7 research outputs found

    A Feasible Method for Optimization with Orthogonality Constraints

    Get PDF
    Minimization with orthogonality constraints (e.g., X'X = I) and/or spherical constraints (e.g., ||x||_2 = 1) has wide applications in polynomial optimization, combinatorial optimization, eigenvalue problems, sparse PCA, p-harmonic flows, 1-bit compressive sensing, matrix rank minimization, etc. These problems are difficult because the constraints are not only non-convex but numerically expensive to preserve during iterations. To deal with these difficulties, we propose to use a Crank-Nicholson-like update scheme to preserve the constraints and based on it, develop curvilinear search algorithms with lower per-iteration cost compared to those based on projections and geodesics. The efficiency of the proposed algorithms is demonstrated on a variety of test problems. In particular, for the maxcut problem, it exactly solves a decomposition formulation for the SDP relaxation. For polynomial optimization, nearest correlation matrix estimation and extreme eigenvalue problems, the proposed algorithms run very fast and return solutions no worse than those from their state-of-the-art algorithms. For the quadratic assignment problem, a gap 0.842% to the best known solution on the largest problem "256c" in QAPLIB can be reached in 5 minutes on a typical laptop

    Use of the NLPQLP Sequential Quadratic Programming Algorithm to Solve Rotorcraft Aeromechanical Constrained Optimisation Problems

    Get PDF
    Optimization of the control vector, configuration and aerodynamic surface design potentially offers significant performance enhancement to rotorcraft systems. These analyses indicated that non-linear programming methods that solve a sequence of related quadratic-programming sub-problems could be used successfully to solve these problems. Accordingly, a license for one of the latest versions of Professor Schittkowski's very successful Sequential Quadratic Programming NLPQLP software was obtained and used to experiment and analyze typical optimization problems of the type encountered in various rotorcraft wind tunnel and flight tests. Emphasis was directed toward obtaining efficiency, robustness and speed in computation

    Use of the NLP10x10 Sequential Quadratic Programming Algorithm To Solve Rotorcraft Hub Loads Minimisation Problems

    Get PDF
    Previous research and experimentation on the use of a non-linear programming constrained optimisation technique to define an optimal control vector for rotorcraft applications indicated that use of this methodology was feasible and desirable in many cases. In particular, use of non-linear programming methods that solve a sequence of related quadratic-programming sub-problems were used successfully to solve these problems. Accordingly, a licence for one of the latest versions of Professor Klaus Schittkowskis very successful Sequential Quadratic Programming NLPQLP software was obtained and used to experiment with and analyse typical optimisation problems of the type encountered in various rotorcraft wind tunnel and flight tests. This research resulted in the development of the general NLPQLP Computation System that could be used to solve problems of the type encountered in various rotorcraft applications where there is a linear dependence of the measurement vector on the control vector, and where equality andor inequality constraints might be imposed. This development was accomplished on a mainframe computer not part of actual wind tunnel andor flight-test experiment, but in a format which was transferable to wind tunnel lap-top computers. Emphasis was directed toward obtaining efficiency, robustness and speed in computation.The System was developed in support of the five-bladed SMART Rotor Active Flap Rotor Hub Loads analytical minimisation research. The design and development of the Computation System was tailored to address the particular requirements of the problem to minimise a performance metric function of measured hub load harmonic angular couple components by optimising the control vector harmonic flap angular couple components subject to constraints on the amplitudes of these control vector harmonic flap angular couple components. In addition, to facilitate real time wind tunnel experimentation, the ability to rapidly selectchange the particular hub load harmonic angular couple components andor the particular control vector harmonic angular couple components to be considered in the optimisation procedure was provided in the System. This capability allows the singling out of particular hub load frequencies andor particular flap angle frequencies to be analysed during testing operations. The System was used very successfully for the SMART Active Flap Rotor Hub minimisation problems considered in the study, the results of which were presented at the American Helicopter Society Fifth Decennial Aeromechanics Specialist Conference in January 2014. Excellent agreement between cases initiated with best guess starting estimates for the control vector elements and cases initiated with zero control vector starting element estimates resulted, indicating the robustness of the NLP10x10 algorithm

    A Class of Nonmontone Line Search Method with Perturbations

    No full text
    corecore