ≤ T0, RX ≤ R0 and HX

is the minimal hardware cost.

B. Problem Formalization

A partition is characterized and scaled to three metrics:
cost, time and reliability. The cost includes hardware cost
and software cost. It represents the resource consumption
to achieve the hardware and software implementation of
each task module. The time delay includes the execution
time of each node and the communication time between
nodes. The reliability is the probability that the system will
perform its intended function correctly during a specified
period of time.

First, let us consider the cost metric. If a given node is
partitioned to be in hardware implementation, the hardware
cost of the node is considered. Otherwise, the software cost
of the node is considered. Then, the total hardware cost
with respect to a dedicated partition can be calculated as
the sum of nodes in hardware implementation. The additive
calculation rule for resource consumption cost is reasonable
in most cases of the computation model. Hardware cost
H(x) of the partition P (x) can be formalized as follow:

H(x) =

n∑
i=1

ξhi (1− xi)

Then, let us consider the time metric. It consists of two
parts: execution time of each node, and the communication
time between nodes. We give a reasonable assumption that
the communication cost between node i and j is 0 when
the two nodes are partitioned into the same implementation
way. Based on the assumption, the execution time Te(x),
communication time Tc(x), and the total time metric T (x)
can be formalized as:

Te(x) =

n∑
i=1

tsixi + thi (1− xi)

Tc(x) =

n−1∑
i=1

n∑
j=i+1

cij [(xi − xj)2]

T (x) = Te(x) + Tc(x)

Finally, let us see the reliability metric. The node that
has no outgoing arcs is regarded as the destination node
and the output of the system, while the nodes that have
no incoming arcs are regarded as the start nodes. The
adjacency matrix Relation[n][n] is used to represent the
dependency relations of parent tasks and child tasks in the
directed acyclic graph. Based on the theory of fault tree and
reliability block diagram, the reliability of the task node xi

3

Algorithm 1: System Reliabiliby
Input: The directed acyclic task graph of the system.
Output: The reliability formalization of the system
Int Relation[n][n] /* Relation matrix */ ;
for i← 1 to n do /* initialize the
relation matrix */

for j ← 1 to n do
if there is an edge between node xi and xj
then
Relation[i][j]← 1

end
end

end
R← Recursive(n) /* Reliability
derivation */;

Recursive(m) /* Definition of the
recursive function */ ;

for i← 1 to n do
if Relation[i][m] == 1 then

Rm ← Rm ·(rsmxm+rhm(1−xi))·Recursive(i)
end

end

return R

is the product of its parent nodes and itself. The system
reliability R is derived in a recursive manner as presented
in the algorithm.

Based on the formalization, the given constraint M on
execution time, and R0 on the reliability, the partitioning
problem can be modeled as :

P0 :


minimize H(x)
subject to T (x) ≤M

R(x) ≥ R0

x ∈ {0, 1}n

We note that minimizing the value of H(x) is equivalent
to maximizing the value of

∑n
i=1 hixi. Hence, the solution

of the problem P0 is equal to that of the problem P1:

P1 :



maximize
n∑

i=1

ξhi xi

subject to
n−1∑
i=1

n∑
j=i+1

cij [(xi − xj)2)]+

n∑
i=1

(tsi − thi)xi ≤M −
n∑

i=1

thi

1−Recursive(n) ≤ 1−R0

x ∈ {0, 1}n

We convert the uncertain objective function first. It
has been proved that: ξ1, ξ2 · · · ξn are uncertain vari-
ables with uncertain distributions Φ1,Φ2 · · ·Φn. The func-
tion f(x, ξ1, ξ2 · · · ξn) is strictly increasing with respect
to (ξ1, ξ2 · · · ξm) and strictly decreasing with respect to
ξm+1, ξm+2 · · · ξn. Then, the converted expected objective

function can be calculated as:

E[f
(
x, ξ1, ξ2 · · · ξn)] =

∫ 1

0

f
(
x,Φ−1

1 (α),Φ−1
2 (α)

· · ·Φ−1
m (α),Φ−1

m+1(1− α) · · ·Φ−1
n (1− α)

)
dα

Hence, the objective function of the problem P2 can be
converted to:

max

n∑
i=1

ξixi

⇒ max

n∑
i=1

[
(∫ 1

0

Φ−1
i (α)dα

)
xi]

where Φ−1
i (α) is equal to (1−α)(ahci− bsci)+α(bhci−asci).

Then, we convert the uncertain constraint. It has been
proved that: h0(x), h1(x) · · ·hn(x) are real-valued func-
tions, h+i (x) is defined as (|hi(x)|+hi(x))/2 and h−i (x) is
defined as (−|hi(x)|+ hi(x))/2. The converted constraint
of M{

∑n
i=1 hi(x)ξi < h0(x)} ≥ a can be calculated as:

n∑
i=1

h+i (x)Φ−1
i (a)−

n∑
i=1

h−i (x)Φ−1
i (1− a) ≤ h0(x)

Hence, the uncertain constraint of the problem P1 can be
converted as follows:

n∑
i=1

Tixi ≤M
′

⇒ M{
n∑

i=1

Tixi ≤M
′
} ≥ 1

⇒
n∑

i=1

(bi)xi+ ≤ a0

where bi is equal to bsti − ahti and a0 is equal to M −∑n
i=1 a

h
ti−
∑n−1

i=1

∑n
j=i+1 Cij [(xi−xj)2)]. The calculation

process is the same as the proof process of theorem 1.
Then, the final version of the converted problem is:

P2 :



maximize
n∑

i=1

[
(∫ 1

0
Φ−1

i (a)dα
)
xi]

subject to
n∑

i=1

(bsti − ahti)xi+
n−1∑
i=1

n∑
j=i+1

Cij(xi − xj)2 ≤M −
n∑

i=1

ahti

1−Recursive(n) ≤ 1−R0

xi ∈ {0, 1}; i = 1, 2 · · ·n.

where bi is equal to bsti − ahti and a0 is equal to M −∑n
i=1 a

h
ti −

∑n−1
i=1

∑n
j=i+1 Cij [(xi − xj)2)].

For safety-critical applications, the partition problems
can also be formalized to maximize the reliability of
the system, with the limited hardware resource and time

4

constraints. The converted formalization is as follow:

P3 :



maximize Recursive(n)

subject to
n∑

i=1

(bsti − ahti)xi+
n−1∑
i=1

n∑
j=i+1

Cij(xi − xj)2 ≤M −
n∑

i=1

ahti

n∑
i=1

[
(∫ 1

0
Φ−1

i (a)dα
)

(1− xi)] ≤ N

xi ∈ {0, 1}; i = 1, 2 · · ·n.

Algorithm 2: Customized ALG2

/* iteration-block */;
while termination conditions do

while number of individuals ≤ number of the
generation size do

Select (g1, g2) from the current generation;
Perform crossover on (g1, g2) to produce two
new individuals (g

′

1, g
′

2) ;

/* annealing-crossover */;
if (max{fitness(g

′

1), fitness(g
′

2)} ≤
max{fitness(g1), fitness(g2)}) thena

C = max{fitness(g
′

1), fitness(g
′

2)} -
max{fitness(g1), fitness(g2)};

if min{1, exp(-
a
C/Tk)} ≥ random[1, 0)}

then
Accept the crossover;

else
g

′

1 = g1, g
′

2 = g2;
end

else
Accept the crossover;

end
/* annealing-mutation */;

Perform mutation on g
′

1 to produce ng1;
if (fitness(ng1) ≤ fitness(g,1)) thena

C = (fitness(ng1) - fitness(g,1));
if min{1, exp(-

a
C/Tk)} ≥ random[1, 0)}

then
Accept the mutation;

else
ng1 = g

′

1;
end

else
Accept the mutation;

end
Perform step 19-29 on g

′

2 to produce ng2;
/* individual-selection */;

if the highest fitness of the current generation
≥ fitness(solution) then

Copy the individual to the solution;
end

end
end
return solution: x[i], i ∈ [1, n];

C. Problem Solution

After we formalize the partitioning problem as P2 and
P3, many general-purpose heuristic algorithms presented
in the related work section can be applied to solve the
problems. Because the reliability formalization results in
a more complex optimization problem, which cannot be
simplified to the knaspack problem, the domain-specific
based acceleration algorithms cannot be applied. In this
paper, the general purpose algorithm [32], [9] based on
the genetic algorithm and simulated annealing algorithm is
customized to get the final result of the system design. First,
we apply the original genetic algorithm (ALG1) presented
in [33] to the uncertain partitioning problem P2. Then, the
enhanced algorithm (ALG2) presented in our previous work
[32], [9] is also customized to solve the problem.

IV. PERFORMANCE EVALUATION

In order to demonstrate the performance of the uncertain
model, we have implemented the two algorithms in C,
and test the algorithms on Intel i5 2.27GHZ PC. First,
we apply these two algorithms and the uncertain model
to some benchmarks and random graphs, to show that the
proposed uncertain model (P2) and algorithm 2 (ALG2)
produce quality partitions, which are compatible and more
reliable than the existing deterministic model (PE) and
algorithm 1 (ALG1). In order to demonstrate the reliability
effect on the partitioning, we conduct some experiments on
the model (P3) and the deterministic model (PE) without
reliability constraint. The results show that the reliability is
improved significantly. Finally, we also apply our uncertain
model (P2) and existing deterministic model (PE) in the
design process of a sub-system that is used in real world
subway control. We implement two different versions of
the control system according to the partitioning results,
and find that the sub-system implemented according to the
partitioning results of P2 works better than the results of
the deterministic model (PE).

A. Experiments on Benchmarks

The test cases are some benchmarks from [34], [35], and
several random instances with different nodes and metrics.
The TGFF is used to generate the general-purpose graphs.
Some descriptions are listed in the Fig 1. The second
column is the number of task modules, and the third column
is the the number of edges denoting the communication.

The technology library [35] provides different values of
time, cost, and reliability for the deterministic model (PE).
While for the hardware cost value, the software execution
time, the hardware execution time, the communication
edges and the reliability of the uncertain model, more ef-
forts are needed to initialize. Because we use the uncertain
distribution to convert the uncertain model P1 to the final
deterministic model P2, we need to initialize two variables
to model the intervals for the uncertain distribution. For all
i ∈ [1, n], they are generated with the following rules:

5

Table 1: Test cases description
Name Node Edge Description
crc32 25 34 32-bit cyclic redundancy check. From the

Telecommunications category of MiBench
patricia 21 50 Routine to insert values into Patricia tries.

From the Network category of MiBench.
dijikstra 26 71 Computes shortest paths in a graph.

From the Network category of MiBench.
clustering 150 333 Image segmentation algorithm.

From a medical application.
rc6 329 448 RC6 cryptographic algorithm.

random1 500 1000 random generated graph
random2 1000 2000 random generated graph
random3 1500 3000 random generated graph
random4 2000 4000 random generated graph
random5 2500 5000 random generated graph
random6 3000 6000 random generated graph

and ρ is the so-called communication to computation
ratio in the general partitioning problem. We conduct
our experiment with two values ρ = 0.1, 1.

• M is the execution time constraint. It is generated
as uniform random numbers in [

∑n
1 ah

ti,
∑n

1 bsti]. We
test two constraints (strict time constraint and loose
real-time constraint) for each partitioning instances.
The first M1 is chosen from [

∑n
1 ah

ti,
1
2

∑n
1 bsti], and

the second M2 is chosen from [1
2

∑n
1 bsti,

1
2

∑n
1 bsti].

Then, we simulate the two algorithms on the benchmarks
and the random graphs, for different values of ρ and M .
For the benchmarks, the values can be initialized as avail-
able values as described above. For the random graphs, the
value can be initialized in the random generated value as
the rules. In order to demonstrate the difference between
deterministic and uncertain theory, we build the determin-
istic model using the method described in the section ?? for
comparison. We just need to replace the uncertain variables
with deterministic variables in P1 to get P d

1 , and initialize
these deterministic parameters of P d

1 with the expectation.
The deterministic variables fit the probabilistic distribution
among the random generated interval described in the rules.
Then, P d

1 can also be solved by the algorithm 2. Each in-
stance is tested for 100 times. The averaged values of the
object function E[f(x, ξ)] of P2 and the object function of
P d
1 are denoted by P2 Alg1, P2 Alg2, and P d

1 Alg2, respec-
tively. Furthermore, we collect the convergence track and
the run time of the two algorithms.

The values about the cost value are shown in Figure 3, 4,
5, 6 for different parameters configurations. We find that for
the benchmarks with the parameters available, the results
of the P2 Alg2, and P d

1 Alg2 are almost the same. Because
the initialization rules such as ah

ci = bhci = value1 make the
P2 and P d

1 the same. That means the uncertain model can
also deal with the deterministic partitioning problem with
the strategy of the parameters initialization rules described
above. For the random graphs, the results of the P2 Alg2,
and P d

1 Alg2 are different with 2% deviation. Because the
uniform random generated parameters make the P2 and P d

1

different. We convert the P1 to P2 with the uncertain theory
with the uncertain phenomenon in consideration, while P d

1

is just the expectation of each interval. For the small size
of nodes, the results of P2 Alg1 and P2 Alg2 are almost the
same. The two algorithms yield similar results. For bigger
random graphs, Alg2 outperforms Alg1. Alg2 can always
find smaller values than Alg1. With the increase of the size,
the deviation between the two algorithms grows bigger. The
improved algorithm will keep better population size, and the
local search will be more universal and accurate. The values
of the ρ and M have no effect on the performance of the two
algorithms.
We store the convergence track of the two algorithms, as

presented in the Figure 7, 8. At the beginning of the it-
eration procedure, Alg1 drops faster than Alg2. But Alg2
can find the near optimal solution faster than Alg1 in the
convergence process. The iteration number grows with the
size of the nodes, which means more time to go into the
stable state. The run time is concluded in Figure 9. Since
each instance is simulated for 100 times, we also collect the
minimum expectation cost value of the two algorithms. The
appearance times of the minimum value of the two algo-
rithms demonstrate that the Alg2 performs better than the
Alg1, even for small number of nodes.

6.2 Experiments on Real System Design
We conduct some experiments on a train communication

control system that is used in real world subway systems
to show the superiority of our model for the uncertainty
effects in design stage. The train control system is a safety-
critical embedded system described in the standard IEC
61375. The system consist of two controllers: multifunc-
tion vehicle bus(MVB) controller which interconnects de-
vices within a vehicle, and wire train bus(WTB) controller
which interconnects the vehicles of a train. The controllers
connected in the train will transport two classes of data:

• Time-critical, short Process Data (used for traction
control including speed information, etc.);

• Less urgent, but possibly lengthy Message Data (used
for diagnostics including device status information, etc.).

Both the MVB and the WTB are controlled by one mas-
ter, which controls the sending of the Process Data and
Message data. All the data are transferred as frame on

Fig. 1. Test cases descriptions, including some benchmarks and some
random dependency graphs.

• When the hardware cost is available, ahci = bhci =
value1. Otherwise, ahci is generated as uniform ran-
dom numbers in [0, 100] and bhci is set as ahci + βh

ci.
βh
ci is a constant real number.

• When the execution time is available, ahti = bhti =
value2 and asti = bsti = value3. Otherwise, ahti is
generated as uniform random numbers in [0, 10] and
bhti is set as ahti + βh

ti. (In most cases, the hardware
execution is so fast that the time is usually set as
0). The software execution time asti is generated as
uniform random numbers in [bhti, 100] and bsti is set
as asti + βs

ti. β
h
ti is a constant.

• When the communication time is available, cij =
value4. Otherwise, cij is generated as uniform ran-
dom numbers in [0, 2 · ρ · max(bsti)]. We can find
that the communication time has an expected value
of ρ ·max(bsti), where ρ is the so-called communica-
tion to computation ratio in the general partitioning
problem. We conduct our experiment with two values
ρ = 0.1, 1. The reliability parameters rhi , rsi and
constraint R0 are initialized in the similar way.

• M is the execution time constraint. It is generated as
uniform random numbers in [

∑n
1 a

h
ti,

∑n
1 b

s
ti]. We

test two constraints (strict time constraint and loose
real-time constraint) for each partitioning instance.
The first M1 is chosen from [

∑n
1 a

h
ti,

1
2

∑n
1 b

s
ti], and

the second M2 is chosen from [12
∑n

1 b
s
ti,

1
2

∑n
1 b

s
ti].

Then, we simulate the two algorithms on the benchmarks
and the random graphs, for different values of ρ, M and
R0. For the benchmarks, the values can be initialized
as available values as described above. For the random
graphs, the value can be initialized in the random generated
value as the rules. In order to demonstrate the difference
between deterministic and uncertain theory, we build the
deterministic model using the method described in the
section III-B for comparison. We just need to replace the
uncertain variables with deterministic variables in P1 to get
P d
1 , and initialize these deterministic parameters of PEd

1

with the expectation or the values in the technology library.
The deterministic variables fit the probabilistic distribution
among the random generated interval described in the rules.

Then, PEd
1 can also be solved by the customized algorithm.

Each instance is tested for 100 times. The averaged values
of the object function E[f(x, ξ)] of P2 and the object
function of PEd

1 are denoted by P2 ALG1, P2 ALG2,
and PE ALG2, respectively.

The results are presented in Fig. 3, 4, 5, 6 for different
parameters configurations. We find that for the benchmarks
with the parameters available, the results of the P2 ALG2,
and PE ALG2 are almost the same, because the initial-
ization rules such as ahci = bhci = value1 make the P2 and
PEd

1 the same. That means that the uncertain model can
also deal with the deterministic partitioning problem with
the strategy of the parameters initialization rules described
above. For the random graphs, the results of the P2 ALG2,
and PE ALG2 are different with 2% deviation, because
the uniform random generated parameters make the P2

and PEd
1 different. We convert the P1 to P2 according

to the uncertain theory with the uncertain phenomenon
in consideration, while PEd

1 is just the expectation of
each interval. For bigger size of nodes, ALG2 outperforms
ALG1. ALG2 can generate smaller values than ALG1. With
the increase in the size, the deviation between the two
algorithms grows bigger. The values of the ρ and M have
no effect on the performance of the two algorithms.

The results presented in the Figures 7, 8 store the
convergence track of the two algorithms. At the beginning
of the iteration procedure, ALG1 drops faster than ALG2.
But ALG2 can find the near optimal solution faster than
ALG1 in the convergence process. The iteration number
grows with the size of the nodes, which means more time
to go into the stable state. The time consumption of those
algorithms is concluded in Figure 9.

From the above results, we can draw the conclusion
that the proposed uncertain model (P2) and the customized
algorithm 2(ALG2) produce quality partitions, which are
not only compatible to but also more reliable than the
existing deterministic model(PE) and algorithm 1(ALG1).

For the effect of reliability on partitioning, the result of
the proposed model P3 is compared with the result of the
traditional model PEd

1 . Based on the parameters described
in the technology library [35], [21], the partitioning results
for systems are presented in the TABLE I. From the last
column of the table, we can see that the reliability of the
system has been improved through the partitioning.

B. Experiments on Real System Design

We conduct some experiments on a train communication
control system that is used in real world subway systems
to show the effectiveness of our model for the uncertainty
effects in the design stage. The train control system is a
safety-critical CPS described in the standard IEC 61375
[36], [37], [38]. The system consists of two controllers:
multifunction vehicle bus(MVB) controller which intercon-
nects devices within a vehicle, and wire train bus(WTB)
controller which interconnects the vehicles of a train. The
controllers connected in the train will transport two classes
of data: (1)Time-critical, short Process Data (used for

6

0 500 1000 1500 2000 2500
0

2

4

6

8

10

12

14
x 10

4

node number

ha
rd

w
ar

e
co

st

PE−ALG2
P2−ALG2
P2−ALG1

Fig. 2. ρ = 0.1, M =M1

0 500 1000 1500 2000 2500
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

node number

ha
rd

w
ar

e
co

st

PE−ALG2
P2−ALG2
P2−ALG1

Fig. 3. ρ = 0.1, M =M2

0 500 1000 1500 2000 2500
0

2

4

6

8

10

12

14
x 10

4

node number

ha
rd

w
ar

e
co

st

PE−ALG2
P2−ALG2
P2−ALG1

Fig. 4. ρ = 1, M =M2

0 500 1000 1500 2000 2500
0

2

4

6

8

10

12
x 10

4

node number

ha
rd

w
ar

e
co

st

PE−ALG2
P2−ALG2
P2−ALG1

Fig. 5. ρ = 1, M =M2

0 200 400 600 800 1000 1200
2500

3000

3500

4000

4500

5000

5500

6000

6500

iteration

ha
rd

w
ar

e
co

st

ALG1
ALG2

Fig. 6. convergence track for node number equals 100

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8
x 10

4

iteration

ha
rd

w
ar

e
co

st

ALG1
ALG2

Fig. 7. convergence track for node number equals 1000

0 500 1000 1500 2000 2500
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

node number

ex
ec

ut
io

n
tim

e

ALG1
ALG2

Fig. 8. Run time of the algorithm

0 500 1000 1500 2000 2500
30

40

50

60

70

80

90

100

node number

tim
es

 o
f t

he
 m

in
iu

m
 v

al
ue

ALG1
ALG2

Fig. 9. Frequency of the lowest value

7

TABLE I
CPS COMPONENTS DESIGN WITH CONSIDERING RELIABILITY OR NOT.

Node Bounds Considering R Out of considering R Improving %
T Cost T Cost R T Cost R T Cost R

150 200 142 160 0.824981 122 180 0.720446 -14.0 12.5 12.7
6 140 200 135 177 0.799978 122 180 0.720446 -9.6 1.7 11.1

130 220 127 210 0.816563 94 205 0.713019 -25.9 2.5 12.7
150 250 149 220 0.752544 129 223 0.650345 -13.4 5.9 13.5

7 145 265 121 245 0.744786 101 265 0.664037 -16.5 8.2 10.9
140 270 134 270 0.744865 101 265 0.664037 -16.4 1.9 10.9
270 350 269 336 0.470365 253 350 0.437090 -6.3 4.2 7.6

11 250 370 239 361 0.465516 249 351 0.410719 4.2 -2.9 11.8
245 365 239 361 0.465516 240 353 0.385313 0.5 -2.3 17.0
350 430 349 405 0.391591 323 429 0.252508 -8.1 5.9 34.2

14 330 430 328 426 0.383728 323 429 0.252508 -1.6 0.7 34.2
350 410 349 405 0.391591 337 409 0.255511 -3.6 1.0 33.4
570 650 570 589 0.144126 544 619 0.110657 4.8 -5.1 23.2

22 560 630 559 602 0.130903 528 629 0.117756 -5.9 4.5 10.1
535 635 529 627 0.122806 524 634 0.078451 -1.0 1.1 36.1
670 670 627 629 0.132518 625 669 0.073722 -6.7 6.4 44.4

25 680 650 680 622 0.127109 650 647 0.069255 -4.6 4.0 53.3
660 660 669 641 0.125744 641 659 0.067871 -3.0 2.8 46.0
1850 1850 1675 1593 0.006149 1828 1446 0.003227 -8.4 -10.2 47.5

58 1650 1650 1643 1613 0.006408 1646 1558 0.003496 0.2 -3.5 45.4
1750 1750 1737 1509 0.006213 1748 1451 0.003220 0.6 -4.0 48.2

traction control including speed information, etc.); (2)Less
urgent, but possibly lengthy Message Data (used for diag-
nostics including device status information, etc.).

We conduct some experiments on the MVB controllers.
They are controlled by one master, which controls the
sending of the Process Data and Message data. All the data
are transferred as frame on the link layer bus. The Master
broadcasts a Master Frame, which carries the identifier
of a Process Data frame. The device which sends these
Process Data and Message Date responds by broadcasting
a Slave Frame, which is received by all other devices.
If several devices respond to General Event Request, a
collision occurs. The Master starts an Event Arbitration to
single out a device. In order to accomplish the functions
above, the MVB controller can be designed as eighteen
modules. For example, the Event Arbitration function can
be mapped to the Event arbitration module. Each mod-
ule can be implemented by hardware and software. The
hardware implementation can be described by VHDL and
synthesized, and the software implementation can be de-
scribed by C. The synthesized VHDL code can be loaded
into an FPGA processor, and the C code can be loaded into
an ARM processor. The two processors communicate with
each other through GPIO.

As defined in the standard IEC 61375, the controller
should send a slave frame when receiving a master frame,
within 2-6us. The suggested time interval should be 3us. We
set the time limit of the system as 3us. Then, the problem
occurs. In order to satisfy the time requirement, some
module should be implemented by hardware, and some
module should be implemented by software. We do not
know the parameters of each module exactly, and can only
describe these parameters according to the pseudo code of
the standard IEC 61375. The frequency of the FPGA pro-
cessor is 24MHZ, and the frequency of the ARM processor
is 18MHZ. Usually, the sender module and receiver module

are implemented in hardware. We implement these two
modules and test the time of the two modules, 4 periods and
5 periods, respectively. Then, we use these data to estimate
the possible parameters according the pseudo code size
described in the standard. For example, the send judgement
module deciding which kind of slave frame needs to be
sent, is supposed to run 3 periods. The initial process data
module is supposed to take 9 periods to finish. All the other
modules can be estimated. The communication between the
FPGA processor and the ARM processor is supposed to
take on period of ARM processor. Then, we can take these
values to initialize the partitioning problem PE directly.
The parameters initialization for uncertain model P2 is the
same as the method described in the previous subsection,
except that the distribution of these uncertain time and cost
variables are normal uncertainty distribution.

Then, we can solve the two models. In the deterministic
model, the Event arbitration, Device Scan, Master transfer,
Device synchronization, System initialization, Message ser-
vice, and Initial process data modules are supposed to be
implemented in software. In the uncertain model, the Event
arbitration, Device Scan, Master transfer, Device synchro-
nization, and System initialization modules are supposed
to be implemented in software. We implement the system
according to the two different partitions, and connect the
two implemented MVB controllers. The two controller can
communicate with each other through the MVB bus. We use
an oscilloscope to sample the data from the serial port that
is connected to the MVB bus. Both of them receive and
send the correct frame, but the time interval is different.
The implemented system according to the deterministic
model does not satisfy the time requirements, while the one
according to the uncertain model works well. The system
implemented according to the uncertain model has been
deployed in a real subway control and run 20,000 miles
without time-out error.

8

V. CONCLUSION

In this paper, we propose a new CPS design paradigm for
reliability assurance while coping with uncertainty. To be
specific, we develop an uncertain programming model for
partitioning based on the uncertainty theory, to support the
assured reliability. We also conduct some experiments on
benchmarks and real complex system design to demonstrate
the effectiveness of the proposed model and algorithm,
especially for the significant improvement of the reliability.
The results show potential usage of our model to improve
the dependability of system. In the future, we plan to focus
on modeling the relationship and interaction between the
hardware and software, for greater assurance of reliability.
Furthermore, we plan to consider the safety as well as the
security in CPS design.

REFERENCES

[1] S. Jeschke, C. Brecher, H. Song, and D. B. Rawat, “Industrial internet
of things,” pp. 1–715, 2017.

[2] H. Song, D. B. Rawat, S. Jeschke, and C. Brecher, Cyber-Physical
Systems: Foundations, Principles and Applications. Boston, MA:
Academic Press, 2016.

[3] Y. Jiang, H. Song, R. Wang, M. Gu, J. Sun, and L. Sha, “Data-
centered runtime verification of wireless medical cyber-physical
system,” IEEE Transactions on Industrial Informatics, vol. 13, no. 4,
pp. 1900–1909, Aug 2017.

[4] X. Wang, L. T. Yang, X. Xie, J. Jin, and M. J. Deen, “A cloud-
edge computing framework for cyber-physical-social services,” IEEE
Communications Magazine, vol. 55, no. 11, pp. 80–85, 2017.

[5] X. Wang, L. T. Yang, H. Liu, and M. J. Deen, “A big data-
as-a-service framework: State-of-the-art and perspectives,” IEEE
Transactions on Big Data, vol. 4, no. 3, pp. 325–340, 2017.

[6] K. Chatha and R. Vemuri, “Hardware-software partitioning
and pipelined scheduling of transformative applications,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 10, no. 3, pp. 193–208, 2002.

[7] R. Niemann and P. Marwedel, “An algorithm for hardware/software
partitioning using mixed integer linear programming,” Design
Automation for Embedded Systems, vol. 2, no. 2, pp. 165–193, 1997.

[8] J. Madsen, J. Grode, P. Knudsen, M. Petersen, and A. Haxthausen,
“Lycos: The lyngby co-synthesis system,” Design Automation for
Embedded Systems, vol. 2, no. 2, pp. 195–235, 1997.

[9] X. Zhao, H. Zhang, Y. Jiang, S. Song, X. Jiao, and M. Gu,
“An effective heuristic-based approach for partitioning,” Journal of
Applied Mathematics, vol. 2013, 2013.

[10] R. Dick and N. Jha, “Mogac: a multiobjective genetic algorithm
for hardware-software cosynthesis of distributed embedded systems,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 17, no. 10, pp. 920–935, 1998.

[11] J. Hidalgo and J. Lanchares, “Functional partitioning for hardware-
software codesign using genetic algorithms,” in Proceedings of the
23rd EUROMICRO Conference EUROMICRO. IEEE, pp. 631–
638.

[12] P. Eles, Z. Peng, K. Kuchcinski, and A. Doboli, “System level
hardware/software partitioning based on simulated annealing and
tabu search,” Design Automation for Embedded Systems, vol. 2,
no. 1, pp. 5–32, 1997.

[13] T. Wiangtong, P. Cheung, and W. Luk, “Comparing three heuristic
search methods for functional partitioning in hardware–software
codesign,” Design Automation for Embedded Systems, vol. 6, no. 4,
pp. 425–449, 2002.

[14] P. Knudsen and J. Madsen, “Pace: A dynamic programming algo-
rithm for hardware/software partitioning,” in Proceedings of the 4th
International Workshop on Hardware/Software Co-Design. IEEE
Computer Society, 1996, p. 85.

[15] R. Gupta and G. De Micheli, “Hardware-software cosynthesis for
digital systems,” IEEE Design and Test of Computers, pp. 29–41,
1993.

[16] R. Niemann and P. Marwedel, “Hardware/software partitioning us-
ing integer programming,” in Proceedings of the 1996 European
conference on Design and Test. IEEE Computer Society, 1996,
p. 473.

[17] F. Vahid and D. Gajski, “Clustering for improved system-level
functional partitioning,” in Proceedings of the 8th international
symposium on System synthesis. ACM, 1995, pp. 28–35.

[18] F. Vahid, D. Gajski, and J. Gong, “A binary-constraint search
algorithm for minimizing hardware during hardware/software par-
titioning,” in Proceedings of the conference on European design
automation. IEEE Computer Society Press, 1994, pp. 214–219.

[19] J. Albuquerque, C. Coelho Jr, C. Cavalcanti, D. Cecilio da Silva Jr,
and A. Fernandes, “System-level partitioning with uncertainty,” in
Hardware/Software Codesign, 1999.(CODES’99) Proceedings of the
Seventh International Workshop on. IEEE, 1999, pp. 198–202.

[20] J. Albuquerque, “Solving hw sw partitioning by stochastic linear
programming with management of teams uncertainty.”

[21] S. Tosun, N. Mansouri, E. Arvas, M. Kandemir, Y. Xie, and
W.-L. Hung, “Reliability-centric hardware/software co-design,” in
Quality of Electronic Design, 2005. ISQED 2005. Sixth International
Symposium on. IEEE, 2005, pp. 375–380.

[22] Y. Jiang, M. Wang, H. Liu, M. Hosseini, and J. Sun, “Dependable
integrated clinical system architecture with runtime verification,”
in 2017 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD). IEEE, 2017, pp. 951–956.

[23] Y. Jiang, H. Song, Y. Yang, H. Liu, M. Gu, Y. Guan, J. Sun,
and L. Sha, “Dependable model-driven development of cps: From
stateflow simulation to verified implementation,” ACM Transactions
on Cyber-Physical Systems, vol. 3, no. 1, p. 12, 2018.

[24] B. Liu, “Uncertainty theory,” Uncertainty Theory, pp. 1–79, 2010.
[25] J. Yu, Z. Hehua, J. Xun, S. Xiaoyu, W. N. N. Hung, G. Ming, and

S. Jiaguang, “Uncertain model and algorithm for hardware/software
partitioning,” IEEE Computer Society Annual Symposium on VLSI,
2012, Amherst, MA, USA, August 19-21, 2012, vol. 2013, pp. 243–
248.

[26] B. Liu and Y. Liu, “Expected value of fuzzy variable and fuzzy
expected value models,” IEEE Transactions on Fuzzy Systems,
vol. 10, no. 4, pp. 445–450, 2002.

[27] B. Liu, “Fuzzy random dependent-chance programming,” IEEE
Transactions on Fuzzy Systems, vol. 9, no. 5, pp. 721–726, 2001.

[28] Z. Cai, X. Zheng, and J. Yu, “A differential-private framework for
urban traffic flows estimation via taxi companies,” IEEE Transactions
on Industrial Informatics, 2019.

[29] X. Zheng, Z. Cai, J. Yu, C. Wang, and Y. Li, “Follow but no
track: Privacy preserved profile publishing in cyber-physical social
systems,” IEEE Internet of Things Journal, vol. 4, no. 6, pp. 1868–
1878, 2017.

[30] Z. Cai and X. Zheng, “A private and efficient mechanism for data
uploading in smart cyber-physical systems,” IEEE Transactions on
Network Science and Engineering, 2018.

[31] Z. Cai and H. Zaobo, “Trading private range counting over big iot
data,” ICDCS, 2019.

[32] X. J. X. S. Yu Jiang, Hehua Zhang, “Uncertain model and algorithm
for hardware/software partitioning,” 2012 IEEE Computer Society
Annual Symposium on VLSI, vol. 11, no. 4, pp. 243 – 248, 2012.

[33] P. Arató, S. Juhász, Z. Mann, A. Orbán, and D. Papp, “Hardware-
software partitioning in embedded system design,” in Intelligent
Signal Processing, 2003 IEEE International Symposium on. IEEE,
2003, pp. 197–202.

[34] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and
R. Brown, “Mibench: A free, commercially representative embedded
benchmark suite,” in Workload Characterization, 2001. WWC-4.
2001 IEEE International Workshop on. Ieee, 2001, pp. 3–14.

[35] A. Orailoglu and R. Karri, “A design methodology for the high-
level synthesis of fault-tolerant asics,” in VLSI Signal Processing,
V, 1992.,[Workshop on]. IEEE, 1992, pp. 417–426.

[36] Y. Jiang, H. Zhang, X. Song, W. N. Hung, M. Gu, and J. Sun,
“Verification and implementation of the protocol standard in train
control system,” in Computer Software and Applications Conference
(COMPSAC), 2013 IEEE 37th Annual. IEEE, 2013, pp. 549–558.

[37] H. Song and H. Kong, “Safety-assured formal model-driven design
of the multifunction vehicle bus controller,” in 21st International
Symposium Formal Methods. Springer, 2016, pp. 757–763.

[38] H. Zhang, Y. Jiang, X. Song, W. N. Hung, M. Gu, and J. Sun,
“Tsmart-galsblock: A toolkit for modeling, validation, and synthesis
of multi-clocked embedded systems,” in Proceedings of the 2014
Foundations of Software Engineering. ACM, 2014.

	Uncertainty Theory Based Reliability-Centric Cyber-Physical System Design
	Scholarly Commons Citation
	Authors

	tmp.1569850992.pdf.1Bsi8

