14,642 research outputs found

    A framework for cloud-based context-aware information services for citizens in smart cities

    Get PDF
    © 2014 Khan et al.; licensee Springer. Background: In the context of smart cities, public participation and citizen science are key ingredients for informed and intelligent planning decisions and policy-making. However, citizens face a practical challenge in formulating coherent information sets from the large volumes of data available to them. These large data volumes materialise due to the increased utilisation of information and communication technologies in urban settings and local authorities’ reliance on such technologies to govern urban settlements efficiently. To encourage effective public participation in urban governance of smart cities, the public needs to be facilitated with the right contextual information about the characteristics and processes of their urban surroundings in order to contribute to the aspects of urban governance that affect them such as socio-economic activities, quality of life, citizens well-being etc. The cities on the other hand face challenges in terms of crowd sourcing with quality data collection and standardisation, services inter-operability, provisioning of computational and data storage infrastructure. Focus: In this paper, we highlight the issues that give rise to these multi-faceted challenges for citizens and public administrations of smart cities, identify the artefacts and stakeholders involved at both ends of the spectrum (data/service producers and consumers) and propose a conceptual framework to address these challenges. Based upon this conceptual framework, we present a Cloud-based architecture for context-aware citizen services for smart cities and discuss the components of the architecture through a common smart city scenario. A proof of concept implementation of the proposed architecture is also presented and evaluated. The results show the effectiveness of the cloud-based infrastructure for the development of a contextual service for citizens

    Software Platforms for Smart Cities: Concepts, Requirements, Challenges, and a Unified Reference Architecture

    Full text link
    Making cities smarter help improve city services and increase citizens' quality of life. Information and communication technologies (ICT) are fundamental for progressing towards smarter city environments. Smart City software platforms potentially support the development and integration of Smart City applications. However, the ICT community must overcome current significant technological and scientific challenges before these platforms can be widely used. This paper surveys the state-of-the-art in software platforms for Smart Cities. We analyzed 23 projects with respect to the most used enabling technologies, as well as functional and non-functional requirements, classifying them into four categories: Cyber-Physical Systems, Internet of Things, Big Data, and Cloud Computing. Based on these results, we derived a reference architecture to guide the development of next-generation software platforms for Smart Cities. Finally, we enumerated the most frequently cited open research challenges, and discussed future opportunities. This survey gives important references for helping application developers, city managers, system operators, end-users, and Smart City researchers to make project, investment, and research decisions.Comment: Accepted for publication in ACM Computing Survey

    An Architecture for Integrated Intelligence in Urban Management using Cloud Computing

    Get PDF
    With the emergence of new methodologies and technologies it has now become possible to manage large amounts of environmental sensing data and apply new integrated computing models to acquire information intelligence. This paper advocates the application of cloud capacity to support the information, communication and decision making needs of a wide variety of stakeholders in the complex business of the management of urban and regional development. The complexity lies in the interactions and impacts embodied in the concept of the urban-ecosystem at various governance levels. This highlights the need for more effective integrated environmental management systems. This paper offers a user-orientated approach based on requirements for an effective management of the urban-ecosystem and the potential contributions that can be supported by the cloud computing community. Furthermore, the commonality of the influence of the drivers of change at the urban level offers the opportunity for the cloud computing community to develop generic solutions that can serve the needs of hundreds of cities from Europe and indeed globally.Comment: 6 pages, 3 figure

    MONICA in Hamburg: Towards Large-Scale IoT Deployments in a Smart City

    Full text link
    Modern cities and metropolitan areas all over the world face new management challenges in the 21st century primarily due to increasing demands on living standards by the urban population. These challenges range from climate change, pollution, transportation, and citizen engagement, to urban planning, and security threats. The primary goal of a Smart City is to counteract these problems and mitigate their effects by means of modern ICT to improve urban administration and infrastructure. Key ideas are to utilise network communication to inter-connect public authorities; but also to deploy and integrate numerous sensors and actuators throughout the city infrastructure - which is also widely known as the Internet of Things (IoT). Thus, IoT technologies will be an integral part and key enabler to achieve many objectives of the Smart City vision. The contributions of this paper are as follows. We first examine a number of IoT platforms, technologies and network standards that can help to foster a Smart City environment. Second, we introduce the EU project MONICA which aims for demonstration of large-scale IoT deployments at public, inner-city events and give an overview on its IoT platform architecture. And third, we provide a case-study report on SmartCity activities by the City of Hamburg and provide insights on recent (on-going) field tests of a vertically integrated, end-to-end IoT sensor application.Comment: 6 page

    Integrated system architecture for decision-making and urban planning in smart cities

    Get PDF
    Research and development of applications for smart cities are extremely relevant considering the various problems that population growth will bring to large urban centers in the next few years. Although research on cyber-physical systems, cloud computing, embedded devices, sensor and actuator networks, and participatory sensing, among other paradigms, is driving the growth of solutions, there are a lot of challenges that need to be addressed. Based on these observations, in this work, we present an integrated system architecture for decision-making support and urban planning by introducing its building blocks (termed components): sensing/actuation, local processing, communication, cloud platform, and application components. In the sensing/actuation component, we present the major relevant resources for data collection, identification devices, and actuators that can be used in smart city solutions. Sensing/actuation component is followed by the local processing component, which is responsible for processing, decision-making support, and control in local scale. The communication component, as the connection element among all these components, is presented with an emphasis on the open-access metropolitan area network and cellular networks. The cloud platform is the essential component for urban planning and integration with electronic governance legacy systems, and finally, the application component, in which the government administrator and users have access to public management tools, citizen services, and other urban planning resources15

    Ontology-based Classification and Analysis of non- emergency Smart-city Events

    Full text link
    Several challenges are faced by citizens of urban centers while dealing with day-to-day events, and the absence of a centralised reporting mechanism makes event-reporting and redressal a daunting task. With the push on information technology to adapt to the needs of smart-cities and integrate urban civic services, the use of Open311 architecture presents an interesting solution. In this paper, we present a novel approach that uses an existing Open311 ontology to classify and report non-emergency city-events, as well as to guide the citizen to the points of redressal. The use of linked open data and the semantic model serves to provide contextual meaning and make vast amounts of content hyper-connected and easily-searchable. Such a one-size-fits-all model also ensures reusability and effective visualisation and analysis of data across several cities. By integrating urban services across various civic bodies, the proposed approach provides a single endpoint to the citizen, which is imperative for smooth functioning of smart cities

    Design smart city apps using activity theory.

    Get PDF
    In this paper we describe an innovative approach to the design process of Smart City interventions. We tested it with participants enrolled in the Master\u2019s Degree program in \u201cInnovators in enterprise and public administration\u201d: the objective of the Master was to stimulate the acquisition of technical and methodological skills useful in designing and implementing specific Smart City actions. During the "project work" phase, participants learned about a design method named SAM \u2013 Smart City Model - based on the Cultural Historical Activity Theory (CHAT). We present an overview of design criteria for Smart City projects, the description of the theoretical framework of Activity Theory, and our proposal of the SAM design model. We also present some examples of student\u2019s \u201cprojects\u201d and a more extensive description of one case study about the full design process of an App planned using SAM, for \u201csmart health\u201d vaccine management and monitoring services. The App was later published and made available to the citizens and was successful in attracting thousands of users. All the participants considered the model very useful in particular because it made possible to understand the interaction and solve contradictions between different stakeholders and systems involved

    Internet of things

    Get PDF
    Manual of Digital Earth / Editors: Huadong Guo, Michael F. Goodchild, Alessandro Annoni .- Springer, 2020 .- ISBN: 978-981-32-9915-3Digital Earth was born with the aim of replicating the real world within the digital world. Many efforts have been made to observe and sense the Earth, both from space (remote sensing) and by using in situ sensors. Focusing on the latter, advances in Digital Earth have established vital bridges to exploit these sensors and their networks by taking location as a key element. The current era of connectivity envisions that everything is connected to everything. The concept of the Internet of Things(IoT)emergedasaholisticproposaltoenableanecosystemofvaried,heterogeneous networked objects and devices to speak to and interact with each other. To make the IoT ecosystem a reality, it is necessary to understand the electronic components, communication protocols, real-time analysis techniques, and the location of the objects and devices. The IoT ecosystem and the Digital Earth (DE) jointly form interrelated infrastructures for addressing today’s pressing issues and complex challenges. In this chapter, we explore the synergies and frictions in establishing an efficient and permanent collaboration between the two infrastructures, in order to adequately address multidisciplinary and increasingly complex real-world problems. Although there are still some pending issues, the identified synergies generate optimism for a true collaboration between the Internet of Things and the Digital Earth
    corecore