
New Trust Region SQP Methods
for Continuous and Integer

Optimization

Von der Universität Bayreuth
zur Erlangung des Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)
genehmigte Abhandlung

von

Oliver Exler
aus Schwabach

1. Gutachter: Prof. Dr. Klaus Schittkowski
2. Gutachter: Prof. Dr. Hans Josef Pesch
3. Gutachter: Prof. Dr. Michael Ulbrich, TU München

Tag der Einreichung: 20. November 2012
Tag des Kolloquiums: 18. November 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by EPub Bayreuth

https://core.ac.uk/display/33804704?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

Zusammenfassung . iii

Abstract . v

1 Introduction . 1

2 Concepts in Nonlinear Programming . 7
2.1 Notation . 7
2.2 Optimality Conditions . 10
2.3 Convergence Properties . 13
2.4 Difficulties in Mixed-Integer Optimization 13

3 Sequential Quadratic Programming Methods 15
3.1 Foundations of Sequential Quadratic Programming 15
3.2 Measuring Progress . 17

3.2.1 Merit Functions . 18
3.2.2 Filter . 21

3.3 Line Search Methods . 22
3.4 Trust Region Methods . 23

3.4.1 Vardi-like Approach . 27
3.4.2 Celis-Dennis-Tapia-like Approach 28
3.4.3 Yuan-like Approach . 28
3.4.4 Fletcher-Leyffer-Toint Filter Method 31
3.4.5 Ulbrich Filter Method . 34

4 A Trust Region SQP Algorithm for Constrained Nonlinear Programs . . 35
4.1 Algorithm . 35

4.1.1 Calculation of Trial Steps . 36
4.1.2 Model Formulation . 39
4.1.3 Penalty Parameter Update . 40
4.1.4 Algorithm Formulation . 41

4.2 Convergence Analysis . 43
4.2.1 Global Convergence . 44
4.2.2 Local Convergence . 98

4.3 Discussion . 108

5 Mixed-Integer Optimization . 113
5.1 Overview of Existing Methods . 114
5.2 New Algorithms for Mixed-Integer Nonlinear Optimization 116

5.2.1 A Mixed-Integer Sequential Quadratic Programming Algorithm . 117
5.2.2 A Modification to Avoid Second Order Correction Steps 124

5.3 Summary . 130

i

ii Contents

6 Numerical Results . 131
6.1 Test Environment and Implementation Details 131

6.1.1 The FORTRAN Package MISQP . 131
6.1.2 A Reference Code – NLPQLP . 133

6.2 Performance Evaluation . 134
6.3 Continuous Optimization Problems . 137
6.4 Mixed-Integer Optimization Problems 140

6.4.1 Results for Relaxed Problem Formulation 144
6.5 Summary . 148

7 Conclusion and Outlook . 149

A Program Documentation MISQP . 151

B Priority Theory . 157

Bibliography . 159

Zusammenfassung

In dieser Arbeit werden neue Verfahren zur Lösung restringierter nichtlinearer Op-
timierungsprobleme vorgestellt. Die vorgeschlagenen Algorithmen lassen sich den se-
quentiellen quadratischen Optimierungsverfahren – sequential quadratic programming
(SQP) methods – zuordnen. Es werden zwei Arten von Problemstellungen betrachtet.
Die Probleme der einen Klasse werden als nichtlineare Optimierungsprobleme bezeich-
net – nonlinear programs (NLP). Sie zeichnen sich dadurch aus, dass der Wertebereich
aller Optimierungsvariablen reell ist. Die zweite Problemklasse umfasst die gemischt-
ganzzahligen nichtlinearen Probleme – mixed-integer nonlinear programs (MINLP).
MINLPs sind eine Erweiterung der NLPs, da zusätzlich zu den reellen Variablen noch
Variablen auftreten, deren Wertebereich auf die ganzen Zahlen beschränkt ist. Die
betrachteten Probleme beider Klassen weisen sowohl Gleichungs- als auch Unglei-
chungsnebenbedingungen auf.

Motiviert ist die Arbeit durch die Weiterentwicklung eines neuartigen Algorithmus
zur Lösung von MINLPs, der erstmals von Exler und Schittkowski [37] diskutiert
wurde. Es handelt sich um eine Erweiterung der SQP Verfahren für die gemischt-
ganzzahlige Optimierung. Der Ansatz ersetzt die kontinuierlichen Teilprobleme durch
gemischt-ganzzahlige quadratische Probleme. Ziel ist es von den guten Konvergenz-
eigenschaften der SQP Verfahren bezüglich der kontinuierlichen Variablen zu pro-
fitieren. Es werden zwei neue Varianten des ursprünglichen Algorithmus vorgestellt.

Es ist bekannt, dass die Konvergenz eines SQP Verfahrens ohne zusätzliche Maß-
nahmen nicht für jeden beliebigen Startwert garantiert werden kann. Um die glo-
bale Konvergenz sicherzustellen, werden Techniken der Trust-Region-Verfahren – trust
region methods – angewandt. In der ursprünglichen Fassung von Exler und Schitt-
kowski verwendet der Algorithmus zur Lösung von MINLPs die L∞-Penalty Funk-
tion. Ohne spezielle Strategien kann bei Verwendung dieser Funktion die schnelle
lokale Konvergenz von SQP Verfahren gestört werden. Das Auftreten des sogenan-
nten Maratos-Effekts führt zu einer unnötigen Verkleinerung der Schrittlänge im Ver-
fahren. Beim ersten hier vorgestellten Algorithmus für MINLPs werden zusätzliche
Korrekturschritte zweiter Ordnung berechnet – second order correction (SOC) steps.
Die Berechnung von SOC Schritten ist einer von mehreren möglichen Ansätzen, um
die schnelle lokale Konvergenz zu bewahren. Diese Schritte erfordern jedoch weitere
Funktionsauswertungen. Bei MINLPs aus der Anwendung im Ingenieurwesen geschieht
die Bestimmung von Funktionswerten jedoch oftmals durch aufwendige Simulations-
codes, so dass eine einzelne Funktionsauswertung bereits Minuten oder sogar Stunden
dauern kann. Das Ziel muss es folglich sein, die Anzahl der erforderlichen Funktions-
auswertungen möglichst gering zu halten.

Aus diesem Grund steht die Untersuchung von Methoden im Vordergrund, die lokal
schnell konvergieren und dabei auf die Berechnung von SOC Schritten verzichten kön-
nen. Da für NLPs fundierte theoretische Grundlagen vorliegen, die für MINLPs teil-
weise nicht existieren, liegt der Schwerpunkt dieser Arbeit auf der Entwicklung und
theoretischen Analyse eines neuen Algorithmus zur Lösung restringierter nichtline-
arer Optimierungsprobleme der Problemklasse NLP. Der neue Algorithmus verwendet

iii

iv Zusammenfassung

als Meritfunktion eine erweiterte Lagrange-Funktion. Die schnelle lokale Konvergenz
bleibt auch ohne zusätzliche SOC Schritte erhalten. Die Verwendung einer differen-
zierbaren Meritfunktion, wie der erweiterten Lagrange-Funktion, wurde für SQP Ver-
fahren in Kombination mit Trust-Region-Verfahren für gleichheitsrestringierte Proble-
me bereits untersucht. Verfahren, welche auch Ungleichungen betrachten, überführen
die Ungleichungen oftmals durch Schlupfvariablen in Gleichungen. Der Ansatz dieser
Arbeit behandelt Ungleichungen ohne eine solche Umformung.

Der neue Trust Region SQP Algorithmus für NLPs wird hinsichtlich seiner theore-
tischen Konvergenzeigenschaften analysiert. Hierbei wird sowohl auf die globale, als
auch auf die lokale Konvergenz eingegangen. Es wird gezeigt, dass die von dem Al-
gorithmus erzeugte Folge von Iterationspunkten unter geeigneten Voraussetzungen
für jeden beliebigen Startpunkt mindestens einen Häufungspunkt besitzt, welcher die
Karush-Kuhn-Tucker Bedingungen des Ausgangsproblems erfüllt. Ist die generierte
Folge von Iterationspunkten nahe genug am Optimum, so werden unter geeigneten
Voraussetzungen volle SQP Schritte akzeptiert und eine schnelle lokale Konvergenz
tritt ein.

Die Erkenntnisse aus der Entwicklung des kontinuierlichen Algorithmus fließen di-
rekt in die Weiterentwicklung des Algorithmus für MINLPs ein. Eine modifizierte
Varianten des gemischt-ganzzahligen Algorithmus von Exler und Schittkowski [37]
wird präsentiert. Hier findet keine Berechnung von Korrekturschritten mehr statt, so
dass die zusätzlichen Funktionsauswertungen vermieden werden.

Alle entwickelten Algorithmen liegen als vollständig dokumentierte FORTRAN Im-
plementierungen vor. Die Effizienz der Verfahren und ihrer Implementierungen wird
anhand einer Vielzahl von Testproblemen demonstriert. Die theoretisch erzielbaren
Konvergenzeigenschaften können für den vorgestellten Algorithmus für kontinuierliche
Probleme auch numerisch verifiziert werden. Auch die Übertragung der Erkenntnisse
aus der kontinuierlichen Optimierung auf den gemischt-ganzzahligen Fall erweist sich
als effizient.

Abstract

In this thesis new algorithms are presented that address nonlinear optimization prob-
lems. The algorithms belong to the class of sequential quadratic programming (SQP)
methods. Two problem formulations that arise frequently in real-world applications are
considered. Both have in common that functions are nonlinear and the formulations
contain equality and inequality constraints. For the one class of problems the domain
of all variables is R. These problems are called nonlinear programming (NLP) prob-
lems. Many applications also require that some of the featured variables are restricted
to the domain Z. Problems with additional integer variables are called mixed-integer
nonlinear programs (MINLP) and are also considered here.

This work is motivated by the advancement of an algorithm for solving MINLPs
that was first discussed by Exler and Schittkowski [37]. The algorithm adapts concepts
of SQP methods to mixed-integer nonlinear optimization. The new approach replaces
the continuous quadratic problems by mixed-integer quadratic problems. The aim is to
profit from the fast local convergence properties of SQP methods at least with respect
to the continuous variables when integer variables remain fixed. Two new versions of
the underlying algorithm of Exler and Schittkowski are presented.

It is well-known that SQP methods might not converge for any arbitrary starting
point. To obtain global convergence, techniques of trust region methods are employed
by the new algorithms. The first version of an algorithm for MINLPs presented in
this thesis employs the L∞-penalty function as merit function. Applying this penalty
function might lead to a slow convergence. The so-called Maratos effect requires the
reduction of the step length so that fast convergence is lost. Hence, safeguards have
to be added. The presented algorithm calculates additional second order correction
(SOC) steps. Calculating SOC steps is a frequently used approach to obtain fast
local convergence. There also exist other techniques. The SOC steps require additional
function evaluations. Frequently, function values of mixed-integer problems arising in
the field of engineering are evaluated by running time-consuming simulation tools,
where a single function evaluation can take minutes or even hours. Thus, the goal of
the development of an efficient method has to be that the number of needed function
evaluations is as small as possible.

For that reason the investigation of methods that obtain fast local convergence
without calculating SOC steps is the key aspect of this thesis. As a fundamental the-
ory is available for NLPs, whereas MINLPs lack in most of these concepts, the main
part of this thesis presents and analyzes a new trust region SQP algorithm address-
ing NLPs. The algorithm proposed here avoids the calculation of SOC steps by using
an augmented Lagrangian function as merit function. In trust region methods a dif-
ferentiable merit function, such as an augmented Lagrangian function, was employed
in the past for equality constrained problems. Methods that also treat inequality con-
straints, transform these constraints into equality constraints. The new algorithm does
not reformulate the underlying problem.

The proposed algorithm for NLPs is described in detail. The global and local con-

v

vi Abstract

vergence properties of the new algorithm are investigated. Under suitable assumptions
it is shown that for any arbitrary starting point the sequence of generated iterates
contains at least one accumulation point that is a Karush-Kuhn-Tucker point of the
underlying NLP. Under certain conditions fast local convergence is proved, as full SQP
steps will be accepted close to a solution. Thus, no additional SOC steps are required.

Due to the insight that is gained by the development of the algorithm for NLPs, an
additional version of the algorithm for MINLPs can be stated. The second algorithm
also enhances the algorithm of Exler and Schittkowski [37], but does not calculate
SOC steps anymore and the extra function evaluations are avoided.

All presented algorithms are implemented in FORTRAN and completely documented.
The code is evaluated on a set of almost 500 test problems. Numerical results show
the good performance of the new algorithms. The numerical tests of the algorithm for
NLPs indicate that the theoretical convergence results hold in practice. Moreover, the
efficiency of the second algorithm for MINLPs that does not calculate SOC steps has
improved compared to the first version with SOC steps.

1 Introduction

This thesis introduces new methods to solve nonlinear optimization problems. Many
areas of science and engineering employ mathematical optimization methods. Fre-
quently, the problems arising in these fields are obtained by combining a performance
criterion, e.g., a cost function that is minimized, and a mathematical model that
approximates a real-world system. The underlying model consists of variables which
represent different states of the considered system. Relations between these variables
are expressed by functions that can be either linear or nonlinear. The performance cri-
terion is optimized subject to these constraints. Typical constraints are, for example,
physical laws like mass balances or heat equations. Depending on the domain of the
variables, the resulting optimization problems are classified differently.

The methods proposed in this thesis address two kinds of problem formulations.
The first class of problems under consideration contains variables whose domain is
R, whereas the second formulation features additionally discrete variables that are
restricted to the domain Z. The combinatorial structure of the second class makes
these problems extremely difficult to solve. For both classes of optimization problems
new algorithms are proposed in this work.

The development of the new algorithms is motivated by the advancement of an
algorithm discussed by Exler and Schittkowski [37], which enhances a first version
introduced and implemented by Exler [33]. The algorithm addresses the aforemen-
tioned second class of optimization problems, the so-called mixed-integer nonlinear
programming (MINLP) problems. They are defined as

minimize
x∈Rnc , y ∈Zni

f(x, y)

subject to gj(x, y) = 0 , j = 1, . . . ,me ,

gj(x, y) ≥ 0 , j = me + 1, . . . ,m ,

(1.1)

where x denotes the continuous variables and y denotes integer variables, respectively.
The constant nc is the number of continuous variables and ni denotes the number of
integer variables. The objective function f(x, y) and the constraint functions gj(x, y),
j = 1, . . . ,m, are all smooth, real-valued functions that are assumed to be twice
continuously differentiable at least on Rnc . The nonnegative constant me denotes the
number of equality constraints and me is less or equal to m.

Algorithms for mixed-integer problems (1.1) are of great interest, as a lot of problems
arising in practice contain discrete variables, see for example Exler et al. [34], and
Antelo et al. [1] for process design problems from chemical engineering, or Sendín,
Exler, and Banga [108], where a problem from systems biology is considered. Several
methods addressing problem (1.1) have been proposed, see, for instance, Floudas [44],
and Grossmann and Kravanja [56] for reviews.

1

2 1 Introduction

The algorithm of Exler and Schittkowski [37] differs from known methods, as it
adapts the concepts of sequential quadratic programming (SQP) to mixed-integer non-
linear optimization. SQP methods approximate the solution to a problem by generating
a sequence of iterates where the step from one iterate to the next is obtained as solu-
tion of a quadratic subproblem. Instead of solving continuous quadratic subproblems
the proposed adaptation solves mixed-integer quadratic problems.

The underlying SQP methods are well-established tools to solve problems that be-
long to the class of nonlinear programming (NLP) problems. Here the domain of all
variables of the optimization problems is continuous. The nonlinear programming prob-
lem is formulated as

minimize
x∈Rn

f(x)

subject to gj(x) = 0 , j = 1, . . . ,me ,

gj(x) ≥ 0 , j = me + 1, . . . ,m .

(1.2)

Again x denotes the n continuous variables. The objective function f(x) and the m
constraints gj(x), j = 1, . . . , m, are all smooth, real-valued functions, and assumed to
be at least twice continuously differentiable on the whole Rn.

Problems of form (1.2), with small and medium size, can be efficiently solved by SQP
methods. This approach was proposed for the first time in the 1960’s by Wilson [126].
In the 1970’s, SQP methods became famous due to Han [58, 59] and Powell [86].
Since that time a lot of research has been done on the theoretical background of SQP
methods. Several theorems concerning the local and global convergence properties are
established. For reviews see the papers, for example, by Schittkowski and Yuan [107],
Boggs and Tolle [7], and Gould and Toint [52]. Detailed descriptions of SQP methods
are presented, for instance, in Fletcher [40], Gill, Murray, and Wright [49], Stoer [112],
Spellucci [110], and Sun and Yuan [113].

The intention of adapting SQP methods to mixed-integer optimization is to obtain
fast local convergence with respect to the continuous variables x, at least in situations
when integer variables y remain fixed. The desired fast local convergence can be ex-
pected for SQP methods in case the starting point is close to the solution. But there
is no guarantee that the method will converge for any arbitrary starting point. For
this reason stabilization techniques have to be added to the basic SQP method. To
obtain convergence, a trial step d, which is the minimizer of a quadratic subproblem,
has to fulfill some necessary conditions to be applied. Therefore, a merit function is
introduced that measures the progress toward the solution that is achieved by taking
step d. If the trial step d does not reduce the merit function sufficiently, then the
step is rejected and not applied and the length of the next trial step is restricted to
a reduced size. The common stabilization techniques differ in the way the progress is
measured and the step size is restricted and adapted.

In Exler and Schittkowski [37] a trust region stabilization is suggested to restrict
the length of the generated trial steps d in their mixed-integer algorithm. The step

3

size is controlled by adding a trust region constraint to the subproblem, in general
formulated as

∥d∥ ≤ ∆ , (1.3)

where ∥.∥ stands for an arbitrary norm and ∆ > 0 denotes the trust region radius.
Restriction (1.3) is a key ingredient of trust region methods, see, e.g., Conn, Gould,
and Toint [21] for an extensive textbook. The use of trust region techniques for the
mixed-integer algorithm in Exler and Schittkowski [37] is motivated by the need that
all trial steps d have to fulfill the integer requirement with respect to the discrete
variables y. As the trial steps d are obtained by solving mixed-integer subproblems with
additional trust region constraint (1.3), the maximum length of the steps d can easily
be controlled, and d is integer with respect to y for sure. This cannot be guaranteed
when, for example, line search techniques are used to generate the trial steps, as
performing a search along a determined direction might lead to fractional values with
respect to integer variables.

The mixed-integer algorithm in Exler and Schittkowski [37] is based on a trust
region algorithm introduced by Yuan [130], which uses the L∞-penalty function as
merit function. The L∞-penalty function belongs to a class of penalty functions which
features an undesirable behavior. They may destroy the fast local convergence of SQP
methods. This effect was discovered first by Maratos [71]. In some cases an unnecessary
reduction of the step size occurs even arbitrary close to the solution of a problem. The
convergence slows down significantly. An illustrative example is given in Chapter 3. To
overcome this effect several approaches have been proposed. Fletcher [39] suggested the
calculation of additional steps that are called second order correction (SOC) steps. He
showed that applying additional SOC steps circumvent the effect described by Maratos.
The algorithms proposed by Yuan [130], Mayne and Polak [73], and Fukushima [45],
also calculate second order corrections steps to avoid negative side effects. Details on
the SOC technique can be found in Yuan [129].

A new mixed-integer algorithm is introduced in Chapter 5 that enhances the al-
gorithm of Exler and Schittkowski [37]. The stated algorithm also employs the L∞-
penalty function and calculates second order correction steps for the continuous vari-
ables x as suggested in the underlying algorithm of Yuan [130]. Because of these SOC
steps, fast local convergence can be obtained with respect to x in case the integer vari-
ables y remain unchanged. On the other hand, the strategy requires extra effort for
calculating the SOC steps and, moreover, additional function evaluations are needed.
To be applicable to real-world problems, where function evaluations are frequently ob-
tained by running time-consuming simulation tools, it is required that the developed
method needs as few function evaluations as possible. Here time-consuming means
that a single function evaluation might take several days. Thus, the calculation of
SOC steps and the corresponding additional function evaluations should be avoided if
possible.

The aim of this thesis is the development of strategies to get around the calculation
of second order correction steps. Thus, methods are investigated that guarantee fast

4 1 Introduction

local convergence without requiring additional SOC steps, when the SQP method is
stabilized by the trust region framework. As the mixed-integer algorithm employs SOC
steps only for continuous variables x, the analysis concentrates on the continuous non-
linear problem (1.2). Fundamental concepts, as optimality criteria, exist for problems
of form (1.2), and they can be used to derive theoretical convergence properties of
an algorithm addressing these problems. As mixed-integer optimization lacks in these
concepts, a convergence analysis would be more complex in this case. Thus, the main
part of this thesis outlines the development and investigation of a new trust region
SQP algorithm for optimizing the continuous problem (1.2). The algorithm uses new
techniques that avoid the calculation of SOC steps. The obtained insight is then ap-
plied to improve the mixed-integer algorithm addressing problem (1.1). In Chapter 5 a
second algorithm for mixed-integer problems is presented that adapts the techniques of
the new continuous algorithm. The second mixed-integer algorithm does not calculate
SOC steps anymore.

The new continuous trust region SQP algorithm addressing problems of form (1.2)
employs a differentiable merit function instead of the L∞-penalty function. By applying
a differentiable merit function the calculation of second order correction steps can be
avoided. Differentiable merit functions, namely augmented Lagrangian functions, have
already been used in combination with trust region methods but restricted to equality
constrained problems, see, for instance, Celis, Dennis, and Tapia [17], Dennis, El-Alem,
and Maciel [24], El-Alem [30, 31], and Powell and Yuan [93]. Schittkowski [100], and
Powell and Yuan [92] use a differentiable augmented Lagrangian function as merit
function in line search methods. Fast local convergence is achieved without additional
safeguards.

In this thesis the augmented Lagrangian and the techniques proposed in Schitt-
kowski [100] are adapted to trust region methods. Thus, the new trust region algorithm
is applicable to problems that feature equality and inequality constrains. Moreover,
the inequality constraints are treated without any modification of the original prob-
lem formulation. Frequently, the inequality constraints are transformed into equality
constraints by introducing slack variables, see, for example, Byrd, Gilbert, and No-
cedal [15], and Niu and Yuan [76]. In El-Alem and El-Sobky [32], and Omojokun [80]
an active set strategy is proposed to handle inequality constraints, but there is no local
convergence analysis available.

Adding the trust region constraint (1.3) to the subproblems of an SQP method can
lead to infeasible problems. Thus, a strategy for handling inconsistency of the sub-
problems is proposed. Whenever, a subproblem cannot be solved the algorithm enters
a feasibility restoration phase. This idea goes back to the filter methods proposed in
Fletcher and Leyffer [42], and Fletcher, Leyffer, and Toint [43]. During the restora-
tion phase the new trial step is obtained by solving reformulated subproblems where
the constraints are scaled. Scaling is also done by Vardi [123], Byrd, Schnabel, and
Shultz [16], and Omojokun [80], but here the scaling is applied to each subproblem
and not only in a separate restoration phase.

The convergence properties of the proposed continuous algorithm are analyzed in

5

detail. It is shown that under suitable assumptions the new algorithm converges glob-
ally, i.e., for any starting point x0 the sequence generated by the algorithm has at least
one accumulation point that satisfies the Karush-Kuhn-Tucker conditions. Moreover,
the local convergence properties of the algorithm are investigated. It is shown that
fast local convergence is obtained without additional safeguards.

The following chapter introduces the notation used in this thesis. In addition, basic
concepts in nonlinear programming as optimality conditions and convergence prop-
erties are stated for the continuous problem formulation (1.2). As the mixed-integer
problem formulation lacks in some of these concepts, the differences between the two
problem formulations are discussed in Section 2.4.

In Chapter 3 the motivation of sequential quadratic programming methods is given
by highlighting the relation to Newton’s method. Since global convergence of the basic
SQP methods cannot be guaranteed for arbitrary starting points, safeguards have to
be added. The most frequently used globalization strategies are presented. Different
merit functions, that are frequently applied to measure progress toward a stationary
point, are introduced. Moreover, the concept of a filter is explained. A filter differs
from merit function as no penalty parameter is required. The basic ideas of line search
methods are described. As the new algorithms are trust region methods, the basic
concepts, namely models, predicted reduction, and actual reduction, are presented in
Section 3.4. The remainder of the chapter gives an overview of existent approaches that
differ mainly in the way of handling inconsistent subproblems. As above mentioned,
the mixed-integer algorithms presented later in Chapter 5 are based on the algorithm
of Yuan [130]. Therefore, the algorithm is stated in Section 3.4.3.

Chapter 4 presents the trust region SQP algorithm for continuous nonlinear optimi-
zation problems (1.2) with equality and inequality constraints. The key ingredients of
the algorithm are motivated and described in detail. The subproblems are formulated
that are solved and the procedure for handling inconsistent subproblems is explained.
Applying an augmented Lagrangian function to measure progress, requires an appro-
priate adjustment of the involved penalty parameter. Update rules are presented and
motivated. The convergence analysis is found in Section 4.2. The global convergence
of the stated algorithm is analyzed in Section 4.2.1. Under adequate assumptions it
is shown that the sequence of iterates generated by the algorithm has at least one
accumulation point that satisfies the Karush-Kuhn-Tucker optimality conditions of
the continuous problem (1.2). Section 4.2.2 addresses the local convergence analysis.
Under suitable assumptions it is shown that the algorithm accepts full SQP steps and
the trust region constraint is not active close to a solution.

Methods for mixed-integer nonlinear problems (1.1) are discussed in Chapter 5. A
review of commonly used techniques is stated in the beginning of the chapter. In Sec-
tion 5.2 the two new algorithms for mixed-integer optimization problems are presented.
The advanced version of the algorithm introduced in Exler and Schittkowski [37] is
discussed in Section 5.2.1. The modified second algorithm is described in Section 5.2.2.
This algorithm does not calculate second order corrections steps by applying locally the
augmented Lagrangian merit function as suggested for the new continuous algorithm

6 1 Introduction

presented in Chapter 4.
The algorithms presented and discussed in this thesis are implemented in the code

MISQP. Numerical results for the implementations are presented in Chapter 6. The
code is tested on two collections of test problems. The first collection of test problems
is published in Hock and Schittkowski [62] and Schittkowski [98] and consists of con-
tinuous nonlinear problems (1.2). The second set of problems contains mixed-integer
problems (1.1), see Schittkowski [106]. MISQP integrates the algorithms that apply
second order correction steps and those that do not calculate these steps. Thus, the
efficiency of the different approaches can easily be compared. The program documen-
tation of MISQP and a detailed description of the calling parameters and the reverse
communication is given in Appendix A.

In Chapter 7 a final discussion is presented. Some comments are stated whether
avoiding second order correction steps leads to an improved efficiency of the new
mixed-integer algorithm. In addition, an outlook regarding the future work is given.

2 Concepts in Nonlinear Programming

This chapter summarizes basic theoretical concepts of nonlinear programming. In the
beginning the used notation is stated, where the underlying problem formulation does
not include integer variables. However, the introduced notation and definitions can
easily be adapted to the mixed-integer problem formulation. As the problems contain
constraints, the violation of these restrictions has to be analyzed. Thus, a measurement
for restriction violation is introduced and the feasible region is defined. Moreover, the
difference between active and inactive inequality constraints is explained.

In Section 2.2 optimality conditions are presented and additional requirements, such
as constraint qualifications, are defined. Most of the described concepts are not ap-
plicable to mixed-integer optimization and an equivalent mixed-integer formulation
does not exist. Section 2.3 introduces the superlinear and quadratic convergence rates,
which can be used to measure the efficiency of an algorithm.

The final section highlights the difficulties arising in mixed-integer optimization. An
example illustrates the differences between the mixed-integer problem formulation and
the relaxed continuous counterpart.

2.1 Notation

The general nonlinear programming (NLP) problem is formulated as

minimize
x∈Rn

f(x)

subject to gj(x) = 0 , j = 1, . . . ,me ,

gj(x) ≥ 0 , j = me + 1, . . . ,m ,

(2.1)

where the objective function f(x) and the constraint functions gj(x), j = 1, . . . , m,
are all smooth, real-valued functions. All problem functions are assumed to be at
least twice continuously differentiable for all x ∈ R

n. The constants me and m are
nonnegative integers with 0 ≤ me ≤ m. The first me constraints are called equality
constraints, whereas the remaining constraints are named inequality constraints. The
vector x ∈ Rn contains the variables, also called primal variables, where the positive
integer constant n is the number of variables.

Depending on the specific formulation and the characteristics of the problem func-
tions, the general problem (2.1) is named differently. For example, a problem is called
an unconstrained problem if m is zero and no constraints exist. In case no inequality
constraints are defined, that is me = m, the problem is called an equality constrained
problem. The quadratic programming (QP) problem, a special case of problem (2.1),
plays a key role in the methods introduced in this work. All constraints of a QP

7

8 2 Concepts in Nonlinear Programming

problem are linear functions and the objective function is quadratic.
The constraint functions gj(x), j = 1, . . . ,m, are also written as constraint vector

g(x) ∈ Rm, where
g(x) := (g1(x), . . . , gm(x))T . (2.2)

Sometimes the analysis is restricted to either equality constraints or inequality con-
straints. To simplify the notation in these situations, the part of g(x) that corresponds
to the equality constraints is defined as

gE(x) := (g1(x), . . . , gme(x))T ∈ Rme , (2.3)

and, respectively, the part of g(x) corresponding to inequality constraints is defined as

gI(x) := (gme+1(x), . . . , gm(x))T ∈ Rm−me . (2.4)

Here, the subscripts E and I highlight the specific constraints under consideration.
The characters E and I also represent the sets of equality constraints and inequality
constraints, respectively, where

E := {1, . . . ,me} , (2.5)

denotes the index set of equality constraints, and the index set of inequality constraints
is denoted by

I := {me + 1, . . . ,m} . (2.6)

The proposed SQP methods require derivatives of the problem functions. The gra-
dient of the objective function f(x) : Rn → R at x is defined as

∇f(x) :=
(
∂f

∂x1
(x), . . . , ∂f

∂xn
(x)
)T

∈ Rn . (2.7)

If necessary a subscript is added to the notation to highlight which part of the gradient
is considered, e.g., ∇xf(x) denotes the partial derivatives with respect to x.

In addition, second order information are needed by the proposed algorithms. The
Hessian of the objective function f(x) with respect to x is defined as

∇2f(x) :=

∂2f

∂x1∂x1
(x) . . .

∂2f

∂x1∂xn
(x)

...
∂2f

∂xn∂x1
(x) . . .

∂2f

∂xn∂xn
(x)

 ∈ Rn×n . (2.8)

The gradients ∇gj(x) ∈ R
n and the Hessians ∇2gj(x) ∈ R

n×n, j = 1, . . . , m, of
the constraints are defined accordingly. The Jacobian of the constraints is denoted by
∇g(x)T ∈ Rm×n, where

∇g(x) :=
(
∇g1(x), . . . ,∇gm(x)

)
∈ Rn×m , (2.9)

2.1 Notation 9

and the columns of matrix ∇g(x) in (2.9) are the gradients of the constraints.
As problem (2.1) contains constraints gj(x), j = 1, . . . ,m, which have to be satisfied,

the analysis of feasibility and restriction violation is inevitable. An x ∈ Rn is said to be
a feasible point if all restrictions are fulfilled. To simplify the measurement of constraint
violation, the vector g(x)− ∈ Rm is introduced and defined as

gj(x)− := gj(x) , j = 1, . . . ,me ,

gj(x)− := min(gj(x), 0) , j = me + 1, . . . ,m .
(2.10)

Thus, the equation g(x)− = 0 holds at a feasible point x. Here 0 denotes a vector of
zeros of appropriate size. This simplified notation for a vector 0 is also used in the
remainder of this thesis.

Using definition (2.10), the feasible region F of problem (2.1), to say the set of all
points x ∈ Rn that satisfy the constraints, can be defined as

F := {x ∈ Rn | ∥g(x)−∥1 = 0} , (2.11)

where ∥.∥1 denotes the L1-norm, i.e., ∥g(x)−∥1 := ∑m
j=1 |gj(x)−|. In the following

chapters two more norms are used frequently. The L2-norm is denoted by ∥.∥2 and
the L∞-norm is denoted by ∥.∥∞.

The feasible region F as defined by (2.11) is enlarged to points where the constraint
violation is less than a given threshold β ∈ R+

0 , i.e., ∥g(x)−∥1 ≤ β. Here R+
0 denotes

all nonnegative values in R. The extended feasible region is defined as

F(β) := {x ∈ Rn | ∥g(x)−∥1 ≤ β} , (2.12)

where β ≥ 0. Obviously, equation F(β) = F holds for β = 0.
Regarding inequality constraints, two cases are distinguished. Let x ∈ F and for a

j, with me < j ≤ m, the equation gj(x) = 0 holds, then this constraint gj(x) is called
an active constraint at x. Correspondingly, a constraint gj(x), with me < j ≤ m, is
called inactive at x if gj(x) > 0 holds. The index set of active inequality constraints
with respect to x ∈ F is defined as

A(x) := {j ∈ I | gj(x) = 0} . (2.13)

The set of inactive inequality constraints is therefore defined as

B(x) := I \ A(x) . (2.14)

The concept of active constraints is extended to nearly active constraints subject to
γ ∈ R+

0 , and the set of nearly active constraints is defined as

A(x, γ) := {j ∈ I | gj(x) ≤ γ} . (2.15)

This set is also defined for infeasible points, as A(x, γ) also contains all j ∈ I with

10 2 Concepts in Nonlinear Programming

gj(x) < 0. The equation A(x) = A(x, 0), with γ = 0, holds for all x ∈ F . The
complement to A(x, γ) is defined as

B(x, γ) := I \ A(x, γ) . (2.16)

Generally, a subscript k is written to highlight dependency on a specific iteration k.
However, to improve readability a superscript (k) is used in case an entry of a vector
is considered, e.g., x(k)

j denotes the j-th entry of iterate xk. In the remainder of this
thesis the notation Ak and Bk for the sets A(xk, 0) and B(xk, 0) at iterate xk is used.

The introduced notation can be adapted to problems with additional integer vari-
ables in a straightforward way. All concepts also exist in mixed-integer optimization.

2.2 Optimality Conditions

Regarding a minimizer of problem (2.1), a distinction is made between a local and a
global solution. A feasible point x⋆ ∈ F is called a global minimum of problem (2.1) if

f(x⋆) ≤ f(x) , for all x ∈ F . (2.17)

In case inequality (2.17) only holds in a neighborhood of x⋆, then this is called a
local minimum or local minimizer. An x⋆ ∈ F is a local minimum of problem (2.1) if
there exists a neighborhood Nϵ(x⋆) of x⋆ such that

f(x⋆) ≤ f(x) , for all x ∈ F ∩ Nϵ(x⋆) , (2.18)

where the ϵ-neighborhood Nϵ(x⋆) is defined as

Nϵ(x⋆) := {x ∈ Rn | ∥x− x⋆∥ < ϵ} , (2.19)

with ϵ > 0. Here, ∥.∥ denotes an arbitrary norm.
Assuming continuous functions in (2.1) allows the formulation of additional opti-

mality conditions. A key role plays the Lagrangian function of (2.1), which is defined
as

L(x, u) := f(x) − g(x)Tu , (2.20)

where x ∈ Rn and u ∈ Rm. The vector u = (u1, . . . , um)T contains the Lagrangian mul-
tipliers uj, j = 1, . . . ,m, of problem (2.1). The vector u is also called the Lagrangian
multipliers, Lagrange multipliers, or the dual variables.

In case some regularity assumptions are satisfied, necessary optimality conditions
can be stated that use the Lagrangian function (2.20). A common but may be very
restrictive regularity assumption is the so-called linear independence constraint qual-
ification (LICQ). The LICQ holds at a feasible point x if the gradients of the equal-
ity constraints and the active constraints at x are linearly independent, i.e., ∇gj(x),
j ∈ E ∪ A(x), are linearly independent.

2.2 Optimality Conditions 11

Definition 2.1 (LICQ) If active constraint gradients ∇gj(x), j ∈ E ∪ A(x), are
linearly independent at x ∈ F , then the linear independence constraint qualification
(LICQ) holds at x.

Also commonly used is the Mangasarian-Fromowitz constraint qualification (MFCQ).
The MFCQ is weaker than the LICQ, i.e., the LICQ implies the MFCQ.

Definition 2.2 (MFCQ) Let x ∈ F . If the gradients ∇gj(x), j ∈ E, are linearly
independent and there exists a d ∈ Rn such that

∇gj(x)Td = 0 , j ∈ E ,

∇gj(x)Td > 0 , j ∈ A(x) ,
(2.21)

then the Mangasarian-Fromowitz constraint qualification (MFCQ) holds at x.

In Chapter 4, the convergence analysis of the new continuous algorithm applies a
slightly modified version of the Mangasarian-Fromowitz constraint qualification. The
MFCQ is extended to the infeasible region and the extended feasible region F(β), as
defined in (2.12), is considered.

Definition 2.3 (extended MFCQ) Let x ∈ F(β) with β ≥ 0. If the gradients
∇gj(x), j ∈ E, are linearly independent and there exists a d ∈ Rn such that

∇gj(x)Td = 0 , j ∈ E ,

∇gj(x)Td > 0 , j ∈ A(x, 0) ,
(2.22)

then the extended Mangasarian-Fromowitz constraint qualification (extended MFCQ)
holds at x.

First order necessary conditions are stated now that employ the aforementioned
constraint qualifications. Note that the statement of the following theorem remains
valid if other regularity assumptions hold instead of the LICQ or MFCQ.

Theorem 2.4 (First order necessary conditions) Let x⋆ ∈ R
n be a local mini-

mizer of problem (2.1) and the LICQ or MFCQ holds at x⋆, then there exist Lagrange
multipliers u⋆ ∈ Rm such that

∇f(x⋆) −
m∑
j=1

u⋆j∇gj(x⋆) = 0 , (2.23)

gj(x⋆) = 0 , j ∈ E , (2.24)
gj(x⋆) ≥ 0 , j ∈ I , (2.25)

u⋆j ≥ 0 , j ∈ I , (2.26)

u⋆jgj(x⋆) = 0 , j ∈ I , (2.27)

hold. 2

12 2 Concepts in Nonlinear Programming

Conditions (2.23)-(2.27) are called the Karush-Kuhn-Tucker (KKT) optimality con-
ditions. If the KKT conditions hold at a point x⋆, then x⋆ is called a KKT point or as
well a stationary point.

As all constraints of a quadratic programming problem are linear, the KKT condi-
tions (2.23)-(2.27) hold at the minimizer of the QP without the additional requirement
of the LICQ or MFCQ, see, e.g., Geiger and Kanzow [47].

If the objective function f(x) and the constraints gj(x), j = 1, . . . , m, are twice
continuously differentiable, then second order necessary conditions can be stated. Let
x⋆ ∈ R

n be a local minimizer of problem (2.1) and a constraint qualification holds,
then the Hessian of the Lagrangian function (2.20) at x⋆ is positive semidefinite for
all vectors in the null space of the Jacobian of the active constraints .
Theorem 2.5 (Second order necessary conditions) Let x⋆ ∈ Rn be a local min-
imizer of problem (2.1), f(x) and gj(x), j = 1, . . . , m, be twice continuously differen-
tiable and the LICQ holds at x⋆. Then there exist Lagrange multipliers u⋆ ∈ Rm such
that (x⋆, u⋆) satisfies the KKT conditions (2.23)-(2.27), and

dT∇2
xxL(x⋆, u⋆) d ≥ 0 (2.28)

holds for all d ∈ Rn with

∇gj(x⋆)Td = 0 , j ∈ E , (2.29)

∇gj(x⋆)Td = 0 , j ∈ A(x⋆) and u⋆j > 0 , (2.30)

∇gj(x⋆)Td ≥ 0 , j ∈ A(x⋆) and u⋆j = 0 . (2.31)

2

Sufficient conditions for x⋆ to be an isolated minimizer of problem (2.1) are formu-
lated as follows.
Theorem 2.6 (Second order sufficient conditions) Let f(x) and gj(x), j = 1,
. . . , m, be twice continuously differentiable and the LICQ holds at x⋆ ∈ R

n. Let x⋆
and u⋆ ∈ Rm be given such that (x⋆, u⋆) satisfies the KKT conditions (2.23)-(2.27),
and for all d ∈ Rn with d ̸= 0 and

∇gj(x⋆)Td = 0 , j ∈ E , (2.32)

∇gj(x⋆)Td = 0 , j ∈ A(x⋆) and u⋆j > 0 , (2.33)

∇gj(x⋆)Td ≥ 0 , j ∈ A(x⋆) and u⋆j = 0 , (2.34)

holds
dT∇2

xxL(x⋆, u⋆) d > 0 . (2.35)

Then x⋆ is an isolated local minimizer of NLP (2.1). 2

For further information on optimality conditions it is referred, for example, to Spel-
lucci [110], Fletcher [40], Sun and Yuan [113], and Conn, Gould, and Toint [21].

2.3 Convergence Properties 13

2.3 Convergence Properties

Convergence properties play a major role within the theoretical analysis of an algo-
rithm. A distinction is made between a global convergence analysis and a local one.
The global convergence analysis investigates the behavior of an algorithm started at
any arbitrary point. An algorithm should converge from any starting point to a sta-
tionary point, i.e., a point that satisfies the aforementioned KKT optimality conditions
of the optimized problem.

The local convergence analysis concentrates on the behavior of the generated se-
quence of iterates when the iterates are already close to a stationary point. The effi-
ciency of an algorithm is evaluated by measuring the convergence rate, i.e., how fast the
iteration sequence converges toward a stationary point x⋆. Two important convergence
rates are stated subject to an arbitrary norm ∥.∥.

A sequence {xk} is said to converge superlinearly toward x⋆ if

lim
k→∞

∥xk+1 − x⋆∥
∥xk − x⋆∥

= 0 (2.36)

holds. This is also called the Q-superlinear rate of convergence. Later, it is established
that under suitable assumptions the new continuous algorithm can converge locally
with superlinear rate.

A faster convergence is obtained in case the following condition holds. A sequence
{xk} is said to converge quadratically toward x⋆ if a positive constant ν > 0 exists
such that

lim
k→∞

∥xk+1 − x⋆∥
∥xk − x⋆∥2 = ν (2.37)

holds. For example, it can be shown that Newton’s method converges quadratically
under suitable assumptions. This rate of convergence is also named Q-quadratic con-
vergence.

Further information on convergence rates, e.g., the R-superlinear and R-quadratic
convergence rates, can be found in Ortega and Rheinboldt [81], and Conn, Gould, and
Toint [21].

2.4 Difficulties in Mixed-Integer Optimization

The difficulties in mixed-integer nonlinear optimization arise due to the combinatorial
nature of the problems. The combination of the continuous domain and the discrete
domain makes the problems very complex. The number of discrete variables influ-
ences the complexity significantly, as the number of possible combinations increases
exponentially.

A major difficulty concerns the evaluation of the quality or optimality, respectively,
of a given point with a specific discrete configuration. In continuous optimization the
common way is to check the optimality conditions outlined before in Section 2.2. But

14 2 Concepts in Nonlinear Programming

1 2 z

f(z)

f ?

int

f ?

cont

1.5

Figure 2.1: Mixed-Integer vs. Continuous Optimization

these conditions do not hold for mixed-integer optimization. This is demonstrated by
an example shown in Figure 2.1. The considered function f is convex. The continuous
minimizer, i.e., the domain of z is R, is obtained at z⋆cont = 1.5 with an objective
function value f ⋆cont. According to the theory of continuous nonlinear optimization,
this minimizer is unique, see, e.g., Conn et al.[21]. Adding the integer requirement
changes the situation. Although the function is convex there exist two integer values
z⋆int1 = 1 and z⋆int2 = 2 with the optimal objective function value f ⋆int. Thus, the
minimizer is not necessarily unique for convex mixed-integer nonlinear optimization
problems.

Applying the first order necessary conditions for the continuous problem, cf. The-
orem 2.4, the derivative at the continuous minimizer z⋆cont = 1.5 satisfies the KKT
condition (2.23), that is the equation

∂

∂z
f(z⋆cont) = 0 (2.38)

holds. However, this does not hold for the derivatives at the mixed-integer minimizers
z⋆int1 and z⋆int2 . Obviously, at these points the KKT condition (2.23) is not fulfilled as

∂

∂z
f(z⋆int1) ̸= 0 (2.39)

and
∂

∂z
f(z⋆int2) ̸= 0 . (2.40)

Further discussions on arising challenges in mixed-integer optimization can be found,
for example, in Leyffer [67] and Floudas [44].

3 Sequential Quadratic Programming
Methods

In this chapter a review of existing sequential quadratic programming (SQP) methods
and globalization strategies in the context of nonlinear programs of form (1.2) is given.
In the beginning SQP methods are motivated and the idea is described. As the basic
procedure does not converge for any arbitrary starting point, globalization strategies
have to be applied. In order to obtain convergence of an SQP method, a step from one
iterate to another has to fulfill some necessary conditions to be taken.

Section 3.2 introduces techniques that are applied to measure the obtained progress
toward a solution. Merit functions are introduced and the concept of a filter is ex-
plained. If a calculated step of an SQP method does not reduce these measurements
sufficiently, then the step is rejected and a new trial step has to be determined.

Techniques which generate trial steps that fulfill the necessary conditions are pre-
sented in the following sections. In Section 3.3 the line search approach is discussed.
Section 3.4 presents the basic ideas of trust region methods. Moreover, existent trust
region algorithms addressing the nonlinear problem (1.2) are stated in the remainder
of this chapter.

3.1 Foundations of Sequential Quadratic Programming

Problems of form (1.2) with small and medium size can be efficiently solved by SQP
methods if all problem functions f(x) and gj(x), j = 1, . . . ,m, are at least twice
continuously differentiable on the whole Rn. This approach was proposed for the first
time in the 1960’s by Wilson [126]. In the 1970’s SQP methods spread due to the
outstanding publications by Han [58, 59] and Powell [86] and not least because of
the numerical performance of corresponding codes. In those days, the implemented
algorithms outperformed other approaches significantly. For an extensive comparison
see, for example, Schittkowski [98].

The basic idea of SQP methods can be summarized as follows. A solution of the
considered problem is approximated iteratively by solving quadratic programming
problems in each iteration k. The problem in iteration k = 0, 1, . . ., is of the following
form

minimize
d∈Rn

∇f(xk)Td+ 1
2
dTBkd

subject to gj(xk) + ∇gj(xk)Td = 0 , j = 1, . . . ,me ,

gj(xk) + ∇gj(xk)Td ≥ 0 , j = me + 1, . . . ,m ,

(3.1)

where xk is the current approximation to the solution. The constraints of the un-
derlying problem are linearized and the Lagrangian function L(xk, vk), see (2.20), is

15

16 3 Sequential Quadratic Programming Methods

approximated quadratically, where vk is the current approximation to the optimal
Langrange multipliers. The symmetric matrix Bk ∈ Rn×n is an approximation to the
Hessian of the Lagrangian function. Let dk be the optimal solution of subproblem (3.1)
and uk the corresponding multipliers, then the next iterate is set to xk+1 := xk + dk
and vk+1 := uk.

The basic procedure, as just described, is motivated by an observation that can
be made in case the considered problem (1.2) only contains equality constraints, i.e.,
m = me. In the following the similarity of SQP methods to Newton’s method is
demonstrated. Thus, the equality constrained problem

minimize
x∈Rn

f(x)

subject to gj(x) = 0 , j = 1, . . . ,m ,
(3.2)

is considered now.
Let x⋆ be a minimizer of problem (3.2) and u⋆ be the corresponding multipliers

according to the Karush-Kuhn-Tucker optimality conditions, see (2.23) and (2.24).
Then (x⋆, u⋆) is a solution to (

∇f(x) − ∇g(x)u
g(x)

)
= 0 . (3.3)

As equation (3.3) denotes a system of n+m nonlinear equations, Newton’s method
can be applied to approximate a solution. To simplify the notation, the left-hand side
of equation (3.3) is redefined as

Γ(x, u) :=
(

∇f(x) − ∇g(x)u
g(x)

)
. (3.4)

Applying Newton’s method to the rewritten formulation of system (3.3), where def-
inition (3.4) is used, yields the following iteration step. Let (xk, vk) be the current
approximation to the solution (x⋆, u⋆), then Newton’s method determines the next
iterate by xk+1 := xk + dk and vk+1 := vk + wk, where dk and wk solve the system

∇Γ(xk, vk)
(
dk
wk

)
+ Γ(xk, vk) = 0 . (3.5)

Now Γ(xk, vk) is substituted again by the right-hand side of definition (3.4), then (3.5)
can be stated as(

Bk −∇g(xk)
∇g(xk)T 0

)(
dk
wk

)
+
(

∇f(xk) − ∇g(xk)vk
g(xk)

)
= 0 , (3.6)

where Bk := ∇2
xxL(xk, vk). By setting uk := vk + wk, (3.6) can be rewritten as

Bkdk − ∇g(xk)uk + ∇f(xk) = 0 (3.7)

3.2 Measuring Progress 17

and
g(xk) + ∇g(xk)Tdk = 0 . (3.8)

Equations (3.7) and (3.8) are also the optimality conditions of the equality constrained
quadratic problem (3.1) with me = m.

It can be concluded that the basic sequential quadratic programming method out-
lined before is identical to Newton’s method when applied to the Karush-Kuhn-Tucker
optimality conditions of problem (3.2). This statement holds under the condition that
the exact Hessian of the Lagrangian function is used in the subproblems of the SQP
method. Consequently, the SQP method shares the advantages and disadvantages
of Newton’s method. The fast local quadratic convergence of Newton’s method is re-
tained in case the starting point is sufficiently close to the solution. However, Newton’s
method will not converge for arbitrary starting points.

The subsequent sections show how SQP methods can be forced to converge for any
arbitrary starting point x0 ∈ Rn, v0 ∈ Rm. Convergence can only be guaranteed if the
steps taken from one iterate to the next satisfy some necessary conditions. For this
reason the quality of the steps obtained by an SQP method has to be evaluated. A trial
step is accepted if a sufficient improved is obtained. Otherwise, the step is rejected
and a new trial step has to be computed. There are several approaches to stabilize
SQP methods. They differ in the acceptance test and the way of generating new trial
points. In the following, some techniques are discussed, e.g., penalty functions, filter,
line search methods, and trust region methods.

A lot of research has been done on the theoretical background of SQP methods.
Several theorems concerning the local and global convergence properties are estab-
lished. For reviews see, for example, Schittkowski and Yuan [107], Boggs and Tolle [7]
and Gould and Toint [52]. Detailed descriptions of SQP methods are also presented
in Fletcher [40], Gill, Murray, and Wright [49], Stoer [112], Spellucci [110], and Sun
and Yuan [113]. A more practical view on SQP methods is given by Papalambros and
Wilde [82] in the context of optimal design, or by Edgar and Himmelblau [29] coming
from chemical engineering.

3.2 Measuring Progress

In unconstrained optimization the progress toward a solution of the underlying prob-
lem is measured by evaluating the objective function. A step dk is accepted only if
f(xk + dk) is sufficiently less than f(xk). This is straightforward to see. In case ad-
ditional constraints are introduced the progress has to be measured differently. Two
goals of the optimization have to be achieved that might even conflict. On the one
hand, the objective function should be reduced. On the other hand, feasibility of the
obtained solution has to be guaranteed. The question how to combine these conflicting
goals leads to the following sections. Two strategies are discussed, measuring progress
subject to a merit function and subject to a filter.

18 3 Sequential Quadratic Programming Methods

3.2.1 Merit Functions

Merit functions combine the objective function and the feasibility measurement in one
function. Thus, the constrained problem (1.2) is transformed into an unconstrained
problem. In the early days of nonlinear programming unconstrained optimization tech-
niques were employed to minimize these merit functions, as other methods for con-
strained problems were not available. Some commonly used merit functions are pre-
sented in this section. For more details on merit functions and the results presented
below it is referred to, e.g., Geiger and Kanzow [47], and Conn, Gould, and Toint [21].

Merit functions of the following form are called penalty functions, they are defined
as

P (x) := f(x) + σ∥g(x)−∥ , (3.9)

where σ > 0 is a penalty parameter and ∥.∥ denotes an arbitrary norm. The applied
norm ∥.∥ depends on the specific penalty function under consideration. A penalty
function P (x) of form (3.9) is said to be exact at a local minimum x⋆ of the underlying
problem (1.2) if there exists a finite parameter σ > 0 such that x⋆ is also a local
minimizer of P (x) for all σ ≥ σ.

A penalty function where this bound σ does not exist is the least squares penalty
function

Pls(x) := f(x) + σls∥g(x)−∥2
2 , (3.10)

where σls > 0 is a positive penalty parameter. Pls(x) is differentiable but unfortunately
not an exact penalty function. If x⋆ is a solution to problem (1.2), then x⋆ is a minimizer
of Pls(x) only if σls tends to infinity. A method that uses Pls(x) as a merit function will
probably suffer numerical difficulties due to the unbounded penalty parameter σls.

In the context of SQP methods the L1-penalty function was the first penalty function
studied, see Han [59]. The L1-penalty function is formulated as follows

P1(x) := f(x) + σ1∥g(x)−∥1 , (3.11)

with a positive penalty parameter σ1 > 0. P1(x) is an exact penalty function, i.e., if
x⋆ is a minimizer of problem (1.2), u⋆ the corresponding multiplier, and the penalty
parameter satisfies σ1 ≥ ∥u⋆∥∞, then x⋆ is also a minimum of P1(x).

Another exact penalty function is the L∞-penalty function that is defined as

P∞(x) := f(x) + σ∞∥g(x)−∥∞ , (3.12)

with a positive penalty parameter σ∞ > 0. If x⋆ is a minimizer of (1.2) with a cor-
responding multiplier vector u⋆ and the penalty parameter σ∞ is greater or equal to
∥u⋆∥1, then x⋆ is also a minimizer of P∞(x). For example, the algorithm of Yuan [130],
which is the underlying algorithm for the mixed-integer algorithms presented in Chap-
ter 5, uses the L∞-penalty function,

The penalty functions (3.11) and (3.12) are exact at a minimizer x⋆ of problem (1.2),
but they are not differentiable at x⋆. This property might lead to undesirable behav-

3.2 Measuring Progress 19

ior of the underlying optimization algorithm. In this context the so-called Maratos
effect [71] has to be mentioned. By employing a merit functions which is not differ-
entiable, SQP methods can lose the nice fast local convergence properties and slow
down. The following example by Powell [91] illustrates the Maratos effect.
Example 3.1 Consider the problem

minimize
x∈R2

2 (x2
1 + x2

2 − 1) − x1

subject to x2
1 + x2

2 − 1 = 0 .

The objective function be denoted by f(x) and g(x) denotes the constraint. The so-
lution is x⋆ = (1, 0)T and the corresponding Lagrangian multiplier is u⋆ = 3/2. Let
xk be the current approximation to the primal solution x⋆. Then the trial step dk in
iteration k is obtained by solving the quadratic subproblem

minimize
d∈Rn

∇f(xk)Td+ 1
2
dTd

subject to g(xk) + ∇g(xk)Td = 0 ,
(3.13)

where the matrix Bk of the SQP subproblem is set to the Hessian of the Lagrangian
at (xk, u⋆), that is the identity matrix I. Thus, the trial step will be identical to the
one obtained by Newton’s method.

The solution to problem (3.13) be denoted by (dk, uk). It solves the corresponding
KKT system, cf. (2.23) and (2.24),

dk + ∇f(xk) − ∇g(xk)uk = 0 ,

g(xk) + ∇g(xk)Tdk = 0 .
(3.14)

As f(x) and g(x) are quadratic functions, Taylor expansion yields

f(xk + dk) = f(xk) + ∇f(xk)Tdk + 2dTk dk ,

g(xk + dk) = g(xk) + ∇g(xk)Tdk + dTk dk ,
(3.15)

with ∇2f(xk) = 4I and ∇2g(xk) = 2I inserted. Applying (3.14) to (3.15),

f(xk + dk) = f(xk) − ukg(xk) + dTk dk ,

g(xk + dk) = dTk dk

is obtained. For any point xk with g(xk) = 0, except x⋆ and −x⋆, a solution dk ̸= 0 is
obtained. This results in

f(xk + dk) > f(xk)

and
g(xk + dk) > g(xk) = 0 .

20 3 Sequential Quadratic Programming Methods

g(x) = 0

xk xk + dk

xk + dk + d̂k

Figure 3.1: A Second Order Correction Step

Penalty functions of form (3.9), which only combine f(x) and constraint violation
∥g(x)−∥, will reject the step dk as

P (xk + dk) > P (xk) .

This holds for any feasible point that is arbitrary close to the solution x⋆. Without
any safeguards fast local convergence will not take place for an SQP method. 2

The mentioned problem occurs as the constraints are only linearized in the quadratic
subproblem and second order information is contained merely in the Hessian approxi-
mation of the Lagrangian function. This lack of second order information with respect
to the constraints might lead to a rejection of the calculated step. There are different
strategies to overcome this drawback, such as applying second order correction steps,
non-monotone strategies for penalty functions or a differentiable merit function.

Adding second order correction steps was proposed by several authors, see, e.g.,
Fletcher [39] and Yuan [129] for details and convergence analysis. Fletcher [39] has
shown that the SOC steps circumvent the Maratos effect. Mayne and Polak [73],
Yuan [130], and Fukushima [45] also apply SOC steps. The use of SOC steps was
motivated by feasible direction methods. Figure 3.1 illustrates how the second order
correction step d̂k reduces the infeasibility in the constraints that results from taking
step dk, where dk denotes the solution of the quadratic problem (3.1).

The watch-dog technique by Chamberlain et al. [18] can also avoid the Maratos
effect. Here some steps are allowed to increase the used merit function. A similar idea
is used by non-monotone techniques, see, for example, Gould and Toint [53]. The basic
idea of non-monotone strategies goes back to Grippo, Lampariello, and Lucidi [55],
and was extended to constrained optimization and trust region methods in a series of
subsequent papers, see, e.g., Toint [119, 120], and Ulbrich and Ulbrich [122]. Here the
requirement that P (xk + dk) has to be sufficiently less than P (xk) is relaxed, and a
non-monotone sequence of P (xk) is accepted.

3.2 Measuring Progress 21

Instead of penalty functions of form (3.9), augmented Lagrangian merit functions,
defined as

Φσa(x, v) := f(x) − vTg(x) + 1
2

m∑
j=1

σa
(
gj(x)−

)2
, (3.16)

where σa is a positive penalty parameter, are an appropriate alternative. The dual vari-
ables are included in function Φσa(x, v). There exist different strategies for the choice
of the multiplier approximation, for details see, for instance, Boggs and Tolle [7], and
Gill, Murray, Saunders, and Wright [48]. The augmented Lagrangian is differentiable
at a minimizer of the underlying optimization problem and the Maratos effect can be
avoided.

Using smooth merit functions, such as an augmented Lagrangian function, to
achieve fast local convergence without additional safeguards was proposed by Schitt-
kowski [100] for a line search method, and Powell and Yuan [92, 93] for a trust region
method. Ulbrich [121] extended the filter approach, see below for a description, by
techniques of differentiable merit functions to retain fast local convergence without
further safeguards.

Rockafellar [95] suggested a slightly different augmented Lagrangian function that
is stated as

Φσ(x, v) := f(x) −
∑
j∈S

(
vjgj(x) − 1

2
σjgj(x)2

)
− 1

2
∑
j∈S

v2
j

σj
, (3.17)

with S := E ∪ {j ∈ I | gj(x) ≤ vj/σj} and S := {1, . . . ,m} \ S. All entries of the
penalty vector σ ∈ R

m are nonnegative. The augmented Lagrangian (3.17) is also
employed by Schittkowski [100] and the new continuous algorithm introduced later.

3.2.2 Filter

The concept of a filter was introduced by Fletcher and Leyffer [42]. A filter does not
require a penalty parameter. This is an advantage compared to penalty function such
as functions (3.11) and (3.12). As mentioned before, these penalty functions are ex-
act only if the penalty parameter satisfies certain conditions. In general, the required
penalty parameter value is not known a priori. Therefore, methods that employ penalty
functions have to update the penalty parameter, but this is a crucial part in penalty
functions and the performance of the algorithms often depends on the updating pro-
cedure. The idea of a filter is to treat the constrained optimization problem (1.2) as
two separate minimization problems stated as

minimize
x∈Rn

f(x) (3.18)
and

minimize
x∈Rn

h
(
g(x)−

)
, (3.19)

where h(.) is a positive function that measures infeasibility of constraints and h(0) = 0.
This kind of problem formulation can be seen as a multi-criteria or multi-objective

22 3 Sequential Quadratic Programming Methods

optimization problem. Fletcher, Leyffer, and Toint [43] suggested to use the L1-norm
for measuring restriction violation, i.e.,

h
(
g(x)−

)
:= ∥g(x)−∥1 . (3.20)

The measured constraint violation and the objective function are combined in the
following tuple

(hk, fk) :=
(
h
(
g(xk)−

)
, f(xk)

)
, (3.21)

which is defined for each iterate xk. In iteration k the filter Fk consists of pairs of form
(3.21) that correspond to certain previous iterates, i.e.,

Fk ⊂ {(hj, fj) | j = 0, 1, 2, . . . , k − 1} . (3.22)

Global convergence is obtained by evaluating the quality of a trial step dk subject to
filter Fk. In the first versions of filter methods, see Fletcher and Leyffer [42], a step dk
is rejected if the corresponding pair (hk, fk) is dominated by a pair (hj, fj) ∈ Fk, that
is

hk ≥ hj (3.23)

and
fk ≥ fj , (3.24)

for a (hj, fj) ∈ Fk.
SQP methods that use a filter instead of a merit function can also suffer the Maratos

effect, at least if no additional safeguards are added. For further details on the concept
of a filter the original papers of Fletcher and Leyffer [42], and Fletcher, Leyffer, and
Toint [43] are recommended. A review is also given in the textbook by Conn, Gould,
and Toint [21].

3.3 Line Search Methods

Line search methods are frequently employed to ensure global convergence of SQP
methods. They are used to determine steps that lead to a sufficient improvement with
respect to a specific performance criterion, e.g., a merit function or a filter. The basic
idea is summarized in the following.

In each iteration k, line search methods calculate an adequate search direction sk
at first. Now sk denotes the solution of the quadratic program (3.1). Then a trial step
lying on this line is determined. The obtained step αksk, where the scalar parameter
αk adjusts the step length, guarantees sufficient progress, and a new iterate is obtained
by setting

xk+1 := xk + αksk . (3.25)

The calculated search direction sk has to be a descent direction with respect to the

3.4 Trust Region Methods 23

used merit function Φσk
, with a positive penalty parameter σk, that is at least

∇Φσk
(xk)T sk < 0 . (3.26)

Necessary conditions on the decrease achieved by ∇Φσk
(xk)T sk were investigated, for

example, by Wolfe [128]. Schittkowski [100] performs a line search subject to the aug-
mented Lagrangian (3.17). He proposes an update rule for the penalty parameter σk
so that a stronger condition than (3.26) is satisfied.

The step length parameter αk has to be chosen adequately so that a certain sufficient
descent condition for the merit function Φσk

holds. By requiring sufficient descent the
convergence toward a stationary point of the underlying problem can be achieved.
According to Armijo [2] the parameter αk can be chosen so that

Φσk
(xk + αksk) < Φσk

(xk) + ρ αk∇Φσk
(xk)T sk (3.27)

is satisfied, where 0 < ρ < 1/2 is constant.
A crucial point in line search algorithms is the determination of the step length

αk. On the one hand, the parameter αk has to be calculated sufficiently accurate to
obtain convergence. On the other hand, the number of function evaluations needed
during the search for αk should be as small as possible. There are different procedures
to determine αk, for more details see, e.g., Powell [86] and Schittkowski [100]. Line
search methods, as Armijo line search, are also discussed, for example, in Dennis and
Schnabel [26], Nocedal and Wright [77], and Geiger and Kanzow [47].

3.4 Trust Region Methods

Another globalization technique for nonlinear optimization methods is the trust region
approach. Trust region methods differ from line search methods as they determine the
search direction and step size simultaneously. This is achieved by directly restricting
the step size in the subproblem.

The concepts of trust region methods go back to the field of nonlinear least-squares
optimization and parameter estimation. It was the first time that the step size was
controlled inside the subproblem itself, see Levenberg [66]. The steps were damped by
adding multiples of the identity matrix to the Hessian matrix. A similar technique was
further investigated by Morrison [75] and Marquardt [72].

In the beginning trust region methods were applied to unconstrained optimization,
see, e.g., Powell [85] for minimizing nonlinear objective functions. Solving nonlinear
equations by trust region techniques was also done by Powell [83, 84]. The proposed
methods for unconstrained optimization seemed to be preferable compared to other
approaches at that time. In the following years more research was done on trust region
methods, see, for example, Winfield [127], Fletcher [40], Toint [118], Powell [90], and
Sorensen [109]. The terminology of trust region methods goes back to Dennis [23] and
Moré [74]. A historical review of trust region methods can be found in the textbook

24 3 Sequential Quadratic Programming Methods

by Conn, Gould, and Toint [21].
Later trust region methods were adapted to constrained optimization. The first al-

gorithms only considered equality constrained problems, i.e., me = m, see for example
the algorithms developed by Dennis, El-Alem, and Maciel [24], Celis, Dennis, and
Tapia [17], El-Alem [30, 31], Powell and Yuan [93], Byrd, Schnabel, and Shultz [16],
Vardi [123], and Omojokun [80]. Ulbrich and Ulbrich [122] proposed a trust region
algorithm for the equality constrained problem that does not use a merit function as
done by the other algorithms.

The idea of trust region methods is to minimize successively models of the employed
merit function Φσ in a specified region around the current iterate. This procedure was
highlighted by Griffith and Stewart [54]. The model in iteration k is denoted by Ψk(d).
It is required that the model Ψk(d) approximates the merit function Φσk

(x) sufficiently
well at least in the trusted region around the current iterate xk. Moreover, the model
has to satisfy the conditions

Ψk(0) = Φσk
(xk) (3.28)

and
∇Ψk(0) = ∇Φσk

(xk) . (3.29)

The following terminology was introduced by Goldfeldt, Quandt, and Trotter [51].
The predicted reduction obtained in the model is defined as

Predk := Ψk(0) − Ψk(dk) , (3.30)

where dk denotes the calculated trial step. The predicted reduction Predk has to be
positive for all iterations. Predk is then compared to the actual reduction in the merit
function Φσk

. Respectively, the actual reduction in the merit function is defined as

Aredk := Φσk
(xk) − Φσk

(xk + dk) . (3.31)

The ratio rk of the actual change in the merit function and the predicted reduction
according to the model Ψk(d), defined as

rk := Aredk
Predk

, (3.32)

is used to decide whether a trial step dk is accepted or not. The model Ψk has to be
chosen properly as it has to be guaranteed that the difference between actual reduction
and predicted reduction vanishes faster than Predk when the trust region radius ∆k

tends to zero.
The size of the trial step dk in iteration k is restricted by adding a constraint to the

subproblem, namely
∥d∥ ≤ ∆k , (3.33)

where ∥.∥ is an appropriate norm and ∆k > 0 is the current trust region radius. Thus,
trust region methods guarantee ∥xk+1−xk∥ ≤ ∆k. By adjusting the trust region radius

3.4 Trust Region Methods 25

‖d‖1 ≤ ∆ ‖d‖2 ≤ ∆ ‖d‖∞ ≤ ∆

a) b) c)

Figure 3.2: Illustration of Trust Regions for Different Norms

∆k the acceptance of trial steps can be influenced as rk tends to one when ∆k tends
to zero.

Depending on the norm employed for determining the step size, the shape of the
trust region differs. This is illustrated in Figure 3.2. Using the L∞-norm in the trust
region constraint (3.33) has an important advantage. In this case the trust region
constraint (3.33) can be reformulated as simple linear bound constraints on the step,
i.e., 2n linear inequality constraints are added to the original subproblem formulation.
Consequently, any quadratic programming solver can handle the reformulated trust
region constraint without additional modifications.

A general framework for trust region methods can be stated as follows.

Algorithm 3.2 (A General Trust Region Method) Let 0 < τ1 < τ2 < 1 < τ3,
0 < ρ < 1, and x0 ∈ Rn be given. For k = 0, 1, 2, . . . repeat until convergence

Step 1 Compute a trial step dk.

Step 2 Compute the ratio rk according to (3.32).

Step 3 Let
xk+1 :=

{
xk + dk , if rk > ρ ,

xk , otherwise ,
and

∆k+1 ∈
{

[∆k, τ3∆k] , if rk > ρ ,

[τ1∥dk∥, τ2∥dk∥] , otherwise .

Step 4 Define a new model Ψk+1(d).

In Step 3 the acceptance of the trial step dk is tested with respect to parameter ρ.
A step dk is taken if the ratio rk is greater than the threshold ρ. Depending on the
result of the test, the step size restriction for the next iteration is adapted.

26 3 Sequential Quadratic Programming Methods

g(xk) +∇g(xk)
T d = 0

xkxk

‖d‖∞ ≤ ∆k ‖d‖∞ ≤ ∆k/2

Figure 3.3: Inconsistency Caused by Trust Region Constraint

For detailed discussions on trust region methods, the textbooks by Conn, Gould,
and Toint [21], and Sun and Yuan [113], and the review paper by Yuan [131] are
recommended.

In the remainder of this chapter existing trust region SQP methods are presented.
They extend the basic framework shown in Algorithm 3.2 as difficulties can arise
in practice. For instance, adding the trust region constraint (3.33) to the quadratic
program (3.1) of an SQP method can lead to infeasible subproblems. The trust re-
gion constraint (3.33) may prohibit steps that are necessary to satisfy the linearized
constraints corresponding to the underlying optimization problem. In Figure 3.3 two
different values for ∆k are used to illustrate the difficulty. The example on the left-hand
side is feasible, whereas the one on the right-hand side has no feasible solution.

There are several approaches to overcome inconsistent subproblems as described
above. They differ in the way of constructing trust region subproblems and determin-
ing the trial steps. Most of the methods were proposed in the context of equality con-
strained problems (1.2). Thus, in some cases only equality constraints are considered.
Note that all inequality constraints in (1.2) can be transformed into equality con-
straints by introducing slack variables sme+1, . . . , sm, with sj ≥ 0, j = me + 1, . . . ,m,
i.e.,

gj(x) − sj = 0 , j = me + 1, . . . ,m . (3.34)

The disadvantage of transforming the problem is the increasing number of variables. In
addition, the nonnegative constraints sj ≥ 0, j = me + 1, . . . ,m, have to be satisfied.
Different techniques can be applied, see, e.g., Dennis, Heinkenschloss, and Vincent [25],
Coleman and Li [20], and Byrd, Gilbert, and Nocedal [15]. They propose the use of
barrier functions or adapted trust regions, i.e., reshaping the trust region in order to
assure sj ≥ 0, j = me + 1, . . . ,m.

3.4 Trust Region Methods 27

3.4.1 Vardi-like Approach

The following method was originally suggested for equality constrained problems, i.e.,
problems where m = me holds. Thus, the quadratic problem of the SQP method at
iterate xk, without the trust region constraint, is

minimize
d∈Rn

∇f(xk)Td+ 1
2
dTBkd

subject to gj(xk) + ∇gj(xk)Td = 0 , j = 1, . . . ,me .

(3.35)

In order to avoid inconsistent subproblems, that may arise, e.g., by adding the trust
region constraint ∥d∥2 ≤ ∆k, the approach uses the idea of scaling the constraints by
a parameter θk ∈ (0, 1] so that

θkgE(xk) + ∇gE(xk)Td = 0 (3.36)

holds for a d with ∥d∥2 ≤ ∆k. This approach was studied by many authors, e.g., see
Vardi [123], Byrd, Schnabel, and Shultz [16], and Omojokun [80]. The trial step dk is
the solution of the quadratic problem

minimize
d∈Rn

∇f(xk)Td+ 1
2
dTBkd

subject to θkgj(xk) + ∇gj(xk)Td = 0 , j = 1, . . . ,me ,

∥d∥2 ≤ ∆k ,

(3.37)

for some parameter θk ∈ (0, 1]. Using the L2-norm for the trust region constraint
requires adapted quadratic programming solvers as the problem is not in standard
form anymore.

As θk is not known a priori, a strategy has to be applied to determine dk. Therefore,
the trial step dk is decomposed into two steps, i.e., dk := dtk + dnk , where dnk is called
the normal step and dtk is the tangential step. dnk is a range space step and reduces
the linearized constraint ∥gE(xk)+∇gE(xk)Td∥2, whereas dtk reduces the approximated
Lagrangian function in the null space of ∇gE(xk)T . For example, dnk can be the solution
of the following problem

minimize
d∈Rn

∥gE(xk) + ∇gE(xk)Td∥2

subject to ∥d∥2 ≤ τ∆k ,
(3.38)

where τ ∈ (0, 1) is a constant independent of k. The parameter τ < 1 leaves freedom
for defining dtk.

Once, dnk is computed, e.g., by solving (3.38), dtk can be obtained by solving

minimize
d∈Rn

∇f(xk)Td+ 1
2

(dnk + d)TBk(dnk + d)

subject to ∇gE(xk)Td = 0 ,
∥dnk + d∥2 ≤ ∆k .

(3.39)

28 3 Sequential Quadratic Programming Methods

3.4.2 Celis-Dennis-Tapia-like Approach

The equality constrained problem is considered again. Celis, Dennis, and Tapia [17]
suggested the substitution of the linearized constraints in the quadratic problem (3.35)
by a single constraint

∥gE(xk) + ∇gE(xk)Td∥2 ≤ θ̄k , (3.40)
where

θ̄k ≥ min
∥d∥2≤∆k

∥gE(xk) + ∇gE(xk)Td∥2 . (3.41)

The resulting subproblem, also investigated by El-Alem [30, 31], is feasible and for-
mulated as

minimize
d∈Rn

∇f(xk)Td+ 1
2
dTBkd

subject to ∥g(xk) + ∇g(xk)Td∥2 ≤ θ̄k ,

∥d∥2 ≤ ∆k ,

(3.42)

where θ̄k satisfies (3.41). The proposed methods differ in the choice of θ̄k. The value
of θ̄k has to be set sufficiently small to achieve convergence to a feasible point.

Celis, Dennis, and Tapia [17] chose θ̄k to be

θ̄k = ∥gE(xk) + ∇gE(xk)TdCPk ∥2 , (3.43)

where dCPk = −αk∇gE(xk)gE(xk) is the Cauchy step, i.e., the minimizer of ∥gE(xk) +
∇gE(xk)Td∥2, with ∥d∥2 ≤ ∆k, along its negative gradient. αk ≥ 0 is the step size
parameter.

Powell and Yuan [93] proposed the following choice of θ̄k

min
∥d∥2≤τ1∆k

∥g(xk) + ∇g(xk)Td∥2 ≤ θ̄k ≤ min
∥d∥2≤τ2∆k

∥g(xk) + ∇g(xk)Td∥2 , (3.44)

where 0 < τ2 < τ1 < 1 are two constants.

3.4.3 Yuan-like Approach

This approach results in trust region subproblems that approximate directly a specific
penalty function. Yuan [130] proposed an algorithm that can also handle inequality
constraints. In Chapter 5 mixed-integer algorithms are introduced that are based on
this algorithm by Yuan.

Based on the L∞-penalty function, cf. (3.12), Yuan [130] suggested the following
subproblem

minimize
d∈Rn

Ψσk
(d) := ∇f(xk)Td+ 1

2
dTBkd+ σk

∥∥∥(g(xk) + ∇g(xk)Td
)−∥∥∥

∞

subject to ∥d∥∞ ≤ ∆k ,

(3.45)

which is always feasible. Here Ψσk
(d) also denotes the model that is used for calcu-

3.4 Trust Region Methods 29

lating the predicted reduction Predk, cf. (3.30). Note that the problem can easily
be transformed into a quadratic problem by adding a new variable. The L∞-penalty
function can be replaced by any other penalty functions, including an augmented
Lagrangian function studied by Niu and Yuan [76]. Note that Niu and Yuan also
consider inequality constraints, but the constraints are reformulated as equality con-
straints. Fletcher [38] used the L1-penalty function in his Sl1QP method. Subproblem
(3.45) is adapted accordingly.

If a penalty function of form (3.9) is used, e.g., the L∞-penalty function, the Maratos
effect can occur. Fletcher [39] and Yuan [129, 130] suggested to try a second order
correction step d̂k whenever the solution of subproblem (3.45), denoted by dk, is not
acceptable. The step d̂k is obtained by solving the following second order correction
subproblem

minimize
d∈Rn

∇f(xk)T (dk + d) + 1
2

(dk + d)TBk(dk + d)

+ σk
∥∥∥(g(xk + dk) + ∇g(xk)Td

)−∥∥∥
∞

subject to ∥dk + d∥∞ ≤ ∆k .

(3.46)

The point xk+dk+d̂k is then tested for acceptance. Subproblems (3.45) and (3.46) differ
in g(xk) and g(xk + dk), respectively. As g(xk + dk) = g(xk) + ∇g(xk)Tdk +O(∥dk∥2

2),
it follows for the second order correction step ∥d̂k∥ = O(∥dk∥2

2). Consequently, by
applying step d̂k the convergence rate obtained by dk retains, since dk is identical to
the SQP step when xk is close to the solution. By adding the second order correction
step d̂k the Maratos effect can be avoided and the new point xk + dk + d̂k will always
be accepted when xk is close to the solution. This result was proved by Yuan [129].

The following algorithm is a slight modification of Algorithm 5.8 in Yuan [130] . All
constants are given explicitly to be as close as possible to the original presentation. The
convergence results retain. An implementation of Algorithm 3.3 is part of the FORTRAN
code MISQP, see Exler et al. [35]. In Chapter 6 numerical results for the implementation
are presented and compared to other algorithms.

Algorithm 3.3 Let ϵtol > 0 be a given constant.

Step 0 Choose initial values for x0 ∈ Rn, ∆0 > 0, σ0 > 0, ζ0 > 0, and B0 ∈ Rn×n

symmetric. Evaluate f(x0), g(x0), ∇f(x0), and ∇g(x0). Set k := 0.
Step 1 Solve subproblem (3.45) giving dk.

if ∥g(xk)−∥∞ ≤ ϵtol and Ψσk
(0) − Ψσk

(dk) ≤ ϵtol then STOP .
Step 2 if ∥g(xk)−∥∞ − ∥(g(xk) + ∇g(xk)Tdk)−∥∞ < ϵtol and

∥(g(xk) + ∇g(xk)Tdk)−∥∞ > ϵtol then
Set σk+1 := 10σk and ζk+1 := ζk/10.

30 3 Sequential Quadratic Programming Methods

else Set σk+1 := σk and ζk+1 := ζk.
if Ψσk

(0) − Ψσk
(dk) < ζk σk min(∆k, ∥g(xk)−∥∞) then

Replace σk+1 := 2σk+1 and ζk+1 := ζk+1/4.
Step 3 Evaluate f(xk + dk) and g(xk + dk), and compute the ratio of the actual

change and the predicted reduction

rk :=
Pσk+1(xk) − Pσk+1(xk + dk)

Ψσk
(0) − Ψσk

(dk)
. (3.47)

Step 4 if rk ≤ 0.75 then Solve SOC problem (3.46) to obtain a solution d̂k and
evaluate f(xk + dk + d̂k) and g(xk + dk + d̂k).
if Pσk+1(xk + dk + d̂k) < Pσk+1(xk + dk) then Update rk by

rk :=
Pσk+1(xk) − Pσk+1(xk + dk + d̂k)

Ψσk
(0) − Ψσk

(dk)
, (3.48)

and replace dk := dk + d̂k.
Step 5 Update the trust region radius by

∆k+1 :=

∥dk∥∞/2 , if rk < 0.25 ,
∆k , if 0.25 ≤ rk ≤ 0.75 ,
max(2∥dk∥∞ , ∆k) , if 0.75 < rk .

(3.49)

Step 6 if rk ≤ 0 then Set xk+1 := xk, Bk+1 := Bk, k := k + 1 and goto Step 1.
else Set xk+1 := xk + dk.

Step 7 Evaluate ∇f(xk+1) and ∇g(xk+1).
Generate a new matrix Bk+1. Set k := k + 1 and goto Step 1.

Here ξk is an internal scaling parameter. In Step 4 of Algorithm 3.3 second order
correction steps are calculated to obtain fast local convergence. A convergence theorem
can be stated, but additional conditions are required. These requirements are summa-
rized in the following, where x⋆ is a minimizer of the problem under consideration.

Assumption 3.4 1. f(x) and gj(x), j = 1, . . . ,m, are twice continuously differen-
tiable,

2. lim
k→∞

xk = x⋆,
3. σk = σ⋆ for all large k,
4. {Bk} is bounded,
5. ∇gj(x⋆), j ∈ E ∪ A(x⋆), are linearly independent,
6. σ⋆ > ∥u⋆∥1, where u⋆ is the unique Lagrange multiplier at the solution x⋆,

3.4 Trust Region Methods 31

7. the following inequality
dT∇2

xxL(x⋆, u⋆) d > 0 (3.50)

holds for all nonzero d that satisfy

∇gj(x⋆)Td = 0 , j ∈ E , (3.51)

∇gj(x⋆)Td ≥ 0 , j ∈ A(x⋆) , (3.52)

with
∇2
xxL(x⋆, u⋆) = ∇2f(x⋆) −

m∑
j=1

u⋆j∇2gj(x⋆) . (3.53)

8.

lim
k→∞

∥∥∥P(∇2
xxL(x⋆, u⋆) −Bk

)
dk
∥∥∥

2
∥dk∥2

= 0 , (3.54)

where P is a projection from R
n to the null space of ∇gE∪A(x⋆)(x⋆)T .

The following result in Yuan [130] can be applied to Algorithm 3.3 although the
algorithm is slightly modified compared to Algorithm 5.8 in the referenced work.

Theorem 3.5 If the conditions of Assumption 3.4 are satisfied, then Algorithm 3.3
with ϵtol = 0 either terminates at a KKT point or generates a sequence {xk} that
converges Q-superlinearly, i.e.,

lim
k→∞

∥xk+1 − x⋆∥∞

∥xk − x⋆∥∞
= 0 . (3.55)

Moreover, the trust region bound ∆k is bounded away from zero, and the trust region
constraint ∥d∥∞ ≤ ∆k is inactive for all large k. 2

Theorem 3.5 can be proved similar to the analysis in Yuan [129].

3.4.4 Fletcher-Leyffer-Toint Filter Method

Filter were introduced by Fletcher and Leyffer [42] for inequality constrained problems.
Fletcher, Leyffer, and Toint [43] extended the approach to problems with equality and
inequality constraints. The filter notation introduced earlier in Section 3.2.2 is used
again, i.e., the measurement of violation is defined by (3.20) and filter entries are
defined by (3.21).

Let xk be the current iterate and Fk the corresponding filter of iteration k. A trial
step is denoted by d̄. Note that d̄ is used instead of dk since iterations are counted
differently in filter methods. Step d̄ should reduce the constraint violation measured
by h or the objective function value f . To ensure sufficient decrease of at least one of
the two criteria, a new point xk + d̄ is acceptable to the filter Fk if for all (hj, fj) ∈ Fk
either

h
(
g(xk + d̄)−

)
≤ λ1hj (3.56)

32 3 Sequential Quadratic Programming Methods

f(x)

h
(

g(x)−
)

0

(hl, fl)

Figure 3.4: A Filter with Envelope

or
f(xk + d̄) + λ2 h

(
g(xk + d̄)−

)
≤ fj (3.57)

holds with constants 0 < λ2 < λ1 < 1, see Fletcher, Leyffer, and Toint [43].
To prove convergence, the concept of dominated points, cf. (3.23) and (3.24), had

to be extended to acceptable points, (3.56) and (3.57). Figure 3.4 shows a typical
filter. The continuous line illustrates the area of points dominated by the filter as
defined before. The envelope displayed by dashed line corresponds to the definition of
acceptable points, i.e., (3.56) and (3.57). Thus, all points that are located above the
dashed line in the upper right part are not acceptable to the filter and are rejected.

A filter-SQP algorithm tries to solve the following quadratic problem, denoted by
QP(xk,∆),

minimize
d∈Rn

qk(d) := ∇f(xk)Td+ 1
2
dTBkd

subject to gj(xk) + ∇gj(xk)Td = 0 , j = 1, . . . ,me ,

gj(xk) + ∇gj(xk)Td ≥ 0 , j = me + 1, . . . ,m ,

∥d∥∞ ≤ ∆ .

(3.58)

If this problem is inconsistent, then a feasibility restoration phase is entered. Otherwise,
d̄ is obtained. The aim of the restoration phase is the reduction of the constraint
violation and the determination of a new point xk acceptable to the filter Fk such that

3.4 Trust Region Methods 33

the quadratic problem (3.58) is consistent for a ∆ ≥ ∆min > 0.
Applying (3.56) and (3.57), the filter guarantees convergence to feasible points.

But to enforce convergence to a KKT point, in addition a sufficient reduction in the
objective function has to be achieved if constraint violation is small enough. Defining

∆qk(d̄) := qk(0) − qk(d̄) = −∇f(xk)T d̄− 1
2
d̄TBkd̄ (3.59)

and
∆fk(d̄) := f(xk) − f(xk + d̄) , (3.60)

then the sufficient reduction condition is satisfied if ∆qk(d̄) > 0 and

∆fk(d̄) ≥ ρ ∆qk(d̄) (3.61)
holds for a constant 0 < ρ < 1.

The filter-SQP algorithm by Fletcher, Leyffer, and Toint [43] can be stated as follows.

Algorithm 3.6 (A Filter-SQP Algorithm) Let 0 < λ2 < λ1 < 1, ρ ∈ (0, 1), and
∆min > 0. Given x0 ∈ Rn, let k := 1. Let the initial filter be F1 = {(U,−∞)} with
h(g(x0)−) ≤ λ1U .

Step 1 Enter the restoration phase to find a point xk acceptable to the filter Fk
according to criteria (3.56) and (3.57) such that QP(xk,∆̃) is compatible
for some ∆̃ ≥ ∆min and set ∆ := ∆̃.

Step 2 if QP(xk,∆) is compatible then Calculate solution d̄.
else Include (hk, fk) in the filter, set k := k + 1 and goto Step 1.

Step 3 if d̄ = 0 then STOP .

Step 4 if xk + d̄ is not acceptable to Fk ∪ (hk, fk) with respect to (3.56) and (3.57)
then Set ∆ := ∆/2 and goto Step 2.

Step 5 if ∆qk > 0 and ∆fk < ρ ∆qk then Set ∆ := ∆/2 and goto Step 2.

Step 6 if ∆qk ≤ 0 then Include (hk, fk) in the filter.

Step 7 Set xk+1 := xk + d̄, initialize ∆ ≥ ∆min. Set k := k + 1 and goto Step 2.

In Step 1 a feasibility restoration phase is executed. The aim is to obtain a new
iterate where the corresponding quadratic subproblem is consistent subject to a specific
trust region radius ∆. The other trust region algorithms described before integrate the
feasibility restoration in the main procedure. This is different for Algorithm 3.6 where
this phase is not specified in detail. This is also the case in the paper by Fletcher,
Leyffer, and Toint [43].

34 3 Sequential Quadratic Programming Methods

In case a trial step is accepted, then the trust region radius ∆ is set to at least ∆min
in Step 7. This modified update procedure, that differs from the basic Algorithm 3.2,
is also used by Kanzow and Zupke [64], and Jiang et al. [63]. Requiring ∆ ≥ ∆min is
important to prove global convergence of Algorithm 3.6.

Note that the effect described by Maratos [71] might also occur for the filter method
described above if the filter only measures the objective function and the constraint
violation.

3.4.5 Ulbrich Filter Method

Ulbrich [121] modified the filter algorithm of Fletcher, Leyffer and Toint [43], cf. Al-
gorithm 3.6, to obtain fast local convergence. The basic idea is to make use of the
Lagrangian function instead of the objective function in the filter and include the dual
variables. The second modification is a different measurement of constraint violation.
Thus, the approach uses properties of augmented Lagrangian functions, see (3.16).

The first modification affects the filter. The filter entries (h(g(x)−), f(x)) are sub-
stituted by (Λ(x, u), L(x, u)), where

Λ(x, u) := ∥gE(x)∥2
2 + ∥gI(x)−∥2

2 + (uTI gI(x)−)2 , (3.62)

and L(x, u) is the Lagrangian function (2.20) where the multipliers u are obtained
by some multiplier function, see Ulbrich [121] for details. The definition (Λk, Lk) :=
(Λ(xk, uk), L(xk, uk)) is used. Consequently, a point (x, u) is acceptable to the filter if
for all (Λj, Lj) ∈ Fk either

Λ(x, u) ≤ λ1Λj (3.63)
or

L(x, u) + λ2 Λ(x, u) ≤ Lj , (3.64)
with constants 0 < λ2 < λ1 < 1.

The second modification concerns Step 2 of Algorithm 3.6. QP(xk,∆) is compatible
if QP(xk,∆) is feasible and

Λ1/2
k ≤ κ∆∆1+ξ , (3.65)

with constants κ∆ > 0 and ξ ∈ (0, 1).
The last modification is related to Step 5 and Step 6 of Algorithm 3.6. The condition

in Step 5 is replaced by

∆q̂k(d̄) := ∆qk(d̄) + uTk g(xk) > κΛ Λψ/2
k (3.66)

and
∆Lk(d̄) := L(xk, uk) − L(xk + dk, uk(d̄)) < ρ ∆q̂k(d̄) , (3.67)

with constants κΛ > 0, ψ ∈ (1/2, 1], and 0 < ρ < 1. ∆qk(d̄) is defined by (3.59)
and uk(d̄) denotes the new multiplier estimates obtained by a multiplier function. The
condition in Step 6 is replaced by ∆q̂k(d̄) ≤ κΛ Λψ/2

k .
Under suitable assumptions the modified algorithm accepts locally full SQP steps,

see Ulbrich [121]. Thus, fast local convergence is retained.

4 A Trust Region SQP Algorithm for
Constrained Nonlinear Programs

In this chapter a new sequential quadratic programming algorithm addressing nonlin-
ear optimization problems of form (1.2) is presented. The inequality constraints of the
problem are not transformed into equality constraints and no additional slack vari-
ables have to be optimized. The algorithm is stabilized by trust region techniques to
obtain global convergence. An augmented Lagrangian function is employed as merit
function to avoid the need of calculating second order correction steps to retain fast
local convergence.

In the following section the algorithm is described in detail and the key ingredients
are specified. The subproblems that are solved in each iteration in order to determine
a trial step are stated. A feasibility restoration phase is introduced that is entered if
inconsistency in the subproblems occurs. Moreover, the model that is used to evaluate
the quality of a calculated trial step is presented and an update scheme for the penalty
parameter is given.

In Section 4.2 the convergence properties of the algorithm are analyzed. The section
is divided into two parts. In the beginning the global convergence of the algorithm is
investigated. It is established that at least a subsequence exists that converges to a
KKT point of the optimized problem. The second part of the section presents the local
convergence analysis of the algorithm. It is shown that full SQP steps are accepted
close to a solution of the underlying problem.

A discussion of the proposed algorithm follows in Section 4.3. The algorithm is
compared to existing methods and the differences are highlighted.

4.1 Algorithm

The basic idea of the proposed algorithm is to employ a differentiable merit function
to retain fast local convergence without additional safeguards. As merit function an
augmented Lagrangian proposed by Rockafellar [94] is applied. A slightly modified
version with multiple penalty parameters is used by Schittkowski [100] in an SQP
method that is stabilized by line search techniques. In contrast to penalty functions of
form (3.9), the augmented Lagrangian also involves the dual variables of the problem.
Thus, the number of considered variables is n+m and the domain of the optimization
problem is Rn+m.

Let (xk, vk) be the current iterate, then the augmented Lagrangian merit function
at iteration k is formulated as

Φσk
(xk, vk) := f(xk) −

∑
j∈Sk

(
v

(k)
j gj(xk) − 1

2
σkgj(xk)2

)
− 1

2
∑
j∈Sk

v
(k)2

j

σk
, (4.1)

35

36 4 A Trust Region SQP Algorithm for Constrained Nonlinear Programs

where
Sk := E ∪

{
j ∈ I | gj(xk) ≤ v

(k)
j /σk

}
(4.2)

and
Sk := {1, . . . ,m} \ Sk , (4.3)

see also, e.g., Geiger and Kanzow [47], and Rockafellar [94]. Obviously, for equality
constrained problems, i.e., in case me = m holds, the augmented Lagrangian function
Φσk

(xk, vk) (4.1) reduces to

Φσk
(xk, vk) := f(xk) −

∑
j∈E

(
v

(k)
j gj(xk) − 1

2
σkgj(xk)2

)
= L(xk, vk) + 1

2
σk∥g(xk)∥2

2 .

(4.4)
Here the weighted value of the constraint violation is added to the Lagrangian function
(2.20) of the equality constrained optimization problem.

The subsequent section specifies the subproblems that are solved in each iteration in
order to determine a trial step (dk, wk), where dk denotes the step in the primal vari-
ables and wk denotes the step in the dual variables. Moreover, a feasibility restoration
phase is introduced that is entered if inconsistency in the subproblems occurs.

4.1.1 Calculation of Trial Steps

In each iteration k a trial step (dk, wk), which consists of a step dk in the primal
variables and a step wk in the dual variables, has to be calculated. The exact deter-
mination of wk is explained later. Let (xk, vk) be the current iterate. The basic idea is
to solve the standard SQP subproblem (3.1) extended by the trust region constraint
∥d∥∞ ≤ ∆k. The trust region constraint can easily be transformed into simple bound
constraints, i.e., ∥d∥∞ ≤ ∆k can be replaced by 2n linear inequality constraints, that
is

di + ∆k ≥ 0 , i = 1, . . . , n , (4.5)

and
∆k − di ≥ 0 , i = 1, . . . , n . (4.6)

The resulting subproblem is a quadratic problem that can be solved by any available
solver. No special strategy for handling the trust region constraint has to be added.
Reformulating the trust region constraint leads to the following subproblem formula-
tion

minimize
d∈Rn

∇f(xk)Td+ 1
2
dTBkd

subject to gj(xk) + ∇gj(xk)Td = 0 , j ∈ E ,

gj(xk) + ∇gj(xk)Td ≥ 0 , j ∈ I ,

− ∆k ≤ di ≤ ∆k , i = 1, . . . , n ,

(4.7)

where Bk ∈ R
n×n is a symmetric matrix that approximates the Hessian of the La-

grangian function (2.20) of the underlying problem.

4.1 Algorithm 37

In the algorithm Bk is required to be positive definite. Positive definiteness is suf-
ficient for the global convergence theory. Additional requirements are only necessary
for the local convergence theory. Then matrix Bk has to be a good approximation of
the Hessian of the Lagrangian function in some sense.

If the feasible region of problem (4.7) is not empty, then the solution of (4.7) is de-
noted by (dk, uk, µk), where uk ∈ Rm is the Lagrangian multiplier vector corresponding
to the linear constraints gj(xk) + ∇gj(xk)Tdk, j = 1, . . . ,m. To simplify the notation
in the remainder of this work, µk ∈ R is introduced and defined by

µk :=
n∑
i=1

(
µ(k)
i

+ µ
(k)
i

)
, (4.8)

where µ
k

:= (µ(k)
1 , . . . , µ(k)

n
)T denotes the multipliers corresponding to the lower bounds

(4.5) on step dk, and µk := (µ(k)
1 , . . . , µ(k)

n)T denotes the multipliers corresponding to
the upper bounds (4.6), respectively. A more detailed derivation is stated in Section 4.2.

As illustrated by an example in Section 3.4, subproblem (4.7) can be infeasible and
no solution exists. In order to overcome this situation, a feasibility restoration phase is
introduced. Such a feasibility restoration phase is also used by the filter algorithm, see
Algorithm 3.6 by Fletcher, Leyffer, and Toint [43]. This approach differs from other
methods by the fact that the standard procedure is to solve the undisturbed subprob-
lem (4.7). Approaches as the Vardi-like ones, the Celis-Dennis-Tapia ones or the one by
Yuan, see earlier comments in Section 3.4, apply relaxation techniques in each iteration
to guarantee consistency of the subproblems during the whole optimization process.
Consequently, one has to take care of additional safeguards to achieve convergence.
The aim of the strategy employed by the new algorithm presented here is to avoid the
need of an additional penalty parameter in the subproblems. Therefore, subproblem
(4.7) is solved whenever possible. Only in case the problem is inconsistent a switch to
a different subproblem is performed. This strategy is also employed by an algorithm
addressing equality constrained problems proposed by El-Alem [30]. El-Alem’s algo-
rithm also tries to solve the equality constrained formulation of subproblem (4.7) first.
If the problem is infeasible, then a relaxed problem is solved to obtain a trial step.

During the restoration phase the trial steps are determined in two steps. First, the
minimum constraint violation that can be achieved within the trust region bound is
determined. The feasibility restoration problem that is solved in this situation is defined
as

minimize
d∈Rn, δ ∈R

∑
j∈E∪Ak

gj(xk)2δ2

subject to gj(xk)(1 − δ) + ∇gj(xk)Td = 0 , j ∈ E ,

gj(xk)(1 − δ) + ∇gj(xk)Td ≥ 0 , j ∈ Ak ,

gj(xk) + ∇gj(xk)Td ≥ 0 , j ∈ Bk ,

− ∆k ≤ di ≤ ∆k , i = 1, . . . , n ,
0 ≤ δ ≤ 1 ,

(4.9)

38 4 A Trust Region SQP Algorithm for Constrained Nonlinear Programs

where the sets Ak and Bk stand for A(xk, 0) and B(xk, 0) as defined by (2.15) and
(2.16), respectively. This problem always has a solution, since (d, δ) = (0, 1) is feasi-
ble. The problem determines a relaxation parameter δk. Note that inactive inequality
constraints, i.e., constraints in set Bk, are not relaxed and the linearized constraints
remain satisfied. The solution of problem (4.9) be denoted by d̄k and δk.

After the required relaxation parameter δk has been calculated, a second subproblem
is set up, where the violated constraints are relaxed. It is stated as

minimize
d∈Rn

∇f(xk)Td+ 1
2
dTBkd

subject to gj(xk)(1 − δk) + ∇gj(xk)Td = 0 , j ∈ E ,

gj(xk)(1 − δk) + ∇gj(xk)Td ≥ 0 , j ∈ Ak ,

gj(xk) + ∇gj(xk)Td ≥ 0 , j ∈ Bk ,

− ∆k ≤ di ≤ ∆k , i = 1, . . . , n .

(4.10)

In subproblem (4.10) the parameter δk remains fixed. Subproblem (4.10) is consistent,
as d̄k is a feasible point for (4.10). The solution of (4.10) is also denoted by (dk, uk, µk),
where uk is the multiplier vector with respect to the m linear approximations of the
constraints and µk is obtained according to (4.8) with the corresponding multipliers
µ
k

and µk. Since problem (4.7) is inconsistent in this case, there exists at least one
linearized constraint that had to be relaxed.

The algorithm employs an additional variable zk ∈ Rm that measures the violation
of the linearized constraints at the solution of (4.7) or (4.10), respectively. In case the
standard subproblem (4.7) is feasible, then the m entries of zk are set to zero since all
linearized constraints are satisfied. If subproblem (4.10) is solved, then the vector zk
is determined according to

z
(k)
j :=

0 , j ∈ Bk ,

max
(

0, gj(xk) + ∇gj(xk)Tdk
gj(xk)

)
, j ∈ E ∪ Ak and gj(xk) ̸= 0 ,

0 , j ∈ E ∪ Ak and gj(xk) = 0 .

(4.11)

Note that 0 ≤ z
(k)
j ≤ 1 holds for all j = 1, . . . , m. Obviously, this is true if j ∈ Bk or

j ∈ E ∪ Ak and gj(xk) = 0. Otherwise, it follows from 0 ≤ δk ≤ 1.
Now the trial step (dk, wk) can be specified. The primal step dk is the solution of

the corresponding subproblem, i.e., dk is either the minimizer of problem (4.7), if the
subproblem is consistent, or the solution to the relaxed problem (4.10). The step wk
in the dual variables is set to

w
(k)
j :=

(
u

(k)
j − v

(k)
j

) (
1 − z

(k)
j

)
, j = 1, . . . ,m , (4.12)

where zk is either zero, in case problem (4.7) is consistent, or defined by (4.11). Thus,
the size of the dual step wk is also controlled in some sense during the feasibility

4.1 Algorithm 39

restoration phase. Definition (4.12) is motivated by the convergence analysis.
The following section introduces the model that is applied to evaluate the quality

of the calculated trial steps.

4.1.2 Model Formulation

As described previously in Section 3.4, trust region methods use a model to approx-
imate the original problem. In each iteration k the predicted reduction in the model
is compared to the actual change in the augmented Lagrangian Φσk

(4.1). Depending
on the calculated ratio of the actual change and the predicted reduction a trial step is
either accepted or rejected.

The model employed by the proposed algorithm corresponds to the augmented La-
grangian function formulated for the quadratic subproblem (4.7) at iterate (xk, vk),
where the trust region constraint is ignored and f(xk) is added to the objective func-
tion. Let (xk, vk) be the k-th iterate and Bk be the matrix of the corresponding sub-
problem, then the model is defined as

Ψσk
(d, w) := f(xk) + ∇f(xk)Td+ 1

2
dTBkd

−
∑
j∈Ma

k

((
v

(k)
j + wj

) (
gj(xk) + ∇gj(xk)Td

)
− 1

2
σk
(
gj(xk) + ∇gj(xk)Td

)2
)

−
∑
j∈Ma

k

1
2

(
v

(k)
j + wj

)2

σk

(4.13)
for all (d, w), where the sets Ma

k and Ma

k are defined in the following way

Ma
k := E ∪

{
j ∈ I | gj(xk) + ∇gj(xk)Td ≤

(
v

(k)
j + wj

)
/σk

}
(4.14)

and
Ma

k := {1, . . . ,m} \ Ma
k . (4.15)

In each iteration k the model is evaluated twice. First, the model value is determined
for the trial steps (dk, wk), that is

Ψσk
(dk, wk) = f(xk) + ∇f(xk)Tdk + 1

2
dTkBkdk

−
∑
j∈Mk

((
v

(k)
j + w

(k)
j

) (
gj(xk) + ∇gj(xk)Tdk

)
− 1

2
σk
(
gj(xk) + ∇gj(xk)Tdk

)2
)

−
∑
j∈Mk

1
2

(
v

(k)
j + w

(k)
j

)2

σk
,

(4.16)

40 4 A Trust Region SQP Algorithm for Constrained Nonlinear Programs

where the sets Mk and Mk for step (dk, wk) are defined as

Mk := E ∪
{
j ∈ I | gj(xk) + ∇gj(xk)Tdk ≤

(
v

(k)
j + w

(k)
j

)
/σk

}
(4.17)

and
Mk := {1, . . . ,m} \ Mk . (4.18)

Moreover, the model Ψσk
is evaluated at (d, w) = (0, 0), and the corresponding value

of the model is

Ψσk
(0, 0) := f(xk) −

∑
j∈M0

k

(
v

(k)
j gj(xk) − 1

2
σkgj(xk)2

)
−

∑
j∈M0

k

1
2
v

(k)2

j

σk
, (4.19)

where the index sets M0
k and M0

k are defined according to

M0
k := E ∪

{
j ∈ I | gj(xk) ≤ v

(k)
j /σk

}
(4.20)

and
M0

k := {1, . . . ,m} \ M0
k . (4.21)

By the definitions of the index sets Sk, Sk, M0
k, and M0

k, see (4.2), (4.3), (4.20),
and (4.21), it follows that M0

k = Sk and M0
k = Sk. Thus, Ψσk

(0, 0) is identical to
Φσk

(xk, vk), and the equation

Ψσk
(0, 0) = Φσk

(xk, vk) (4.22)

holds for all iterations k.
Since the penalty parameter σk has to satisfy certain conditions to obtain a sufficient

decrease in the model, an update scheme is introduced in the next section.

4.1.3 Penalty Parameter Update

The penalty parameter update is a crucial part as the performance of an algorithm
might be influenced if the penalty parameter is set to a too large value. The following
update scheme is motivated by an update formula suggested by Schittkowski [100]
for an SQP method that is stabilized by line search techniques. Schittkowski showed
that the penalty update guarantees a sufficient decrease in an augmented Lagrangian
function similar to (4.1) when the determined search direction is applied. For the
algorithm presented here an almost identical update rule leads to a sufficient reduction
in the model Ψσk

when evaluating the trial step (dk, wk).
Let (xk, vk) be the k-th iterate and (dk, uk, µk) be determined either by subproblem

(4.7) or by problem (4.10) in case the feasibility restoration phase is executed. µk is
obtained according to (4.8). If subproblem (4.7) is feasible zk is set to zero. Otherwise,
zk is calculated by (4.11). Let wk be determined according to (4.12), and the matrix
Bk, that approximates the Hessian of the Lagrangian function in the subproblems,
be positive definite. To assure that the predicted reduction Predk in the model Ψσk

,

4.1 Algorithm 41

defined as
Predk := Ψσk

(0, 0) − Ψσk
(dk, wk) , (4.23)

is sufficiently large, the penalty parameter σk is updated according to

σk := max

σk−1 , max
1≤j≤m

2m
(
u

(k)
j − v

(k)
j

)2

dTkBkdk + 2µk∆k

(
1 − z

(k)
j

2
)

 . (4.24)

Here σk−1 is the penalty parameter of the previous iteration k− 1 and ∆k is the trust
region bound on the trial step dk. Since Bk is required to be positive definite, dTkBkdk
is greater than zero as long as ∥dk∥∞ > 0, and thus all terms on the right-hand side
are positive.

Compared to the update rule presented in Schittkowski [100], the one stated in (4.24)
differs slightly. Instead of m penalty parameters as suggested by Schittkowski, only
a single penalty parameter σk is employed here. The trust region radius ∆k and the
corresponding multiplier µk in (4.24) prevent the penalty parameter from increasing
too fast. Moreover, zk is introduced to control the penalty parameter with respect to
the constraint violation.

4.1.4 Algorithm Formulation

The algorithm extends the basic trust region Algorithm 3.2 described in Section 3.4.
Before the detailed algorithm is formulated, some comments on the choice and the
purpose of the constants that appear in the algorithm are stated. The following re-
strictions have to be satisfied by the constants τ1, τ2, ρ0, ρ1, ∆min, ∆max ∈ R

0 < τ1 < 1 < τ2 < ∞ , 0 < ρ0 ≤ ρ1 < 1 , 0 < ∆min < ∆max < ∞ . (4.25)

The parameters τ1 and τ2 are used to update the trust region radius ∆k+1 of the
next iteration. The radius is either reduced or increased dependent on the ratio of
the actual change in the augmented Lagrangian and the predicted reduction in the
model obtained by the trial step (dk, wk). A step is rejected if the ratio is less than ρ0.
Otherwise the trial step is accepted. In case the ratio is greater than ρ1, then the trial
step is categorized as a very successful step and the trust region radius is enlarged.
The parameter ∆min denotes the lower bound on the trust region ∆k+1 in case a trial
step has been accepted. The size of ∆k+1 is bounded by ∆max.

The sequential quadratic programming algorithm is formulated as follows.

Algorithm 4.1 Let the constants τ1, τ2, ρ0, ρ1, ∆min, and ∆max be chosen properly
according to (4.25).

Step 0 Choose initial values for x0 ∈ R
n, v0 ∈ Rm, ∆0 ∈ R, σ−1 ∈ R, and a

symmetric positive definite matrix B0 ∈ Rn×n, where ∆min ≤ ∆0 ≤ ∆max
and σ−1 ≥ 1. Additionally, v(0)

j ≥ 0 is required for all j ∈ I.

42 4 A Trust Region SQP Algorithm for Constrained Nonlinear Programs

Evaluate f(x0), ∇f(x0), gj(x0), and ∇gj(x0), j = 1, . . . ,m.
Set k := 0.

Step 1 Try to solve the standard subproblem (4.7).
if a solution to subproblem (4.7) exists then

Obtain dk, uk, and µk.
Set z(k)

j := 0 for all j = 1, . . . ,m.
else

Determine δk by solving the feasibility subproblem (4.9).
Solve subproblem (4.10) with fixed δk and obtain dk, uk, and µk.
Set zk according to (4.11).

end if
Determine wk according to (4.12).

Step 2 if ∥dk∥∞ = 0 then STOP .

Step 3 Determine the penalty parameter σk according to (4.24).

Step 4 Evaluate the function values f(xk + dk) and gj(xk + dk), j = 1, . . . ,m.
Calculate the ratio of actual change and predicted reduction

rk := Φσk
(xk, vk) − Φσk

(xk + dk, vk + wk)
Ψσk

(0, 0) − Ψσk
(dk, wk)

. (4.26)

Step 5 Update the trust region radius according to

∆k+1 :=

τ1∥dk∥∞ , if ρ0 > rk ,

max (∆min, ∆k) , if ρ0 ≤ rk ≤ ρ1 ,

max
(
∆min, min (τ2∆k,∆max)

)
, if ρ1 < rk .

(4.27)

Step 6 if rk < ρ0 then Set xk+1 := xk, vk+1 := vk, and Bk+1 := Bk.
else

Set xk+1 := xk + dk and vk+1 := vk + wk.
Evaluate the gradients ∇f(xk+1) and ∇gj(xk+1), j = 1, . . . ,m.
Generate a new positive definite matrix Bk+1.

end if
Set k := k + 1 and goto Step 1.

4.2 Convergence Analysis 43

In Step 1 it is tried to solve the standard quadratic problem (4.7) that is not
relaxed. If no solution to the problem exists, then a feasibility restoration phase is
entered similar to filter methods, see Fletcher, Leyffer, and Toint [43]. In this situation
the two problems (4.9) and (4.10) are solved to obtain a new trial step. The aim is
to guide the iteration sequence to the feasible region and to obtain an iterate such
that the standard subproblem (4.7) is feasible again. Thus, in the worst case three
problems have to be solved. If the next trial step is rejected again, then the number
of subproblems reduces to two as the standard problem (4.7) is still infeasible.

In Step 2 the algorithm terminates if the length of the obtained step dk is zero. If
dk solves subproblem (4.7) then a KKT point of the underlying optimization problem
has been obtained.

The penalty parameter σk is updated in Step 3. The penalty update guarantees
that sufficient decrease in the model Ψσk

is obtained, i.e., the predicted reduction
Predk (4.23) is sufficiently large. This is shown in the global convergence analysis in
Section 4.2.1. The ratio of actual change and predicted reduction is calculated in Step
4. The obtained value is used to decide whether the step (dk, wk) is accepted or not.
Iterations with rk ≥ ρ0 are successful iterations, otherwise, the trial steps are rejected.
This is a standard procedure in trust region algorithms as described in Section 3.4.

The trust region radius ∆k+1 is updated in Step 5. The actual values for τ1 and τ2
can be chosen so that condition (4.25) holds. If the ratio rk of a trial step is greater
than ρ1, then the trust region radius ∆k+1 is enlarged. In case a trial step is accepted,
then the trust region radius for the next iteration is always set to at least ∆min. This
is motivated by the convergence analysis in the subsequent section. Applying a lower
bound ∆min on the trust region radius after a successful iteration is also done by
Fletcher et al. [43], Kanzow and Zupke [64], and Jiang et al. [63]. The trust region
radius is reduced for the next iteration if the trial step is rejected. Consequently,
the only difference between subproblem (4.7) in iteration k and subproblem (4.7) in
iteration k + 1 is the reduced trust region radius ∆k+1. The same is true for the
subproblems in the feasibility restoration phase. Thus, warm start techniques of a
quadratic solver can be applied to improve the performance of an implementation.

In Step 6 the next iterate (xk+1, vk+1) is determined. If the trial step is accepted,
i.e., rk > ρ0, then dk and wk are applied and the next iterate is set to xk+1 := xk + dk
and vk+1 := vk + wk. Moreover, the matrix Bk+1 is updated. Otherwise, the values
remain unchanged for the subsequent iteration.

4.2 Convergence Analysis

This section is devoted to the theoretical analysis of Algorithm 4.1. The convergence
properties of the algorithm are studied in two steps. The first part investigates the
global behavior of the proposed algorithm. Under suitable assumptions it is shown
that the algorithm generates a sequence of iterates that has at least one accumulation
point that is a KKT point of the optimized problem. The convergence is independent

44 4 A Trust Region SQP Algorithm for Constrained Nonlinear Programs

of the starting point.
The second part of this section concentrates on the local convergence analysis. It

is shown that close to a stationary point the algorithm takes full SQP steps and the
trust region bound remains inactive. Consequently, fast local convergence is obtained.

4.2.1 Global Convergence

In the beginning the assumptions are stated under which the global convergence of
Algorithm 4.1 is proved. Here (xk, vk) denotes an iterate and dk, uk are obtained either
by subproblem (4.7) or by subproblem (4.10) in the feasibility restoration phase.

Assumption 4.2 1. There exists a nonempty, convex, and compact set X ⊂ R
n

such that for all k the iterate xk and xk + dk lie in X .
2. The problem functions f(x) and gj(x), j = 1, . . . , m, are twice continuously

differentiable on an open set containing X .
3. For all iterations k the matrix Bk is positive definite and there exists a constant1

κlbB > 0 independent of k such that

κlbB∥d∥2
2 ≤ dTBkd (4.28)

for all d ∈ Rn.
4. The Lagrangian multipliers uk obtained by the subproblems are bounded for all
k and there exists a constant κ ≥ 1 independent of k such that κ ≥ κlbB and

∥uk∥∞ ≤ κ

for all k. The initial guess for the multipliers v0 is also bounded by κ, that is
∥v0∥∞ ≤ κ. Moreover, the matrices Bk are bounded and

∥Bk∥2 ≤ κ

holds for all k.

Assumption 4.2(1.) and Assumption 4.2(2.) are required to hold throughout the global
convergence analysis without being mentioned explicitly. It is a consequence of these
assumptions that the function values, the gradients, and the Hessian matrices of f(x)
and gj(x), j = 1, . . . ,m, are bounded on X . Thus, a constant2 κubF > 0 exists such
that for all x ∈ X

|f(x)| ≤ κubF ,

|gj(x)| ≤ κubF , j = 1, . . . ,m ,
(4.29)

holds, and another constant3 κubG > 0 can be determined such that

∥∇f(x)∥2 ≤ κubG ,

∥∇gj(x)∥2 ≤ κubG , j = 1, . . . ,m ,
(4.30)

1lbB = lower bound B
2ubF = upper bound Function
3ubG = upper bound Gradient

4.2 Convergence Analysis 45

is satisfied for all x ∈ X . For the Hessian matrices a constant4 κubH > 0 exists such
that

∥∇2f(x)∥2 ≤ κubH ,

∥∇2gj(x)∥2 ≤ κubH , j = 1, . . . ,m ,
(4.31)

holds for all x ∈ X .
The bound κ in Assumption 4.2(4.) is also valid for the multipliers vk for all k, as

the multipliers are updated either by

v
(k+1)
j := v

(k)
j

or
v

(k+1)
j := v

(k)
j + w

(k)
j = v

(k)
j +

(
u

(k)
j − v

(k)
j

) (
1 − z

(k)
j

)
,

for j = 1, . . . , m, according to Step 6 of Algorithm 4.1, where definition (4.12) of
wk is applied. Since ∥v0∥∞ ≤ κ is assumed and ∥zk∥∞ ≤ 1, according to the update
rule in Step 1 and definition (4.11), the boundedness follows by induction. Thus, the
bound on ∥uk∥∞ implies that

∥vk∥∞ ≤ κ (4.32)
holds for all k.

To simplify the notation in the remainder of the convergence analysis, it is assumed
without loss of generality that the constant κ ≥ 1 also satisfies

κ ≥ max (κubF, κubG, κubH) , (4.33)

where the constants on the right-hand satisfy (4.29)-(4.31). Consequently, the bound
κ is valid for the norms of the function values, the gradients, the Hessian matrices, the
matrices Bk, and the multipliers.

In order to prove global convergence of Algorithm 4.1 to a KKT point, the extended
Mangasarian-Fromowitz constraint qualification (extended MFCQ) is assumed to hold.

Assumption 4.3 1. There exists a β > 0, β ∈ R, such that the set F(β), as
defined in (2.12), is compact, and for all x ∈ F(β) the vectors ∇gj(x), j ∈ E ,
are linearly independent and there exists a d ∈ Rn such that

∇gj(x)Td = 0 , j ∈ E ,

∇gj(x)Td > 0 , j ∈ A(x, 0) .

2. The set X of Assumption 4.2 is a subset of F(β), i.e., X ⊂ F(β).

Here F(β) denotes the extended feasible region as defined by (2.12) and A(x, 0) as
defined in (2.15) with γ = 0. Assumption 4.3 ensures that for all k the subproblems
set up in xk will generate a search step dk that reduces the violation of the linearized
constraints.

4ubH = upper bound Hessian

46 4 A Trust Region SQP Algorithm for Constrained Nonlinear Programs

For the convergence analysis it is assumed that the subproblems are solved exactly.
The Karush-Kuhn-Tucker (KKT) optimality conditions at the minimizer dk of the
subproblems play a key role in the proofs. These conditions correspond to conditions
(2.23)-(2.27) in Section 2.2 when applied to the quadratic subproblems. First, the case
when subproblem (4.7) is consistent and a solution exists is considered. The solution of
problem (4.7) in the k-th iteration is denoted by dk, uk, µk, and µk, where µ

k
∈ Rn and

µk ∈ Rn are the multipliers corresponding to the reformulated trust region constraint.
Thus, the KKT optimality conditions of subproblem (4.7) are

(a) Bkdk + ∇f(xk) −
m∑
j=1

∇gj(xk)u(k)
j − µ

k
+ µk = 0 ,

(b) gj(xk) + ∇gj(xk)Tdk = 0 , j ∈ E ,

(c) gj(xk) + ∇gj(xk)Tdk ≥ 0 , j ∈ I ,

(d) d
(k)
i − ∆k ≥ 0 , i = 1, . . . , n ,

(e) ∆k − d
(k)
i ≥ 0 , i = 1, . . . , n ,

(f) u
(k)
j

(
gj(xk) + ∇gj(xk)Tdk

)
= 0 , j ∈ I , (4.34)

(g) u
(k)
j ≥ 0 , j ∈ I ,

(h) µ(k)
i

(
d

(k)
i − ∆k

)
= 0 , i = 1, . . . , n ,

(i) µ(k)
i

≥ 0 , i = 1, . . . , n ,

(j) µ
(k)
i

(
∆k − d

(k)
i

)
= 0 , i = 1, . . . , n ,

(k) µ
(k)
i ≥ 0 , i = 1, . . . , n .

To simplify the notation in the remainder of this work

µk :=
n∑
i=1

(
µ(k)
i

+ µ
(k)
i

)
(4.35)

is defined, where µ
k

and µk are the multipliers according to conditions (4.34)(h)-(k).
Moreover, these conditions and (4.35) are used to define a vector ηk ∈ Rn with

η
(k)
i :=

µ

(k)
i /µk , if d(k)

i = ∆k and µk > 0 ,

− µ(k)
i
/µk , if d(k)

i = −∆k and µk > 0 ,

0 , otherwise ,

(4.36)

for i = 1, . . . , n.
In case subproblem (4.7) is inconsistent and the feasibility restoration phase is en-

tered, the trial step (dk, wk) is obtained by solving subproblem (4.10). δk denotes
the solution of the feasibility restoration subproblem (4.9). Then the KKT system of

4.2 Convergence Analysis 47

problem (4.10) is

(a) Bkdk + ∇f(xk) −
m∑
j=1

∇gj(xk)u(k)
j + µkηk = 0 ,

(b) gj(xk)(1 − δk) + ∇gj(xk)Tdk = 0 , j ∈ E ,

(c) gj(xk)(1 − δk) + ∇gj(xk)Tdk ≥ 0 , j ∈ Ak ,

(d) gj(xk) + ∇gj(xk)Tdk ≥ 0 , j ∈ Bk ,

(e) d
(k)
i − ∆k ≥ 0 , i = 1, . . . , n ,

(f) ∆k − d
(k)
i ≥ 0 , i = 1, . . . , n ,

(g) u
(k)
j

(
gj(xk)(1 − δk) + ∇gj(xk)Tdk

)
= 0 , j ∈ Ak , (4.37)

(h) u
(k)
j

(
gj(xk) + ∇gj(xk)Tdk

)
= 0 , j ∈ Bk ,

(i) u
(k)
j ≥ 0 , j ∈ I ,

(j) µ(k)
i

(
d

(k)
i − ∆k

)
= 0 , i = 1, . . . , n ,

(k) µ(k)
i

≥ 0 , i = 1, . . . , n ,

(l) µ
(k)
i

(
∆k − d

(k)
i

)
= 0 , i = 1, . . . , n ,

(m) µ
(k)
i ≥ 0 , i = 1, . . . , n .

Here µk and ηk in (4.37)(a) are determined according to (4.35) and (4.36), where the
corresponding values, which satisfy (4.37)(j)-(m), are applied.

The acceptance of a trial step (dk, wk) depends on the ratio of the actual change
and the predicted reduction calculated in Step 4 of Algorithm 4.1. The actual change
in the augmented Lagrangian merit function Φσk

is denoted by

Aredk := Φσk
(xk, vk) − Φσk

(xk + dk, vk + wk) , (4.38)

where the value of the augmented Lagrangian at the trial point (xk + dk, vk + wk) is
defined as

Φσk
(xk + dk, vk + wk) := f(xk + dk)

−
∑
j∈Lk

((
v

(k)
j + w

(k)
j

)
gj(xk + dk) − 1

2
σkgj(xk + dk)2

)
−
∑
j∈Lk

1
2

(
v

(k)
j + w

(k)
j

)2

σk
.

(4.39)

The index sets Lk and Lk are defined as follows

Lk := E ∪
{
j ∈ I | gj(xk + dk) ≤

(
v

(k)
j + w

(k)
j

)
/σk

}
(4.40)

48 4 A Trust Region SQP Algorithm for Constrained Nonlinear Programs

and
Lk := {1, . . . ,m} \ Lk . (4.41)

The global convergence of Algorithm 4.1 is proved in several stages. First, it is
shown that the step (dk, wk) leads to a sufficient decrease in the model, where the
step is calculated either by subproblem (4.7) or by subproblem (4.10). Thereafter, this
lower bound on the predicted reduction is further investigated. A bound is specified
with respect to the value ∥∇f(xk) − ∇g(xk)uk∥2 + µk. Moreover, a second estimate is
established that depends on the value of the constraint violation. In a next step, the
difference between the actual change and the predicted reduction is estimated and a
lower bound on the trust region radius is established such that the trust region radius
is bounded away from zero if the iterate is not a stationary point of the optimized
problem. At the end it is shown that at least one accumulation point of the sequence
of iterates generated by Algorithm 4.1 is a KKT point of problem (1.2).

In the beginning some technical results are stated which are applied in the re-
mainder of the global analysis. In the following it is shown that the update rules of
Algorithm 4.1 guarantee that the multiplier approximations vk with respect to the
inequality constraints remain greater or equal to zero for all k.

Lemma 4.4 Let {vk} be the sequence of multipliers generated by Algorithm 4.1, then
for all k

v
(k)
j ≥ 0 (4.42)

and
v

(k)
j + w

(k)
j ≥ 0 (4.43)

hold for all j ∈ I.

Proof : According to the KKT conditions of the corresponding subproblem, see either
condition (4.34)(g) or (4.37)(i), for all k the multipliers satisfies u(k)

j ≥ 0 for j ∈ I. In
Step 6 of Algorithm 4.1 the multipliers are updated either by

v
(k+1)
j := v

(k)
j

or
v

(k+1)
j := v

(k)
j + w

(k)
j , (4.44)

for j ∈ E ∪ I. In Step 1 the entries of zk are either set to 0 or determined according
to (4.11). In both cases 0 ≤ z

(k)
j ≤ 1, j = 1, . . . ,m, holds. Applying definition (4.12)

of w(k)
j , 0 ≤ z

(k)
j ≤ 1, and u

(k)
j ≥ 0, j ∈ I, yields

w
(k)
j =

(
u

(k)
j − v

(k)
j

) (
1 − z

(k)
j

)
= u

(k)
j︸︷︷︸

≥0

(
1 − z

(k)
j

)
︸ ︷︷ ︸

≥0

−v(k)
j

(
1 − z

(k)
j

)

≥ −v(k)
j

(
1 − z

(k)
j

)
︸ ︷︷ ︸

≤1

≥ −
∣∣∣v(k)
j

∣∣∣ , (4.45)

4.2 Convergence Analysis 49

for all j ∈ I. Thus, (4.44) and (4.45) guarantee v(k+1)
j ≥ 0 as long as v(k)

j ≥ 0, for
j ∈ I. As v0

j ≥ 0 is required for all j ∈ I, the lemma follows by induction. 2

Since the definitions of the augmented Lagrangian Φσk
(4.1) and the model Ψσk

(4.13) contain different index sets, the properties of uk and zk, that are implied by
these sets, are investigated. The following lemma focuses on the set Mk.

Lemma 4.5 Let (xk, vk) be an iterate of Algorithm 4.1 and Mk be defined by (4.18),
then

u
(k)
j = 0 and z(k)

j = 0 (4.46)

hold for all j ∈ Mk.

Proof : Let j ∈ Mk. By definition of Mk and Mk, cf. (4.17) and (4.18), it follows that
j ∈ I. According to the KKT conditions of the corresponding subproblem at iteration
k, i.e., either condition (4.34)(g) or (4.37)(i), the multiplier satisfies u(k)

j ≥ 0 for all
j ∈ I. From Lemma 4.4 it follows

v
(k)
j + w

(k)
j ≥ 0 , (4.47)

for j ∈ I. Applying (4.47) and j ∈ Mk, we obtain

gj(xk) + ∇gj(xk)Tdk >
v

(k)
j + w

(k)
j

σk
≥ 0 . (4.48)

If subproblem (4.7) is solved then the KKT condition (4.34)(f) implies u(k)
j = 0 and

z
(k)
j is set to zero in Step 1 of Algorithm 4.1. Otherwise, the feasibility restoration

phase is entered.
In case j ∈ Bk, we obtain with the KKT condition (4.37)(h) and (4.48) that u(k)

j = 0
and z

(k)
j = 0 according to the definition (4.11) of zk.

If j ∈ Ak, then with gj(xk) ≤ 0, 0 ≤ δk ≤ 1, and (4.48) we get

gj(xk)(1 − δk) + ∇gj(xk)Tdk = gj(xk) + ∇gj(xk)Tdk︸ ︷︷ ︸
>0

− δkgj(xk)︸ ︷︷ ︸
≤0

> 0 .

The KKT condition (4.37)(g) implies u(k)
j = 0. By definition (4.11) of zk, it follows

z
(k)
j = 0. This proves the lemma. 2

Now some properties with respect to the sets Sk and Mk are considered.

Lemma 4.6 Let (xk, vk) be an iterate of Algorithm 4.1, then for all j ∈ Sk ∩ Mk

z
(k)
j = 0 , (4.49)

gj(xk) + ∇gj(xk)Tdk = 0 , (4.50)

u
(k)
j gj(xk) > u

(k)
j

v
(k)
j

σk
≥ 0 (4.51)

holds, where Sk be defined by (4.3) and Mk be defined according to (4.18).

50 4 A Trust Region SQP Algorithm for Constrained Nonlinear Programs

Proof : Let j ∈ Sk ∩ Mk. Since j ∈ Sk, it follows by definition (4.3) that j ∈ I and

gj(xk) >
v

(k)
j

σk
≥ 0 , (4.52)

where we also applied v
(k)
j ≥ 0 according to Lemma 4.4 and σk ≥ 1. Thus, we obtain

j ∈ Bk, with Bk = B(xk, 0) as defined in (2.16). In case the feasibility restoration
subproblem (4.10) is solved, then z

(k)
j = 0 holds according to the definition of zk, cf.

(4.11). If the quadratic subproblem (4.7) is consistent, then z(k)
j is set to zero in Step

1 of Algorithm 4.1 for all j ∈ E ∪ I. Consequently, z(k)
j = 0 holds for all j ∈ Sk ∩ Mk.

Together with the definition (4.12) of w(k)
j this yields

v
(k)
j + w

(k)
j = v

(k)
j +

(
u

(k)
j − v

(k)
j

) (
1 − z

(k)
j

)
= v

(k)
j +

(
u

(k)
j − v

(k)
j

)
= u

(k)
j . (4.53)

Due to the construction of the subproblems and since j ∈ Bk, the linearized constraint
satisfies

gj(xk) + ∇gj(xk)Tdk ≥ 0 . (4.54)

Moreover, j ∈ Mk and (4.53) imply

gj(xk) + ∇gj(xk)Tdk ≤
v

(k)
j + w

(k)
j

σk
=
u

(k)
j

σk
. (4.55)

According to the optimality conditions of the corresponding subproblem, i.e., (4.34)(f)
or (4.37)(h), respectively,

u
(k)
j

(
gj(xk) + ∇gj(xk)Tdk

)
= 0 (4.56)

holds.
If we assume that gj(xk) + ∇gj(xk)Tdk > 0, then (4.56) requires u(k)

j = 0. But this
contradicts (4.55) as σk ≥ 1. Thus, it follows from (4.54) that

gj(xk) + ∇gj(xk)Tdk = 0 .

When we apply the fact that the multipliers for the inequality constraints satisfy
u

(k)
j ≥ 0, j ∈ I, see KKT conditions (4.34)(g) and (4.37)(i), to (4.52), we obtain the

desired result

u
(k)
j gj(xk) > u

(k)
j

v
(k)
j

σk
≥ 0 .

2

We consider a third set. This one contains the constraints that are in Sk and Mk.

Lemma 4.7 Let (xk, vk) be an iterate of Algorithm 4.1, then for all j ∈ Sk ∩ Mk

gj(xk) + ∇gj(xk)Tdk = gj(xk)z(k)
j (4.57)

holds, where Sk be defined by (4.2) and Mk be defined according to (4.18).

4.2 Convergence Analysis 51

Proof : Let j ∈ Sk ∩ Mk. A distinction is made between equality and inequality
constraints. First, the case is investigated when j ∈ E . If subproblem (4.7) is consistent,
then

gj(xk) + ∇gj(xk)Tdk = 0 (4.58)
and z(k)

j is set to zero in Step 1 of Algorithm 4.1. With z(k)
j = 0, j ∈ E , gj(xk)z(k)

j = 0,
and (4.58), equation (4.57) follows.

Otherwise, the feasibility restoration phase is entered and subproblem (4.10) is
solved so that

gj(xk)(1 − δk) + ∇gj(xk)Tdk = 0 (4.59)

holds, with 0 ≤ δk ≤ 1 as required by the definition of subproblem (4.9). If gj(xk) = 0,
then (4.58) is also satisfied and z(k)

j = 0 according to definition (4.11). Equation (4.57)
follows as before. Finally, in case gj(xk) ̸= 0, then z

(k)
j = δk is obtained by definition

(4.11) and (4.59). Thus, equation (4.57) holds for all j ∈ E .
Now an inequality constraint is considered, i.e., j ∈ I. As j ∈ Sk ∩ Mk, it follows

by definition (4.12) of w(k)
j and j ∈ Mk that

gj(xk) + ∇gj(xk)Tdk ≤
v

(k)
j + w

(k)
j

σk
=
v

(k)
j +

(
u

(k)
j − v

(k)
j

) (
1 − z

(k)
j

)
σk

. (4.60)

Moreover, j ∈ Sk yields
gj(xk) ≤

v
(k)
j

σk
,

and gj(xk) can be less than zero. The rest of the proof depends on the value of gj(xk).
We consider the case when gj(xk) > 0. If subproblem (4.10) is solved in the feasibility

restoration phase, then j ∈ Bk and z
(k)
j = 0 follows by definition (4.11). In case the

standard subproblem (4.7) is consistent and a solution exists, then z
(k)
j = 0 is set in

Step 1 of Algorithm 4.1. In both cases, the step in the dual variable is

w
(k)
j = u

(k)
j − v

(k)
j . (4.61)

As j ∈ Mk, applying (4.61) to (4.60) yields

gj(xk) + ∇gj(xk)Tdk ≤
u

(k)
j

σk
. (4.62)

Together with the complementary condition in the KKT system of the subproblems,
see (4.34)(f) or (4.37)(h), respectively, (4.62) implies

gj(xk) + ∇gj(xk)Tdk = 0 .

Thus, equation (4.57) holds with z
(k)
j = 0.

If gj(xk) = 0, then j ∈ Ak implies with definition (4.11) that z(k)
j = 0 when the

feasibility restoration phase is executed. Obviously, this also holds if the standard
subproblem (4.7) is solved. Due to (4.61), (4.62), and the complementary condition of
the KKT system, cf. (4.34)(f) and (4.37)(g), equation (4.57) holds as before.

52 4 A Trust Region SQP Algorithm for Constrained Nonlinear Programs

Let us now consider the case when gj(xk) < 0. If subproblem (4.7) is consistent, then
we get (4.61) as z(k)

j = 0 . Thus, (4.62) holds and with the complementary condition
(4.34)(f) it follows that gj(xk) + ∇gj(xk)Tdk = 0. Consequently, (4.57) holds.

Otherwise, the feasibility restoration phase is executed and subproblem (4.10) is
solved. According to the KKT conditions (4.37)(c),

gj(xk)(1 − δk) + ∇gj(xk)Tdk ≥ 0

holds. As gj(xk) < 0, it follows with 0 ≤ δk ≤ 1 that

gj(xk) + ∇gj(xk)Tdk ≤ gj(xk)(1 − δk) + ∇gj(xk)Tdk (4.63)

is satisfied.
First, the case is considered when gj(xk)(1 − δk) + ∇gj(xk)Tdk = 0. Here the in-

equality (4.63) yields
gj(xk) + ∇gj(xk)Tdk ≤ 0 ,

and together with gj(xk) < 0 we obtain

z
(k)
j = gj(xk) + ∇gj(xk)Tdk

gj(xk)
≥ 0 , (4.64)

where z(k)
j is determined according to (4.11). Thus, equation (4.57) holds.

Finally, the situation is considered when gj(xk)(1 − δk) + ∇gj(xk)Tdk > 0. In this
case the KKT condition (4.37)(g), that is

u
(k)
j

(
gj(xk)(1 − δk) + ∇gj(xk)Tdk

)
= 0 ,

implies u(k)
j = 0. We assume that gj(xk) + ∇gj(xk)Tdk > 0. Then with gj(xk) < 0, it

follows
gj(xk) + ∇gj(xk)Tdk

gj(xk)
< 0 . (4.65)

This results in z(k)
j = 0 according to definition (4.11). Thus, with u(k)

j = 0 and z(k)
j = 0,

the step in the dual variable is w(k)
j = −v(k)

j , see definition (4.12). Since j ∈ Mk, this
leads to

gj(xk) + ∇gj(xk)Tdk ≤
v

(k)
j + w

(k)
j

σk
= 0 , (4.66)

what contradicts the assumption that gj(xk) + ∇gj(xk)Tdk > 0. It follows gj(xk) +
∇gj(xk)Tdk ≤ 0 and according to (4.11) the obtained z

(k)
j is equal to (4.64). Conse-

quently, statement (4.57) follows. 2

The last set under consideration contains the constraints which are in the sets Lk

(4.40) and Mk (4.18). Thus, the actual value of the augmented Lagrangian Φσk
at a

new trial point (xk + dk, vk + wk) and the corresponding sets are considered .

4.2 Convergence Analysis 53

Lemma 4.8 Let (xk, vk) be an iterate of Algorithm 4.1, then for all j ∈ Lk ∩ Mk

gj(xk) + ∇gj(xk)Tdk ≤ 0 (4.67)

holds, where Lk be defined by (4.41) and Mk be defined according to (4.18).

Proof : Let j ∈ Lk ∩ Mk. As j ∈ Lk, it follows by definition (4.41) that j ∈ I. We
now assume that

gj(xk) + ∇g(xk)Tdk > 0 (4.68)

holds. We consider the two cases where the trial step is either obtained by the standard
subproblem (4.7) or by the feasibility restoration phase, i.e., subproblem (4.10).

Let (dk, uk) be the solution to the standard subproblem (4.7). As j ∈ I, it follows
with the KKT optimality condition (4.34)(f) and (4.68) that

u
(k)
j = 0 , (4.69)

and, consequently,

gj(xk) + ∇g(xk)Tdk >
v

(k)
j + w

(k)
j

σk
=
v

(k)
j +

(
u

(k)
j − v

(k)
j

)
σk

=
u

(k)
j

σk
= 0 , (4.70)

with the definition of w(k)
j (4.12) and z(k)

j = 0 according to Step 1. But this contradicts
j ∈ Mk, see definition (4.17). Thus, the inequality (4.67) holds.

Now consider the case when (dk, uk) is obtained by solving subproblem (4.10). If
gj(xk) > 0, then j ∈ Bk = B(xk, 0) follows, see definition (2.16). Due to the KKT
condition (4.37)(h) and assumption (4.68), (4.69) holds again for the multiplier u(k)

j .
Moreover, with z(k)

j = 0, according to definition (4.11), and the definition of w(k)
j (4.12),

(4.70) also holds. We obtain the same contradiction as before and thus the statement
(4.67) follows.

In case gj(xk) ≤ 0, then j ∈ Ak = Ak(xk, 0), according to definition (2.15), and we
get

gj(xk)(1 − δk) + ∇gj(xk)Tdk = gj(xk) + ∇gj(xk)Tdk − gj(xk)δk︸ ︷︷ ︸
≤0

≥ gj(xk) + ∇gj(xk)Tdk
(4.68)
> 0 ,

(4.71)

where we applied gj(xk) ≤ 0 and 0 ≤ δk ≤ 1. The estimate (4.71) and the KKT
condition (4.37)(g) yield (4.69) for the multiplier u(k)

j . By definition (4.11), z(k)
j = 0

also holds, as j ∈ Ak and (4.68) is assumed. Thus, (4.70) follows. This is a contradiction
since j ∈ Mk. As (4.67) holds again, the lemma is proved. 2

This was the last technical result needed. The next Theorem establishes a lower
bound on the predicted reduction Predk (4.23). It is shown that each determined trial
step (dk, wk) leads to a sufficient decrease in the model. The penalty parameter update
(4.24) plays a key role in the proof and is thereby motivated.

54 4 A Trust Region SQP Algorithm for Constrained Nonlinear Programs

Theorem 4.9 Let Assumption 4.2 hold and (xk, vk) be an iterate of Algorithm 4.1.
Then the predicted reduction Predk (4.23) satisfies

Predk ≥ 1
6
(
dTkBkdk + 2µk∆k

)
+ 1

8
σk

∑
j∈Sk

gj(xk)2
(

1 − z
(k)
j

2
)
, (4.72)

where Sk be defined by (4.2).
Proof : The optimality conditions (4.34) and (4.37) of the subproblems are used. To
simplify the notation they are reformulated by applying µk (4.35) and ηk (4.36). As the
KKT conditions (4.37) are equal to (4.34) when δk = 0, we do not have to distinguish
between the cases when subproblem (4.7) or subproblem (4.10) is solved.

Moreover, the definitions of Φσk
(xk, vk), Ψσk

(dk, wk), and the corresponding index
sets, see (4.1)-(4.3) and (4.16)-(4.18), are applied.

As the model and the augmented Lagrangian at the current iterate (xk, vk) are
identical, that is Ψσk

(0, 0) = Φσk
(xk, vk) according to (4.19)-(4.22), we obtain

Predk = Ψσk
(0, 0) − Ψσk

(dk, wk)
= Φσk

(xk, vk) − Ψσk
(dk, wk)

= f(xk) −
∑
j∈Sk

(
v

(k)
j gj(xk) − 1

2
σkgj(xk)2

)
−
∑
j∈Sk

1
2
v

(k)
j

2

σk

− f(xk) − ∇f(xk)Tdk − 1
2
dTkBkdk

+
∑
j∈Mk

((
v

(k)
j + w

(k)
j

) (
gj(xk) + ∇gj(xk)Tdk

)
− 1

2
σk
(
gj(xk) + ∇gj(xk)Tdk

)2
)

+
∑
j∈Mk

1
2

(
v

(k)
j + w

(k)
j

)2

σk

= 1
2
dTkBkdk + µkη

T
k dk −

m∑
j=1

(
u

(k)
j ∇gj(xk)Tdk

)
−
∑
j∈Sk

(
v

(k)
j gj(xk) − 1

2
σkgj(xk)2

)

−
∑
j∈Sk

1
2
v

(k)
j

2

σk

+
∑
j∈Mk

((
v

(k)
j + w

(k)
j

) (
gj(xk) + ∇gj(xk)Tdk

)
− 1

2
σk
(
gj(xk) + ∇gj(xk)Tdk

)2
)

+
∑
j∈Mk

1
2

(
v

(k)
j + w

(k)
j

)2

σk
. (4.73)

In the last step −∇f(xk)Tdk is substituted by the KKT conditions of the subproblem,
cf. (4.34)(a), with µk and ηk, or (4.37)(a), respectively, which are multiplied by dk.

4.2 Convergence Analysis 55

Since by definition Sk∪Sk = {1, . . . ,m} and Mk∪Mk = {1, . . . ,m}, it follows that
(Sk ∩ Mk) ∪ (Sk ∩ Mk) = Mk and (Sk ∩ Mk) ∪ (Sk ∩ Mk) = Mk. Thus, a disjunct
decomposition of the set of constraint indexes is obtained by

{1, . . . ,m} = (Sk ∩ Mk) ∪ (Sk ∩ Mk) ∪ (Sk ∩ Mk) ∪ (Sk ∩ Mk) . (4.74)

We proceed from (4.73) and apply (4.74). Recombining the index sets of the sums
yields

Predk = 1
2
dTkBkdk + µkη

T
k dk

−
∑

j∈Sk∩Mk

(
u

(k)
j ∇gj(xk)Tdk + v

(k)
j gj(xk) − 1

2
σkgj(xk)2

−
(
v

(k)
j + w

(k)
j

) (
gj(xk) + ∇gj(xk)Tdk

)
+ 1

2
σk
(
gj(xk)+∇gj(xk)Tdk

)2
)

−
∑

j∈Sk∩Mk

u(k)
j ∇gj(xk)Tdk + v

(k)
j gj(xk) − 1

2
σkgj(xk)2 − 1

2

(
v

(k)
j + w

(k)
j

)2

σk

−

∑
j∈Sk∩Mk

u(k)
j ∇gj(xk)Tdk + 1

2
v

(k)
j

2

σk
−
(
v

(k)
j + w

(k)
j

) (
gj(xk) + ∇gj(xk)Tdk

)

+ 1
2
σk
(
gj(xk) + ∇gj(xk)Tdk

)2

−
∑

j∈Sk∩Mk

u(k)
j ∇gj(xk)Tdk + 1

2
v

(k)
j

2

σk
− 1

2

(
v

(k)
j + w

(k)
j

)2

σk

 . (4.75)

In the following the four sums in (4.75) are analyzed separately. In a first step,
the constraints with j ∈ Sk ∩ Mk are considered. Reordering, eliminating parts, and
applying the definition w

(k)
j :=

(
u

(k)
j − v

(k)
j

) (
1 − z

(k)
j

)
leads to

∑
j∈Sk∩Mk

(
u

(k)
j ∇gj(xk)Tdk + v

(k)
j gj(xk) − 1

2
σkgj(xk)2

−
(
v

(k)
j + w

(k)
j

) (
gj(xk) + ∇gj(xk)Tdk

)
+ 1

2
σk
(
gj(xk) + ∇gj(xk)Tdk

)2
)

=
∑

j∈Sk∩Mk

((
u

(k)
j − v

(k)
j

)
∇gj(xk)Tdk −

(
u

(k)
j − v

(k)
j

) (
1 − z

(k)
j

) (
gj(xk) + ∇gj(xk)Tdk

)

− 1
2
σkgj(xk)2 + 1

2
σk
(
gj(xk) + ∇gj(xk)Tdk

)2
)
. (4.76)

56 4 A Trust Region SQP Algorithm for Constrained Nonlinear Programs

Now the second sum in (4.75) with j ∈ Sk∩Mk is considered. As j ∈ Mk, according
to Lemma 4.5 it follows u(k)

j = 0 and z
(k)
j = 0. Thus, the step in the dual variable for

j ∈ Sk ∩ Mk is
w

(k)
j = −v(k)

j , (4.77)

and with u
(k)
j = 0 the equation

u
(k)
j ∇gj(xk)Tdk = −u(k)

j gj(xk) (4.78)

holds. Applying (4.77) and (4.78) to the sum yields

∑
j∈Sk∩Mk

u(k)
j ∇gj(xk)Tdk︸ ︷︷ ︸

=−u(k)
j gj(xk)

+ v
(k)
j gj(xk) − 1

2
σkgj(xk)2 − 1

2

(
v

(k)
j + w

(k)
j

)2

σk︸ ︷︷ ︸
=0

= −
∑

j∈Sk∩Mk

((
u

(k)
j − v

(k)
j

)
gj(xk) + 1

2
σkgj(xk)2

)
. (4.79)

The third sum in (4.75) consists of all j ∈ Sk ∩ Mk, and according to Lemma 4.6

gj(xk) = −∇gj(xk)Tdk (4.80)

and

u
(k)
j gj(xk) > u

(k)
j

v
(k)
j

σk
≥ 0 (4.81)

hold. Applying (4.80) and (4.81) to the sum leads to the estimate

−
∑

j∈Sk∩Mk

u(k)
j ∇gj(xk)Tdk + 1

2
v

(k)
j

2

σk
−
(
v

(k)
j +w(k)

j

) (
gj(xk)+∇gj(xk)Tdk

)
︸ ︷︷ ︸

=0

+ 1
2
σk
(
gj(xk)+∇gj(xk)Tdk

)2

︸ ︷︷ ︸
=0

=
∑

j∈Sk∩Mk

u(k)
j gj(xk) − 1

2
v

(k)
j

2

σk

(4.81)
>

∑
j∈Sk∩Mk

u(k)
j

v
(k)
j

σk
− 1

2
v

(k)
j

2

σk

 . (4.82)

Since j ∈ Mk, Lemma 4.5 can be applied to transform the last sum in (4.75). For
j ∈ Mk, u(k)

j = 0 and z
(k)
j = 0 hold. Thus, it follows

v
(k)
j + w

(k)
j = v

(k)
j +

(
u

(k)
j − v

(k)
j

) (
1 − z

(k)
j

)
= u

(k)
j = 0 . (4.83)

4.2 Convergence Analysis 57

With (4.83) we obtain

∑
j∈Sk∩Mk

u(k)
j ∇gj(xk)Tdk︸ ︷︷ ︸

=0

+1
2
v

(k)
j

2

σk
− 1

2

(
v

(k)
j + w

(k)
j

)2

σk︸ ︷︷ ︸
=0

 =
∑

j∈Sk∩Mk

1
2
v

(k)
j

2

σk

u
(k)
j =0
=

∑
j∈Sk∩Mk

1
2

(
u

(k)
j − v

(k)
j

)2

σk
. (4.84)

Now the sums in (4.75) are substituted by (4.76), (4.79), (4.82), and (4.84). In (4.82)
a lower bound on the third sum is established, thus, the predicted reduction Predk is
also estimated from below. In a second step, gj(xk) + ∇gj(xk)Tdk = gj(xk)z(k)

j , for all
j ∈ Sk ∩ Mk, is applied according to Lemma 4.7. It follows

Predk >
1
2
dTkBkdk + µkη

T
k dk

−
∑

j∈Sk∩Mk

(u(k)
j − v

(k)
j

)
∇gj(xk)Tdk

−
(
u

(k)
j − v

(k)
j

) (
1 − z

(k)
j

) (
gj(xk) + ∇gj(xk)Tdk

)
− 1

2
σkgj(xk)2 + 1

2
σk
(
gj(xk) + ∇gj(xk)Tdk

)2

+
∑

j∈Sk∩Mk

((
u

(k)
j − v

(k)
j

)
gj(xk) + 1

2
σkgj(xk)2

)

+
∑

j∈Sk∩Mk

u(k)
j

v
(k)
j

σk
− 1

2
v

(k)
j

2

σk

−
∑

j∈Sk∩Mk

1
2

(
u

(k)
j − v

(k)
j

)2

σk

= 1
2
dTkBkdk + µkη

T
k dk

+
∑

j∈Sk∩Mk

((
u

(k)
j −v(k)

j

) (
1−z(k)

j

)
gj(xk) +

(
u

(k)
j −v(k)

j

) (
1−z(k)

j

)
gj(xk)z(k)

j

+ 1
2
σkgj(xk)2 − 1

2
σk
(
gj(xk)z(k)

j

)2
)

+
∑

j∈Sk∩Mk

((
u

(k)
j −v(k)

j

)
gj(xk) + 1

2
σkgj(xk)2

)

58 4 A Trust Region SQP Algorithm for Constrained Nonlinear Programs

+
∑

j∈Sk∩Mk

u(k)
j

v
(k)
j

σk
− 1

2
v

(k)
j

2

σk

−
∑

j∈Sk∩Mk

1
2

(
u

(k)
j − v

(k)
j

)2

σk
(cf. Lemma 4.7)

= 1
2
dTkBkdk + µkη

T
k dk

+
∑

j∈Sk∩Mk

((
u

(k)
j −v(k)

j

) (
1−z(k)

j

)
gj(xk) +

(
u

(k)
j −v(k)

j

) (
1−z(k)

j

)
gj(xk)z(k)

j

+ 1
2
σkgj(xk)2

(
1−z(k)

j

2
))

+
∑

j∈Sk∩Mk

((
u

(k)
j −v(k)

j

)
gj(xk) + 1

2
σkgj(xk)2

)

+
∑

j∈Sk∩Mk

1
2
u

(k)
j

2

σk
− 1

2
u

(k)
j

2

σk
+ u

(k)
j

v
(k)
j

σk
− 1

2
v

(k)
j

2

σk

−
∑

j∈Sk∩Mk

1
2

(
u

(k)
j − v

(k)
j

)2

σk

= 1
2
dTkBkdk + µkη

T
k dk

+
∑

j∈Sk∩Mk

((
u

(k)
j − v

(k)
j

) (
1 − z

(k)
j

) (
1 + z

(k)
j

)
gj(xk) + 1

2
σkgj(xk)2

(
1 − z

(k)
j

2
))

+
∑

j∈Sk∩Mk

((
u

(k)
j − v

(k)
j

)
gj(xk) + 1

2
σkgj(xk)2

)

+
∑

j∈Sk∩Mk

1
2
u

(k)
j

2

σk
−
∑
j∈Sk

1
2

(
u

(k)
j − v

(k)
j

)2

σk
. (4.85)

In the last step we applied Mk ∪ Mk = {1, . . . ,m}. Since j ∈ Sk ∩ Mk, it follows
j ∈ I. Due to the KKT conditions of the subproblems, i.e., (4.34)(g) or (4.37)(i),
respectively, we know that u(k)

j ≥ 0 holds for all j ∈ I. With σk ≥ 1, we get

∑
j∈Sk∩Mk

1
2
u

(k)
j

2

σk
≥ 0 . (4.86)

Applying (4.86) to (4.85) yields

Predk >
1
2
dTkBkdk + µkη

T
k dk

+
∑

j∈Sk∩Mk

((
u

(k)
j − v

(k)
j

) (
1 − z

(k)
j

2
)
gj(xk) + 1

2
σkgj(xk)2

(
1 − z

(k)
j

2
))

+
∑

j∈Sk∩Mk

((
u

(k)
j − v

(k)
j

)
gj(xk) + 1

2
σkgj(xk)2

)
−
∑
j∈Sk

1
2

(
u

(k)
j − v

(k)
j

)2

σk

4.2 Convergence Analysis 59

= 1
2
dTkBkdk + µkη

T
k dk +

∑
j∈Sk

(
1 − z

(k)
j

2
)((

u
(k)
j − v

(k)
j

)
gj(xk) + 1

2
σkgj(xk)2

)

−
∑
j∈Sk

1
2

(
u

(k)
j − v

(k)
j

)2

σk
. (cf. Lemma 4.5)

In the last step z
(k)
j = 0 is applied for all j ∈ Mk according to Lemma 4.5, and again

Mk ∪ Mk = {1, . . . ,m}.
Now the penalty parameter σk is replaced by estimates obtained by the penalty

update (4.24), that is for each j ∈ E ∪ I the specific value on the right-hand side of

σk ≥ max
1≤j≤m

2m
(
u

(k)
j − v

(k)
j

)2

dTkBkdk + 2µk∆k

(
1 − z

(k)
j

2
) (4.87)

is inserted, where dTkBkdk > 0 for ∥dk∥∞ > 0 due to Assumption 4.2(3.).
Moreover, we make use of the fact that z(k)

j = 0, for all j ∈ Sk, since gj(xk) > 0
implies j ∈ Bk. This follows directly from the way zk is obtained, cf. (4.11), the
definition of Sk (4.3), and the definition of Bk, see (2.16) with γ = 0.

Note that ηTk dk = ∆k if ∥dk∥∞ = ∆k. Otherwise, µk = 0 holds. This is implied by
the definitions of µk (4.35) and ηk (4.36). Thus, we can substitute µkηTk dk by µk∆k.

All indexes j ∈ Sk with u
(k)
j − v

(k)
j = 0 do not influence the further investigation

since they vanish. Without loss of generality we assume that u(k)
j − v

(k)
j ̸= 0 for all

j ∈ Sk. We continue and obtain

Predk >
1
2
dTkBkdk + µk∆k +

∑
j∈Sk

(
1 − z

(k)
j

2
)((

u
(k)
j − v

(k)
j

)
gj(xk) + 1

2
σkgj(xk)2

)

−
∑
j∈Sk

1
2

(
u

(k)
j − v

(k)
j

)2

σk

(4.87)
≥ 1

2
dTkBkdk + µk∆k

+
∑
j∈Sk

(
1−z(k)

j

2
)(u(k)

j −v(k)
j

)
gj(xk) + 3

8

2m
(
u

(k)
j −v(k)

j

)2
(

1−z(k)
j

2
)

dTkBkdk + 2µk∆k

gj(xk)2

+ 1

8
σk

∑
j∈Sk

gj(xk)2
(

1 − z
(k)
j

2
)

−
∑
j∈Sk

1
2

(
u

(k)
j − v

(k)
j

)2 (
dTkBkdk + 2µk∆k

)
2m

(
u

(k)
j − v

(k)
j

)2

60 4 A Trust Region SQP Algorithm for Constrained Nonlinear Programs

= 1
2
dTkBkdk + µk∆k + 1

8
σk

∑
j∈Sk

gj(xk)2
(

1−z(k)
j

2
)

−
∑
j∈Sk

1
4
dTkBkdk + 2µk∆k

m

+
∑
j∈Sk

1
3
dTkBkdk + 2µk∆k

m
+
(
u

(k)
j − v

(k)
j

)
gj(xk)

(
1 − z

(k)
j

2
)

+ 3
4

m
(
u

(k)
j − v

(k)
j

)2
gj(xk)2

(
1 − z

(k)
j

2
)2

dTkBkdk + 2µk∆k

−
∑
j∈Sk

1
3
dTkBkdk + 2µk∆k

m

= 1
2
dTkBkdk + µk∆k + 1

8
σk

∑
j∈Sk

gj(xk)2
(

1 − z
(k)
j

2
)

−
∑
j∈Sk

1
4
dTkBkdk + 2µk∆k

m
−
∑
j∈Sk

1
3
dTkBkdk + 2µk∆k

m

+
∑
j∈Sk

√
dTkBkdk + 2µk∆k√

3m
+

√
3m

(
u

(k)
j − v

(k)
j

)
gj(xk)

(
1 − z

(k)
j

2
)

2
√
dTkBkdk + 2µk∆k

2

︸ ︷︷ ︸
≥0

≥ 1
2
dTkBkdk + µk∆k + 1

8
σk

∑
j∈Sk

gj(xk)2
(

1 − z
(k)
j

2
)

− 1
3
m
dTkBkdk + 2µk∆k

m

= 1
6
(
dTkBkdk + 2µk∆k

)
+ 1

8
σk

∑
j∈Sk

gj(xk)2
(

1 − z
(k)
j

2
)
.

The last inequality is obtained by eliminating the sum of squared expressions, applying

∑
j∈Sk

1
3
dTkBkdk + 2µk∆k

m
≥
∑
j∈Sk

1
4
dTkBkdk + 2µk∆k

m
≥ 0 ,

where dTkBkdk + 2µk∆k > 0, and making use of Sk ∪ Sk = {1, . . . ,m}. This proves the
theorem. 2

The next theorem establishes the dependency of the predicted reduction on the trust
region radius ∆k. Later it is used to contradict the assumption that ∆k tends to zero
in case the sequence generated by Algorithm 4.1 is not approaching any KKT point.

4.2 Convergence Analysis 61

Theorem 4.10 Let Assumption 4.2 hold with a constant κ ≥ 1. Let (xk, vk) be an
iterate of Algorithm 4.1 and (dk, uk, µk) be the solution to either subproblem (4.7) or
subproblem (4.10) in case the feasibility restoration phase is entered. Then there exists
a constant c1 > 0 independent of k such that

Predk ≥ c1

∥∇f(xk)−∇g(xk)uk∥2 min
(

∆k,
∥∇f(xk)−∇g(xk)uk∥2

κ

)
+ µk∆k

(4.88)

holds. Moreover, the step dk satisfies

∥dk∥∞ ≥ min
(

∆k,
∥∇f(xk)−∇g(xk)uk∥2√

nκ

)
.

Proof : Theorem 4.9 establishes the lower bound (4.72) on the predicted reduction
Predk (4.23). Applying Assumption 4.2(3.), i.e., dTkBkdk ≥ κlbB∥dk∥2, to (4.72) yields

Predk ≥ 1
6
(
dTkBkdk + 2µk∆k

)
+ 1

8
σk

∑
j∈Sk

gj(xk)2
(
1 − z

(k)2

j

)

≥ 1
6
(
dTkBkdk + 2µk∆k

)
≥ 1

6
(
κlbB∥dk∥2

2 + 2µk∆k

)
. (4.89)

The fact that 0 ≤ z
(k)
j ≤ 1, for all j ∈ E ∪ I, and the resulting non-negativity of the

term containing the penalty parameter σk has been applied to obtain (4.89).
Moreover, as ∥dk∥2 ≥ ∥dk∥∞, we also obtain

Predk ≥ 1
6
(
κlbB∥dk∥2

2 + 2µk∆k

)
≥ 1

6
(κlbB∥dk∥2∥dk∥∞ + 2µk∆k) . (4.90)

According to the optimality conditions of the corresponding subproblem, i.e., (4.34)(a)
or (4.37)(a), respectively, dk, uk, µk, and ηk satisfy

Bkdk + ∇f(xk) − ∇g(xk)uk + µkηk = 0 , (4.91)

where µk ≥ 0 is determined according to (4.35) and ηk is defined by (4.36). By def-
inition (4.36), it follows ∥ηk∥1 ≤ 1. With (4.91), the upper bound κ on ∥Bk∥2, cf.
Assumption 4.2(4.), and 1 ≥ ∥ηk∥1 ≥ ∥ηk∥2, we obtain the following estimate

κ∥dk∥2 ≥ ∥Bk∥2∥dk∥2

≥ ∥Bkdk∥2

62 4 A Trust Region SQP Algorithm for Constrained Nonlinear Programs

= ∥∇f(xk) − ∇g(xk)uk + µkηk∥2

≥ ∥∇f(xk) − ∇g(xk)uk∥2 − µk∥ηk∥2

≥ ∥∇f(xk) − ∇g(xk)uk∥2 − µk∥ηk∥1

≥ ∥∇f(xk) − ∇g(xk)uk∥2 − µk .

Dividing by the constant κ yields

∥dk∥2 ≥ ∥∇f(xk) − ∇g(xk)uk∥2

κ
− µk

κ
. (4.92)

We apply (4.92) to (4.90). This leads to

Predk ≥ 1
6
κlbB

(
∥∇f(xk) − ∇g(xk)uk∥2

κ
− µk

κ

)
∥dk∥∞ + 2

6
µk∆k

∥dk∥∞≤∆k

≥ 1
6
κlbB

κ
∥∇f(xk) − ∇g(xk)uk∥2∥dk∥∞ − 1

6
κlbB

κ
µk∆k + 2

6
µk∆k

κlbB
κ

≤1
≥ 1

6
κlbB

κ
∥∇f(xk) − ∇g(xk)uk∥2∥dk∥∞ + 1

6
κlbB

κ
µk∆k . (4.93)

Consider the case when ∥dk∥∞ = ∆k, then (4.93) can be rewritten as

Predk ≥ 1
6
κlbB

κ
∥∇f(xk) − ∇g(xk)uk∥2∆k + 1

6
κlbB

κ
µk∆k . (4.94)

In case of ∥dk∥∞ < ∆k, the optimality conditions (4.34) and (4.37), respectively,
yield µk = 0. Thus, we conclude from (4.89) and (4.92) that

Predk ≥ 1
6
κlbB

κ

∥∇f(xk) − ∇g(xk)uk∥2
2

κ
(4.95)

holds. Thus, (4.88) results from (4.94) and (4.95), where we set c1 := κlbB/(6κ).
Applying

√
n∥dk∥∞ ≥ ∥dk∥2 to (4.92), the size of the trial step dk can be estimated

by
∥dk∥∞ ≥ ∥dk∥2√

n
≥ ∥∇f(xk) − ∇g(xk)uk∥2√

nκ
− µk√

nκ
.

The rest of the theorem follows as µk = 0 if ∥dk∥∞ < ∆k, and otherwise ∥dk∥∞ = ∆k.
2

The following theorems are taken from Spellucci [111], where they are formulated as
Theorem 3.4 and Theorem 3.5, respectively. The statements of the theorems are used
in the global analysis to establish convergence toward feasible points. Both theorems
require that the extended Mangasarian-Fromowitz constraint qualification (extended
MFCQ), see Definition 2.3, holds. Proofs for the theorems can be found in the textbook
by Spellucci [110].

4.2 Convergence Analysis 63

Theorem 4.11 If Assumption 4.3(1.) holds, then there exists a pair ϵ > 0 and γ̄ > 0
such that for all γ with 0 ≤ γ ≤ γ̄, for all x̃ ∈ F(β), and for any bounded function
b : Nϵ(x̃) → R

me, there exists a bounded function d : Nϵ(x̃) → R
n such that

∇gj(x)Td(x) = bj(x) , j ∈ E ,

∇gj(x)Td(x) ≥ 1 , j ∈ A(x̃, γ) ,

holds for all x ∈ Nϵ(x̃), where Nϵ(x̃) is defined by (2.19). 2

The second theorem applies Theorem 4.11 and will be used to estimate an upper
bound on the relaxation parameter δk in the feasibility restoration subproblem (4.9).

Theorem 4.12 If Assumption 4.3(1.) holds, then there exist θ⋆ ∈ (0, 1], ν⋆ > 0, and
∆⋆ > 0 such that for all x ∈ F(β) and all 0 < θ ≤ θ⋆ there exists a vector d ̸= 0,
d ∈ Rn, satisfying

θgj(x) + ∇gj(x)Td = 0 , j ∈ E ,

θgj(x) + ∇gj(x)Td ≥ ν⋆ , j ∈ A(x, 0) ,

gj(x) + ∇gj(x)Td ≥ ν⋆ , j ∈ B(x, 0) ,
∥d∥∞ ≤ ∆⋆ ,

where A(x, 0) and B(x, 0) are defined by (2.15) and (2.16), respectively. 2

A slightly modified theorem can be derived from Theorem 4.12. It says that in each
iteration k a bounded step sk exists which reduces the constraint violation in the
linear approximation to a fixed fraction of the current value. Thus, there always exists
a step that results in a sufficient decrease with respect to the constraint violation
measurement.

Theorem 4.13 Let (xk, vk) be an iterate of Algorithm 4.1. If Assumption 4.2 and
Assumption 4.3 hold, then there exists a vector sk ̸= 0, sk ∈ Rn, such that

θ⋆gj(xk) + ∇gj(xk)T sk = 0 , j ∈ E ,

θ⋆gj(xk) + ∇gj(xk)T sk ≥ 0 , j ∈ Ak ,

gj(xk) + ∇gj(xk)T sk ≥ 0 , j ∈ Bk ,

∥sk∥∞ ≤ ∆⋆

holds with constants θ⋆ ∈ (0, 1] and ∆⋆ > 0 which are independent of k.

Proof : Assumption 4.2 and Assumption 4.3 imply that xk ∈ F(β). Thus, according
to Theorem 4.12, there exist constants θ⋆ ∈ (0, 1], ν⋆ > 0, and ∆⋆ > 0 independent of
k and a vector d ̸= 0 such that

64 4 A Trust Region SQP Algorithm for Constrained Nonlinear Programs

θ⋆gj(xk) + ∇gj(xk)Td = 0 , j ∈ E ,

θ⋆gj(xk) + ∇gj(xK)Td ≥ ν⋆ , j ∈ A(xk, 0) ,

gj(xk) + ∇gj(xk)Td ≥ ν⋆ , j ∈ B(xk, 0) ,
∥d∥∞ ≤ ∆⋆

holds. By defining sk := d, and since Ak := A(xk, 0), Bk := B(xk, 0), and ν⋆ > 0, the
theorem is proved. 2

Theorem 4.13 can be applied to establish a lower bound on the predicted reduction
with respect to the constraint violation. It is shown that Predk (4.23) depends on the
trust region radius ∆k.

Theorem 4.14 Let (xk, vk) be an iterate of Algorithm 4.1. If Assumption 4.2 and
Assumption 4.3 hold, then there exists a constant c2 ∈ (0, 1] independent of k such
that

Predk ≥ σk c2 ∥g(xk)−∥2
1 min (1,∆k) (4.96)

holds. Moreover, there exists a constant c3 > 0 independent of k such that the trial
step dk satisfies

∥dk∥∞ ≥ c3∥g(xk)−∥1 min(1,∆k) .

Proof : Theorem 4.9 establishes the lower bound (4.72) on the predicted reduction
Predk (4.23). We apply to (4.72) the Assumption 4.2(3.), that is dTkBkdk ≥ κlbB∥dk∥2 ≥
0, and µk ≥ 0, see definition (4.35). This yields

Predk ≥ 1
6
(
dTkBkdk + 2µk∆k

)
+ 1

8
σk

∑
j∈Sk

gj(xk)2
(
1 − z

(k)2

j

)

≥ 1
8
σk

∑
j∈Sk

gj(xk)2
(
1 − z

(k)2

j

)
. (4.97)

If the standard subproblem (4.7) is consistent and a solution exists, then z
(k)
j = 0

for j = 1, . . . , m, according to Step 1 of Algorithm 4.1. Moreover, we make use of
E ∪ Ak ⊂ Sk, what follows directly from the definition of Sk (4.2) and v(k)

j ≥ 0, for all
j ∈ I, according to Lemma 4.4. Thus, from (4.97) and

√
m∥g(xk)−∥2 ≥ ∥g(xk)−∥1 it

follows
Predk ≥ 1

8
σk

∑
j∈Sk

gj(xk)2
(
1 − z

(k)2

j

)
≥ 1

8
σk

∑
j∈E∪Ak

gj(xk)2
(
1 − z

(k)2

j

)

= 1
8
σk

∑
j∈E∪Ak

gj(xk)2 = 1
8
σk∥g(xk)−∥2

2 ≥ 1
8m

σk∥g(xk)−∥2
1

≥ σk c2 ∥g(xk)−∥2
1 min (1,∆k) , (4.98)

for any 0 < c2 ≤ 1/(8m).

4.2 Convergence Analysis 65

Now we consider the case when the feasibility restoration phase is executed. Since
Assumption 4.2 and Assumption 4.3 hold, according to Theorem 4.13 there exist con-
stants θ⋆ ∈ (0, 1], ∆⋆ > 0, and a vector sk ̸= 0 such that

θ⋆gj(xk) + ∇gj(xk)T sk = 0 , j ∈ E ,

θ⋆gj(xk) + ∇gj(xk)T sk ≥ 0 , j ∈ Ak ,

gj(xk) + ∇gj(xk)T sk ≥ 0 , j ∈ Bk ,

∥sk∥∞ ≤ ∆⋆

holds. In the following a distinction is made between the case when ∥sk∥∞ > ∆k and
the situation when ∥sk∥∞ ≤ ∆k.

In case ∥sk∥∞ > ∆k, then the vector

s̃k := (∆k/∥sk∥∞)sk

is defined such that ∥s̃k∥∞ = ∆k and

θ⋆(∆k/∥sk∥∞)gj(xk) + ∇gj(xk)T s̃k = 0 , j ∈ E ,

θ⋆(∆k/∥sk∥∞)gj(xk) + ∇gj(xk)T s̃k ≥ 0 , j ∈ Ak ,

gj(xk) + ∇gj(xk)T s̃k ≥ 0 , j ∈ Bk ,

∥s̃k∥∞ ≤ ∆⋆

hold. Since ∆⋆ ≥ ∥sk∥∞, we obtain the following estimate for the factor that relaxes
the constraints

θ⋆
∆k

∥sk∥∞
≥ θ⋆

∆k

∆⋆
≥ θ⋆

∆k

∆̄
, (4.99)

where ∆̄ := max(1,∆⋆). Note that (s̃k, 1 − θ⋆(∆k/∥sk∥∞)) is feasible for the feasibility
restoration subproblem (4.9) that determines δk. As δk is a minimizer of the problem,
an upper bound on δk is obtained, that is

1 − θ⋆

∆̄
min(1,∆k) ≥ 1 − θ⋆

∆k

∆̄
≥ 1 − θ⋆

∆k

∥sk∥∞
≥ δk , (4.100)

where the estimate on the left-hand side follows from (4.99).
If ∥sk∥∞ ≤ ∆k, then (sk, 1 − θ⋆) is feasible for the feasibility restoration problem

(4.9). Thus, δk can be estimated by

1 − θ⋆

∆̄
min(1,∆k) ≥ 1 − θ⋆

∆̄
≥ 1 − θ⋆ ≥ δk , (4.101)

since δk is the minimizer of problem (4.9) and ∆̄ ≥ 1 by definition.
From (4.100) and (4.101), it follows that in both cases the inequality

1 − δk ≥ θ⋆

∆̄
min(1,∆k) (4.102)

66 4 A Trust Region SQP Algorithm for Constrained Nonlinear Programs

is valid. As the feasibility restoration phase is executed, zk is determined according to
(4.11). Thus, by definition

z
(k)
j ≤ δk (4.103)

follows for all j = 1, . . . ,m. Moreover, we make use of 0 ≤ δk ≤ 1 and obtain

1 − δ2
k ≥ 1 − δk . (4.104)

Applying (4.102)-(4.104) to (4.97) yields

Predk ≥ 1
8
σk

∑
j∈Sk

gj(xk)2
(
1 − z

(k)
j

2)
(4.103)

≥ 1
8
σk

∑
j∈Sk

gj(xk)2(1 − δ2
k)

(4.104)
≥ 1

8
σk

∑
j∈Sk

gj(xk)2(1 − δk)

(4.102)
≥ 1

8
σk
θ⋆

∆̄
min (1,∆k)

∑
j∈Sk

gj(xk)2

≥ 1
8
σk
θ⋆

∆̄
min (1,∆k)

∑
j∈E∪Ak

gj(xk)2

= 1
8
σk
θ⋆

∆̄
∥g(xk)−∥2

2 min (1,∆k)

≥ 1
8m

σk
θ⋆

∆̄
∥g(xk)−∥2

1 min (1,∆k) . (4.105)

The second to last inequality holds as E ∪ Ak ⊂ Sk. The last inequality is obtained by
applying

√
m∥g(xk)−∥2 ≥ ∥g(xk)−∥1. Thus, the estimates (4.98) and (4.105) show the

first part of the theorem, where we define c2 := θ⋆/(8m∆̄). As θ⋆ ∈ (0, 1] and ∆̄ ≥ 1,
the restriction c2 ∈ (0, 1/(8m)] in (4.98) is satisfied.

The size of the trial step dk can be estimated as follows. According to the re-
sults obtained before, the violated constraints are relaxed at most by the factor
(θ⋆/∆̄) min(1,∆k). Thus, the inequality

θ⋆

∆̄
|gj(xk)−| min(1,∆k) ≤ |∇gj(xk)Tdk|

has to be satisfied for all j ∈ E ∪ Ak, as the relaxed subproblems are consistent. We
consider the most violated constraint l, with l ∈ E ∪ Ak, so that

∥g(xk)−∥∞ = |gl(xk)|

holds. Then for the constraint l the estimate

4.2 Convergence Analysis 67

θ⋆

∆̄
∥g(xk)−∥∞ min(1,∆k) ≤ |∇gl(xk)Tdk| ≤ ∥∇gl(xk)∥2∥dk∥2 ≤ κ∥dk∥2

is satisfied, where ∥∇gl(xk)∥2 ≤ κ is applied according to Assumption 4.2 and (4.33).
Making use of

√
n∥dk∥∞ ≥ ∥dk∥2 and ∥g(xk)−∥∞ ≥ ∥g(xk)−∥1/m yields

∥dk∥∞ ≥ ∥dk∥2√
n

≥ θ⋆
√
nκ∆̄

∥g(xk)−∥∞ min(1,∆k) ≥ θ⋆
√
nmκ∆̄

∥g(xk)−∥1 min(1,∆k) .

The proof is completed by setting c3 := θ⋆/(
√
nmκ∆̄). 2

The next theorem establishes an upper bound on the error of the model Ψk(dk, wk)
when compared to the actual value of the augmented Lagrangian Φk(xk +dk, vk +wk).
Thus, the difference of the actual change Aredk (4.38) and the predicted reduction
Predk (4.23) is considered.

Theorem 4.15 Let (xk, vk) be an iterate of Algorithm 4.1. If Assumption 4.2 and
Assumption 4.3 hold, then there exists a constant c4 ≥ 1 independent of k such that

|Aredk − Predk| ≤ c4∥dk∥2
∞ + σkc4∥dk∥4

∞ + σkc4∥dk∥2
∞
∑
j∈Sk

∣∣∣gj(xk)z(k)
j

∣∣∣ (4.106)

holds, where Sk is defined by (4.2).

Proof : As aforementioned, Assumption 4.2 implies upper bounds on the norms that
are used in this proof. Without loss of generality it is assumed that the constant κ ≥ 1
in Assumption 4.2 satisfies (4.33). Thus, the bound κ is valid for the function values,
the norm of the gradient, the norm of the Hessian matrices, ∥Bk∥2, and the multipliers.

First, we apply Taylor’s theorem, see, e.g., Conn et al. [21], with ξj ∈ [0, 1] for
j = 0, 1, . . . , m, to the augmented Lagrangian at the trial point (xk + dk, vk + wk).
This results in

Φσk
(xk + dk, vk + wk) = f(xk + dk)

−
∑
j∈Lk

((
v

(k)
j + w

(k)
j

)
gj(xk + dk) − 1

2
σkgj(xk + dk)2

)

−
∑
j∈Lk

1
2

(
v

(k)
j + w

(k)
j

)2

σk

= f(xk) + ∇f(xk)Tdk + 1
2
dTk∇2f(xk + ξ0dk)dk

−
∑
j∈Lk

((
v

(k)
j + w

(k)
j

)(
gj(xk) + ∇gj(xk)Tdk + 1

2
dTk∇2gj(xk + ξjdk)dk

)

−1
2
σk

(
gj(xk) + ∇gj(xk)Tdk + 1

2
dTk∇2gj(xk + ξjdk)dk

)2)

68 4 A Trust Region SQP Algorithm for Constrained Nonlinear Programs

−
∑
j∈Lk

1
2

(
v

(k)
j + w

(k)
j

)2

σk
, (4.107)

where the index sets Lk and Lk are defined by (4.40) and (4.41), respectively.
An upper on the absolute value of the difference of the predicted reduction Predk

(4.23) and the actual reduction Aredk (4.38) is established. We make use of the identity
Φσk

(xk, vk) = Ψσk
(0, 0), see (4.19)-(4.22). Moreover, we apply (4.107) and the model

value Ψσk
(dk, wk) at the trial point (dk, wk), where Ψσk

(dk, wk) and the corresponding
index sets Mk and Mk are defined according to (4.16)-(4.18). As a first step, we obtain
by substitution

|Aredk − Predk| = |Φσk
(xk, vk) − Φσk

(xk + dk, vk + wk) − Ψσk
(0, 0) + Ψσk

(dk, wk)|
= |Ψσk

(dk, wk) − Φσk
(xk + dk, vk + wk)|

=

∣∣∣∣∣∣f(xk) + ∇f(xk)Tdk + 1
2
dTkBkdk

−
∑
j∈Mk

((
v

(k)
j + w

(k)
j

) (
gj(xk) + ∇gj(xk)Tdk

)
− 1

2
σk
(
gj(xk) + ∇gj(xk)Tdk

)2
)

−
∑
j∈Mk

1
2

(
v

(k)
j + w

(k)
j

)2

σk

− f(xk) − ∇f(xk)Tdk − 1
2
dTk∇2f(xk + ξ0dk)dk

+
∑
j∈Lk

((
v

(k)
j + w

(k)
j

) (
gj(xk) + ∇gj(xk)Tdk + 1

2
dTk∇2gj(xk + ξjdk)dk

)

−1
2
σk

(
gj(xk) + ∇gj(xk)Tdk + 1

2
dTk∇2gj(xk + ξjdk)dk

)2)

+
∑
j∈Lk

1
2

(
v

(k)
j + w

(k)
j

)2

σk

∣∣∣∣∣∣ . (4.108)

Since by definition Lk ∪ Lk = {1, . . . ,m} and Mk ∪ Mk = {1, . . . ,m}, it follows
that (Lk ∩ Mk) ∪ (Lk ∩ Mk) = Mk and (Lk ∩ Mk) ∪ (Lk ∩ Mk) = Mk. Thus, a
disjunct decomposition of the set of constraint indexes is obtained by

{1, . . . ,m} = (Lk ∩ Mk) ∪ (Lk ∩ Mk) ∪ (Lk ∩ Mk) ∪ (Lk ∩ Mk) . (4.109)

As a second step, the sums in (4.108) are recombined by applying (4.109). Moreover,
a result implied by Lemma 4.5 is used. Since z(k)

j = 0 and u
(k)
j = 0 for all j ∈ Mk,

according to Lemma 4.5, the definition of wk (4.12) yields

v
(k)
j +w(k)

j =v
(k)
j +

(
u

(k)
j − v

(k)
j

) (
1 − z

(k)
j

)
= u

(k)
j =0 , (4.110)

4.2 Convergence Analysis 69

for all j ∈ Mk. Thus, for all j ∈ Lk∩Mk, the corresponding terms in Φσk
(xk+dk, vk+

wk) and Ψσk
(dk, wk) are equal to

1
2

(
v

(k)
j + w

(k)
j

)2

σk
= 1

2
u

(k)
j

2

σk
= 0 . (4.111)

Consequently, the sum vanishes in this case.
We proceed from (4.108) and obtain

|Aredk − Predk| =

∣∣∣∣∣∣12dTkBkdk − 1
2
dTk∇2f(xk + ξ0dk)dk

+
∑

j∈Lk∩Mk

(v(k)
j + w

(k)
j

)(
gj(xk) + ∇gj(xk)Tdk + 1

2
dTk∇2gj(xk + ξjdk)dk

)

− 1
2
σk

(
gj(xk) + ∇gj(xk)Tdk + 1

2
dTk∇2gj(xk + ξjdk)dk

)2

−
(
v

(k)
j + w

(k)
j

) (
gj(xk) + ∇gj(xk)Tdk

)
+ 1

2
σk
(
gj(xk) + ∇gj(xk)Tdk

)2

+
∑

j∈Lk∩Mk

(v(k)
j + w

(k)
j

)
︸ ︷︷ ︸

=0

(
gj(xk) + ∇gj(xk)Tdk + 1

2
dTk∇2gj(xk + ξjdk)dk

)

− 1
2
σk

(
gj(xk) + ∇gj(xk)Tdk + 1

2
dTk∇2gj(xk + ξjdk)dk

)2

− 1
2

(
v

(k)
j + w

(k)
j

)2

σk︸ ︷︷ ︸
=0

+
∑

j∈Lk∩Mk

1
2

(
v

(k)
j + w

(k)
j

)2

σk
−
(
v

(k)
j + w

(k)
j

) (
gj(xk) + ∇gj(xk)Tdk

)

+ 1
2
σk
(
gj(xk) + ∇gj(xk)Tdk

)2
∣∣∣∣∣∣

(4.110)=

∣∣∣∣∣∣12dTkBkdk − 1
2
dTk∇2f(xk + ξ0dk)dk

70 4 A Trust Region SQP Algorithm for Constrained Nonlinear Programs

+
∑

j∈Lk∩Mk

(v(k)
j + w

(k)
j

)(
gj(xk) + ∇gj(xk)Tdk + 1

2
dTk∇2gj(xk + ξjdk)dk

)

− 1
2
σk

(
gj(xk) + ∇gj(xk)Tdk + 1

2
dTk∇2gj(xk + ξjdk)dk

)2

−
(
v

(k)
j + w

(k)
j

) (
gj(xk) + ∇gj(xk)Tdk

)
+ 1

2
σk
(
gj(xk) + ∇gj(xk)Tdk

)2

−
∑

j∈Lk∩Mk

1
2
σk

(
gj(xk) + ∇gj(xk)Tdk + 1

2
dTk∇2gj(xk + ξjdk)dk

)2

+
∑

j∈Lk∩Mk

1
2

(
v

(k)
j + w

(k)
j

)2

σk
−
(
v

(k)
j + w

(k)
j

) (
gj(xk) + ∇gj(xk)Tdk

)

+ 1
2
σk
(
gj(xk) + ∇gj(xk)Tdk

)2
∣∣∣∣∣∣

=

∣∣∣∣∣∣12dTkBkdk − 1
2
dTk∇2f(xk + ξ0dk)dk

+
∑

j∈Lk∩Mk

(v(k)
j + w

(k)
j

) 1
2
dTk∇2gj(xk + ξjdk)dk

− 1
2
σk

((
gj(xk) + ∇gj(xk)Tdk

)2

+
(
gj(xk) + ∇gj(xk)Tdk

)
dTk∇2gj(xk + ξjdk)dk

+ 1
4
(
dTk∇2gj(xk + ξjdk)dk

)2
)

+ 1
2
σk
(
gj(xk) + ∇gj(xk)Tdk

)2

−
∑

j∈Lk∩Mk

1
2
σk

(
gj(xk) + ∇gj(xk)Tdk + 1

2
dTk∇2gj(xk + ξjdk)dk

)2

+
∑

j∈Lk∩Mk

1
2

(
v

(k)
j + w

(k)
j

)2

σk
−
(
v

(k)
j + w

(k)
j

) (
gj(xk) + ∇gj(xk)Tdk

)

+ 1
2
σk
(
gj(xk) + ∇gj(xk)Tdk

)2
∣∣∣∣∣∣

4.2 Convergence Analysis 71

=

∣∣∣∣∣∣12dTkBkdk − 1
2
dTk∇2f(xk + ξ0dk)dk

+
∑

j∈Lk∩Mk

(
1
2
(
v

(k)
j + w

(k)
j

)
dTk∇2gj(xk + ξjdk)dk

− 1
2
σk
(
gj(xk) + ∇gj(xk)Tdk

)
dTk∇2gj(xk + ξjdk)dk

− 1
8
σk
(
dTk∇2gj(xk + ξjdk)dk

)2
)

−
∑

j∈Lk∩Mk

1
2
σk

(
gj(xk) + ∇gj(xk)Tdk + 1

2
dTk∇2gj(xk + ξjdk)dk

)2

+
∑

j∈Lk∩Mk

1
2

(
v

(k)
j + w

(k)
j

)2

σk
−
(
v

(k)
j + w

(k)
j

) (
gj(xk) + ∇gj(xk)Tdk

)

+1
2
σk
(
gj(xk) + ∇gj(xk)Tdk

)2
∣∣∣∣∣∣

≤
∣∣∣∣12dTkBkdk − 1

2
dTk∇2f(xk + ξ0dk)dk

∣∣∣∣︸ ︷︷ ︸
(i)

+

∣∣∣∣∣∣
∑

j∈Lk∩Mk

(1
2
(
v

(k)
j + w

(k)
j

)
dTk∇2gj(xk + ξjdk)dk

− 1
2
σk
(
gj(xk) + ∇gj(xk)Tdk

)
dTk∇2gj(xk + ξjdk)dk

−1
8
σk
(
dTk∇2gj(xk + ξjdk)dk

)2
) ∣∣∣∣∣∣︸ ︷︷ ︸

(ii)

+

∣∣∣∣∣∣
∑

j∈Lk∩Mk

1
2
σk

(
gj(xk) + ∇gj(xk)Tdk + 1

2
dTk∇2gj(xk + ξjdk)dk

)2
∣∣∣∣∣∣︸ ︷︷ ︸

(iii)

+

∣∣∣∣∣∣
∑

j∈Lk∩Mk

1
2

(
v

(k)
j + w

(k)
j

)2

σk
−
(
v

(k)
j + w

(k)
j

) (
gj(xk) + ∇gj(xk)Tdk

)

+1
2
σk
(
gj(xk) + ∇gj(xk)Tdk

)2
∣∣∣∣∣∣︸ ︷︷ ︸

(iv)

. (4.112)

72 4 A Trust Region SQP Algorithm for Constrained Nonlinear Programs

In the following, upper bounds on the terms (i)-(iv) in (4.112) are established. First,
an upper bound on (4.112)(i) is derived, that is∣∣∣∣12dTkBkdk − 1

2
dTk∇2f(xk + ξ0dk)dk

∣∣∣∣ ≤
∣∣∣∣12dTkBkdk

∣∣∣∣+ ∣∣∣∣12dTk∇2f(xk + ξ0dk)dk
∣∣∣∣

≤ 1
2

∥Bk∥2∥dk∥2
2 + 1

2
∥∇2f(xk + ξ0dk)∥2∥dk∥2

2

≤ 1
2
κ∥dk∥2

2 + 1
2
κ∥dk∥2

2 = κ∥dk∥2
2

≤ nκ∥dk∥2
∞ , (4.113)

where the bound κ on the norms ∥Bk∥2 ≤ κ and ∥∇2f(xk + ξ0dk)∥2 ≤ κ, cf. (4.33), is
applied. Note that X being a convex set is required here, see Assumption 4.2(1.). The
last estimate follows from ∥dk∥2 ≤

√
n∥dk∥∞.

In the remainder of this proof the following estimates are applied several times. The
upper bound κ on the norm of the Hessian matrices of the constraint functions is used.
Applying additionally the Cauchy-Schwarz inequality and ∥dk∥2 ≤

√
n∥dk∥∞, leads to∣∣∣dTk∇2gj(xk + ξjdk)dk

∣∣∣ ≤
∥∥∥∇2gj(xk + ξjdk)

∥∥∥
2

∥dk∥2
2

(4.33)
≤ κ∥dk∥2

2 ≤ nκ∥dk∥2
∞ , (4.114)

for j = 1, . . . ,m. Moreover, for all j ∈ E ∪ I∣∣∣v(k)
j + w

(k)
j

∣∣∣ (4.12)=
∣∣∣v(k)
j +

(
u

(k)
j − v

(k)
j

) (
1 − z

(k)
j

)∣∣∣ ≤ κ (4.115)

holds, as 0 ≤ z
(k)
j ≤ 1, according to (4.11) and the update rule in Step 1 of Algo-

rithm 4.1, and since ∥uk∥∞ ≤ κ and ∥v0∥∞ ≤ κ by Assumption 4.2 .
In a second step, the term (4.112)(ii) is considered. Applying (4.114) and (4.115) to

the sum over all j ∈ Lk ∩ Mk yields∣∣∣∣∣∣
∑

j∈Lk∩Mk

(1
2
(
v

(k)
j + w

(k)
j

)
dTk∇2gj(xk + ξjdk)dk

− 1
2
σk
(
gj(xk) + ∇gj(xk)Tdk

)
dTk∇2gj(xk + ξjdk)dk

− 1
8
σk
(
dTk∇2gj(xk + ξjdk)dk

)2
)∣∣∣∣∣∣

≤
∑

j∈Lk∩Mk

∣∣∣∣12
(
v

(k)
j + w

(k)
j

)∣∣∣∣ ∣∣∣dTk∇2gj(xk + ξjdk)dk
∣∣∣

+
∑

j∈Lk∩Mk

∣∣∣∣18σk
(
dTk∇2gj(xk + ξjdk)dk

)2
∣∣∣∣

+
∑

j∈Lk∩Mk

∣∣∣∣12σk
(
gj(xk) + ∇gj(xk)Tdk

)∣∣∣∣ ∣∣∣dTk∇2gj(xk + ξjdk)dk
∣∣∣

4.2 Convergence Analysis 73

(4.114)
≤

∑
j∈Lk∩Mk

1
2
∣∣∣v(k)
j + w

(k)
j

∣∣∣nκ∥dk∥2
∞ +

∑
j∈Lk∩Mk

1
8
σkn

2κ2∥dk∥4
∞

+
∑

j∈Lk∩Mk

1
2
σk
∣∣∣gj(xk) + ∇gj(xk)Tdk

∣∣∣nκ∥dk∥2
∞

(4.115)
≤

∑
j∈Lk∩Mk

1
2
nκ2∥dk∥2

∞ +
∑

j∈Lk∩Mk

1
8
σkn

2κ2∥dk∥4
∞

+
∑

j∈Lk∩Mk

1
2
σk
∣∣∣gj(xk) + ∇gj(xk)Tdk

∣∣∣nκ∥dk∥2
∞ . (4.116)

The following upper bound on the last sum in (4.116) is established now, that is∑
j∈Lk∩Mk

1
2
σk
∣∣∣gj(xk) + ∇gj(xk)Tdk

∣∣∣nκ∥dk∥2
∞

≤
∑
j∈Sk

1
2
σk
∣∣∣gj(xk)z(k)

j

∣∣∣nκ∥dk∥2
∞ . (4.117)

First, the summands with j ∈ Lk ∩ Mk and j ∈ Sk are considered. As j ∈ Sk ∩ Mk

holds, it follows according to Lemma 4.6 that

gj(xk) + ∇gj(xk)Tdk = 0

and z
(k)
j = 0. Thus, all summands with j ∈ Lk ∩ Mk and j ∈ Sk vanish and do not

influence the estimate.
Now we consider any j ∈ Lk ∩ Mk with j ∈ Sk. Since j ∈ Sk ∩ Mk, Lemma 4.7 can

be applied and from
gj(xk) + ∇gj(xk)Tdk = gj(xk)z(k)

j

it follows
|gj(xk) + ∇gj(xk)Tdk| =

∣∣∣gj(xk)z(k)
j

∣∣∣ .
Thus, the estimate (4.117) holds and we can apply (4.117) to (4.116), that yields∣∣∣∣∣∣

∑
j∈Lk∩Mk

(1
2
(
v

(k)
j + w

(k)
j

)
dTk∇2gj(xk + ξjdk)dk

− 1
2
σk
(
gj(xk) + ∇gj(xk)Tdk

)
dTk∇2gj(xk + ξjdk)dk

− 1
8
σk
(
dTk∇2gj(xk + ξjdk)dk

)2
)∣∣∣∣∣∣

≤
∑

j∈Lk∩Mk

1
2
nκ2∥dk∥2

∞ +
∑

j∈Lk∩Mk

1
8
σkn

2κ2∥dk∥4
∞

74 4 A Trust Region SQP Algorithm for Constrained Nonlinear Programs

+
∑

j∈Lk∩Mk

1
2
σk
∣∣∣gj(xk) + ∇gj(xk)Tdk

∣∣∣nκ∥dk∥2
∞

(4.117)
≤

∑
j∈Lk∩Mk

(1
2
nκ2∥dk∥2

∞ + 1
8
σkn

2κ2∥dk∥4
∞

)

+
∑
j∈Sk

1
2
σk
∣∣∣gj(xk)z(k)

j

∣∣∣nκ∥dk∥2
∞ . (4.118)

In a third step, an estimate for the term (4.112)(iii) is established. We consider the
sum over all j ∈ Lk ∩ Mk. It follows from j ∈ Mk and the definition of the index set
Mk (4.18) that

gj(xk) + ∇gj(xk)Tdk
(4.18)
>

v
(k)
j + w

(k)
j

σk
≥ 0 . (4.119)

Moreover, according to Lemma 4.5 it follows that u(k)
j = 0 and z

(k)
j = 0 hold. Thus,

the step in the dual variable yields

v
(k)
j + w

(k)
j = v

(k)
j +

(
u

(k)
j − v

(k)
j

) (
1 − z

(k)
j

)
= u

(k)
j = 0 . (4.120)

Since j ∈ Lk, we obtain by the definition of the set Lk (4.40) and (4.120) that

gj(xk+dk) = gj(xk)+∇gj(xk)Tdk+ 1
2
dTk∇2gj(xk+ξjdk)dk ≤

v
(k)
j + w

(k)
j

σk
= 0 . (4.121)

From (4.119) and (4.121), it follows

0 < gj(xk) + ∇gj(xk)Tdk ≤ −1
2
dTk∇2gj(xk + ξjdk)dk

and
|gj(xk) + ∇gj(xk)Tdk| ≤

∣∣∣∣12dTk∇2gj(xk + ξjdk)dk
∣∣∣∣ . (4.122)

Applying (4.122) and (4.114) to the sum over the index set Lk ∩ Mk, leads to the
upper bound ∣∣∣∣∣∣

∑
j∈Lk∩Mk

1
2
σk

(
gj(xk) + ∇gj(xk)Tdk + 1

2
dTk∇2gj(xk + ξjdk)dk

)2
∣∣∣∣∣∣

≤
∑

j∈Lk∩Mk

1
2
σk

(∣∣∣gj(xk) + ∇gj(xk)Tdk
∣∣∣+ ∣∣∣∣12dTk∇2gj(xk + ξjdk)dk

∣∣∣∣)2

(4.122)
≤

∑
j∈Lk∩Mk

1
2
σk
∣∣∣dTk∇2gj(xk + ξjdk)dk

∣∣∣2
(4.114)

≤
∑

j∈Lk∩Mk

1
2
σkn

2κ2∥dk∥4
∞ . (4.123)

4.2 Convergence Analysis 75

Finally, the term (4.112)(iv) is under consideration. According to Lemma 4.8, for
all j ∈ Lk ∩ Mk

gj(xk) + ∇gj(xk)Tdk ≤ 0 (4.124)

holds, and with j ∈ Lk, we deduce from the definition of Lk (4.41) that

gj(xk+dk) = gj(xk)+∇gj(xk)Tdk+ 1
2
dTk∇2gj(xk+ξjdk)dk >

v
(k)
j + w

(k)
j

σk
≥ 0 . (4.125)

Thus, (4.124) and (4.125) yield∣∣∣∣12dTk∇2gj(xk + ξjdk)dk
∣∣∣∣ > |gj(xk) + ∇gj(xk)Tdk| (4.126)

and
1
2
dTk∇2gj(xk + ξjdk)dk >

v
(k)
j + w

(k)
j

σk
≥ 0 . (4.127)

In order to obtain the last estimate, we apply (4.114), (4.126), and (4.127) to the sum
(4.112)(iv), this results in

∑
j∈Lk∩Mk

∣∣∣∣∣∣12
(
v

(k)
j + w

(k)
j

)2

σk
−
(
v

(k)
j + w

(k)
j

) (
gj(xk) + ∇gj(xk)Tdk

)

+ 1
2
σk
(
gj(xk) + ∇gj(xk)Tdk

)2
∣∣∣∣∣∣

(4.126)
≤

∑
j∈Lk∩Mk

1
2
∣∣∣v(k)
j + w

(k)
j

∣∣∣
∣∣∣∣∣∣v

(k)
j + w

(k)
j

σk

∣∣∣∣∣∣+
∣∣∣v(k)
j + w

(k)
j

∣∣∣ ∣∣∣∣12dTk∇2gj(xk + ξjdk)dk
∣∣∣∣

+ 1
2
σk

∣∣∣∣12dTk∇2gj(xk + ξjdk)dk
∣∣∣∣2

(4.127)
≤

∑
j∈Lk∩Mk

1
2
∣∣∣v(k)
j + w

(k)
j

∣∣∣ ∣∣∣∣12dTk∇2gj(xk + ξjdk)dk
∣∣∣∣

+
∣∣∣v(k)
j + w

(k)
j

∣∣∣ ∣∣∣∣12dTk∇2gj(xk + ξjdk)dk
∣∣∣∣

+ 1
2
σk

∣∣∣∣12dTk∇2gj(xk + ξjdk)dk
∣∣∣∣2

≤
∑

j∈Lk∩Mk

(∣∣∣v(k)
j + w

(k)
j

∣∣∣︸ ︷︷ ︸
≤κ

∣∣∣dTk∇2gj(xk + ξjdk)dk
∣∣∣+ 1

8
σk
∣∣∣dTk∇2gj(xk + ξjdk)dk

∣∣∣2)

(4.114)
≤

∑
j∈Lk∩Mk

(
nκ2∥dk∥2

∞ + 1
8
σkn

2κ2∥dk∥4
∞

)
. (4.128)

76 4 A Trust Region SQP Algorithm for Constrained Nonlinear Programs

In the last step the upper bound κ is also applied to the multipliers, see (4.115).
We now apply (4.113), (4.118), (4.123), and (4.128) to (4.112) and obtain the final

estimate

|Aredk − Predk|
≤ nκ∥dk∥2

∞

+
∑

j∈Lk∩Mk

(1
2
nκ2∥dk∥2

∞ + 1
8
σkn

2κ2∥dk∥4
∞

)
+
∑
j∈Sk

1
2
σk
∣∣∣gj(xk)z(k)

j

∣∣∣nκ∥dk∥2
∞

+
∑

j∈Lk∩Mk

1
2
σkn

2κ2∥dk∥4
∞

+
∑

j∈Lk∩Mk

(
nκ2∥dk∥2

∞ + 1
8
σkn

2κ2∥dk∥4
∞

)

≤ nκ∥dk∥2
∞

+
∑
j∈Mk

(
nκ2∥dk∥2

∞ + 1
8
σkn

2κ2∥dk∥4
∞

)
+
∑
j∈Sk

1
2
σk
∣∣∣gj(xk)z(k)

j

∣∣∣nκ∥dk∥2
∞

+
∑

j∈Lk∩Mk

1
2
σkn

2κ2∥dk∥4
∞

≤ nκ∥dk∥2
∞ +m

(
nκ2∥dk∥2

∞ + 1
2
σkn

2κ2∥dk∥4
∞

)
+
∑
j∈Sk

1
2
σk
∣∣∣gj(xk)z(k)

j

∣∣∣nκ∥dk∥2
∞

≤ (m+ 1)κ̄∥dk∥2
∞ + 1

2
σkmκ̄∥dk∥4

∞ +
∑
j∈Sk

1
2
σk
∣∣∣gj(xk)z(k)

j

∣∣∣ κ̄∥dk∥2
∞

≤ (m+ 1)κ̄∥dk∥2
∞ + σkmκ̄∥dk∥4

∞ +
∑
j∈Sk

σk
∣∣∣gj(xk)z(k)

j

∣∣∣ κ̄∥dk∥2
∞

≤ (m+ 1)κ̄∥dk∥2
∞ + σk(m+ 1)κ̄∥dk∥4

∞ +
∑
j∈Sk

σk(m+ 1)κ̄
∣∣∣gj(xk)z(k)

j

∣∣∣ ∥dk∥2
∞

≤ c4∥dk∥2
∞ + σkc4∥dk∥4

∞ +
∑
j∈Sk

σkc4

∣∣∣gj(xk)z(k)
j

∣∣∣ ∥dk∥2
∞ ,

where κ̄ := max(nκ, nκ2, n2κ2) and c4 := (m + 1)κ̄. Since κ is assumed to be greater
or equal to one according to Assumption 4.2, the same holds for c4. Moreover, c4 is
greater or equal to κ. This proves the theorem and c4 is the required constant. 2

Note that the sum ∑
j∈Sk

σkc4

∣∣∣gj(xk)z(k)
j

∣∣∣ ∥dk∥2
∞ is zero if the standard subproblem

(4.7) is solved successfully. In this case z(k)
j is set to zero in Step 1 of Algorithm 4.1

for all j ∈ E ∪ I.
The following two theorems show that in case an iterate of Algorithm 4.1 is not a

feasible stationary point, the algorithm accepts a new trial step after a finite number

4.2 Convergence Analysis 77

of iterations and the trust region radius is bounded away from zero. Moreover, a bound
on the penalty parameter is established.

The theorems are shown by contradiction. It is assumed that all trial steps are
rejected. This implies that the trust region radius tends to zero, i.e., lim

k→∞
∆k = 0, and

xk+1 = xk for all k > k̄ according to the update rules of Algorithm 4.1. Here k̄ denotes
the last iteration where the trial step has been accepted, that is xk̄+1 = xk̄ + dk̄ and
vk̄+1 = vk̄ + wk̄. The assumption will be disproved by showing that

Aredk
Predk

≥ ρ0

has to be satisfied for an iteration k > k̄ and the corresponding trial step (dk, wk)
is accepted. It is demonstrated that in case the trust region radius ∆k is sufficiently
small, then ∣∣∣∣∣Aredk − Predk

Predk

∣∣∣∣∣ ≤ 1 − ρ0 (4.129)

holds. If Aredk − Predk ≥ 0 the point is accepted as this yields a ratio greater or
equal to one and hence greater than ρ0, with 0 < ρ0 < 1. Thus, only the case when
Aredk − Predk < 0 has to be considered, and inequality (4.129) can be transformed
in the following way ∣∣∣∣∣Aredk − Predk

Predk

∣∣∣∣∣ ≤ 1 − ρ0

⇔ |Aredk − Predk| ≤ (1 − ρ0)Predk
⇔ Predk − Aredk ≤ (1 − ρ0)Predk
⇔ Aredk ≥ ρ0Predk

⇔ Aredk
Predk

≥ ρ0 .

Consequently, the trial step (dk, wk) is accepted what leads to the desired contradiction.
Note that if inequality (4.129) holds for a value less than 1−ρ0 on the right-hand side,
then the a trial step is also accepted.

Theorem 4.16 Let Assumption 4.2 and Assumption 4.3 hold. Let iteration k̄ be either
k̄ = −1 or a successful iteration of Algorithm 4.1 where the trial step (dk̄, wk̄) has been
accepted. If

∥∇f(xk) − ∇g(xk)uk∥2 + µk ≥ ω (4.130)

holds with an ω > 0 for all subsequent iterates (xk, vk), k̄ + 1 ≤ k, then an iteration
l̄ exists that is successful, and (4.130) holds for all k with k̄ < k ≤ l̄. Moreover, there
exist constants c5, c6, c7, c8, c9 > 0 independent of k, k̄, and l̄ such that

∆l̄ ≥ min
(
c5√
σk̄
, c6, c7 ω

)
,

78 4 A Trust Region SQP Algorithm for Constrained Nonlinear Programs

and the penalty parameter σl̄ of the successful iteration l̄ is bounded by

σl̄ ≤ max
(
σk̄, c8,

c9

ω2

)
.

Proof : The theorem is shown by contradiction. We assume that all trial steps are
rejected. This implies lim

k→∞
∆k = 0, and xk+1 = xk for all k > k̄ according to the

update rules of Algorithm 4.1. As k̄ is the last iteration where the trial step has been
accepted, that is xk̄+1 = xk̄+dk̄ and vk̄+1 = vk̄+wk̄, the trust region radius of iteration
k̄+1 satisfies ∆k̄+1 ≥ ∆min. The assumption will be disproved by showing that (4.129)
holds in case the trust region radius ∆k satisfies sufficient conditions.

According to Theorem 4.15 there exists a constant c4 ≥ 1 independent of k and the
difference between the predicted reduction and the actual change can be estimated by

|Aredk − Predk| ≤ c4∥dk∥2
∞ + σkc4∥dk∥4

∞ +
∑
j∈Sk

σkc4

∣∣∣gj(xk)z(k)
j

∣∣∣ ∥dk∥2
∞ . (4.131)

We assume without loss of generality that c4 ≥ κ ≥ 1, where κ ≥ 1 is the constant
according to Assumption 4.2(4.) that also satisfies (4.33). A constant ϵ := ω/2 is
introduced now to simplify the notation and

∥∇f(xk) − ∇g(xk)uk∥2 + µk ≥ 2ϵ

holds. We analyze the different cases that can occur for an iteration k > k̄.
According to Theorem 4.10, there exists a constant c1 > 0 such that the predicted

reduction satisfies

Predk ≥ c1

∥∇f(xk)−∇g(xk)uk∥2 min
(

∆k,
∥∇f(xk)−∇g(xk)uk∥2

κ

)
+ µk∆k

 ,

and the step dk is bounded from below by

∥dk∥∞ ≥ min
(

∆k,
∥∇f(xk)−∇g(xk)uk∥2√

nκ

)
. (4.132)

There are two cases to distinguish. If ∥∇f(xk) − ∇g(xk)uk∥2 ≥ ϵ, then with µk ≥ 0,
see definition (4.35), it follows that

Predk ≥ c1

∥∇f(xk)−∇g(xk)uk∥2 min
(

∆k,
∥∇f(xk)−∇g(xk)uk∥2

κ

)
+ µk∆k

≥ c1

∥∇f(xk)−∇g(xk)uk∥2 min
(

∆k,
∥∇f(xk)−∇g(xk)uk∥2

κ

)
= c1∥∇f(xk)−∇g(xk)uk∥2∆k ≥ c1ϵ∆k , (4.133)

in case the trust region radius ∆k is sufficiently small, that is

∆k ≤ ϵ/κ ≤ ∥∇f(xk)−∇g(xk)uk∥2/κ

4.2 Convergence Analysis 79

holds. Furthermore, we can assume that in iteration k

∆k ≤ ϵ√
nκ

≤ ∥∇f(xk)−∇g(xk)uk∥2√
nκ

≤ ∥∇f(xk)−∇g(xk)uk∥2

κ
,

what implies that ∥dk∥∞ = ∆k according to (4.132).
We now consider the second case. If µk ≥ ϵ, then ∥dk∥∞ = ∆k and

Predk ≥ c1

∥∇f(xk)−∇g(xk)uk∥2 min
(

∆k,
∥∇f(xk)−∇g(xk)uk∥2

κ

)
+ µk∆k

≥ c1µk∆k ≥ c1ϵ∆k (4.134)

is satisfied independent of the specific value of ∆k. Consequently, this also holds for
∆k ≤ ϵ/(

√
nκ).

In both cases, cf. (4.133) and (4.134), we obtain for all iterations k with a trust
region radius ∆k ≤ ϵ/(

√
nκ) that ∥dk∥∞ = ∆k and

Predk ≥ c1ϵ∆k . (4.135)

In the following we consider a specific iteration k where

∆k ≤ min
(

ϵ√
nκ
, τ1∆min

)
(4.136)

holds. This implies that k > k̄ + 1, i.e., it is not the first iteration following the
successful iteration k̄. As for the primal step in iteration k̄ + 1 either

∥dk̄+1∥∞ = ∆k̄+1 ≥ ∆min or ∥dk̄+1∥∞ ≥ ϵ/(
√
nκ) (4.137)

holds according to (4.132), it also follows that ∥dk̄+1∥∞ ≥ ∆k.
Now a distinction is made between feasible iterates and iterates that violate the

constraints. Note that in case the standard subproblem (4.7) is consistent, then z(k)
j = 0

for all j ∈ E ∪ I according to Step 1 of Algorithm 4.1. Therefore, the last term on the
right-hand side of (4.131) is equal to zero.

Case 1: ∥g(xk)−∥1 = 0

As xk is a feasible iterate, the standard subproblem (4.7) is consistent and z
(k)
j = 0

for all j ∈ E ∪ I. Thus, the difference between the actual change and the predicted
reduction (4.131) can be estimated now by

|Aredk − Predk| ≤ c4∥dk∥2
∞ + σkc4∥dk∥4

∞ . (4.138)

First, we consider the case when the penalty parameter remains unchanged, i.e., σk =
σk̄ for all k > k̄, where σk̄ is the penalty parameter of iteration k̄.

80 4 A Trust Region SQP Algorithm for Constrained Nonlinear Programs

Case 1.1: σk = σk̄

Let k be an iteration such that (4.136) is satisfied and in addition

∆k ≤

√√√√ 128mc4
4 ∆̃2

κlbB c2
2 τ

4
1 σk̄ (1 − ρ0)2 , (4.139)

where 0 < τ1, ρ0 < 1 are the constants from Algorithm 4.1, κlbB ≥ 0 is the constant
according to Assumption 4.2, and c2 ∈ (0, 1] is the constant from Theorem 4.14. A
constant ∆̃ ≥ 1 is introduced here to be able to reuse the following results later.
Right now it is sufficient that ∆̃ is greater or equal to one. The actual choice of ∆̃ is
motivated later.

Applying ∥dk∥∞ = ∆k, σk = σk̄, and (4.139) to (4.138) yields

|Aredk − Predk| ≤ c4 ∆2
k + σk̄ c4

128mc4
4 ∆̃2

κlbB c2
2 τ

4
1 σk̄ (1 − ρ0)2 ∆2

k

= c4 ∆2
k + 128mc5

4 ∆̃2

κlbB c2
2 τ

4
1 (1 − ρ0)2 ∆2

k ,

and it follows with the estimate (4.135) for the predicted reduction that∣∣∣∣∣Aredk − Predk
Predk

∣∣∣∣∣ ≤ κlbB c
2
2 τ

4
1 (1 − ρ0)2 c4 ∆2

k + 128mc5
4 ∆̃2 ∆2

k

κlbB c2
2 τ

4
1 (1 − ρ0)2 c1 ϵ∆k

= κlbB c
2
2 τ

4
1 (1 − ρ0)2 c4 + 128mc5

4 ∆̃2

κlbB c2
2 τ

4
1 (1 − ρ0)2 c1 ϵ

∆k .

Let the trust region radius ∆k also satisfy

∆k ≤ 1
2

κlbB c
2
2 τ

4
1 (1 − ρ0)2 c1 ϵ

κlbB c2
2 τ

4
1 (1 − ρ0)2 c4 + 128mc5

4 ∆̃2
(1 − ρ0) ,

then ∣∣∣∣∣Aredk − Predk
Predk

∣∣∣∣∣ ≤ 1
2

(1 − ρ0) , (4.140)

and the trial step is accepted. We define

∆1 := min

 ϵ√
nκ
, τ1∆min,

√√√√ 128mc4
4 ∆̃2

κlbB c2
2 τ

4
1 σk̄ (1 − ρ0)2 ,

1
2

κlbB c
2
2 τ

4
1 c1 ϵ (1 − ρ0)3

κlbB c2
2 τ

4
1 (1 − ρ0)2 c4 + 128mc5

4 ∆̃2

,
(4.141)

and a trial step is accepted for sure as soon as the trust region radius is equal to the

4.2 Convergence Analysis 81

minimum of the right-hand side of (4.141) or the first time it falls below the minimum.
This is a contradiction to our assumption. Thus, a subsequent successful iteration l̄
exists and the trust region radius of iteration l̄ can not be less than τ1∆1, i.e.,

∆l̄ ≥ τ1∆1 . (4.142)

This follows from k > k̄ + 1 and the update rule for the trust region radius, i.e.,
∆k = τ1∥dk−1∥∞ according to Step 5 of Algorithm 4.1, and the fact that the previously
rejected primal trial step dk−1 has to satisfy ∥dk−1∥∞ > ∆1. This is assured as (4.137)
and ∆k̄+1 ≥ ∆min hold. Thus, the trust region radius will fall below ∆1 after a finite
number of iterations. It has to be highlighted that the lower bound on the trust region
radius is independent of ∆k̄.

We replace ϵ by applying ϵ = ω/2 to (4.141) and define constants

ν1 := min
(
τ1

1
2
√
nκ
, τ1

1
4

κlbB c
2
2 τ

4
1 c1 (1 − ρ0)3

κlbB c2
2 τ

4
1 (1 − ρ0)2 c4 + 128mc5

4 ∆̃2

)
and

ν2 := τ1

√√√√ 128mc4
4 ∆̃2

κlbB c2
2 τ

4
1 (1 − ρ0)2 (4.143)

such that
τ1∆1 = min

(
ν1 ω,

ν2√
σk̄
, τ 2

1 ∆min

)
. (4.144)

In a next step we consider the case when the penalty parameter has been increased
since the last successful iteration k̄.

Case 1.2: σk > σk̄

Let k be an iteration such that (4.136) holds. If the penalty parameter has been in-
creased in a previous iteration and σk−1 > σk̄ but the trial step has been rejected, then
the update rule for the trust region radius ∆k and the convexity of the subproblems
imply the inequality

∥dk∥∞ ≤ ∥dk−1∥∞ ≤ . . . ≤ ∥dk̄+1∥∞ (4.145)
holds. The following estimate is also valid in case the penalty parameter is increased
in iteration k. It can also be used to estimate σl̄ later. An upper bound on σk can be
estimated by

σk = max
j=1,...,m

2m
(
u

(l)
j −v(l)

j

)2

dTl Bkdl + µl∆l

(
1−z(l)

j

2
) ≤ 8mκ2

κlbB ∥dl∥2
2

≤ 8mκ2

κlbB ∥dl∥2
∞

≤ 8mκ2

κlbB ∥dk∥2
∞
,

(4.146)
where l, with k̄ < l ≤ k, denotes the last iteration when the penalty parameter has
been increased. Here we applied (4.145) and the upper bound κ on ∥ul∥∞ and ∥vl∥∞

with |u(l)
j − v

(l)
j | ≤ 2κ, for all j = 1, . . . ,m. Moreover, we used µl ≥ 0, 0 ≤ z

(l)
j ≤ 1 for

j = 1, . . . ,m, the lower bound on dTl Bkdl ≥ κlbB∥dl∥2
∞ according to Assumption 4.2,

82 4 A Trust Region SQP Algorithm for Constrained Nonlinear Programs

and ∥dl∥2 ≥ ∥dl∥∞. Note that Bl = Bk as the matrix remains unchanged.
Applying ∥dk∥∞ = ∆k and (4.146) to (4.138) yields

|Aredk − Predk| ≤ c4∥dk∥2
∞ + σkc4∥dk∥4

∞ ≤ c4∥dk∥2
∞ + 8mκ2

κlbB∥dk∥2
∞
c4∥dk∥4

∞

= c4∥dk∥2
∞ + 8mκ2c4

κlbB
∥dk∥2

∞ = κlbBc4 + 8mκ2c4

κlbB
∥dk∥2

∞

= κlbBc4 + 8mκ2c4

κlbB
∆2
k .

Since Predk ≥ c1ϵ∆k according to (4.135), it follows∣∣∣∣∣Aredk − Predk
Predk

∣∣∣∣∣ ≤ κlbBc4 + 8mκ2c4

κlbB c1 ϵ∆k

∆2
k = κlbBc4 + 8mκ2c4

κlbB c1 ϵ
∆k ≤ 1

2
(1 − ρ0) (4.147)

if we require that the trust region radius ∆k satisfies additionally

∆k ≤ 1
2

κlbB c1 ϵ

κlbBc4 + 8mκ2c4
(1 − ρ0) .

The trial step is accepted in this case what is a contradiction to our assumption. We
define

∆2 := min
(

ϵ√
nκ
, τ1∆min,

1
2
κlbB c1 ϵ (1 − ρ0)
κlbBc4 + 8mκ2c4

)
. (4.148)

Thus, the trust region radius of the next successful iteration l̄ can not be less than

∆l̄ ≥ τ1∆2 (4.149)

if ∆2 ≤ ∆1. This follows the same way as described for (4.142). We define a constant

ν3 := min
(
τ1

1
2
√
nκ
, τ1

1
4
κlbB c1 (1 − ρ0)
κlbBc4 + 8mκ2c4

)

and therefore
τ1∆2 = min

(
ν3ω, τ

2
1 ∆min

)
, (4.150)

where we also replaced ϵ by ϵ = ω/2.
We have to consider the case when ∆1 < ∆2, σk−1 = σk̄, and ∆k ≤ ∆2. In this

situation the penalty parameter σk might directly depend on the value of σk̄. In the
previous iteration still σk−1 = σk̄ holds and since the step was rejected ∆k−1 > ∆1.
Otherwise, the step would have been accepted. Let the penalty parameter be increased
in iteration k, then as ∆k ≤ ∆2 the step is accepted. The new value of the penalty
parameter σk has to be estimated.

From (4.132) and the definition (4.141) of ∆1, it follows that ∥dk−1∥∞ > ∆1. We
get ∥dk∥∞ = ∆k ≥ τ1∆1 and therefore

4.2 Convergence Analysis 83

σk ≤ 8mκ2

κlbB τ 2
1 ∆2

1

, (4.151)

according to the estimate (4.146). We are interested in the third term in (4.141) that
contains σk̄, as all other terms only consist of constants that are not changed by
the algorithm and ϵ or ω, respectively. It follows from the estimate (4.151) that if

∆1 =

√√√√ 128mc4
4 ∆̃2

κlbB c2
2 τ

4
1 σk̄ (1 − ρ0)2 , then

σk ≤ 8mκ2

κlbBτ 2
1 ∆2

1

= 8mκ2

κlbB τ 2
1

√√√√ 128mc4
4 ∆̃2

κlbB c2
2 τ

4
1 σk̄(1 − ρ0)2

2 = 8mκ2 κlbB c
2
2 τ

4
1 (1 − ρ0)2

128κlbB τ 2
1 mc4

4 ∆̃2
σk̄

≤ c2
2 τ

2
1 (1 − ρ0)2

16 c2
4 ∆̃2

σk̄ ≤ σk̄ . (4.152)

The last inequality is obtained as 0 < τ1, ρ0 < 1, 0 < c2 ≤ 1, and c4 ≥ κ ≥ 1. Thus,
the penalty parameter is not increased in this situation and σk = σk̄.

It follows from (4.142), (4.144), (4.149), and (4.150) that, in case ∥g(xk)−∥1 = 0,
the lower bound on the trust region radius ∆l̄ of the next successful iteration l̄ is

∆l̄ ≥ min
(
τ1∆1, τ1∆2

)
= min

(
ν1ω,

ν2√
σk̄
, ν3ω, τ

2
1 ∆min

)

= min
(
ν2√
σk̄
, ν4ω, τ

2
1 ∆min

)
, (4.153)

where
ν4 := min(ν1, ν3) .

The penalty parameter σl̄ is either σk̄ according to the assumption of Case 1.1 and
(4.152), or there exists an upper bound on σl̄, that is

σl̄ ≤ 8mκ2

κlbB
max

(
1

ν2
4 ω

2 ,
1

τ 4
1 ∆2

min

)
, (4.154)

where we applied ∥dl̄∥∞ ≥ min(ν4ω, τ
2
1 ∆min), cf. (4.153), to the estimate (4.146). Note

that ∥dl̄∥∞ ≥ τ1∥dk∥∞ = τ1∆k holds, where k is the estimated iteration that leads to
the contradiction, as a trial step might be accepted by the algorithm much earlier.

The estimate (4.154) can be reformulated by applying the constants

ν5 := 8mκ2

κlbBν2
4

and ν6 := 8mκ2

κlbBτ 4
1 ∆2

min
. (4.155)

We obtain the upper bound on the penalty parameter at iteration l̄

σl̄ ≤ max
(
σk̄,

ν5

ω2 , ν6

)
. (4.156)

84 4 A Trust Region SQP Algorithm for Constrained Nonlinear Programs

In the following the case is investigated when xk is an infeasible iterate.

Case 2: ∥g(xk)−∥1 > 0

As a first step, we consider the case when the iterate is close to the feasible region.
We will show that if the constraint violation is sufficiently small, a step sk exists such
that

∥sk∥∞ ≤ min
(
τ1∆1, τ1∆2

)
= min

(
ν2√
σk̄
, ν4ω, τ

2
1 ∆min

)
,

and thus the standard subproblem (4.7) remains consistent until the trial step is ac-
cepted, i.e., the feasibility restoration phase is not entered. We define

∆3 := min
(
τ1∆1, τ1∆2

)
= min

(
ν2√
σk̄
, ν4ω, τ

2
1 ∆min

)
. (4.157)

The following part, that shows the existence of a step sk, is similar to the proof
of Theorem 3.6 in Spellucci [111]. According to Theorem 4.11 there exists a constant
γ̄ > 0 such that for all 0 < γ ≤ γ̄ and all x ∈ F(β), there exists a bounded function
d(x) with

∇gj(x)Td(x) = −gj(x)/
(

∥g(x)−∥1 + γ

4κ∆̃

)
, j ∈ E ,

∇gj(x)Td(x) ≥ 1 , j ∈ A(x, γ) ,
(4.158)

since gj(x)/(∥g(x)−∥1 + γ/(4κ∆̃)), j ∈ E , is bounded on F(β). Thus, there exists a
∆̃ ≥ 1 such that ∥d(x)∥2 ≤ ∆̃ for all x ∈ F(β), since F(β) is compact according to
Assumption 4.3. The previously mentioned ∆̃ be now the one introduced here.

As ∆3 > 0, we can define
γ := min(κ∆3, γ̄) (4.159)

so that (4.158) holds, where κ is defined in Assumption 4.2 and also satisfies (4.33).
It follows for all x ∈ F(β) that

gj(x) ≥ γ , j ∈ B(x, γ) .

Applying ∥∇gj(x)∥2 ≤ κ, j = 1, . . . , m, and ∥d(x)∥2 ≤ ∆̃, we obtain for x ∈ F(β)
and all j ∈ B(x, γ) that

gj(x) + ∇gj(x)Td(x)
(

∥g(x)−∥1 + γ

4κ∆̃

)
≥ γ − κ∆̃∥g(x)−∥1 − κ∆̃ γ

4κ∆̃
≥ γ − κ∆̃ γ

2κ∆̃
− κ∆̃ γ

4κ∆̃
= γ − γ

2
− γ

4
= γ

4
,

if ∥g(x)−∥1 ≤ γ/(2κ∆̃). On the other hand, we get

gj(x) + ∇gj(x)Td(x)
(

∥g(x)−∥1 + γ

4κ∆̃

)
= 0 , j ∈ E ,

4.2 Convergence Analysis 85

and
gj(x) + ∇gj(x)Td(x)

(
∥g(x)−∥1 + γ

4κ∆̃

)
≥ −∥g(x)−∥1 + ∥g(x)−∥1 + γ

4κ∆̃
= γ

4κ∆̃
> 0 ,

for j ∈ A(x, γ), as ∇gj(x)Td(x) ≥ 1 according to (4.158).
Consequently, s := d(x)(∥g(x)−∥1 + γ/(4κ∆̃)) is a step that satisfies the linear

constraints of the standard subproblem (4.7) in case ∥g(x)−∥1 ≤ γ/(2κ∆̃). We return
to a specific iterate of the algorithm. If ∥g(xk)−∥1 ≤ γ/(2κ∆̃) holds, then we define
sk := d(xk)(∥g(xk)−∥1 + γ/(4κ∆̃)) and obtain with ∥d(xk)∥∞ ≤ ∥d(xk)∥2 ≤ ∆̃ the
estimate on the step size

∥sk∥∞ = ∥d(xk)∥∞

(
∥g(xk)−∥1 + γ

4κ∆̃

)
≤ ∥d(xk)∥2

(
∥g(xk)−∥1 + γ

4κ∆̃

)
≤ ∆̃

(
∥g(xk)−∥1 + γ

4κ∆̃

)
. (4.160)

Applying ∥g(xk)−∥1 ≤ γ/(2κ∆̃) and the definition (4.159) of γ to (4.160) yields

∥sk∥∞ ≤ ∆̃ γ

2κ∆̃
+ ∆̃ γ

4κ∆̃
= 3

4
γ

κ
= 3

4
min(κ∆3, γ̄)

κ
≤ ∆3 , (4.161)

and the standard subproblem (4.7) is consistent for all ∆k ≥ ∆3.

Case 2.1: ∥g(xk)−∥1 ≤ γ

2κ∆̃

As ∥g(xk)−∥1 ≤ γ/(2κ∆̃), a step sk exists such that ∥sk∥∞ ≤ ∆3 and the subproblem
(4.7) is consistent for all ∆k ≥ ∆3. Thus, a trial step is accepted before entering the
feasibility restoration phase, and the estimates (4.153) and (4.156) for the previous
case, with ∥g(xk)−∥1 = 0, can be extended to the nearly feasible region and all xk with
∥g(xk)−∥1 ≤ γ/(2κ∆̃), where γ is defined according to (4.159).

Case 2.2: ∥g(xk)−∥1 >
γ

2κ∆̃
Let k be an iteration such that (4.136) holds. According to Theorem 4.14, the predicted
reduction satisfies

Predk ≥ σk c2 ∥g(xk)−∥2
1 min (1,∆k) , (4.162)

with a constant c2 ∈ (0, 1]. For the last term on the right-hand side of (4.131) we get
the inequality ∑

j∈Sk

∣∣∣gj(xk)z(k)
j

∣∣∣ =
∑

j∈E∪Ak

∣∣∣gj(xk)z(k)
j

∣∣∣ ≤ ∥g(xk)−∥1 , (4.163)

86 4 A Trust Region SQP Algorithm for Constrained Nonlinear Programs

where we applied E ∪ Ak ⊂ Sk and 0 ≤ z
(k)
j ≤ 1, j = E ∪ Ak. Moreover, we made use

of z(k)
j = 0 for all j ∈ Sk ∩ Bk according to Step 1 of Algorithm 4.1 and the definition

(4.11) of zk.
Applying (4.163) to the absolute value of the difference of predicted and actual

reduction yields

|Aredk − Predk| ≤ c4∥dk∥2
∞ + σkc4∥dk∥4

∞ +
∑
j∈Sk

σkc4

∣∣∣gj(xk)z(k)
j

∣∣∣ ∥dk∥2
∞

≤ c4∥dk∥2
∞ + σkc4∥dk∥4

∞︸ ︷︷ ︸
(i)

+σkc4∥g(xk)−∥1∥dk∥2
∞︸ ︷︷ ︸

(ii)

. (4.164)

The term (4.164)(i) can be estimated with Predk ≥ c1ϵ∆k, cf. (4.135), as has been
done for Case 1. It is straightforward to see that the obtained results for Case 1, see
for example (4.140) and (4.147), can be reused here. Thus, we get

c4∥dk∥2
∞ + σkc4∥dk∥4

∞
Predk

≤ c4∥dk∥2
∞ + σkc4∥dk∥4

∞
c1ϵ∆k

≤ 1
2

(1 − ρ0) (4.165)

if ∆k ≤ min(∆1,∆2), what can be assumed.
For the term (4.164)(ii) we derive the following estimate. Let k be an iteration that

also satisfies ∆k ≤ 1. Applying (4.162) and ∥g(xk)−∥1 > γ/(2κ∆̃) to (4.164)(ii) yields

σkc4∥g(xk)−∥1∥dk∥2
∞

Predk
≤ σkc4∥g(xk)−∥1∥dk∥2

∞
σkc2∥g(xk)−∥2

1 min(1,∆k)
= σkc4∥dk∥2

∞
σkc2∥g(xk)−∥1 min(1,∆k)

≤ 2 c4 κ ∆̃ ∆2
k

c2 γ∆k

= 2 c4 κ ∆̃
c2γ

∆k . (4.166)

Let in addition ∆k ≤ c2 γ

4 c4 κ ∆̃
(1 − ρ0) hold, then it follows from (4.166) that

σkc4∥g(xk)−∥1∥dk∥2
∞

Predk
≤ 2 c4 κ ∆̃

c2γ
∆k ≤ 1

2
(1 − ρ0) . (4.167)

It results from (4.165) and (4.167) that the inequality∣∣∣∣∣Aredk − Predk
Predk

∣∣∣∣∣ ≤ c4∥dk∥2
∞ + σkc4∥dk∥4

∞
Predk

+ σkc4∥g(xk)−∥1∥dk∥2
∞

Predk

≤ 1
2

(1 − ρ0) + 1
2

(1 − ρ0)

= 1 − ρ0

holds, as we require that the trust region radius ∆k already satisfies

∆k ≤ min
(

1,∆1, ∆2,
c2γ

4 c4 κ ∆̃
(1 − ρ0)

)
. (4.168)

4.2 Convergence Analysis 87

The trial step is accepted and a contradiction to our assumption is obtained. Thus,
the trust region radius of the successful iteration l̄ is bounded from below by

∆l̄ ≥ min
(
τ1, τ1∆1, τ1∆2, τ1

c2γ

4 c4 κ ∆̃
(1 − ρ0)

)

= min
(
τ1, τ1

c2γ

4 c4 κ ∆̃
(1 − ρ0),

ν2√
σk̄
, ν4ω, τ

2
1 ∆min

)
, (4.169)

where we replaced τ1∆1 and τ1∆2 by applying the reformulation in (4.153).
We have to consider the case when the second term on the right-hand side of (4.169)

is the minimum, as γ can take several values, see definition (4.159). Let τ1c2γ(1 −
ρ0)/(4 c4 κ ∆̃) be the minimum of (4.169), then the lower bound on ∆l̄ is

∆l̄ ≥ τ1
c2γ

4 c4 κ ∆̃
(1 − ρ0)

(4.159)= τ1
c2(1 − ρ0)
4 c4 κ ∆̃

min(κ∆3, γ̄) .

If γ = γ̄, then we obtain the lower bound

∆l̄ ≥ τ1
c2γ̄

4 c4 κ ∆̃
(1 − ρ0) .

In case γ = κ∆3, it follows by definition (4.157) of ∆3 and the appropriate reformula-
tion that the lower bound in this case is

∆l̄ ≥ τ1
c2κ∆3

4 c4 κ ∆̃
(1 − ρ0) = τ1

c2(1 − ρ0)
4 c4 ∆̃

min
(
ν2√
σk̄
, ν4ω, τ

2
1 ∆min

)
.

Defining the constants

ν7 := min
(
τ1, τ1

c2γ̄(1 − ρ0)
4 c4 κ ∆̃

, τ 3
1
c2(1 − ρ0)∆min

4 c4 ∆̃

)
,

ν8 := τ1
c2 (1 − ρ0) ν2

4 c4 ∆̃
, (4.170)

and
ν9 := τ1

c2(1 − ρ0)
4 c4 ∆̃

ν4 ,

and applying them to (4.169) yields

∆l̄ ≥ min
(
ν2√
σk̄
, ν4ω, τ

2
1 ∆min, ν7,

ν8√
σk̄
, ν9ω

)
. (4.171)

We estimate an upper bound on the penalty parameter σl̄. For the first three terms
on the right-hand side of (4.171), i.e., ν2/σk̄, ν4ω, and τ 2

1 ∆min, the upper bound (4.156)
has already been shown. We consider the remaining terms. The different cases for
∥dl̄∥∞ ≥ min(ν7, ν8/

√
σk̄, ν9ω) are stated separately.

88 4 A Trust Region SQP Algorithm for Constrained Nonlinear Programs

Applying ∥dl̄∥∞ ≥ ν7 to the estimate (4.146) yields

σl̄ ≤ 8mκ2

κlbB∥dl̄∥2
∞

≤ 8mκ2

κlbBν2
7
. (4.172)

For ∥dl̄∥∞ ≥ ν9ω it follows

σl̄ ≤ 8mκ2

κlbB∥dl̄∥2
∞

≤ 8mκ2

κlbBν2
9ω

2 . (4.173)

For the case ∥dl̄∥∞ ≥ ν8/
√
σk̄, we obtain by definition (4.170) of ν8 that

ν2
8 =

(
τ1
c2 (1 − ρ0) ν2

4 c4 ∆̃

)2

= τ 2
1
c2

2 (1 − ρ0)2

16 c2
4 ∆̃2

ν2
2 . (4.174)

It follows by definition (4.143) of ν2, that

ν2
2 =

τ1

√√√√ 128mc4
4 ∆̃2

κlbB c2
2 τ

4
1 (1 − ρ0)2

2

= τ 2
1

128mc4
4 ∆̃2

κlbB c2
2 τ

4
1 σk̄ (1 − ρ0)2 . (4.175)

Applying (4.175) to (4.174) yields

∥dl̄∥2
∞ ≥ τ 4

1
c2

2 (1 − ρ0)2

16 c2
4 ∆̃2

128mc4
4 ∆̃2

κlbB c2
2 τ

4
1 σk̄ (1 − ρ0)2 = 8mc2

4
κlbB σk̄

. (4.176)

For the penalty parameter σl̄ we get an estimate for the case the penalty parameter
is increased by applying (4.176) to (4.146). We obtain

σl̄ ≤ 8mκ2

κlbB∥dl̄∥2
∞

≤ 8mκ2 κlbB σk̄
8mκlbB c2

4
≤ σk̄ , (4.177)

as c4 ≥ κ. Thus, the penalty parameter is still σk̄.
It follows from (4.156), (4.172), (4.173), and (4.177), that the penalty parameter σl̄

is bounded by
σl̄ ≤ max

(
σk̄,

ν5

ω2 , ν6, ν10,
ν11

ω2

)
, (4.178)

where
ν10 := 8mκ2

κlbBν2
7

and ν11 := 8mκ2

κlbBν2
9
.

At the end, we summarize the obtained results and define the constants stated in
the theorem. From (4.142), (4.144), (4.149), (4.150), (4.153), and (4.171) it follows

∆l̄ ≥ min
(
ν2√
σk̄
, ν4 ω, τ

2
1 ∆min, ν7,

ν8√
σk̄
, ν9 ω

)
. (4.179)

4.2 Convergence Analysis 89

The first part of the theorem is shown by defining the constants c5 := min(ν2, ν8),
c6 := min(τ 2

1 ∆min, ν7), and c7 := min(ν4, ν9). Note that all constant are greater than
zero.

The penalty parameter σl̄ is bounded by

σl̄ ≤ max
(
σk̄,

ν5

ω2 , ν6, ν10,
ν11

ω2

)
, (4.180)

what follows from (4.156) and (4.178). The theorem is shown by defining the missing
constants c8 := min(ν6, ν10) and c9 := min (ν5, ν11). 2

The following theorem considers infeasible iterates and gives a lower bound on the
trust region radius of the next successful iteration. Moreover, it is shown that the
corresponding penalty parameter is bounded.

Theorem 4.17 Let Assumption 4.2 and Assumption 4.3 hold. Let iteration k̄ be either
k̄ = −1 or a successful iteration of Algorithm 4.1 where the trial step (dk̄, wk̄) has been
accepted. If xk̄+1 is an infeasible point such that

∥g(xk̄+1)−∥1 ≥ ω (4.181)

holds for an ω > 0, then a trial step is accepted after a finite number of iterations and
a subsequent successful iteration l̄ exists. Moreover, there exist constants c10, c11, c12,
c13, c14, c15 > 0 independent of k, k̄, and l̄ such that

∆l̄ ≥ min
(
c10 ω, c11 ω

2, c12 ω
3
)
,

and the penalty parameter σl̄ of the next successful iteration l̄ is bounded by

σl̄ ≤ max
(
σk̄,

c13

ω4 ,
c14

ω6 ,
c15

ω8

)
.

Proof : The theorem is shown by contradiction. We assume that all trial steps are
rejected. Thus, the trust region radius tends to zero, i.e., lim

k→∞
∆k = 0, and xk+1 = xk

for all k > k̄ according to the update rules of Algorithm 4.1. As k̄ is the last iteration
where the trial step has been accepted, that is xk̄+1 = xk̄ + dk̄ and vk̄+1 = vk̄ +wk̄, the
trust region radius of iteration k̄ + 1 satisfies ∆k̄+1 ≥ ∆min.

Let k be an iteration such that

∆k ≤ min
(

1, τ1∆min,
1
3
c2 ω

2

c4
(1 − ρ0),

1
3
c2 ω

2

c4 ∆2
max

(1 − ρ0),
1
3
c2 ω

c4
(1 − ρ0)

)
. (4.182)

The condition ∆k ≤ τ1∆min implies that k > k̄ + 1, i.e., the iteration k is not the one
following directly the last successful iteration k̄.

As ∥g(xk)−∥1 ≥ ω, ∆k ≤ 1, and according to Theorem 4.14, the predicted reduction
of the considered iteration k satisfies

Predk ≥ σk c2 ∥g(xk)−∥2
1 min (1,∆k) = σk c2 ∥g(xk)−∥2

1 ∆k ≥ σk c2 ω
2 ∆k , (4.183)

with a constant c2 ∈ (0, 1].

90 4 A Trust Region SQP Algorithm for Constrained Nonlinear Programs

According to Theorem 4.15 there exists a constant c4 ≥ 1 independent of k and the
difference between the predicted reduction and the actual change can be estimated by

|Aredk − Predk| ≤ c4∥dk∥2
∞ + σkc4∥dk∥4

∞ +
∑
j∈Sk

σkc4

∣∣∣gj(xk)z(k)
j

∣∣∣ ∥dk∥2
∞ . (4.184)

For the last term on the right-hand side of (4.184) we get∑
j∈Sk

∣∣∣gj(xk)z(k)
j

∣∣∣ =
∑

j∈E∪Ak

∣∣∣gj(xk)z(k)
j

∣∣∣ ≤ ∥g(xk)−∥1 , (4.185)

where we applied E ∪ Ak ⊂ Sk and 0 ≤ z
(k)
j ≤ 1, j = E ∪ Ak. Moreover, we made use

of z(k)
j = 0 for all j ∈ Sk ∩ Bk according to Step 1 of Algorithm 4.1 and the definition

(4.11) of zk. Applying (4.185) to (4.184) results in

|Aredk − Predk| ≤ c4∥dk∥2
∞ + σkc4∥dk∥4

∞ +
∑
j∈Sk

σkc4

∣∣∣gj(xk)z(k)
j

∣∣∣ ∥dk∥2
∞

≤ c4∥dk∥2
∞︸ ︷︷ ︸

(i)

+σkc4∥dk∥4
∞︸ ︷︷ ︸

(ii)

+σkc4∥g(xk)−∥1∥dk∥2
∞︸ ︷︷ ︸

(iii)

. (4.186)

We consider the terms (4.186)(i)-(iii) separately. Dividing by the predicted reduction
(4.183) yields the following estimates. For the first term (4.186)(i) we obtain

c4∥dk∥2
∞

Predk
≤ c4 ∆2

k

σk c2 ω2 ∆k

σk≥1
≤ σk c4 ∆2

k

σk c2 ω2 ∆k

= c4 ∆2
k

c2 ω2 ∆k

= c4 ∆k

c2 ω2 ≤ 1
3

(1 − ρ0) , (4.187)

as ∆k ≤ c2 ω
2 (1 − ρ0)/(3 c4) according to (4.182).

We make use of ∥dk∥∞ ≤ ∆max and thus the second term (4.186)(ii) is bounded by

σk c4 ∥dk∥4
∞

Predk
≤ σk c4 ∆2

max ∥dk∥2
∞

Predk
≤ σk c4 ∆2

max ∆2
k

σk c2 ω2 ∆k

= c4 ∆2
max ∆2

k

c2 ω2 ∆k

= c4 ∆2
max ∆k

c2 ω2

≤ 1
3

(1 − ρ0) , (4.188)

since ∆k ≤ c2 ω
2 (1 − ρ0)/(3 c4 ∆2

max), as assumed by (4.182).
The last term (4.186)(iii) can be estimated by

σk c4 ∥g(xk)−∥1 ∥dk∥2
∞

Predk
≤ σk c4 ∥g(xk)−∥1 ∥dk∥2

∞
σk c2 ∥g(xk)−∥2

1 ∆k

= c4 ∥dk∥2
∞

c2 ∥g(xk)−∥1 ∆k

≤ c4 ∆2
k

c2 ω∆k

= c4

c2 ω
∆k

≤ 1
3

(1 − ρ0) , (4.189)

as ∆k satisfies ∆k ≤ c2 ω (1 − ρ0)/(3 c4), what follows from (4.182).

4.2 Convergence Analysis 91

From (4.187), (4.188), and (4.189) it follows that

∣∣∣∣∣Aredk − Predk
Predk

∣∣∣∣∣ ≤ c4∥dk∥2
∞

Predk
+ σkc4∥dk∥4

∞
Predk

+ σkc4∥g(xk)−∥1∥dk∥2
∞

Predk

≤ 1
3

(1 − ρ0) + 1
3

(1 − ρ0) + 1
3

(1 − ρ0)

= 1 − ρ0 . (4.190)

The trial step is accepted. This is a contradiction to our assumption. The lower bound
on the trust region radius ∆l̄ of the successful iteration l̄ can be estimated as follows.
Let l̃ denote an iteration that has not been a successful one. It follows from (4.182)
and (4.190) that the trust region radius ∆

l̃
has to satisfy

∆
l̃
≥ min

(
1, τ1∆min,

1
3
c2 ω

2

c4
(1 − ρ0),

1
3
c2 ω

2

c4 ∆2
max

(1 − ρ0),
1
3
c2 ω

c4
(1 − ρ0)

)
, (4.191)

as otherwise the trial step (d
l̃
, w

l̃
) would have been accepted. According to Theo-

rem 4.14 there exists a constant c3 > 0 such that

∥d
l̃
∥∞ ≥ c3∥g(xl̃)

−∥1 min(1,∆
l̃
) ≥ c3 ωmin(1,∆

l̃
) , (4.192)

where x
l̃
= xk̄+1. Thus, the trust region radius of the subsequent iteration is

∆
l̃+1 = τ1∆l̃

≥ τ1c3 ωmin(1,∆
l̃
) . (4.193)

We can conclude from (4.191) and (4.193) that the trust region radius ∆l̄ of the
successful iteration l̄ is bounded from below by

∆l̄ ≥ τ1 c3 wmin
(

1, τ1∆min,
1
3
c2 ω

2

c4
(1 − ρ0),

1
3
c2 ω

2

c4 ∆2
max

(1 − ρ0),
1
3
c2 ω

c4
(1 − ρ0)

)

= min
(
ν1ω, ν2 ω

3, ν3 ω
2
)
, (4.194)

where we applied the constants

ν1 := τ1 c3 min(1, τ1∆min) , ν2 := τ1 c3 min
(
c2 (1 − ρ0)

3 c4
,
c2 (1 − ρ0)
3 c4 ∆2

max

)
,

and
ν3 := τ1 c3 c2 (1 − ρ0)

3 c4
.

As ∆k̄+1 ≥ ∆min, it is assured that the algorithm starts after a successful iteration
with a trust region radius greater than the lower bound (4.194).

The step is taken independent of the penalty parameter σk. Thus, the penalty pa-
rameter σk is either still equal to σk̄ or has been increased. We consider the case when
the penalty parameter has been increased.

92 4 A Trust Region SQP Algorithm for Constrained Nonlinear Programs

Theorem 4.14 and the constant c3 > 0 are applied again, and we obtain

∥dl̄∥∞ ≥ c3∥g(xl̄)−∥1 min(1,∆l̄) . (4.195)

With (4.194) and ∥g(xl̄)−∥1 ≥ ω, we get

∥dl̄∥∞ ≥ c3∥g(xl̄)−∥1 min(1,∆l̄)
≥ c3 ωmin(1,∆l̄)

≥ c3 ωmin
(
ν1ω, ν2 ω

3, ν3 ω
2
)
. (4.196)

We denote the last iteration where the penalty parameter has been increased by l,
with k̄ < l ≤ l̄. The inequality

∥dl̄∥∞ ≤ ∥dl∥∞ ≤ ∥dk̄+1∥∞
holds and we obtain

σl̄ = max
j=1,...,m

2m
(
u

(l)
j −v(l)

j

)2

dTl Bkdl + µl∆l

(
1−z(l)

j

2
) ≤ 8mκ2

κlbB ∥dl∥2
2

≤ 8mκ2

κlbB ∥dl∥2
∞

≤ 8mκ2

κlbB ∥dl̄∥2
∞
.

(4.197)
Here we applied the upper bound κ on ∥ul∥∞ and ∥vl∥∞ with |u(l)

j − v
(l)
j | ≤ 2κ, for

all j = 1, . . . ,m. Moreover, we used µl ≥ 0, 0 ≤ z
(l)
j ≤ 1 for j = 1, . . . ,m, the lower

bound on dTl Bkdl ≥ κlbB∥dl∥2
∞ according to Assumption 4.2, and ∥dl∥2 ≥ ∥dl∥∞. Note

that Bl = Bk as the matrix remains unchanged.
In the following we apply the different cases of (4.196) to (4.197). For ∥dl̄∥∞ ≥ c3ν1ω

2

the penalty parameter is bounded by

σl̄ ≤ 8mκ2

κlbB∥dl̄∥2
∞

≤ 8mκ2

κlbB c2
3 ν

2
1 ω

4 . (4.198)

In case ∥dl̄∥∞ ≥ c3 ν2 ω
4 is the minimum of (4.196), then

σl̄ ≤ 8mκ2

κlbB∥dl̄∥2
∞

≤ 8mκ2

κlbB c2
3 ν

2
2 ω

8 (4.199)

holds. Finally, for ∥dk∥∞ ≥ c3 ν3 ω
3 we get the bound

σl̄ ≤ 8mκ2

κlbB∥dl̄∥2
∞

≤ 8mκ2

κlbB c2
3 ν

2
3 ω

6 . (4.200)

The case that σl̄ = σk̄ holds and the inequalities (4.198)-(4.200) yield

σl̄ ≤ max
(
σk̄,

8mκ2

κlbB c2
3 ν

2
1 ω

4 ,
8mκ2

κlbB c2
3 ν

2
2 ω

8 ,
8mκ2

κlbB c2
3 ν

2
3 ω

6

)
. (4.201)

The theorem follows from (4.194) and (4.201). The proof is completed by setting the
constants c10 := ν1, c11 := ν3, and c12 := ν2 for the lower bound on the trust region
radius ∆l̄. Moreover, we set c13 := 8mκ2/(κlbB c

2
3 ν

2
1), c14 := 8mκ2/(κlbB c

2
3 ν

2
3), and

c15 := 8mκ2/(κlbB c
2
3 ν

2
2). 2

4.2 Convergence Analysis 93

The following theorem will be used later to establish the convergence of a subse-
quence to a stationary point of the nonlinear problem.

Theorem 4.18 Let {(xk, vk)} and {(dk, uk, µk)} be sequences generated by Algo-
rithm 4.1. If Assumption 4.2 and Assumption 4.3 hold, then

lim inf
k→∞

(
∥∇f(xk) − ∇g(xk)uk∥2 + µk + ∥g(xk)−∥1

)
= 0 . (4.202)

Proof : We prove the statement by contradiction. We assume that the statement does
not hold, then there exists a constant ω > 0 such that

∥∇f(xk) − ∇g(xk)uk∥2 + µk + ∥g(xk)−∥1 > 2ω , (4.203)

for all k. Thus, we can apply Theorem 4.17 to all iterates (xk, vk), where ∥g(xk)−∥1 > ω
holds. Moreover, Theorem 4.16 can be applied to the remaining iterates, as ∥∇f(xk)−
∇g(xk)uk∥2 + µk ≥ ω has to be satisfied.

From Theorem 4.16 and Theorem 4.17, it follows by induction that the penalty
parameter σk is bounded by

σk ≤ max
(
σ−1, c8,

c9

ω2 ,
c13

ω4 ,
c14

ω6 ,
c15

ω8

)
, (4.204)

for all k, where c8, c9, c13, c14, and c15 are the corresponding constants stated in The-
orem 4.16 and Theorem 4.17, respectively. Thus, the sequence {σk} remains bounded
and as σk ≥ σk−1, for all k, there exists a σ > 0 such that

lim
k→∞

σk = σ .

Moreover, Theorem 4.16, Theorem 4.17, and the boundedness of the penalty para-
meter, see (4.204), imply that there exists a constant ν > 0 such that for the trust
region radius ∆k ≥ ν holds for all k.

According to Theorem 4.10, for all k the step dk is bounded from below by

∥dk∥∞ ≥ min
(

∆k,
∥∇f(xk)−∇g(xk)uk∥2√

nκ

)
. (4.205)

If µk > 0, then ∥dk∥∞ = ∆k holds. Additionally, Theorem 4.14 states that there exists
a constant c3 > 0 such that

∥dk∥∞ ≥ c3∥g(xk)−∥1 min(1,∆k) . (4.206)

A distinction of cases with respect to (4.203) as in the proofs of Theorem 4.16 and
Theorem 4.17, let us conclude from (4.203), (4.205), (4.206), ∥dk∥∞ = ∆k in case
µk > 0, and ∆k ≥ ν, that ∥dk∥∞ is bounded away from zero, i.e., there exist an ϵ > 0
independent of k such that

∥dk∥∞ > ϵ > 0 , (4.207)
for all k.

94 4 A Trust Region SQP Algorithm for Constrained Nonlinear Programs

Let {(xki
, vki

)}K denote the infinite subsequence of successful iterations, i.e., the
iterations where Aredk/Predk ≥ ρ0. The existence is implied by Theorem 4.16 and
Theorem 4.17. We now consider only iterations ki with ki ∈ K. According to Theo-
rem 4.9 the predicted reduction can be estimated by

Predki
≥ 1

6
(
dTki
Bki

dk + 2µki
∆ki

)
+ 1

8
σki

∑
j∈Ski

gj(xki
)2
(
1 − zj

(ki)2)
︸ ︷︷ ︸

≥0

≥ 1
6
dTki
Bki

dki
≥ 1

6
κlbB∥dki

∥2
2 ≥ 1

6
κlbB∥dki

∥2
∞ ≥ 1

6
κlbBϵ

2 ,

where we applied dTki
Bki

dki
+ 2µki

∆ki
≥ dTki

Bki
dki

≥ κlbB∥dki
∥2

2 ≥ κlbB∥dki
∥2

∞ ≥ κlbBϵ
2,

what follows from Assumption 4.2, ∥dki
∥2

2 ≥ ∥dki
∥2

∞, µki
≥ 0, and (4.207). We obtain

Φσki
(xki+1 , vki+1) ≤ Φσki

(xki
, vki

) − 1
6
ρ0κlbBϵ

2 , (4.208)

where ki ∈ K, and ki+1 ∈ K is the index of the next successful iteration. Since
Φσki+1

(xki+1 , vki+1) ≥ Φσki
(xki+1 , vki+1) might happen, we estimate the difference

Φσki+1
(xki+1 , vki+1) − Φσki

(xki+1 , vki+1)

= −
∑

j∈Ski+1

(
v

(ki+1)
j gj(xki+1) − 1

2
σki+1gj(xki+1)2

)
− 1

2
∑

j∈Ski+1

v
(ki+1)
j

2

σki+1

+
∑

j∈S−
ki+1

(
v

(ki+1)
j gj(xki+1) − 1

2
σki
gj(xki+1)2

)
+ 1

2
∑

j∈S−
ki+1

v
(ki+1)
j

2

σki

(4.209)

with
Ski+1 := E ∪

{
j ∈ I | gj(xki+1) ≤ v

(ki+1)
j /σki+1

}
and Ski+1 := {1, . . . ,m} \ Ski+1 ,

S−
ki+1

:= E ∪
{
j ∈ I | gj(xki+1) ≤ v

(ki+1)
j /σki

}
and S−

ki+1
:= {1, . . . ,m} \ S−

ki+1
.

A difference in (4.209) occurs in case σki+1 > σki
. In the following the different parts

of (4.209) are investigated. For j ∈ Ski+1 ∪ S−
ki+1

it follows

− v
(ki+1)
j gj(xki+1) + 1

2
σki+1gj(xki+1)2 + v

(ki+1)
j gj(xki+1) − 1

2
σki
gj(xki+1)2

= 1
2
(
σki+1 − σki

)
gj(xki+1)2 . (4.210)

We obtain for j ∈ Ski+1 ∪ S−
ki+1

1
2
v

(ki+1)
j

2

σki

− 1
2
v

(ki+1)
j

2

σki+1

= 1
2

(
σki+1 − σki

)
σki

σki+1

v
(ki+1)
j

2
. (4.211)

4.2 Convergence Analysis 95

There is only one case remaining as other combinations can not occur by the defini-
tion of the sets. Let j ∈ I be the index of an inequality constraint such that j ∈ S−

ki+1

and j ∈ Ski+1 . Then gj(xki+1) > 0,

0 < gj(xki+1) ≤ v
(ki+1)
j /σki

, (4.212)

and
gj(xki+1) > v

(ki+1)
j /σki+1 ≥ 0 (4.213)

hold according to the definitions of the corresponding sets. We consider the difference
of the relevant terms in (4.209), that is

v
(ki+1)
j gj(xki+1) − 1

2
σki
gj(xki+1)2 − 1

2
v

(ki+1)
j

2

σki+1

. (4.214)

First, a lower bound for (4.214) is established. We get

v
(ki+1)
j gj(xki+1) − 1

2
σki
gj(xki+1)2 − 1

2
v

(ki+1)
j

2

σki+1

(4.213)
≥ v

(ki+1)
j gj(xki+1) − 1

2
σki
gj(xki+1)2 − 1

2
v

(ki+1)
j gj(xki+1)

= 1
2
(
v

(ki+1)
j gj(xki+1) − σki

gj(xki+1)2
)

(4.212)
≥ 1

2
(
σki
gj(xki+1)2 − σki

gj(xki+1)2
)

= 0 . (4.215)

Making use of (4.212) and (4.213) yields

1
2
σki
gj(xki+1)2

(4.213)
≥ 1

2
σki

σki+1

v
(ki+1)
j gj(xki+1) ≥ 0 (4.216)

and
1
2
v

(ki+1)
j

2

σki+1

(4.212)
≥ 1

2
σki

σki+1

v
(ki+1)
j gj(xki+1) ≥ 0 . (4.217)

Applying (4.216) and (4.217) to (4.214) gives the upper bound

v
(ki+1)
j gj(xki+1) − 1

2
σki
gj(xki+1)2 − 1

2
v

(ki+1)
j

2

σki+1

(4.216),(4.217)
≤ v

(ki+1)
j gj(xki+1) − 1

2
σki

σki+1

v
(ki+1)
j gj(xki+1) − 1

2
σki

σki+1

v
(ki+1)
j gj(xki+1)

= v
(ki+1)
j gj(xki+1) − σki

σki+1

v
(ki+1)
j gj(xki+1) . (4.218)

96 4 A Trust Region SQP Algorithm for Constrained Nonlinear Programs

Since for the whole sequence lim
k→∞

σk = σ, it follows that lim
ki→∞,ki∈K

(σki+1 − σki
) = 0.

Consequently, lim
ki→∞,ki∈K

σki
/σki+1 = 1. The boundedness of gj(xki+1) and vki+1 imply

that (4.210), (4.211), and (4.218) tend to 0. Thus, it follows from the mentioned
boundedness, (4.210), (4.211), (4.215), and (4.218) that for sufficiently large ki ∈ K

Φσki+1
(xki+1 , vki+1) − Φσki

(xki+1 , vki+1) ≤ 1
12
ρ0κlbBϵ

2 (4.219)

holds. Applying (4.208) and (4.219) leads to

Φσki+1
(xki+1 , vki+1) ≤ Φσki

(xki+1 , vki+1) + 1
12
ρ0κlbBϵ

2 ≤ Φσki
(xki

, vki
) − 1

12
ρ0κlbBϵ

2 ,

for all sufficiently large ki ∈ K and to a contradiction, since {Φσk
(xk, vk)} is bounded

from below for the whole sequence, as X is a compact set according to Assumption 4.2.
Thus, assumption (4.203) does not hold and the theorem is shown. 2

The next Theorem is the main result of the global convergence analysis. Theo-
rem 4.18 is applied to show that at least one accumulation point of the generated
sequence fulfills the Karush-Kuhn-Tucker conditions of the nonlinear problem (1.2).

Theorem 4.19 Let {(xk, vk, dk, uk, µk, Bk)} be determined by Algorithm 4.1. If As-
sumption 4.2 and Assumption 4.3 hold, then either Algorithm 4.1 stops at a Karush-
Kuhn-Tucker point or there exists an accumulation point (x⋆, u⋆) of the sequence
{(xk, uk)} satisfying the KKT conditions for problem (1.2).

Proof : Let us consider the case when (dk, uk) is the minimizer of subproblem (4.7)
and the step size is ∥dk∥∞ = 0. Then Algorithm 4.1 terminates in Step 2. The KKT
conditions of subproblem (4.7) are satisfied, i.e.,

∇f(xk) −
m∑
j=1

∇gj(xk)u(k)
j = 0 ,

gj(xk) = 0 , j ∈ E ,

gj(xk) ≥ 0 , j ∈ I ,

u
(k)
j ≥ 0 , j ∈ I ,

u
(k)
j gj(xk) = 0 , j ∈ I ,

(4.220)

holds. The iteration k has to be an iteration that follows a successful one, what fol-
lows from the convexity of the subproblems. Thus, the trust region constraint can
be neglected as the bound satisfies ∆k ≥ ∆min. Conditions (4.220) are also the KKT
conditions of problem (1.2). Thus, (xk, uk) is a KKT point of problem (1.2).

In the following the case is considered when Algorithm 4.1 does not terminate and
generates an infinite sequence {(xk, uk)}. Since all iterates xk lie in X according to
Assumption 4.2 and X is a compact set, the sequence {xk} is bounded. Moreover, the
boundedness of {uk} and Theorem 4.18 guarantee the existence of x⋆ ∈ Rn, u⋆ ∈ Rm,

4.2 Convergence Analysis 97

and an infinite subset K ⊂ N with
lim

k→∞,k∈K
xk = x⋆ ,

lim
k→∞,k∈K

uk = u⋆

such that
lim

k→∞, k∈K

(
∥∇f(xk) − ∇g(xk)uk∥2 + µk + ∥g(xk)−∥1

)
= 0 (4.221)

holds. From (4.221) and µk ≥ 0, it follows ∥g(x⋆)−∥1 = 0, that is
gj(x⋆) = 0 , j ∈ E ,

gj(x⋆) ≥ 0 , j ∈ I ,

and
∥∇f(x⋆) − ∇g(x⋆)u⋆∥2 = 0 .

We have to show that

u⋆jgj(x⋆) = 0 , j = 1, . . . ,m , (4.222)

and u⋆j ≥ 0, j ∈ I, is satisfied. Obviously, (4.222) holds for all j ∈ E .
From the KKT conditions of the subproblems, i.e., (4.34)(a) or subproblem (4.37)(a),

respectively, we derive that

µk = ∥Bkdk + ∇f(xk) − ∇g(xk)Tuk∥1 ,

what follows from the definition (4.35) of µk. Together with
lim

k→∞, k∈K
µk = 0 ,

lim
k→∞, k∈K

∥∇f(xk) − ∇g(xk)Tuk∥2 = 0 ,

what follows from (4.221), and dTkBkdk ≥ κlbB∥dk∥2, according to Assumption 4.2, we
obtain

lim
k→∞, k∈K

∥dk∥2 = 0 . (4.223)

For any j ∈ I with gj(x⋆) > 0, it follows for sufficiently large k ∈ K that j ∈ Bk and
additionally from (4.223) that

gj(xk) + ∇gj(xk)Tdk > 0

holds. The KKT conditions (4.34)(f) or (4.37)(h), in case the feasibility restoration
phase is entered, imply that u(k)

j = 0 and therefore also u⋆j = 0.
Applying the KKT conditions (4.34)(f) and (4.34)(g) or (4.37)(g)-(i), respectively,

and
lim

k→∞, k∈K
∥g(xk)−∥1 = 0 ,

to the active inequality constraints at x⋆, we conclude that (4.222) holds and u⋆j ≥ 0
for all j ∈ I. This shows that the KKT conditions (4.220) are also satisfied at the
accumulation point (x⋆, u⋆) of the considered subsequence. 2

98 4 A Trust Region SQP Algorithm for Constrained Nonlinear Programs

The global convergence analysis for Algorithm 4.1 is completed. The following sec-
tion presents the local convergence analysis.

4.2.2 Local Convergence

The following local convergence analysis adapts results obtained by Schittkowski [99].
The original analysis was carried out for an algorithm that applies line search tech-
niques. The local convergence analysis uses basic ideas of the work done by Schitt-
kowski [99]. The similar parts are highlighted.

The following analysis assumes that the set of active inequality constraints has
already been determined, i.e., the sets Sk, Sk, Mk, Mk, Lk, and Lk do not change
anymore. The following equations

Sk = Mk = Lk

and
Sk = Mk = Lk

hold for sufficiently large k. Thus, the local convergence analysis considers equality
constrained problems. This can be seen as a restart of the algorithm as soon as this
situation occurs. The augmented Lagrangian reduces to the form (4.4). The problem
is then formulated as

minimize
x∈Rn

f(x)

subject to gj(x) = 0 , j = 1, . . . ,m .
(4.224)

This assumption does not seem to be too restrictive and can be presumed without
loss of generality. Moreover, it is assumed that some additional properties hold. Let
(x⋆, u⋆) denote the KKT point of problem (4.224).
Assumption 4.20 1. There exists a nonempty, convex, and compact set X ⊂ R

n

such that for all k the iterate xk and xk + dk lie in X .
2. f(x) and gj(x), j = 1, . . . ,m, are twice continuously differentiable on an open

set containing X .
3. ∇g(x) = (∇g1(x), . . . ,∇gm(x)) has full rank on an open set containing X .
4. The second derivatives of all problem functions are Lipschitz-continuous on an

open set containing X .
5. The optimal solution x⋆ lies in X .
6. lim

k→∞
xk = x⋆.

7. lim
k→∞

vk = u⋆.
8. There exists a κ ≥ 1 such that

∥uk − vk∥2
∞

∥dk∥2
∞

≤ κ (4.225)

holds for sufficiently large k.

4.2 Convergence Analysis 99

9. {Bk} is bounded.
10. There exists a κlbB > 0 such that for all k

κlbB∥dk∥2
2 ≤ dTkBkdk . (4.226)

Assumption 4.20(1.)-(5.) imply properties that are stated in the following. Without
loss of generality, it is assumed that the constant κ ≥ 1 is large enough such that

∥∇f(x) − ∇f(y)∥2 ≤ κ∥x− y∥2 ,

∥∇2f(x) − ∇2f(y)∥2 ≤ κ∥x− y∥2 ,

∥∇2gj(x) − ∇2gj(y)∥2 ≤ κ

m
∥x− y∥2 , for j = 1, . . . ,m ,

∥∇g(x)∥2 ≤ κ ,

∥∇g(x) − ∇g(y)∥2 ≤ κ∥x− y∥2 ,

∥∇2gj(x)∥2 ≤ κ

m
, for j = 1, . . . ,m ,

(4.227)

holds for all x, y ∈ X .
Assumption 4.20(8) is also used by other authors, see for example El-Alem [30] and

Gill, Murray, Saunders, and Wright [48].
The local superlinear convergence has been studied by several authors, e.g., Han [58],

Boggs, Tolle, and Wang [8], and Powell [88]. It was proved that superlinear convergence
requires the use of the unit step length in line search methods, and the acceptance
of all trial steps with inactive trust region constraint in trust region methods, i.e.,
xk+1 = xk + dk for all sufficiently large k and ∥dk∥∞ < ∆k. Thus, the investigations of
this section are restricted to the question whether the step calculated by Algorithm 4.1
fulfills ∥dk∥∞ < ∆k and

Aredk
Predk

≥ ρ0 (4.228)

holds in the neighborhood of a solution for all k sufficiently large.
Let (xk, vk) be an iterate of Algorithm 4.1. As problem (4.224) is considered, the

augmented Lagrangian reduces to

Φσk
(xk, vk) := f(xk) − g(xk)Tvk + 1

2
σk∥g(xk)∥2

2 (4.229)

and the gradient of the augmented Lagrangian is

∇Φσk
(xk, vk) :=

(
∇f(xk) − ∇g(xk)vk + σk∇g(xk)g(xk)

−g(xk)

)
. (4.230)

Assumption 4.20 implies that the augmented Lagrangian Φσ(x, v) is now twice con-
tinuously differentiable. The model Ψσk

(dk, wk) can easily be derived from (4.16).
We consider the solution of the quadratic problem that corresponds to the equality

constrained problem (4.224). Let (xk, vk) be an iterate of Algorithm 4.1, then the

100 4 A Trust Region SQP Algorithm for Constrained Nonlinear Programs

quadratic subproblem is

minimize
d∈Rn

∇f(xk)Td+ 1
2
dTBkd

subject to gj(xk) + ∇gj(xk)Td = 0 , j = 1, . . . ,m ,

∥d∥∞ ≤ ∆k .

(4.231)

Let (dk, uk) be a solution to problem (4.231) such that ∥dk∥∞ < ∆k, i.e., the trust
region bound is not active. Then the corresponding KKT optimality conditions of the
subproblem (4.231) can be stated as

a) Bkdk + ∇f(xk) − ∇g(xk)uk = 0

b) gj(xk) + ∇gj(xk)Tdk = 0 , j = 1, . . . ,m .
(4.232)

The following lemma states that the predicted reduction Predk is related to the
gradient of the augmented Lagrangian function (4.230) when multiplied with the trial
step. This holds if the trust region bound is inactive at the solution of the quadratic
subproblem (4.231).

Lemma 4.21 Let Assumption 4.20 hold. Let (xk, vk) be an iterate of Algorithm 4.1
such that subproblem (4.7) is solved and the solution denoted by (dk, uk) satisfies

∥dk∥∞ < ∆k , (4.233)

then
Predk = −1

2
∇Φσk

(xk, vk)T
(

dk

uk − vk

)
. (4.234)

Proof : We consider the gradient of the augmented Lagrangian (4.230). We get

−∇Φσk
(xk, vk)T

(
dk

uk − vk

)
= −

(
∇f(xk) − ∇g(xk)vk + σk∇g(xk)g(xk)

−g(x)

)T (
dk

uk − vk

)

= −dTk∇f(xk) + dTk∇g(xk)vk − σkd
T
k∇g(xk)g(xk) + (uk − vk)Tg(xk) .

(4.235)

Since subproblem (4.7) is solved the step in the dual variables is set to wk = uk−vk.
As ∥dk∥∞ < ∆k, the KKT system (4.232) can be applied. With Ψσk

(0, 0) = Φσk
(xk, vk),

we obtain for the predicted reduction

Predk = Ψσk
(0, 0) − Ψσk

(dk, wk) = Φσk
(xk, vk) − Ψσk

(dk, wk)

= f(xk) −
m∑
j=1

(
v

(k)
j gj(xk) − 1

2
σkgj(xk)2

)
− f(xk) − ∇f(xk)Tdk − 1

2
dTkBkdk

+
m∑
j=1

(v(k)
j +w(k)

j

) (
gj(xk)+∇gj(xk)Tdk

)
︸ ︷︷ ︸

=0

−1
2
σk
(
gj(xk)+∇gj(xk)Tdk

)2

︸ ︷︷ ︸
=0

4.2 Convergence Analysis 101

(4.232)(b)= − ∇f(xk)Tdk − 1
2
dTkBkdk −

m∑
j=1

(
v

(k)
j gj(xk) − 1

2
σkgj(xk)2

)
(4.232)(a)= − ∇f(xk)Tdk + 1

2

∇f(xk)Tdk −
m∑
j=1

u
(k)
j ∇gj(xk)Tdk

−

m∑
j=1

(
v

(k)
j gj(xk) − 1

2
σkgj(xk)2

)

= − 1
2

∇f(xk)Tdk − 1
2

m∑
j=1

u
(k)
j ∇gj(xk)Tdk − 1

2

m∑
j=1

v
(k)
j gj(xk) − 1

2

m∑
j=1

v
(k)
j gj(xk)

+ 1
2
σk

m∑
j=1

gj(xk)2

(4.232)(b)= − 1
2

∇f(xk)Tdk + 1
2

m∑
j=1

v
(k)
j ∇gj(xk)Tdk + 1

2

m∑
j=1

u
(k)
j gj(xk) − 1

2

m∑
j=1

v
(k)
j gj(xk)

+ 1
2
σk

m∑
j=1

gj(xk)∇gj(xk)Tdk

(4.235)= − 1
2

∇Φσk
(xk, vk)T

(
dk

uk − vk

)
,

what proves the lemma. 2

Now it is shown that all steps are accepted in Algorithm 4.1 and ∥dk∥∞ < ∆k when
approaching a solution regardless of the choice of the penalty parameter σk.
Theorem 4.22 Let Assumption 4.20 hold. Let {(xk, vk)} be an iteration sequence of
Algorithm 4.1 and (x⋆, u⋆) be a Karush-Kuhn-Tucker point of problem (4.224). Bk is
sufficiently close to ∇2

xxL(x⋆, u⋆) in the following sense

dTk (∇2
xxL(x⋆, u⋆) −Bk)dk ≤ ν∥dk∥2

2 , (4.236)

for sufficiently large k, where

ν ≤ min
(
κlbB(1 − ρ0)2

120κ2 ,
κlbB

2mκ
,
∆min

2

)
. (4.237)

If there exists an iteration k̄ such that σk = σk̄ for all k ≥ k̄, then ν also satisfies

ν ≤ 1
σk̄

. (4.238)

Then the following holds for all k sufficiently large

Aredk
Predk

≥ ρ0 (4.239)

and
∥dk∥∞ < ∆k . (4.240)

102 4 A Trust Region SQP Algorithm for Constrained Nonlinear Programs

Proof : Assumption 4.20 implies that for all k sufficiently large
∥xk − x⋆∥2 ≤ ν ,

∥vk − u⋆∥2 ≤ ν ,

∥uk − u⋆∥2 ≤ ν ,

∥dk∥2 ≤ ν

(4.241)

holds and subproblem (4.231) is consistent for sufficiently large ∆k. The existence of
a solution to subproblem (4.231) follows for sufficiently large k from the full rank of
∇g(xk) and from the convergence to a KKT point. In this case the solution dk and
uk of the quadratic subproblems (4.231) are uniquely determined if the trust region
constraint is not active. This follows from the positive definiteness of the matrices Bk.

Without loss of generality, we can assume that the constant κ from Assumption 4.20
also satisfies the requirements

∥uk∥2 ≤ κ , for all k ,
∥u⋆∥2 ≤ κ .

Now we consider an iterate (xk, vk) that follows a successful iteration, i.e., xk =
xk−1 + dk. In this situation the trust region radius is at least ∆min, i.e., ∆k ≥ ∆min.
We assume that k is sufficiently large, that is (4.241) and Assumption 4.20(8) hold.
According to the definition of ν (4.237) and the bound on ∥dk∥2 (4.241), the trust
region constraint is inactive at the solution to subproblem (4.231), that is ∥dk∥∞ ≤
∥dk∥2 ≤ ∆min/2 < ∆k, and thus µk (4.35) is equal to zero. Moreover, we obtain z(k)

j = 0
for all j = 1, . . . ,m.

As a first step, we define a matrix

Ck :=
(
Bk + σk∇g(xk)∇g(xk)T −∇g(xk)

−∇g(xk)T 0

)
. (4.242)

By applying the optimality conditions (4.232) of subproblem (4.231), we obtain for

pk :=
(

dk

uk − vk

)

Ckpk =
(
Bkdk + σk∇g(xk)∇g(xk)Tdk − ∇g(xk)(uk − vk)

−∇g(xk)Tdk

)

(4.232)=
(

−∇f(xk) + ∇g(xk)uk − σk∇g(xk)g(xk) − ∇g(xk)(uk − vk)
g(xk)

)

= − ∇Φσk
(xk, vk) . (4.243)

We first estimate some bounds that are applied in the proof later. To simplify the
notation, the iteration index k is dropped now. The following estimates can also be

4.2 Convergence Analysis 103

found in Schittkowski [99]. For a ξ ∈ (0, 1] we can estimate the following bound.

|dT (∇2
xxL(x+ ξd, v + ξ(u− v)) −B)d|

≤ |dT (∇2
xxL(x+ ξd, v + ξ(u− v)) − ∇2

xxL(x⋆, u⋆))d|

+ |dT (∇2
xxL(x⋆, u⋆) −B)d|

(4.236)
≤ ∥d∥2

2

(
∥∇2f(x+ ξd) − ∇2f(x⋆)∥2

+
∥∥∥∥ m∑
j=1

(
(vj + ξ(uj − vj))∇2gj(x+ ξd) − u⋆j∇2gj(x⋆)

) ∥∥∥∥
2

+ ν
)

= ∥d∥2
2

(
∥∇2f(x+ ξd) − ∇2f(x⋆)∥2

+
∥∥∥∥ m∑
j=1

(
(vj + ξ(uj − vj))∇2gj(x+ ξd) − u⋆j∇2gj(x+ ξd)

+ u⋆j∇2gj(x+ ξd) − u⋆j∇2gj(x⋆)
)∥∥∥∥

2
+ ν

)
= ∥d∥2

2

(
∥∇2f(x+ ξd) − ∇2f(x⋆)∥2

+
∥∥∥∥ m∑
j=1

(
(vj + ξ(uj − vj) − u⋆j)∇2gj(x+ ξd)

+ u⋆j
(
∇2gj(x+ ξd) − ∇2gj(x⋆)

))∥∥∥∥
2

+ ν
)

≤ ∥d∥2
2

(
∥∇2f(x+ ξd) − ∇2f(x⋆)∥2 +

m∑
j=1

∥∥∥∥(vj + ξ(uj − vj) − u⋆j)∇2gj(x+ ξd)
∥∥∥∥

2

+
m∑
j=1

∥∥∥∥u⋆j (∇2gj(x+ ξd) − ∇2gj(x⋆)
) ∥∥∥∥

2
+ ν

)
(4.227)

≤ κ∥d∥2
2(∥x− x⋆∥2 + ∥d∥2) + κ∥d∥2

2∥v + ξ(u− v) − u⋆∥2

+ κ∥d∥2
2∥u⋆∥2(∥x⋆ − x∥2 + ∥d∥2) + ν∥d∥2

2

≤ (2κ2 + 5κ+ 1)ν∥d∥2
2 . (4.244)

The last inequality is obtained by applying (4.241). Then there also exist ξ′
j ∈ (0, ξ),

j = 1, . . . ,m, such that
gj(x+ ξd) = gj(x) + ξ∇gj(x)Td+ 1

2
ξ2dT∇2gj(x+ ξ′

jd)d

= (1 − ξ)gj(x) + 1
2
ξ2dT∇2gj(x+ ξ′

jd)d ,

and we get by applying (4.227)

∥g(x+ ξd)∥2 ≤ ∥g(x)∥2 + κ∥d∥2
2 . (4.245)

104 4 A Trust Region SQP Algorithm for Constrained Nonlinear Programs

From

∥∇g(x+ ξd)Td∥2 − ∥∇g(x)Td∥2 ≤ ∥∇g(x+ ξd)Td− ∇g(x)Td∥2

≤ ∥∇g(x+ ξd) − ∇g(x)∥2∥d∥2

≤ κ∥x+ ξd− x∥2∥d∥2 ≤ κ∥d∥2
2 ,

where we applied (4.227) in the next to last step, it follows

∥∇g(x+ ξd)Td∥2 ≤ ∥∇g(x)Td∥2 + κ∥d∥2
2

= ∥g(x)∥2 + κ∥d∥2
2 . (4.246)

From Lemma 4.21 we know that Pred = −1
2∇Φσ(x, v)Tp. According to Theorem 4.9,

we have the lower bound on the predicted reduction

−1
2

∇Φσ(x, v)Tp = Pred ≥ 1
6
(
dTBd+ 2µ∆

)
+ 1

8
σ

m∑
j=1

gj(x)2
(
1 − zj

2
)

≥ 1
6
dTBd+ 1

8
σ∥g(x)∥2

2 , (4.247)

where µ = 0 and zj = 0, j = 1, . . . ,m, is applied.
Thus, we get

−∇Φσ(x, v)Tp ≥ 1
3
dTBd+ 1

4
σ∥g(x)∥2

2 ≥ 1
3
κlbB∥d∥2

2 + 1
4
σ∥g(x)∥2

2 , (4.248)

where we applied dTBd ≥ κlbB∥d∥2
2 according to Assumption 4.20(10.).

By the use of the following definitions

∇2Φσ(y) :=
(

∇2
xxL(x, v) + σ∇g(x)∇g(x)T + σ(∇2g(x), g(x)) −∇g(x)

−∇g(x)T 0

)

for all y :=
(
x
v

)
∈ Rn+m,

(∇2g(x), g(x)) :=
m∑
j=1

gj(x)∇2gj(x) ,

the definition (4.242) of C, and (4.243), we obtain

pT (∇2Φσ(y + ξp) − C)p

= dT (∇2
xxL(x+ ξd, v + ξ(u− v)) −B)d+ σ∥∇g(x+ ξd)Td∥2

2

+ σdT (∇2g(x+ ξd), g(x+ ξd))d− σ∥∇g(x)Td∥2
2

− 2dT (∇g(x+ ξd) − ∇g(x))(u− v)

4.2 Convergence Analysis 105

≤ |dT (∇2
xxL(x+ ξd, v + ξ(u− v)) −B)d| + σ∥∇g(x+ ξd)Td∥2

2

+ σdT (∇2g(x+ ξd), g(x+ ξd))d− σ∥∇g(x)Td∥2
2

− 2dT (∇g(x+ ξd) − ∇g(x))(u− v)
(4.244)

≤ (2κ2 + 5κ+ 1)ν∥d∥2
2 + σ∥∇g(x+ ξd)Td∥2

2

+ σdT (∇2g(x+ ξd), g(x+ ξd))d− σ∥∇g(x)Td∥2
2

− 2dT (∇g(x+ ξd) − ∇g(x))(u− v)
(4.246)

≤ (2κ2 + 5κ+ 1)ν∥d∥2
2 + σ∥g(x)∥2

2 + 2σκ∥g(x)∥2∥d∥2
2 + σκ2∥d∥4

2

+ σdT (∇2g(x+ ξd), g(x+ ξd))d− σ∥∇g(x)Td∥2
2

− 2dT (∇g(x+ ξd) − ∇g(x))(u− v)
(4.227),(4.245)

≤ (2κ2 + 5κ+ 1)ν∥d∥2
2 + σ∥g(x)∥2

2 + 2σκ∥g(x)∥2∥d∥2
2 + σκ2∥d∥4

2

+ σκ∥d∥2
2(∥g(x)∥2 + κ∥d∥2

2) − σ∥∇g(x)Td∥2
2

− 2dT (∇g(x+ ξd) − ∇g(x))(u− v)
(4.232)(b)

≤ (2κ2 + 5κ+ 1)ν∥d∥2
2 + σ∥g(x)∥2

2 + 2σκ∥g(x)∥2∥d∥2
2 + σκ2∥d∥4

2

+ σκ∥d∥2
2(∥g(x)∥2 + κ∥d∥2

2) − σ∥g(x)∥2
2

− 2dT (∇g(x+ ξd) − ∇g(x))(u− v)
(4.227)

≤ (2κ2 + 5κ+ 1)ν∥d∥2
2 + σ∥g(x)∥2

2 + 2σκ∥g(x)∥2∥d∥2
2 + σκ2∥d∥4

2

+ σκ∥d∥2
2(∥g(x)∥2 + κ∥d∥2

2) − σ∥g(x)∥2
2

+ 2κ∥d∥2
2∥u− v∥2

= (2κ2 + 5κ+ 1)ν∥d∥2
2 + 2σκ∥g(x)∥2∥d∥2

2 + σκ2∥d∥4
2

+ σκ∥d∥2
2(∥g(x)∥2 + κ∥d∥2

2) + 2κ∥d∥2
2∥u− u⋆ + u⋆ − v∥2

(4.241)
≤ (2κ2 + 9κ+ 1)ν∥d∥2

2 + σ(3κ∥g(x)∥2 + 2κ2∥d∥2
2)∥d∥2

2

≤ 12κ2ν∥d∥2
2 + σ(3κ∥g(x)∥2 + 2κ2∥d∥2

2)∥d∥2
2 . (4.249)

The last inequality follows as κ ≥ 1. Now we adapt the estimates of Schittkowski [99].
We consider the condition for accepting a trial step, that is

Ared

Pred
≥ ρ0 .

This can be rewritten as

Ared− ρ0Pred = Φσ(y) − Φσ(y + p) − ρ0Pred ≥ 0 .

106 4 A Trust Region SQP Algorithm for Constrained Nonlinear Programs

Lemma 4.21 provides Pred = −1
2∇Φσ(y)Tp. We define a constant ρ̄ := 1

2ρ0. If we
apply the Taylor-approximation of Φσ with a ξ ∈ (0, 1], then we obtain

Φσ(y) − Φσ(y + p) − 2ρ̄P red

= Φσ(y) − Φσ(y + p) + ρ̄∇Φσ(y)Tp

= − ∇Φσ(y)Tp− 1
2
pT∇2Φσ(y + ξp)p+ ρ̄∇Φσ(y)Tp

= (ρ̄− 1)∇Φσ(y)Tp− 1
2
pT∇2Φσ(y + ξp)p

(4.243)= −
(1

2
− ρ̄

)
∇Φσ(y)Tp− 1

2
pT (∇2Φσ(y + ξp) − C)p

(4.248),(4.249)
≥

(1
2

− ρ̄
)(1

3
κlbB∥d∥2

2 + 1
4
σ∥g(x)∥2

2

)
− 6κ2ν∥d∥2

2

− 1
2
σ
(
3κ∥g(x)∥2 + 2κ2∥d∥2

2

)
∥d∥2

2

=
(1

3

(1
2

− ρ̄
)
κlbB − 6κ2ν

)
∥d∥2

2 + 1
4

(1
2

− ρ̄
)
σ∥g(x)∥2

2

− 3
2
σκ∥g(x)∥2∥d∥2

2 − σκ2∥d∥4
2

=
(1

3

(1
2

− ρ̄
)
κlbB − 6κ2ν

)
∥d∥2

2 + 1
4

(1
2

− ρ̄
)
σ∥g(x)∥2

2

− 3
2
σκ∥g(x)∥2∥d∥2

2 + σ
9κ2

4(1
2 − ρ̄)

∥d∥4
2 − σ

9κ2

4(1
2 − ρ̄)

∥d∥4
2 − σκ2∥d∥4

2

=
(1

3

(1
2

− ρ̄
)
κlbB − 6κ2ν

)
∥d∥2

2

+ σ

1
2

√
1
2

− ρ̄ ∥g(x)∥2 − 3κ
2
√

1
2 − ρ̄

∥d∥2
2

2

− σ
9κ2

4(1
2 − ρ̄)

∥d∥4
2 − σκ2∥d∥4

2

≥
(1

3

(1
2

− ρ̄
)
κlbB − 6κ2ν

)
∥d∥2

2 − σ

(
9

4(1
2 − ρ̄)

+ 1
)
κ2∥d∥4

2 . (4.250)

We need a bound for σ∥d∥2
2 before we can continue. We consider two situations. We

assume that in the current iteration the penalty parameter is increased and Assump-
tion 4.20(8) holds. Then we obtain with (4.241) and the penalty update formula (4.24)
the estimate

σ∥d∥2
2 ≤ σν2 ≤ 2m∥u− v∥2

∞
dTBd

ν2 ≤ 2m∥u− v∥2
∞

κlbB∥d∥2
2

ν2 ≤ 2m∥u− v∥2
∞

κlbB∥d∥2
∞

ν2 ≤ 2mκ
κlbB

ν2 ≤ ν ,

(4.251)

4.2 Convergence Analysis 107

where we also applied Assumption 4.20(10) and ν ≤ κlbB/(2mκ) according to (4.237).
The iteration index is reintroduced. The bound in (4.251) remains valid if the penalty
parameter has been increased in a previous iteration l, with l < k, where Assump-
tion 4.20(8) is satisfied as this also results in σl ≤ 2mκ/κlbB, what follows the same
way as in (4.251) where only the last inequality on the right-hand side is ignored. Thus,
the case when the penalty parameter is not increased and σk ≤ 2mκ/κlbB is already
included in the estimate (4.251). If σk > 2mκ/κlbB, then the penalty parameter will
not be increased anymore for all k sufficiently large. This implies that there exists an
iteration k̄ such that σk = σk̄ for all k ≥ k̄. This case is considered now.

If there exists an iteration k̄ such that the penalty parameter σk = σk̄ for all k ≥ k̄,
then we can assume without loss of generality that the currently considered iteration
k satisfies k ≥ k̄. We get

σk̄∥dk∥2
2 ≤ σk̄ν

2 ≤ ν , (4.252)

where we applied ν ≤ 1/σk̄ according to (4.238). The iteration index k is dropped
again. We proceed from (4.250) where the estimates of both situations, i.e., inequalities
(4.251) and (4.252), result in

Φσ(y) − Φσ(y + p) − 2ρ̄P red

≥
(1

3

(1
2

− ρ̄
)
κlbB − 6κ2ν

)
∥d∥2

2 − σ

(
9

4(1
2 − ρ̄)

+ 1
)
κ2∥d∥4

2

(4.251),(4.252)
≥

(
1
3

(1
2

− ρ̄
)
κlbB − 6κ2ν −

(
9

4(1
2 − ρ̄)

+ 1
)
κ2ν

)
∥d∥2

2

=
(

1
3

(1
2

− ρ̄
)
κlbB −

(
6 +

(
9

4(1
2 − ρ̄)

+ 1
))

κ2ν

)
∥d∥2

2

=
(

1
3

(1
2

− ρ̄
)
κlbB −

(
7 + 9

4(1
2 − ρ̄)

)
κ2ν

)
∥d∥2

2

ρo=2ρ̄=
(

1
6

(1 − ρ0)κlbB −
(

7 + 9
2(1 − ρ0)

)
κ2ν

)
∥d∥2

2

(4.237)
≥

(
1
6

(1 − ρ0)κlbB −
(

7 + 9
2(1 − ρ0)

)
κ2κlbB(1 − ρ0)2

120κ2

)
∥d∥2

2

=
(

1
6

(1 − ρ0)κlbB − 7
120

κlbB(1 − ρ0)2 − 9
240(1 − ρ0)

κlbB(1 − ρ0)2
)

∥d∥2
2

≥
(1

6
(1 − ρ0)κlbB − 7

120
(1 − ρ0)κlbB − 9

240
(1 − ρ0)κlbB

)
∥d∥2

2

=
(1

6
− 7

120
− 9

240

)
(1 − ρ0)κlbB∥d∥2

2 = 40 − 14 − 9
240

(1 − ρ0)κlbB∥d∥2
2

≥ 0 . (4.253)

We also applied (1 − ρ0)2 ≤ (1 − ρ0), as 0 < ρ0 < 1, and ν ≤ κlbB(1 − ρ0)2/(120κ2)

108 4 A Trust Region SQP Algorithm for Constrained Nonlinear Programs

according to (4.237).
We reintroduce the iteration index k. It follows from (4.253) that the current it-

eration k, that follows a successful iteration, is a successful one and the trial step is
accepted, i.e.,

Aredk
Predk

≥ ρ0 .

Moreover, ∥dk∥∞ < ∆k holds. As all required conditions still hold for the following
iteration k+ 1, the trial step (dk+1, wk+1) will also be accepted. Again ∥dk+1∥ < ∆k+1,
as ∆k+1 ≥ ∆min. It follows by induction that for all k sufficiently large the iteration is
successful and the trust region bound remains inactive. This proves the theorem. 2

The local convergence is completed. Under adequate assumptions, it has been shown
that Algorithm 4.1 accepts all trial steps and the trust region bound is inactive as soon
as the sequence of iterates is close to the stationary point (x⋆, u⋆).

4.3 Discussion

The so-called Maratos effect [71] can slow down the local convergence of an SQP
method. The problem occurs as the constraints are only linearized in the quadratic
subproblem and second order information is contained merely in the matrix that ap-
proximates the Hessian of the Lagrangian function. This lack of second order informa-
tion can lead to a rejection of the calculated trial step if the progress is measured by a
merit function that is not differentiable at the solution of the optimized problem. Dif-
ferent strategies were developed to overcome this drawback. The most frequently used
techniques apply second order correction steps, non-monotone strategies for penalty
functions or a differentiable merit function.

Chamberlain et al. [18] proposed the so-called watch-dog technique to avoid the
Maratos effect. For some steps the applied merit function may increase. Non-monotone
techniques are very similar to the watch-dog approach, see, for example, Gould and
Toint [53]. The basic idea of non-monotone strategies goes back to Grippo, Lampariello,
and Lucidi [55]. The technique was extended to constrained optimization and trust
region methods in a series of subsequent papers, see, e.g., Toint [119, 120], and Ulbrich
and Ulbrich [122]. Here the requirement that P (xk+dk) has to be sufficiently less than
P (xk) is relaxed, and a non-monotone sequence of P (xk) is accepted.

Calculating second order correction steps was proposed by several authors, see,
e.g., Fletcher [39] and Yuan [129] for details and convergence analysis. Fletcher [39]
has shown that the SOC steps circumvent the Maratos effect. Mayne and Polak [73],
Yuan [130], and Fukushima [45] also apply second order correction steps. Methods, that
require the calculation of second order correction steps to retain fast local convergence,
have a significant disadvantage. The number of function evaluations increases so that
they may not be applicable to real-world problems, where the function evaluations are
time-consuming.

The aim of Algorithm 4.1 is to avoid the calculation of second order correction steps.

4.3 Discussion 109

Under suitable assumptions, it has been shown that full steps are accepted close to the
solution and the trust region constraints is inactive. Thus, fast local convergence can be
expected without additional safeguards. Algorithm 4.1 differs from other trust region
algorithm as it applies a differentiable augmented Lagrangian merit function. In line
search algorithms the differentiable merit function is commonly used, see, for example,
Powell and Yuan [92] for equality constrained problems, or Gill, Murray, Saunders,
and Wright [48] for inequality constrained problems, or Schittkowski [99, 100] for
problems with both kinds of constraints. In case the considered problems contain
inequality constraints, then many trust region algorithms use a merit function that is
not differentiable, see, e.g., Yuan [129, 130].

Algorithm 4.1 addresses problems with equality and inequality constraints. The
inequality constraints are not transformed into equality constraints. Powell and
Yuan [93], and El-Alem [30, 31] also employ an augmented Lagrangian in their trust
region algorithms, but the underlying problems contain only equality constraints. In
Niu and Yuan [76] the augmented Lagrangian is applied in a trust region algorithm
to equality and inequality constrained problems, but the inequalities are transformed
into equality constraints by adding slack variables.

Inequalities are also considered by El-Alem and El-Sobky [32]. They transform the
problem (1.2) into a equality constrained problem

minimize
x∈Rn f(x) + uTI gI(x) + 1

2
σ∥W (x)gI(x)∥2

2

subject to gE(x) = 0 ,
(4.254)

where uI ∈ R
m−me is the Lagrange multiplier vector corresponding to gI(x) and

W (x) ∈ R
(m−me)×(m−me) is a diagonal matrix that indicates active inequality con-

straints with diagonal entries

W(j−me)(j−me)(x) :=

 1 , if gj(x) ≤ 0 ,
0 , if gj(x) > 0 ,

for j = me+1, . . . ,m. The augmented Lagrangian function is then applied to problem
(4.254).

In the following some comments on specific parts of Algorithm 4.1 are stated. In
Step 1 of Algorithm 4.1 it is tried to solve the standard quadratic problem (4.7).
Adding the trust region constraint to the quadratic programming subproblem may
lead to infeasible subproblems as there may be no intersection of the trust region
constraint and the hyperplane of the linearized constraints. Even if they intersect,
there is no guarantee that this will remain true if the trust-region radius is decreased.
If no solution to problem (4.7) exists, then a feasibility restoration phase is entered. In
this situation the two problems (4.9) and (4.10) are solved to obtain a new trial step.
The first subproblem reduces the constraint violation, whereas the second one leads
to progress in the objective function. Decomposing the trial steps into two steps and
determining the steps separately is also used by other approaches, see, for example, the

110 4 A Trust Region SQP Algorithm for Constrained Nonlinear Programs

described techniques in Section 3.4.1 that are applied by Vardi [123], Byrd, Schnabel,
and Shultz [16], and Omojokun [80].

In the worst case, Algorithm 4.1 requires the solution of three problems in a single
iteration. If the step is rejected, then the number of subproblems can be reduced to
two as the standard problem is still infeasible. It is possible to avoid the feasibility
restoration subproblems by directly relaxing the standard quadratic problem (4.7). In
Schittkowski [100] the problem is relaxed by introducing a scaling parameter for the
constraints that is added to the objective function of the quadratic problem and then
penalized by an additional penalty parameter. This procedure depends on the scaling
of the underlying problem. The feasibility restoration phase described before avoids
the need of an additional penalty parameter in the subproblems. Another approach for
adding the relaxation parameter to the objective of the quadratic problem is proposed
by Yuan [130], see also Algorithm 3.3.

Other relaxation strategies, as the ones described in Section 3.4.1 and Section 3.4.2,
also require the determination of an adequate parameter θk or θ̄k, respectively. Thus,
actually they also may require an additional subproblem to be solved. The feasibility
phase proposed for Algorithm4.1 follows the approach of Powell and Yuan [93], see
also Section 3.4.2. Note that the technique proposed by Powell and Yuan also requires
the determination of θ̄k that has to satisfy

min
∥d∥2≤τ1∆k

∥g(xk) + ∇g(xk)Td∥2 ≤ θ̄k ≤ min
∥d∥2≤τ2∆k

∥g(xk) + ∇g(xk)Td∥2 , (4.255)

where 0 < τ2 < τ1 < 1 are two constants. Thus, the approach of solving two problems
in the feasibility restoration phase of Algorithm 4.1 is frequently applied in trust region
methods.

A procedure that is similar to the feasibility restoration phase proposed in Algo-
rithm 4.1 is applied by the filter method of Fletcher, Leyffer, and Toint [43], see also
Section 3.4.4. The encouraging results of their implementation of a filter algorithm
motivated the choice of the feasibility restoration phase of Algorithm 4.1. The strat-
egy of first trying to solve the standard quadratic subproblem (4.7) and switching
to a modified subproblem if necessary is also used in the trust region algorithm by
El-Alem [30].

Setting the trust region radius ∆k to at least ∆min after a successful iteration is
also applied by Kanzow and Zupke [64], Jiang et al. [63], and Fletcher, Leyffer, and
Toint [43]. The lower bound ∆min on the trust region radius after a successful iteration
plays an important role in the proofs of Theorem 4.16 and Theorem 4.17. By requiring
∆k̄+1 ≥ ∆min, where k̄ denotes the last successful iteration, it is guaranteed that the
trust region radius approaches the established lower bounds from above and therefore
it cannot fall below the bounds. The proof of Theorem 4.22 is simplified by introducing
∆min, as close to the solution the behavior of Algorithm 4.1 is similar to the line search
SQP method proposed by Schittkowski [99, 100]. Consequently, the results obtained
by Schittkowski can be adapted for Algorithm 4.1.

In the global convergence proof it is assumed that the multipliers are bounded,

4.3 Discussion 111

cf. Assumption 4.2(4.). Note that if it would be assumed that the solution of each
subproblem satisfies the MFCQ then the desired bounded multipliers are obtained
as shown by Gauvin [46]. But the additional trust region constraint might lead to
situations where the MFCQ does not hold for the subproblem solution. That is why
only bounded multipliers are assumed which is a weaker condition than requiring that
the MFCQ holds at every subproblem solution.

In the local convergence analysis it is assumed that

∥uk − vk∥2
∞

∥dk∥2
∞

≤ κ (4.256)

holds for sufficiently large k, with a κ ≥ 1. This condition is also required by other
authors, see, e.g., El-Alem [30] and Gill, Murray, Saunders, and Wright [48]. In the
proof of Theorem 4.22 outlined before, (4.256) is applied to show the boundedness of
the penalty parameter σk. Numerical results indicate that (4.256) holds in practice.

Moreover, the local convergence analysis assumes that the matrix Bk is a good
approximation to ∇2

xxL(x⋆, u⋆) in some sense, that is

dTk (∇2
xxL(x⋆, u⋆) −Bk)dk ≤ ν∥dk∥2

2 , (4.257)

where ν satisfies some conditions stated in Theorem 4.22. By applying (4.257), it can
be shown that full SQP steps are taken close to the solution and ∥dk∥∞ < ∆k holds for
all k sufficiently large. The acceptance of full SQP steps and the inactive trust region
constraint is also proved by Ulbrich [121] for a filter method that employs some kind
of augmented Lagrangian in the filter.

In El-Alem [30] the quadratic convergence of a trust region algorithm for equality
constrained problems is shown, under the additional condition that the matrix Bk is
set to ∇2

xxL(xk, vk) for all iterates (xk, vk). The following requirement for the matrix
Bk is commonly used for equality constrained problems, that is

lim
k→∞

max
∇g(xk)T d=0, ∥d∥2≤1

|dT (∇2
xxL(x⋆, u⋆) −Bk)dk|/∥dk∥2 = 0 . (4.258)

Boggs, Tolle, and Wang [8], and Powell [88] proved that, if dk solves QP (4.231)
with ∥dk∥∞ < ∆k and if xk+1 = xk + dk for all sufficiently large k, then the rate of
convergence of the sequence xk is superlinear if and only if condition (4.258) holds.
Condition (4.258) is applied by Powell and Yuan [93] to establish the superlinear
convergence of their algorithm for equality constrained problems.

A reformulation of (4.258) for the case where also inequality constraints are consid-
ered is the following

lim
k→∞

∥∥∥P(∇2
xxL(x⋆, u⋆) −Bk

)
dk
∥∥∥

2
∥dk∥2

= 0 , (4.259)

where P is a projection from R
n to the null space of ∇gE∪A(x⋆)(x⋆)T .

112 4 A Trust Region SQP Algorithm for Constrained Nonlinear Programs

In Yuan [130] the condition (4.259) is assumed to show the superlinear convergence
of a trust region algorithm that addresses equality and inequality constraints, see
Algorithm 3.3. Since the applied penalty function P (x) = f(x) + σ∥g(x)−∥∞ is not
differentiable, the computation of second order correction steps is required. The second
order correction subproblem at iterate xk suggested by Yuan is

minimize
d∈Rn

∇f(xk)T (dk+d)+ 1
2

(dk+d)TBk(dk+d)+σk
∥∥∥∥(g(xk+dk)+∇g(xk)Td

)−
∥∥∥∥

∞

subject to ∥dk+d∥∞ ≤ ∆k ,

where dk is the solution to

minimize
d∈Rn

∇f(xk)Td+ 1
2
dTBkd+ σk

∥∥∥∥(g(xk) + ∇g(xk)Td
)−
∥∥∥∥

∞

subject to ∥d∥∞ ≤ ∆k .

The aim of the development of Algorithm 4.1 is to avoid the calculation of these
second order correction steps, as they require additional function evaluations. This
aim is achieved, as shown by the local convergence analysis.

5 Mixed-Integer Optimization

The preceding part of this thesis focuses on algorithms that are applicable to nonlinear
optimization problems that only feature continuous variables. This chapter presents
methods that address the more complex mixed-integer nonlinear programming prob-
lem

minimize
x∈Rnc , y ∈Zni

f(x, y)

subject to gj(x, y) = 0 , j = 1, . . . ,me ,

gj(x, y) ≥ 0 , j = me + 1, . . . ,m ,

y ∈ Y ,

(5.1)

where y denotes the additional integer variables. Again, continuous variables are ex-
pressed by x. The constant nc denotes the number of continuous variables and ni
identifies the number of integer variables. It is assumed that the functions f(x, y) and
gj(x, y), j = 1, . . . ,m, are at least twice continuously differentiable with respect to x
for all x ∈ Rnc . For the general formulation of problem (5.1) it is not assumed that the
problem functions are also differentiable with respect to the integer variables y. When-
ever differentiability with respect to y is required in the subsequent considerations, it
is stated explicitly.

The set Y is defined by finite upper and lower bounds for the integer variables, that
is

Y := {y ∈ Zni | yl ≤ y ≤ yu} . (5.2)

The finiteness of set Y is a necessary condition that is frequently applied to show finite
convergence of an optimization method that addresses the mixed-integer nonlinear
problem (5.1).

In the subsequent section some well-established methods are reviewed. In addition,
a selection of available software is presented. In section 5.2 two new optimization algo-
rithms for mixed-integer problems are introduced. The algorithms are advancements
of an algorithm developed by Exler and Schittkowski [37]. The concepts of sequential
quadratic programming methods are adapted to mixed-integer nonlinear optimization.
The key idea is the substitution of the continuous quadratic programming subproblem
by a mixed-integer quadratic problem. The proposed algorithms differ in situation
when the integer variables remain fixed to the current configuration. The first algo-
rithm calculates second order correction steps to obtain fast local convergence with
respect to the continuous variables, whereas the second algorithm avoids this addi-
tional effort. Convergence of the proposed algorithms is not investigated. Exler et
al. [36] discuss a possible extension of the algorithms formulated in this thesis. The
extension allows the statement of convergence properties. Parts of this chapter can be
found in Exler et al. [36].

113

114 5 Mixed-Integer Optimization

5.1 Overview of Existing Methods

Down to the present day, numerous methods to solve mixed-integer problems (5.1)
have been proposed, see for example Floudas [44] or Grossmann and Kravanja [56]
for review papers. Some of the approaches are heuristics, whereas other can be classi-
fied as deterministic. Methods as tabu search algorithms apply heuristic strategies to
investigate the integer search space. Starting from an integer configuration the neigh-
boring grid points are checked and the best neighbor is chosen to be the next iterate.
Cycling is avoided since revisiting of already investigated integer points is prohibited
for some iterations, see for example Exler et al. [34]. Pattern search algorithms, see
for instance Audet and Dennis [3], are similar to tabu search algorithms. In general
search algorithms differ in the way the integer space is explored.

Linear outer approximation is another technique used frequently. The approach was
introduced by Duran and Grossmann [28] and was extended by Fletcher and Leyf-
fer [41] later. Solving the mixed-integer nonlinear program is decomposed into solving
continuous nonlinear problems and mixed-integer linear problems. The mixed-integer
nonlinear problem is approximated by a mixed-integer linear program. For this reason,
the problems are required to be convex and problem functions are assumed to be dif-
ferentiable with respect to the continuous and the integer variables, since valid under-
and overestimators are needed. The quality of the linear approximation improves it-
eratively by solving continuous nonlinear problems with fixed integer configurations.
Convergence toward the global optimum of the problem can be shown for differentiable
convex problems. A related approach was proposed by Westerlund and Pörn [125], and
is called ECP. The ECP technique is able to solve pseudo-convex problems by gener-
ating cutting planes and solving linear programming problems.

The so far mentioned methods generate a sequence of iterates, where the integer
constraint with respect to the discrete variables holds for all generated points. Other
techniques require the continuous relaxation of integer variables. Continuous relax-
ations assume that integer variables can be treated as continuous ones, i.e., function
values can be evaluated for all y ∈ YR, where

YR := {y ∈ Rni | yl ≤ y ≤ yu} . (5.3)

The transformed problem is a nonlinear program of form (1.2) which can be solved by
any available nonlinear optimization code. The following methods require that f(x, y)
and gj(x, y), j = 1, . . . ,m, are also continuously differentiable with respect to y for all
y ∈ YR.

Branch-and-bound methods make use of this relaxation and set up a binary search
tree that represents the integer search space. The leaves of the obtained tree comply
with all possible integer combinations. The nodes of the search tree correspond to
relaxed nonlinear problems. These problems are obtained by restricting the variable
range of the relaxed integer variables, see, for example, Gupta and Ravindran [57], or
Borchers and Mitchell [11]. Under certain conditions parts of the tree can be elimi-

5.1 Overview of Existing Methods 115

nated and the number of subproblems decreases. The basic idea of branch-and-bound
methods requires that the nonlinear problems are solved to optimality. By supposing
that problem functions are continuously differentiable with respect to x and y, efficient
methods can be applied to solve the nonlinear subproblems.

The early branching strategy proposed by Leyffer [68] tries to reduce the effort
needed to solve each nonlinear subproblem to optimality. Here a SQP method is applied
and the branch-and-bound search tree is built up within the solution process of the
SQP algorithm. The intention is to branch as soon as possible, i.e., after solving a
single quadratic subproblem. Although this strategy results in larger search trees, in
most cases the overall performance improves compared to methods applying standard
branch-and-bound techniques.

Other approaches transform the mixed-integer problem into a single continuous
problem by reformulating the integer conditions as continuous nonlinear constraints.
The resulting constraints make the problem highly non-convex, thus, the transformed
problem has to be solved by global optimization techniques. This strategy is proposed
by several authors, see, e.g., Li and Chou [69].

Several software packages that address mixed-integer problems are available. A re-
view can be found in Bussieck and Vigerske [14]. Bonami et al. [10] present some
results of a comparative study for a collection of solvers. Some selected solvers are
presented here.

• BARON solves non-convex mixed-integer optimization problems to global optimal-
ity, see Sahinidis and Tawarmalani [97]. The theory was established by Tawar-
malani and Sahinidis [114–116]. BARON combines constraint propagation, interval
analysis, and duality with enhanced branch-and-bound concepts.

• LaGO is developed by Nowak et al. [79]. LaGO solves non-convex mixed-integer
problems by generating inner and outer approximations. These approximations
are obtained by convex and polyhedral relaxations, see Nowak [78].

• DICOPT, see Viswanathan and Grossmann [124], is an implementation of a linear
outer approximation method. By applying relaxation strategies also nonlinear
equality constraints can be handled. Some heuristics are implemented to improve
the performance on non-convex problems.

• BONMIN is a hybrid code by Bonami et al. [9]. It combines branch-and-bound,
outer approximation, and branch-and-cut techniques.

• COUENNE can be used to solve non-convex mixed-integer nonlinear programs, see
Belotti et al. [5, 6]. COUENNE is based on convex over- and under-envelopes and
a branch-and-bound algorithm.

The software called MISQP, see Exler et al. [35], implements the algorithms intro-
duced in the following sections. A comparative study by Exler et al. [36] shows that
MISQP can successfully be applied to non-convex mixed-integer nonlinear programming
problems.

116 5 Mixed-Integer Optimization

5.2 New Algorithms for Mixed-Integer Nonlinear Optimization

In the subsequent parts of this section two algorithms are presented that adapt the
concepts of sequential quadratic programming methods to mixed-integer nonlinear
programming. The first algorithm applies second order correction steps with respect
to continuous variables. The intention of this additional steps is to retain the fast local
convergence of the underlying SQP method in case the integer variables remain fixed
to a particular configuration. The second algorithm applies concepts of Algorithm 4.1.
The purpose of the modification is the avoidance of second order correction steps
close to a solution of the nonlinear problem when integer variables are fixed. This is
achieved by switching to the augmented Lagrangian merit function in this situation.
At the beginning, some general statements follow.

The algorithms are developed under the paradigm that integer variables are non-
relaxable, the problem is non-convex and the analytical structure of the problem is not
known. Moreover, it is assumed that function values are determined by time-consuming
simulation codes, thus, internal calculation time is dominated by the time spent in the
simulation runs. Hence, the time needed for solving the optimization problem depends
directly on the total number of function evaluation required by the algorithm. The
efficiency of the developed algorithms can be measured by counting the total number
of required function evaluations.

These assumptions are motivated by real-life mixed-integer problems arising in me-
chanical, electrical, aerospace, chemical, automotive, petroleum and related engineer-
ing. An example from systems biology is considered in Sendín et al. [108]. Frequently
the integer variables involved are not relaxable. The functions are often highly nonlin-
ear and non-convex. In some cases function values are obtained by running complex
simulation software. An industrial case study is considered in Bünner et al. [12], where
the number of fingers and layers of an electronic filter are modeled as integer variables,
which cannot be relaxed due to the underlying simulation tools. Other examples for
non-relaxable integer variables are the number of rips and rills of a horn antenna for
satellite communication, as described by Hartwanger et al. [60], or the number of trays
in the design of a distillation column, see Thomas and Kröner [117]. Exler et al. [34]
consider a wastewater treatment plant, where fractional values of the position of the
feed layer in a settler are not accepted by the underlying Simulink implementation
of the model. In Antelo et al. [1] the decisions whether PI controls are applied in a
specific design or not is modeled by non-relaxable binary variables. Changes in the
state of a binary variable lead to executions of completely different simulation codes.

When considering non-relaxable integer variables, the focus lies on applications,
especially in engineering sciences, which are modeled by non-relaxable integer variables
with some physical meaning. All integer variables of the aforementioned examples have
physical meanings, except the binary variables in the last example. The function values
implicitly depend on each other, i.e., a change in the integer configuration by one,
leads only to a slight variation in the objective and constraint function values. This
observation is the main motivation for applying quadratic approximations within the

5.2 New Algorithms for Mixed-Integer Nonlinear Optimization 117

subsequent algorithms.
As the proposed algorithms are based on sequential quadratic programming tech-

niques, first partial derivatives are required. If analytical derivatives are not available,
the partial derivatives have to be approximated numerically. The question how to de-
termine first partial derivatives with respect to non-relaxable integer variables arises.
The typical approximation strategy used for continuous variables is not applicable,
as f(x, y) and g1(x, y), . . . , gm(x, y), cannot be evaluated at small perturbations of an
integer variable value. To overcome this problem it is suggested to approximate the
first partial derivatives at neighboring grid points. For the objective function and given
xk and yk, this might be done, e.g., by the following two-sided difference formula

∂f(xk, yk)
∂yi

≈1
2

(
f
(
xk,

(
y

(k)
1 , . . . , y

(k)
i + 1, . . . , y(k)

ni

)T)

− f
(
xk,

(
y

(k)
1 , . . . , y

(k)
i − 1, . . . , y(k)

ni

)T))
,

(5.4)

where i = 1, . . . , ni, and yk = (y(k)
1 , . . . , y(k)

ni
)T . The function evaluations at neighboring

grid points give information about the structure of the underlying problem. The gained
information is used by the proposed algorithms. Therefore, the new algorithms also
have some characteristics known from search methods.

The assumption that integer variables cannot be relaxed exclude some of the meth-
ods presented in section 5.1 from being applied. This concerns all methods that require
continuous relaxations, as for example branch-and-bound algorithms. Linear outer ap-
proximation algorithms can be used instead. On the other hand, they are less reliable
in case analytical derivatives with respect to integer variables are not available and
the problem functions are non-convex.

5.2.1 A Mixed-Integer Sequential Quadratic Programming Algorithm

The mixed-integer sequential quadratic programming method is a further development
of the first version discussed and implemented by Exler and Schittkowski [37]. The
algorithm adapts the SQP-based trust region method of Yuan [130], cf. Algorithm 3.3,
to solve mixed-integer nonlinear optimization problems. The idea of the new mixed-
integer algorithm is the substitution of the continuous quadratic subproblem by a
mixed-integer quadratic subproblem.

Since the length of trial steps has to be controlled to obtain progress toward the solu-
tion, a trust region stabilization is suggested. The use of trust region techniques is mo-
tivated by the fact that the generated trial points always fulfill the integer requirement.
Applying standard line search techniques contradicts the paradigm of non-relaxable
integer variables, as performing a search along the determined direction might lead to
fractional values for integer variables. Instead of a line search, a lattice search might
be applied, but the investigation of the concept of a lattice search is future work and
not considered here.

The changes applied to the underlying Algorithm 3.3 affect several parts. The most

118 5 Mixed-Integer Optimization

important modification applies to the definition of the subproblems as mentioned be-
fore. The continuous subproblems known from SQP methods are substituted by mixed-
integer subproblems. The trial steps generated by these subproblems promise progress
in the continuous and integer space simultaneously. Thus, the proposed method differs
from other techniques that decompose the process of solving a mixed-integer problem.
These methods obtain progress toward the solution of the mixed-integer problem in
the continuous variables and the integer variables separately.

Moreover, the step size is adjusted subject to a modified strategy compared to
Algorithm 3.3. Instead of using a single trust region radius parameter, the step size is
controlled separately with respect to continuous and integer variables. For this purpose
the proposed algorithm uses two trust region radii, one that restricts steps in the
continuous space and a second one related to the integer space, respectively.

The L∞-penalty function of the mixed-integer problem is similar to the one already
introduced for continuous problems, cf. (3.12). Now the L∞-penalty function is defined
as

Pσ(x, y) := f(x, y) + σ∥g(x, y)−∥∞ , (5.5)

and σ > 0 is an associated penalty parameter. The measurement of constraint violation
g(x, y)− is the straightforward adaptation of the continuous version as defined in (2.10).
The formulation of the algorithm guarantees that all trial points and iterates always
stay within the bounds given by Y , see (5.2). Therefore, the corresponding bounds on
y are not included in penalty function Pσ(x, y).

Now the main difference of the new mixed-integer algorithm compared to the con-
tinuous Algorithm 3.3 is formulated. To approximate Pσk

(xk, yk) in the k-th iteration
step, where (xk, yk) is a current iterate, the mixed-integer subproblem

minimize
dc∈Rnc , di∈Zni

∇f(xk, yk)Td+ 1
2
dTBkd+ σk

∥∥∥∥(g(xk, yk) + g(xk, yk)Td
)−
∥∥∥∥

∞

subject to ∥dc∥∞ ≤ ∆c
k , ∥di∥∞ ≤ ∆i

k ,

yk + di ∈ Y ,

(5.6)

where
d :=

(
dc1, . . . , d

c
nc
, di1, . . . , d

i
ni

)T
, (5.7)

is solved. It is assumed that the matrix Bk ∈ R(nc+ni)×(nc+ni) is positive definite. The
solution (dck, dik) of subproblem (5.6) always leads to trial points that satisfy the bounds
given by (5.2) due to restriction yk + dik ∈ Y . ∆c

k > 0 and ∆i
k ≥ 0 denote the trust

region radii for the continuous and integer search space, respectively. By controlling
the step sizes separately the fast local convergence with respect to the continuous
variables retains. Moreover, the separate trust region radius for the integer variables
offers the opportunity to fix the integer variables for some iterations by setting the
radius ∆i

k equal to zero.
In the remainder of this section the objective function of the mixed-integer subprob-

lem (5.6) is denoted by

5.2 New Algorithms for Mixed-Integer Nonlinear Optimization 119

ψσk
(d) := ∇f(xk, yk)Td+ 1

2
dTBkd+ σk

∥∥∥∥(g(xk, yk) + g(xk, yk)Td
)−
∥∥∥∥

∞
, (5.8)

where d is defined according to (5.7). The formulation ψσk
is chosen to highlight the

dependency of the penalty function on the current penalty parameter value σk.
The objective function of the mixed-integer subproblem (5.6) is non-smooth. The

non-smooth part of objective function can be eliminated by introducing a nonnegative
slack variable s ∈ R and rewriting the constraint violation measurement as a set of
linear inequality constraints. The reformulated problem (5.6) is defined as

minimize
dc∈Rnc , di∈Zni , s∈R

∇f(xk, yk)Td+ 1
2
dTBkd+ σks

subject to s− gj(xk, yk) − ∇gj(xk, yk)Td ≥ 0 , j = 1, . . . ,me ,

s+ gj(xk, yk) + ∇gj(xk, yk)Td ≥ 0 , j = 1, . . . ,m ,

∥dc∥∞ ≤ ∆c
k , ∥di∥∞ ≤ ∆i

k ,

yk + di ∈ Y , s ≥ 0 ,

(5.9)

with d according to (5.7). Each of the me equality constraints is rewritten as two
inequality constraints. Note that ∥dc∥∞ ≤ ∆c

k and ∥di∥∞ ≤ ∆i
k can be rewritten

as box constraints, i.e., a set of 2(nc + ni) linear inequality constraints. As a result,
the box constrained formulation of problem (5.9) is a convex mixed-integer quadratic
problem that can be solved by any available mixed-integer quadratic programming
solver without further modifications.

The second order correction step, as in Algorithm 3.3, is also applied, but only
with respect to the continuous variables. Numerical tests indicate that a significant
improvement of convergence speed can be obtained due to these additional steps.
Integer variables are fixed to dik obtained by (5.9), and the problem is formulated as

minimize
dc∈Rnc

∇f(xk, yk)T
((

dck
dik

)
+
(
dc

0

))
+ 1

2

((
dck
dik

)
+
(
dc

0

))T
Bk

((
dck
dik

)
+
(
dc

0

))

+σk

∥∥∥∥∥∥
(
g
(
xk + dck, yk + dik

)
+ ∇g(xk, yk)T

(
dc

0

))−
∥∥∥∥∥∥

∞

subject to ∥dck + dc∥∞ ≤ ∆c
k ,

(5.10)
where (dck, dik) is the solution of (5.9). The non-smooth problem (5.10) can also be
rewritten as a smooth quadratic programming problem in standard form similar to
(5.9). The optimal solution is denoted by d̂ck.

As mentioned before a special strategy for approximating partial derivatives with
respect to integer variables is applied. The basic idea of calculating two-sided ap-

120 5 Mixed-Integer Optimization

proximations at neighboring grid points is stated in formula (5.4). Since the algorithm
guarantees satisfaction of box constraints, the formula is adapted at the bounds of Y .
For variables at a bound, formula (5.4) is replaced by a forward or backward difference
formula, respectively.

There is a very attractive side-effect of approximating integer derivatives at neigh-
boring grid points. The best feasible neighbor visited in the approximation procedure
is stored, and the algorithm returns to this point whenever it seems to be profitable.
This strategy can be interpreted as a direct search in the neighborhood of the current
iterate (xk, yk) and is known from other search algorithms, see, e.g., a tabu search
algorithm by Exler et al. [34]. The calculation of partial derivatives with respect to in-
teger variables is stated in Procedure 5.1. Besides approximating the needed gradients,
Procedure 5.1 also returns the best feasible neighbor of (xk, yk), if one exists, which
is denoted by (xbnk , ybnk) and the corresponding objective function value is denoted by
f bnk , respectively. The iteration index k is omitted to improve readability. To simplify
the notation ∇yf(x, y) and ∇yg(x, y) also denote the approximations to the partial
derivatives and not only the exact gradients.

Procedure 5.1 Given x ∈ R
nc , y ∈ Y , f(x, y) and g(x, y). Let ϵ > 0 be a small

tolerance and f bn := ∞, (xbn, ybn) := (x, y).
Output: Approximations to ∇yf(x, y), ∇yg(x, y), f bn, and (xbn, ybn).

begin
for i = 1 to ni do
z+1 :=

(
x, (y1, . . . , yi + 1, . . . , yni

)T
)

and z−1 :=
(
x, (y1, . . . , yi − 1, . . . , yni

)T
)
.

if yli < yi < yui then
Evaluate f(z+1), g(z+1) and f(z−1), g(z−1).
if ∥g(z+1)−∥∞ ≤ ϵ and f(z+1) < f bn then f bn := f(z+1) and (xbn, ybn) := z+1.
if ∥g(z−1)−∥∞ ≤ ϵ and f(z−1) < f bn then f bn := f(z−1) and (xbn, ybn) := z−1.

Set ∂f(x, y)
∂yi

:= 1
2

(f(z+1) − f(z−1)).

for j = 1 to m do Set ∂gj(x, y)
∂yi

:= 1
2

(gj(z+1) − gj(z−1)).

else if yi = yli then
Evaluate f(z+1) and g(z+1).
if ∥g(z+1)−∥∞ ≤ ϵ and f(z+1) < f bn then f bn := f(z+1) and (xbn, ybn) := z+1.

Set ∂f(x, y)
∂yi

:= f(z+1) − f(x, y).

for j = 1 to m do Set ∂gj(x, y)
∂yi

:= gj(z+1) − gj(x, y).

5.2 New Algorithms for Mixed-Integer Nonlinear Optimization 121

else if yi = yui then
Evaluate f(z−1) and g(z−1).
if ∥g(z−1)−∥∞ ≤ ϵ and f(z−1) < f bn then f bn := f(z−1) and (xbn, ybn) := z−1.

Set ∂f(x, y)
∂yi

:= f(x, y) − f(z−1).

for j = 1 to m do Set ∂gj(x, y)
∂yi

:= gj(x, y) − gj(z−1).

end if
end do

end

Note that Procedure 5.1 returns f bn = ∞ if no feasible neighbor exists, that simpli-
fies the notation of the next algorithm. As Procedure 5.1 is invoked, the mixed-integer
sequential quadratic programming algorithm with trust region stabilization can be seen
as a hybrid algorithm that combines a modified SQP method with elements known
from search methods. The algorithm is formulated in the following.

Algorithm 5.2 Let ϵtol > 0 and σ̄ > 0 be given constants.

Step 0 Choose initial values for x0 ∈ Rnc , y0 ∈ Y , ∆c
0 > 0, ∆i

0 ≥ 1, σ0 > 0, ζ0 > 0,
and a positive definite matrix B0 ∈ R(nc+ni)×(nc+ni).
Set f ⋆ := ∞ and (x⋆, y⋆) := (x0, y0) to the current best known solution.
Evaluate function values f(x0, y0) and g(x0, y0).
Evaluate ∇xf(x0, y0) and ∇xg(x0, y0) with respect to continuous variables.
Use Procedure 5.1 to approximate ∇yf(x0, y0) and ∇yg(x0, y0) with respect
to integer variables and obtain (xbn0 , ybn0) and f bn0 .
if f bn0 < f ⋆ then Set f ⋆ := f bn0 and (x⋆, y⋆) := (xbn0 , ybn0).
Set k := 0.

Step 1 Solve the mixed-integer quadratic problem (5.9) giving dk :=
(
dck
dik

)
.

if (∥g(xk, yk)−∥∞ ≤ ϵtol or σk > σ̄) and ψσk
(0) − ψσk

(dk) ≤ ϵtol then
goto Step 8.

Step 2 if ∥g(xk, yk)−∥∞ − ∥(g(xk, yk) + ∇g(xk, yk)Tdk)−∥∞ < ϵtol and
∥(g(xk, yk) + ∇g(xk, yk)Tdk)−∥∞ > ϵtol then

Set σk+1 := 10σk and ζk+1 := ζk/10.
else Set σk+1 := σk and ζk+1 := ζk.
if ψσk

(0) − ψσk
(dk) < ζk σk min(∆c

k, ∥g(xk, yk)−∥∞) then
Replace σk+1 := 2σk+1 and ζk+1 := ζk+1/4.

122 5 Mixed-Integer Optimization

Step 3 Evaluate f(xk + dck, yk + dik) and g(xk + dck, yk + dik), and calculate

rk :=
Pσk+1(xk, yk) − Pσk+1(xk + dck, yk + dik)

ψσk
(0) − ψσk

(dk)
. (5.11)

Step 4 if rk ≤ 0.75 then Solve SOC problem (5.10) to obtain d̂ck and
evaluate f(xk + dck + d̂ck, yk + dik) and g(xk + dck + d̂ck, yk + dik).

if Pσk+1(xk + dck + d̂ck, yk + dik) < Pσk+1(xk + dck, yk + dik) then
Update rk by

rk :=
Pσk+1(xk, yk) − Pσk+1(xk + dck + d̂ck, yk + dik)

ψσk
(0) − ψσk

(dk)
, (5.12)

and replace dk :=
(
dck + d̂ck
dik

)
and dck := dck + d̂ck.

Step 5 Update the trust region radii by

∆c
k+1 :=

min(∥dk∥∞/2 , ∆c

k) , if 0.25 > rk ,

∆c
k , if 0.25 ≤ rk ≤ 0.75 ,

max(2∥dk∥∞ , ∆c
k) , if 0.75 < rk ,

(5.13)

and

∆i
k+1 :=

⌊∥dik∥∞/2⌋ , if 0.25 > rk ,

∆i
k , if 0.25 ≤ rk ≤ 0.75 ,

max(2∥dik∥∞ , ∆i
k, 1) , if 0.75 < rk .

(5.14)

Step 6 if rk ≤ 0 then Set (xk+1, yk+1) := (xk, yk), Bk+1 := Bk, k := k + 1 and
goto Step 1.

else Set (xk+1, yk+1) := (xk + dck, yk + dik).

Step 7 Evaluate partial derivatives ∇xf(xk+1, yk+1) and ∇xg(xk+1, yk+1) with re-
spect to continuous variables.
Approximate ∇yf(xk+1, yk+1) and ∇yg(xk+1, yk+1) with respect to integer
variables using Procedure 5.1 and obtain (xbnk+1, y

bn
k+1) and f bnk+1.

if f bnk+1 < f ⋆ then Set f⋆ := f bnk+1 and (x⋆, y⋆) := (xbnk+1, y
bn
k+1).

Generate a positive definite matrix Bk+1. Set k := k + 1 and goto Step 1.

Step 8 if ∥g(xk, yk)−∥∞ ≤ ϵtol and f ⋆ ≥ f(xk, yk) then Set f⋆ := f(xk, yk),
(x⋆, y⋆) := (xk, yk) and STOP .

if ∥g(xk, yk)−∥∞ > ϵtol and f ⋆ = ∞ then Report that the problem might
be infeasible and STOP .

5.2 New Algorithms for Mixed-Integer Nonlinear Optimization 123

otherwise Set (xk+1, yk+1) := (x⋆, y⋆). Evaluate function values
f(xk+1, yk+1) and g(xk+1, yk+1), and goto Step 7.

In mixed-integer nonlinear programming, local optimality conditions comparable to
the KKT conditions in continuous optimization are not known. The algorithm stops
as soon as a sufficient reduction of the merit function (5.5) is no longer possible.

Note that in Step 2 the penalty parameter σk might grow arbitrarily large, in
particular if the underlying mixed-integer program is infeasible. If σk is greater than a
threshold σ̄ and the predicted reduction of the merit function is small, the algorithm is
supposed to terminate at an infeasible stationary point, see Yuan [130]. The constant
values in the update rules in Step 2 are set according to Algorithm 3.3. Numerical
tests indicate that these values seem to be the most effective. The parameter σ̄ should
be set to a sufficiently large value, e.g., 1020. The parameter ζk is an automatically
adapted scaling factor for the constraint violation measurement.

In Step 5 the trust region update for the continuous trust-region radius ∆c
k uses the

norm of the complete step dk including the integer part, see (5.13), to guarantee that
∆c
k > 0. Expression ⌊∥dik∥∞/2⌋ in (5.14) denotes the largest integer value less than

∥dik∥∞/2. Thus, the trust region radius ∆i
k is integer for all k.

In Step 8 a restart is performed whenever the approximation of partial derivatives
with respect to integer variables, i.e., the execution of Procedure 5.1, found a better
point than the current iterate. This point is set to be the initial point for an additional
execution of the main loop.

Algorithm 5.2 is stated in a basic form to illustrate the main ideas of the mixed-
integer SQP method. The remainder of this section addresses aspects of an implemen-
tation. Modifications are discussed that can improve the performance and robustness
of a specific implementation.

If exact gradients for integer variables are available, Procedure 5.1 in Step 0 and
Step 7 can be omitted. The additional function evaluations for the internal approxi-
mations are avoided, but then Algorithm 5.2 also loses the characteristic of a search
algorithm. Restarts are not performed in Step 8 and f ⋆ remains unchanged. The
corresponding changes of Algorithm 5.2 are straightforward.

A second modification affects the test whether a generated trial step is accepted or
not. A non-monotone decrease of the penalty function values Pσk

(xk, yk) is suggested.
The idea of accepting new iterates which increase the penalty function, is investigated
in the context of trust region algorithms by several authors, see, e.g., Toint [120],
Chen et al. [19], and Deng et al. [22]. In the continuous case, convergence can be
proved. In the mixed-integer case, however, it might happen that after increasing the
penalty function and changing the integer variables, the algorithm might not be able
to decrease the penalty function value below the value at the non-monotone step.

The non-monotone strategy can be described as follows. An integer constant M > 0
is chosen and an actual penalty function value is always compared with the highest

124 5 Mixed-Integer Optimization

one obtained during the previous M successful iterations. An iteration k is called a
successful iteration if dk is used to update an iterate, i.e., if (xk+1, yk+1) = (xk, yk)+dk.
The set of iterates that corresponds to the last M successful iterations be denoted by
Kk. Note that whenever (xk+1, yk+1) = (xk, yk)+dk the iterate (xk+1, yk+1) substitutes
the element with the lowest iteration index in set Kk+1. The alternative formulation
of Step 3 is

Step 3 Evaluate f(xk + dck, yk + dik) and g(xk + dck, yk + dik), and calculate

rk :=
Pσk+1(xlk , ylk) − Pσk+1(xk + dck, yk + dik)

ψσk
(0) − ψσk

(dk)
, (5.15)

where Pσk+1(xlk , ylk) := max
(x,y) ∈ Kk

Pσk+1(x, y).

It is recommended to apply the second order correction steps in Step 5, even in case
a non-monotone reduction condition on the penalty function is introduced. Intensive
numerical tests indicate that this strategy improves efficiency in some situations.

A procedure for updating the matrix Bk might be a quasi-Newton update formula,
e.g., the BFGS formula. However, a modification of Bk is recommended if a jump from
Step 1 to Step 8 occurs. All entries in Bk are scaled by the same value such that

∥Bk∥∞ ≤ 1
nc + ni

∥∇f(xk, yk)∥∞ (5.16)

holds. The scaling strategy is also motivated by the fact that large values in Bk result
in void integer steps. Numerical tests show that this heuristic scaling strategy (5.16)
improves the robustness of the algorithm significantly.

Finally, some comments on the choice of the norm for determining the step length
follow. The L∞-norm is applied with respect to continuous variables and integer vari-
ables. A modification is suggested that depends on the domain of the integer variable.
It is recommended to handle binary variables, i.e., variables with domain {0, 1}, dif-
ferently. The length of a step in the binary variables should be measured with respect
to the L1-norm. The purpose of applying the L1-norm is to obtain more freedom in
restricting the search step in the binary space.

5.2.2 A Modification to Avoid Second Order Correction Steps

The following algorithm is a modification of Algorithm 5.2. The aim of the presented
adjustment is to avoid the second order correction steps calculated in Step 4 of Algo-
rithm 5.2. Calculating second order correction steps implies more function evaluations
and an increase of internal calculation times. Under the assumption of time consum-
ing function evaluations the additional function evaluations are not desirable. The
modifications of Algorithm 5.2 affect the merit function. Under some circumstances
the achieved progress of a trial step dk at iteration k is not evaluated subject to the
L∞-penalty function (5.5). Instead the augmented Lagrangian merit function ΦσΦ

k
, see

5.2 New Algorithms for Mixed-Integer Nonlinear Optimization 125

(5.17) below, is applied. Now also the multiplier approximations vk are involved. The
mixed-integer augmented Lagrangian at the k-th iterate (xk, yk, vk) is defined as

ΦσΦ
k
(xk, yk, vk) := f(xk, yk) −

∑
j∈Sk

(
v

(k)
j gj(xk, yk) − 1

2
σΦ
k gj(xk, yk)2

)
− 1

2
∑
j∈Sk

v
(k)2

j

σΦ
k

,

(5.17)
with

Sk := E ∪
{
j ∈ I | gj(xk, yk) ≤ v

(k)
j /σΦ

k

}
(5.18)

and
Sk := {1, . . . ,m} \ Sk . (5.19)

An additional penalty parameter σΦ
k is introduced and differs from the penalty para-

meter σk used by the L∞-penalty function (5.5).
As convergence properties of the method are hard to derive in case mixed-integer

steps are taken, only situations are taken into account where the calculated trial steps
leave the integer variables unchanged, i.e., ∥dik∥∞ = 0 holds for the solution of sub-
problem (5.9). This corresponds to a continuous step where convergence properties of
Algorithm 4.1 can be applied. A switch to the augmented Lagrangian merit function
(5.17) is performed if

∥dik∥∞ = 0 (5.20)

and ∥∥∥(g(xk, yk) + ∇g(xk, yk)Tdk
)−∥∥∥

∞
= 0 , (5.21)

where dk := (dck, dik) denotes the solution of problem (5.9).
Since the augmented Lagrangian (5.17) involves multipliers vk, so some comments

on the choice of these multipliers follow. Let (dck, dik) be the optimal solution of prob-
lem (5.9), in addition, (5.20) and (5.21) hold. Then dck solves the following quadratic
problem

minimize
d∈Rnc

∇xf(xk, yk)Td+ 1
2
dTBc

kd

subject to gj(xk, yk) + ∇xgj(xk, yk)Td = 0 , j = 1, . . . ,me ,

gj(xk, yk) − ∇xgj(xk, yk)Td ≥ 0 , j = me + 1, . . . ,m ,

∥d∥∞ ≤ ∆c
k .

(5.22)

Here ∇xf(xk, yk) denotes the gradient of the objective function with respect to the
continuous variables. For the m constraints ∇xgj(xk, yk), j = 1, . . . ,m, also denotes
the corresponding part of the gradient. The matrix Bc

k is the upper left nc ×nc matrix
of Bk, i.e., the Hessian approximation with respect to the continuous variables.

Let the trust region constraint ∥d∥∞ ≤ ∆c
k in problem (5.22) be replaced by box

constraints, i.e., linear inequalities are added instead. Then a triple (dck, uk, µk) exists
such that the KKT optimality conditions of the reformulated problem (5.22) hold,
where the multipliers µk correspond to the additional box constraints. The KKT con-
ditions of problem (5.22) can easily be derived from the ones stated in (2.23)-(2.27),

126 5 Mixed-Integer Optimization

therefore, they are not declared here. The multipliers uk, which correspond to the
original m linear constraints, are then applied to evaluate the augmented Lagrangian
merit function (5.17). Moreover, these multipliers uk are used to update the multiplier
approximation in the enhanced version of Algorithm 5.2 formulated below.

To be able to evaluate the quality of a trial step subject to the augmented Lagrangian
(5.17), some information about the model and the penalty update has to be stated.
Let (xk, yk, vk) be the current iterate and (dk, uk, µk) be determined by subproblem
(5.22), where µk denotes the multipliers with respect to the reformulated trust region
constraint ∥d∥∞ ≤ ∆c

k, as aforementioned. The change in the multipliers be denoted
by

wk := uk − vk . (5.23)

Although the notation could be simplified, as applying wk always leads to vk+wk = uk
in the situations considered, wk is introduced to be as close as possible to the notation
used in Algorithm 4.1.

Since ∥dik∥∞ = 0 holds in case the augmented Lagrangian is evaluated, the integer
step dik can be neglected and a trial step (dck, wk) is considered. The model ΨσΦ

k
can

easily be deduced from the continuous model applied in Algorithm 4.1, cf. (4.13). Thus,
the model at iterate (xk, yk, vk) with step (dck, wk) is defined as

ΨσΦ
k
(dck, wk) := f(xk, yk) + ∇xf(xk, yk)Tdck + 1

2
dc

T

k B
c
kd

c
k

−
∑
j∈Mk

((
v

(k)
j + w

(k)
j

) (
gj(xk, yk) + ∇xgj(xk, yk)Tdck

)

− 1
2
σΦ
k

(
gj(xk, yk) + ∇xgj(xk, yk)Tdck

)2
)

−
∑
j∈Mk

1
2

(
v

(k)
j + w

(k)
j

)2

σΦ
k

,

(5.24)

where the sets Mk and Mk are defined the following way

Mk := E ∪
{
j ∈ I | gj(xk, yk) + ∇xgj(xk, yk)Tdck ≤

v
(k)
j + w

(k)
j

σΦ
k

}
(5.25)

and
Mk := {1, . . . ,m} \ Mk . (5.26)

Applying the step (0, 0) to the model ΨσΦ
k

results in the function value given by

ΨσΦ
k
(0, 0) := f(xk, yk) −

∑
j∈M0

k

(
v

(k)
j gj(xk, yk) − 1

2
σΦ
k gj(xk, yk)2

)
−

∑
j∈M0

k

1
2
v

(k)2

j

σΦ
k

,

(5.27)

5.2 New Algorithms for Mixed-Integer Nonlinear Optimization 127

where the sets M0
k and M0

k are defined by

M0
k := E ∪

{
j ∈ I | gj(xk, yk) ≤ v

(k)
j /σΦ

k

}
(5.28)

and
M0

k := {1, . . . ,m} \ M0
k . (5.29)

Obviously, the index sets obtained for the model ΨσΦ
k
(0, 0) and the augmented La-

grangian ΦσΦ
k
(xk, yk, vk) are identical, i.e., M0

k = Sk and M0
k = Sk. Thus, the value

of model ΨσΦ
k

for the step (0, 0) equals the augmented Lagrangian function at iterate
(xk, yk, vk), i.e.,

ΨσΦ
k
(0, 0) = ΦσΦ

k
(xk, yk, vk) (5.30)

holds.
Hence, the predicted reduction in the model is defined by

Predk := ΨσΦ
k
(0, 0) − ΨσΦ

k
(dck, wk) . (5.31)

To assure that the predicted reduction Predk is sufficiently large, the penalty para-
meter σΦ

k has to be updated. Let σΦ
k−1 be the penalty parameter of the last iteration.

Then the penalty parameter σΦ
k is determined by

σΦ
k := max

σΦ
k−1 , max

1≤j≤m

 2m
(
u

(k)
j − v

(k)
j

)2

dc
T

k B
c
kd

c
k + 2µk∆c

k

 . (5.32)

As Bc
k is required to be positive definite, dcT

k B
c
kd

c
k is greater than zero as long as

∥dck∥∞ > 0. The sequence of penalty parameter values is monotone increasing. The
update formula (5.32) is stated in a reduced version compared to the formula (4.24)
applied in Algorithm 4.1. The modification is straightforward to see. As only situations
are considered where (5.21) holds, the variables z(k)

j , j = 1, . . . ,m, present on the right-
hand side of (4.24), are set to zero according to (4.11). Thus, they can be omitted here.

Now a mixed-integer algorithm that avoids second order correction steps can be
stated. The algorithm modifies Algorithm 5.2 slightly. To simplify the notation in
some steps it is referred to the corresponding steps and calculations of Algorithm 5.2.

Algorithm 5.3 Let 0 < ∆min < ∆max < ∞, ϵtol > 0, 0 < ρ < 1, and σ̄ > 0 be given
constants.

Step 0 Choose initial values for x0 ∈ Rnc , y0 ∈ Y , v0 ∈ Rm, ∆max > ∆c
0 > ∆min,

∆i
0 ≥ 1, σ0 > 0, σΦ

−1 ≥ 1, ζ0 > 0, and a positive definite matrix B0 ∈
R

(nc+ni)×(nc+ni).
Set f ⋆ := ∞ and (x⋆, y⋆) := (x0, y0) to the current best known solution.
Evaluate function values f(x0, y0) and g(x0, y0).

128 5 Mixed-Integer Optimization

Evaluate ∇xf(x0, y0) and ∇xg(x0, y0) with respect to continuous variables.
Use Procedure 5.1 to approximate ∇yf(x0, y0) and ∇yg(x0, y0) with respect
to integer variables and obtain (xbn0 , ybn0) and f bn0 .
if f bn0 < f ⋆ then Set f ⋆ := f bn0 and (x⋆, y⋆) := (xbn0 , ybn0).
Set k := 0.

Step 1 Solve the mixed-integer quadratic problem (5.9) giving dk :=
(
dck
dik

)
.

if (∥g(xk, yk)−∥∞ ≤ ϵtol or σk > σ̄) and ψσk
(0) − ψσk

(dk) ≤ ϵtol then
goto Step 7.

Step 2 Determine σk+1 and ζk+1 as described in Step 2 of Algorithm 5.2.

Step 3 Evaluate f(xk + dck, yk + dik) and g(xk + dck, yk + dik).
if ∥(g(xk, yk) + ∇g(xk, yk)Tdk)−∥∞ = 0 and ∥dik∥∞ = 0 then

Obtain multipliers uk that correspond to problem (5.22) and
set wk := uk − vk.
Determine penalty parameter σΦ

k according to (5.32).
Calculate ratio

rk :=
ΦσΦ

k
(xk, yk, vk) − ΦσΦ

k
(xk + dck, yk, uk)

ΨσΦ
k
(0, 0) − ΨσΦ

k
(dck, wk)

. (5.33)

else Calculate ratio rk according to (5.11).
Set w(k)

j := 0, j = 1, . . . ,m.
Set penalty parameter σΦ

k := σΦ
k−1.

Step 4 Update the trust region radii according to (5.13) and (5.14) in Step 5 of
Algorithm 5.2.

Step 5 if rk < ρ then Set (xk+1, yk+1) := (xk, yk), vk+1 := vk, Bk+1 := Bk, and
k := k + 1 and goto Step 1

else Set (xk+1, yk+1) := (xk + dck, yk + dik) and vk+1 := vk + wk.
if ∆c

k+1 < ∆min then Replace ∆c
k+1 := ∆min.

if ∆c
k+1 > ∆max then Replace ∆c

k+1 := ∆max.

Step 6 Evaluate partial derivatives ∇xf(xk+1, yk+1) and ∇xg(xk+1, yk+1) with re-
spect to continuous variables.
Approximate ∇yf(xk+1, yk+1) and ∇yg(xk+1, yk+1) with respect to integer
variables using Procedure 5.1 and obtain (xbnk+1, y

bn
k+1) and f bnk+1.

if f bnk+1 < f ⋆ then Set f⋆ := f bnk+1 and (x⋆, y⋆) := (xbnk+1, y
bn
k+1).

Generate a positive definite matrix Bk+1. Set k := k + 1 and goto Step 1.

5.2 New Algorithms for Mixed-Integer Nonlinear Optimization 129

Step 7 if ∥g(xk, yk)−∥∞ ≤ ϵtol and f ⋆ ≥ f(xk, yk) then Set f ⋆ := f(xk, yk),
(x⋆, y⋆) := (xk, yk) and STOP .

if ∥g(xk, yk)−∥∞ > ϵtol and f⋆ = ∞ then Report that the problem might
be infeasible and STOP .

otherwise Set (xk+1, yk+1) := (x⋆, y⋆) and vk+1 := vk.
if ∆c

k+1 < ∆min then Replace ∆c
k+1 := ∆min.

if ∆c
k+1 > ∆max then Replace ∆c

k+1 := ∆max.
Evaluate function values f(xk+1, yk+1), g(xk+1, yk+1) and goto Step 6.

The modified Algorithm 5.3 terminates the main loop as soon as no sufficient reduc-
tion is obtained subject to the model ψσk

of the L∞-penalty function (5.5), cf. (5.8).
Step 1 is identical in both mixed-integer algorithms. By going to Step 7, the obtained
information of the direct search strategy is checked, and a restart is performed when
progress can be achieved.

Algorithm 5.3 employs the two penalty parameters σk and σΦ
k . Parameter σk is used

by the L∞-penalty function (5.5) and controls the progress with respect to the con-
straint violation in subproblem (5.9). The update rules are identical to the ones applied
in Algorithm 5.2. Parameter σΦ

k relates to the augmented Lagrangian function ΦσΦ
k
,

cf. (5.17), and the corresponding model ΨσΦ
k
, defined in (5.24). The penalty parameter

σΦ
k is updated according to the rule of Algorithm 4.1, but only if the trial step is eval-

uated subject to augmented Lagrangian function. Otherwise, σΦ
k remains unchanged.

The update rule is stated in adapted form in (5.32), where only the continuous trial
step dck is taken into account.

In Step 3 a switch to the augmented Lagrangian merit function is performed in
case conditions (5.20) and (5.21) are satisfied. Second order correction steps are not
calculated anymore. In this case ∥dik∥∞ = 0 holds, and the continuous part dck of the
solution to subproblem (5.9) is identical to the one obtained by the quadratic problem
(5.22). The ratio rk is calculated with respect to the augmented Lagrangian ΦσΦ

k
and

model ΨσΦ
k

according to formula (5.33). If conditions (5.20) and (5.21) do not hold,
then the ratio rk is calculated with respect to the L∞-penalty function, i.e., rk is
determined according to (5.11). In both cases a trial step is accepted if rk ≥ ρ with
a constant 0 < ρ < 1. In Algorithm 5.2 only trial steps with rk ≤ 0 are rejected. The
modification is required by the theory of the continuous Algorithm 4.1.

The trust region update with respect to the continuous variables is slightly modified
compared to Algorithm 5.2. In case a step dk is accepted, then the trust region radius
∆k+1 is set to at least ∆min. Moreover, the upper bound ∆max on the continuous trial
step dck is introduced. This is similar to the procedure in Algorithm 4.1. Thus, the
convergence properties obtained for the continuous Algorithm 4.1 can now be applied
to Algorithm 5.3, at least in case yk remains unchanged for a sequence of iterations.

130 5 Mixed-Integer Optimization

The multiplier approximation is updated in Step 5. In case the trial step is accepted
subject to the augmented Lagrangian merit function (5.17), then the multipliers vk+1
are set to the multipliers uk obtained by problem (5.22). Otherwise, the multipliers
vk+1 remain unchanged.

The heuristics described for Algorithm 5.2 are also applicable and recommended for
Algorithm 5.3. In particular the scaling of the Hessian approximation Bk, cf. (5.16),
seems to be efficient as indicated by numerical tests.

5.3 Summary

Non-convex nonlinear mixed-integer optimization problems are extremely difficult to
solve. Most of the concepts known from continuous nonlinear optimization are not
available. In contrast to other methods, the relaxation of integer variables is not re-
quired by the new mixed-integer algorithms introduced here, since the algorithms do
not evaluate function values for fractional values of an integer variable. Thus, the algo-
rithms can also be applied to problems arising in different fields of engineering, where
a relaxation with respect to integer variables is not possible due to the underlying
simulation codes.

The presented adaptation of sequential quadratic programming techniques to mixed-
integer optimization is a new approach that was discussed for the first time in Exler
and Schittkowski [37], and Exler [33]. A convergence proof for Algorithm 5.2 and
Algorithm 5.3 is not provided. A possible stabilization can be achieved by adding linear
outer approximations techniques as done in Exler, Lehmann, and Schittkowski [36].
Convergence can be guaranteed for convex problems by adding the so-called linear
mixed-integer master problem defined by linear outer approximation methods.

Both algorithms, i.e., Algorithm 5.2 and Algorithm 5.3, are implemented in the code
MISQP, for more information see Exler et al. [35] or the documentation in Appendix A.
In Chapter 6 numerical results obtained by the code MISQP are presented. The perfor-
mance of the implementation of Algorithm 5.2, which applies second order correction
steps, is compared to the implementation of Algorithm 5.3, where evaluating second
order correction steps is avoided.

6 Numerical Results

The trust region SQP algorithms introduced in the previous chapters are implemented
as components of the FORTRAN subroutine called MISQP, see Exler et al. [35]. In the
following sections the numerical performance of the code MISQP is evaluated on two
collections of test problems. The first set contains 306 nonlinear optimization problems
without additional integer variables. The performance on mixed-integer optimization
problems is evaluated on a second set consisting of 175 problems.

In the following section the test environment is described. The tested codes are listed
and details on the implementations are stated. Section 6.2 presents the criteria that
are used to evaluate and compare the performance of the different implementations.
Thereafter, the test results are discussed.

6.1 Test Environment and Implementation Details

Numerical tests are performed for the new algorithms introduced in the previous chap-
ters. The different algorithms are accessible by setting the corresponding option of
MISQP. The performance of MISQP is compared to the well-established FORTRAN code
NLPQLP, see Schittkowski [104]. This section summarizes implementation details con-
cerning both codes.

If not mentioned explicitly, all test runs are performed with default values for options
as defined in the corresponding documentation, see Exler et al. [35] or Appendix A,
and Schittkowski [104]. The FORTRAN codes are compiled by the Intel Visual Fortran
Compiler, Version 9.1, under Windows XP64 and executed on an Intel Core(TM)2
6600 64 bit processor with 2.40 GHz and 4 GB RAM.

6.1.1 The FORTRAN Package MISQP

Three different implementations are tested on continuous nonlinear optimization prob-
lems of form (1.2). MISQP offers the choice between versions that apply second order
correction steps and versions that avoid these additional computations. Thus, the per-
formance of both strategies can be compared easily. The different versions of MISQP
are denoted by the highlighted names.

MISQP/lag Implementation of Algorithm 4.1. Second order correction
steps are avoided by applying an augmented Lagrangian
merit function. MISQP is called with IOPT(7)=0.

MISQP/soc Implementation of an SQP trust region method proposed by
Yuan [130], cf. Algorithm 3.3. Additional second order cor-
rection steps are calculated. MISQP is called with IOPT(7)=1.

131

132 6 Numerical Results

MISQP/com Implementation of a modified version of Algorithm 3.3. Com-
putation of SOC steps is avoided by locally switching to the
augmented Lagrangian merit function. Combines versions
MISQP/lag and MISQP/soc. The applied strategy is similar
to the one used by the mixed-integer Algorithm 5.3. MISQP
is called with IOPT(7)=2.

The code MISQP offers two versions that address the mixed-integer nonlinear problem
(1.1). The corresponding algorithms are presented in Chapter 5. Both versions are
evaluated and compared. The identifiers are extended by ’/minlp’ to highlight the
mixed-integer characteristic of the problems under consideration.

MISQP/soc/minlp Mixed-integer SQP-based trust region method, SOC steps
are computed for continuous variables. Implementation of
Algorithm 5.2. MISQP is called with IOPT(7)=1.

MISQP/com/minlp Mixed-integer SQP-based trust region method, fast local
convergence with respect to continuous variables is obtained
without calculating SOC steps. Implementation of Algo-
rithm 5.3. MISQP is called with IOPT(7)=2.

The remainder of this section presents some details concerning the implementation
of MISQP. Algorithm 4.1 requires that some parameters are set to specific values when
coding the algorithm. In MISQP these parameters are set to the following values

τ1 = 0.5 , τ2 = 2 , ρ0 = 0.1 , ρ1 = 0.75 , ∆min = 10−5 , ∆max = 1010 . (6.1)

The values were obtained by extensive numerical tests and seem to be the most efficient
choice.

The Hessian matrix plays a crucial role in SQP methods. To avoid the computation
of second derivatives, the matrix Bk used in the subproblems is set to a positive definite
approximation of the Hessian of the Lagrangian function. To guarantee a superlinear
convergence rate, Bk is updated by the BFGS formula

Bk+1 := Bk + pkp
T
k

dTk pk
− Bkdkd

T
kBk

dTkBkdk
, (6.2)

with

pk := ∇xL(xk+1, uk) − ∇xL(xk, uk) , (6.3)
dk := xk+1 − xk . (6.4)

The initial matrix B0 is set to the unit matrix and the formula is stabilized by requiring
pTk dk ≥ 0.2dTkBkdk. The BFGS update is also applied when mixed-integer problems
are optimized. In this case, the formulas (6.2)-(6.4) are adapted accordingly.

6.1 Test Environment and Implementation Details 133

As soon as the conditions outlined in the corresponding algorithms are satisfied,
MISQP terminates. In addition, the following stopping criterion is implemented for the
continuous versions of MISQP, see also Schittkowski [103]. MISQP terminates if

∥g(xk)−∥∞ < ϵtol (6.5)

and
|∇f(xk)Tdk| + µk∆k +

m∑
j=1

∣∣∣u(k)
j g(xk)

∣∣∣ < ϵtol (6.6)

hold, where xk is the current iterate and (dk, uk) denotes the solution of the corre-
sponding subproblem at iteration k. µk denotes the approximation of the multipliers
corresponding to the trust region constraint, see definition (4.35). The term µk∆k is
added to prevent early termination in case the trust region constraint is active. The
desired accuracy is denoted by ϵtol > 0. The termination criterion defined by (6.5) and
(6.6) is adapted for the mixed-integer case appropriately.

In Chapter 5 some heuristics, e.g., the modification of the Hessian approximation,
are discussed. They can be applied to Algorithm 5.2 and Algorithm 5.3. All proposed
heuristics are implemented in MISQP. They can be switched on and off by changing
the corresponding entries in the option arrays of MISQP.

The usage of MISQP and the parameters are described in Appendix A. Note that ϵtol
corresponds to the parameter ACC of MISQP. An extended documentation can be found
in Exler et al. [35]. The mixed-integer quadratic programming problems are solved by
the code MIQL of Lehmann et al. [65], an implementation of a branch-and-cut method.
The underlying continuous quadratic programs are solved by an extended version of
the code QL. The code QL traces back to Powell [87], see also Schittkowski [105], and
is an implementation of the primal-dual method of Goldfarb and Idnani [50].

6.1.2 A Reference Code – NLPQLP

In case the performance is evaluated on problems without additional integer variables,
then MISQP is compared to the FORTRAN code NLPQLP, see Schittkowski [104]. The
FORTRAN subroutine NLPQLP solves smooth nonlinear programming problems and is an
extension of the code NLPQL, see Schittkowski [101]. The new algorithms introduced
here and NLPQLP differ in the globalization strategy, since NLPQLP applies line search
techniques instead of a trust region stabilization. NLPQLP is tuned to run under dis-
tributed systems and to apply non-monotone line search in error situations. The input
parameter L of NLPQLP is introduced to specify the number of parallel machines. The
tests are executed with L set to 1, i.e., NLPQLP behaves almost identical to NLPQL.
The quadratic subproblems are solved by the subroutine QL, see Schittkowski [105].
NLPQLP also applies the BFGS update formula (6.2)-(6.4) for generating second order
information. Moreover, the termination criterion stated before, see (6.5) and (6.6), is
also implemented in NLPQLP. NLPQLP is executed with parameters set to the values
shown in Table 6.1. If not stated differently, NLPQLP is tested in standard mode.

134 6 Numerical Results

Option Value Description
L 1 number of parallel systems,
STPMIN 10−10 minimum steplength in case of L>1 (not used),
MAXFUN 30 upper bound for the number of function calls during the line

search,
MAXNM 30 stack size for storing merit function values at previous itera-

tions for non-monotone line search,
RHOB 104 parameter for performing a restart in case of IFAIL=2 by set-

ting the BFGS-update matrix to RHOB ·I, where I denotes the
identity matrix,

MODE 0 standard execution.
MODE > 0 Safeguard strategy that applies non-monotone line search.

Table 6.1: Parameter settings for NLPQLP

6.2 Performance Evaluation

The following strategies for evaluating the performance of a code are frequently used
and are also applied by Exler et al. [36] for a comparative study. First, criteria have
to be defined to decide whether the outcome of a test run is considered as a successful
return or not. The applied criteria are stated for the continuous case and can easily
be adapted to mixed-integer optimization problems. Let ϵsucc > 0 be a tolerance for
defining the relative accuracy, xk be the returned value of a test run, and x⋆ the
supposed exact solution known from the test problem collection. Then the output is
called a successful solution, if the relative error in the objective function is less than
ϵsucc and if the maximum constraint violation is less than ϵ2

succ, i.e., if

f(xk) − f(x⋆) < ϵsucc|f(x⋆)| , if f(x⋆) ̸= 0 , (6.7)

or
f(xk) < ϵsucc , if f(x⋆) = 0 , (6.8)

and
∥g(xk)−∥∞ < ϵ2

succ . (6.9)

Note that the tolerance for the allowed constraint violation, cf. (6.9), might lead to
returned solutions with an objective function value better than the best known one in
x⋆. These runs are also classified as successful solutions.

Another situation is taken into account. It might occur that the internal termination
conditions of a code are satisfied subject to a reasonably small tolerance, but the
objective function value of the returned solution is worse than the best known one.
For non-convex problems this situation is not unusual. If such a solution is returned

6.2 Performance Evaluation 135

by a test run, it is also accepted and is called an acceptable solution, respectively. For
an acceptable solution

f(xk) − f(x⋆) ≥ ϵsucc|f(x⋆)| , if f(x⋆) ̸= 0 , (6.10)

or
f(xk) ≥ ϵsucc , if f(x⋆) = 0 , (6.11)

and
∥g(xk)−∥∞ < ϵ2

succ (6.12)

hold. The numerical tests are evaluated with ϵsucc = 0.01, i.e., a relative final accuracy
of one percent is required for a run to be considered as successful.

Different methodologies are applied to evaluate the performance of the tested imple-
mentations. Arithmetic mean values are compared on different performance criteria,
e.g., the number of function evaluations or the number of gradient evaluations. But
it might be misleading to simply compare arithmetic mean value, as they might be
dominated by few problems with extremely high results in the considered performance
criterion. Especially, if some other codes are unable to solve these problems the aver-
age numbers might be inaccurate. On the other hand, restricting the comparison of
arithmetic mean values to the set of test problems that are solved successfully by all
tested codes would penalize the more reliable and efficient codes.

To overcome these difficulties, two additional techniques are applied. The first one
is known under the name priority theory, see Saaty [96], and has been used for exam-
ple by Schittkowski [98] and Hock and Schittkowski [62] for comparing optimization
codes. Appendix B contains an outline of the theoretical background of the proce-
dure. The basic idea can be summarized as follows. The output of this method is a
unique priority value, by which the relative efficiency of one code over another one is
measured. This is achieved by comparing the codes pairwise with respect to a speci-
fied performance criterion over sets of test examples, which are successfully solved by
both codes. Then a reciprocal N × N matrix is determined, where N is the number
of codes under consideration. The largest eigenvalue of this matrix is positive and its
normalized eigenvector is computed. The priority values are deduced from the eigen-
vector after scaling the eigenvector such that the smallest coefficient becomes one.
The interpretation of these priority values is illustrated by an example. Say a relative
priority value 3.0 for the number of function evaluations leads to the conclusion that
the corresponding code needs 3.0 times more function calls than the best one with
priority value 1.0, and twice as many as a code with priority value 1.5.

In addition, the performance is evaluated according to an approach developed by
Dolan and Moré [27]. The so-called performance profiles are frequently used in com-
parative numerical studies. The creation of performance profiles is explained in the
following. Let the number of function evaluations be the performance criterion under
consideration. It is assumed that N codes Ci, i = 1, . . . , N , are compared on a set of
M test problems TPj, j = 1, . . . ,M . First, the minimum number of function evalua-

136 6 Numerical Results

Parameter Value Description
ACC 10−7 termination accuracy, i.e., ϵtol,
ACCQP 10−12 termination accuracy of QP solver,
MAXIT 3, 000 maximum number of iterations.

Table 6.2: Parameter settings for 306 Continuous Tests for MISQP and NLPQLP

tions needed by the codes to solve the problem successfully is determined for each test
problem TPj, j = 1, . . . ,M . The minimum number is denoted by n⋆j and is defined as
follows

n⋆j := min
1≤ i≤N

(nij) , (6.13)

where either nij corresponds to the actual number of function evaluations code Ci
needed to solve problem TPj successfully, or nij is set to a large constant value, oth-
erwise.

Now n⋆j is the reference value for all codes on the test problem TPj, and the number
of function evaluations need by each code Ci, i = 1, . . . , N , is compared to n⋆j by
calculating the ratio

rij := nij
n⋆j

. (6.14)

Thus, a value 1 for rij indicates that code Ci is the best solver on problem TPj. A value
4 implies that the corresponding code Ci needed four times more function evaluations
than the best solver on problem TPj required.

For each code Ci, i = 1, . . . , N , let Si(r) denote the set of test problems where the
ratio rij, as defined by (6.14), is lower or equal to a given upper bound r, that is

Si(r) := {j | rij ≤ r , 1 ≤ j ≤ M} . (6.15)

Applying (6.15), then the function ϕi(r) : [1,∞) → [0, 1] is defined as

ϕi(r) := |Si(r)|
M

, (6.16)

for each code Ci, i = 1, . . . , N , where |Si(r)| is the cardinal number of set Si(r).
The function ϕi(r) represents the percentage of test problems that are solved by code
Ci with at most r times more function evaluations than the particular best solver
on a problem. Performance profiles display the functions ϕi(r) for all codes under
consideration, where r is given along the abscissa starting with 1.

Performance profiles can be interpreted in the following way. A high value for ϕi(1)
indicates that the solver is efficient compared to the other solvers, as the function
value represents the percentage of problems where the code needed the fewest value,
with respect to the performance criterion under consideration, compared to all codes.

6.3 Continuous Optimization Problems 137

code nsucc nacc nerr nfunc ngrad nallf time

MISQP/lag 280 25 1 25 19 266 0.75
MISQP/soc 279 25 2 70 35 433 1.64
MISQP/com 283 22 1 25 19 267 0.94
NLPQLP 284 22 0 42 21 312 0.58

Table 6.3: Performance Results for a Set of 306 Continuous Test Problems

On the other hand, the robustness and reliability of a solver corresponds to a curve
that approaches 1 when r increases.

6.3 Continuous Optimization Problems

The 306 academic and real-life test problems used to evaluate the performance on
continuous optimization problems are published in Hock and Schittkowski [61], and
in Schittkowski [102]. The test examples are provided with optimal objective function
values f(x⋆), either known from analytical investigations or from the best numerical
data found so far.

Partial derivatives are approximated by forward differences,

∂

∂xi
f(x) ≈ 1

θi

(
f(x+ θiei) − f(x)

)
, (6.17)

where θi := θ1/2
m max(10−5, |xi|) and ei is the i-th unit vector, i = 1, . . . , n. The toler-

ance θm represents the machine accuracy. In a similar way, derivatives of constraints
are approximated. Note that each time a gradient is approximated, the corresponding
function is evaluated n times.

MISQP and NLPQLP are executed within the same test environment and called with
the same parameter values shown in Table 6.2. The obtained results are summarized
in Table 6.3, where the columns are defined as

nsucc - number of successful test runs according to above definition (6.7)-(6.9),
nacc - number of acceptable solutions according to (6.10)-(6.12),
nerr - number of test runs terminated by an error message,
nfunc - mean value of number of function evaluations,
ngrad - mean value of number of gradient evaluations,
nallf - mean value of number of all function evaluations (function evaluations

for gradient approximation included),
time - time for whole test set (in seconds).

The values for nfunc or ngrad are obtained by counting each evaluation of a whole

138 6 Numerical Results

code nsucc pfunc pgrad pallf ptime

MISQP/lag 280 1.0 1.0 1.0 1.2
MISQP/soc 279 2.0 1.3 1.2 2.1
MISQP/com 283 1.0 1.0 1.0 1.4
NLPQLP 284 1.6 1.1 1.2 1.0

Table 6.4: Priority Values for a Set of 306 Continuous Test Problems

1 2 3 4 5 6 7 8 9 10 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MISQP/lag
MISQP/soc
MISQP/com
NLPQLP

Figure 6.1: Performance Profiles for a Set of 306 Continuous Problems

6.3 Continuous Optimization Problems 139

set of function or gradient values, respectively, for a given iterate xk. The additional
function evaluations needed for gradient approximations are not counted for nfunc,
however, they are included in nallf .

Table 6.3 shows that all codes can solve almost all problems to at least an acceptable
solution according to (6.10)-(6.12). All three versions of MISQP terminate with an
error message for one test problem. They are not able to terminate at a feasible
iterate. MISQP/soc cannot solve a second problem. Again the code converges toward
an infeasible point. The number of local solutions, i.e., nacc, is almost identical for all
codes.

NLPQLP is obviously the fastest solver with respect to the time needed for the whole
test set. As NLPQLP is the only code using line search instead of trust region tech-
niques to stabilize the convergence, this can be expected. Each search step in trust
region methods corresponds to the solution of a quadratic subproblem. It may require
several runs of the quadratic programming solver to obtain a new acceptable iterate,
whereas in line search methods only one quadratic program is solved and the next it-
erate lies along the calculated search direction. Applying warm start techniques in the
quadratic programming solver can improve the performance of trust region algorithms.
MISQP/lag is the only version of MISQP that makes use of the warm start capability
of the applied version of the solver QL. Comparing MISQP/lag and MISQP/soc, the
difference in the measured time occurs probably due to the warm starts applied by
MISQP/lag, since both codes behave identical in the other performance criteria. How-
ever, the gap to the line search code NLPQLP still remains.

Comparing the average number of function evaluations – with or without function
evaluations for gradient approximations included – Table 6.3 leads to the conclusion
that MISQP/lag and MISQP/com behave almost identically and outperform MISQP/soc
significantly. The mean values shown for MISQP/soc are dominated by three problems,
where MISQP/soc converges very slowly. Nevertheless, the results indicate that the
algorithms, that avoid calculating second order correction steps, converge locally with
fast rate. NLPQLP also needs less function and gradient evaluations than MISQP/soc,
but a few more than MISQP/lag and MISQP/com.

For the calculation of priority values only runs that are considered to be successful
according to (6.7)-(6.9) are taken into account. The calculated priority values are given
in Table 6.4, where the columns denote

nsucc - number of runs that obtain successful solutions,
pfunc - relative priority of function evaluations,
pgrad - relative priority of gradient evaluations,
pallf - relative priority of all function calls including function calls used for

gradient approximations,
ptime - relative priority of execution time.

The results shown in Table 6.4 attest that NLPQLP is the fastest solver with respect
to the time needed for all test problems. MISQP/soc needs more than twice the time of

140 6 Numerical Results

Option Value Description
ACC 10−6 termination accuracy,
ACCQP 10−10 termination accuracy of mixed-integer QP solver,
MAXIT 500 maximum number of iterations,
MAXNDE 5, 000 maximum number of branch-and-bound nodes in the subprob-

lem solver.

Table 6.5: Parameter settings for 175 Mixed-Integer Test Problems for MISQP

NLPQLP. MISQP/lag and MISQP/com perform identically on the other performance cri-
teria. Both codes outperform NLPQLP slightly. Comparing MISQP/lag and MISQP/soc,
you see that the value of pgrad for MISQP/soc is 1.3 times higher than the one of
MISQP/lag, but the value of pfunc is two times the value of MISQP/lag. This can be
explained by the additional second order correction steps calculated by MISQP/soc.
Another indication of the need to avoid the SOC steps.

The performance profiles given in Figure 6.1 are based on the total number of
function evaluations obtained by summing up the number of function calls required
by the algorithm and the number of function calls needed for approximating gradients,
i.e., nallf is considered. Again only instances that are solved successfully according to
(6.7)-(6.9) are taken into account. All other runs are assumed to fail. In case a run
returns an acceptable solution or terminates with an error, then the number of required
function evaluations is set to a predefined large constant when determining (6.13) and
(6.14). Take a look at the green curve for MISQP/soc. In 28 percent MISQP/soc is the
solver with the lowest number of function evaluations. 75 percent of the problems are
solved by MISQP/soc within at most twice as much function evaluations than the best
solver. The profile also shows that there are a few problems where MISQP/soc needs
more than 20 times the number of function evaluations than the best solver. NLPQLP is
the best solver in almost 50 percent of the problems. MISQP/lag follows closely. Once
again MISQP/soc has the worst performance of all solvers.

The tests show that problems can be efficiently solved without the calculation of
second order corrections steps. This was the intention of the development of Algo-
rithm 4.1. The corresponding implementation, referred to as MISQP/lag, outperforms
version MISQP/soc significantly. MISQP/soc is the implementation of Algorithm 3.3
with additional second order correction steps.

6.4 Mixed-Integer Optimization Problems

The performance on mixed-integer optimization problems is evaluated on a collection
of 175 academic test examples published in Schittkowski [106]. The objective function
value f(x⋆) provided for each test problem has been found in the literature or has been

6.4 Mixed-Integer Optimization Problems 141

obtained by extensive testing over several years. There are at most 180 continuous,
100 integer, and 138 binary variables. The total number of variables is at most 200.
Moreover, there are up to 189 constraints, including nonlinear equality constraints. The
number of equality constraints is at most 87. The problems feature nonlinear functions
where some of them are also non-convex. The feasible region of some instances is non-
convex, too. Most of the test problems are taken from the GAMS MINLPLib, see
Bussieck, Drud, and Meeraus [13].

MISQP/soc/minlp and MISQP/com/minlp are called with the parameter settings
given in Table 6.5. Derivatives subject to continuous variables are approximated by
forward differences, see (6.17), whereas by default integer derivatives are evaluated
internally by MISQP/soc/minlp and MISQP/com/minlp, i.e., by two-sided differences
at neighboring grid points. For binary variables or for variables at a bound, a forward
or backward difference formula is applied, respectively, see Procedure 5.1.

MISQP is designed to handle integer variables that are non-relaxable and where
partial derivatives have to be approximated internally. In addition, MISQP offers the
opportunity to provide externally calculated partial derivatives with respect to the
integer variables. In this case derivatives supplied by user are employed instead of
the internal approximations. As all test problems are relaxable, the partial derivatives
with respect to integer variables can be approximated the same way as for continuous
variables. The problem functions are evaluated at fractional values with respect to in-
teger variables only to approximate derivatives externally. All points visited by MISQP
still fulfill the integer requirement. The performance of MISQP executed with external
approximations is also evaluated. These runs are marked by adding ”/⋆” to the names
MISQP/soc/minlp and MISQP/com/minlp. The partial derivatives with respect to re-
laxed binary variables are computed by forward difference formula (6.17), as for the
continuous variables. A two-sided difference formula is applied for the relaxed integer
variables to make the effort comparable to the internal approximation procedure of
MISQP. The two-sided differences formula is

∂

∂xi
f(x) ≈ 1

2θi

(
f(x+ θiei) − f(x− θiei)

)
, (6.18)

where θi and ei are defined as for the forward difference (6.17).
The criterion for evaluating the efficiency of the implementations is the total number

of all function evaluations needed, i.e., the number nallf is considered. The function
calls needed for approximating gradients are included. In real-world applications when
function evaluations require the execution of time-consuming simulation tools, the
total number of function evaluations decides whether an optimization method is ap-
plicable or not. Table 6.6 shows the obtained results. The columns denote

nsucc - number of successful test runs according to above definition, i.e., (6.7)-
(6.9) adapted to mixed-integer problems,

nacc - number of acceptable solutions according to above definition, i.e.,
(6.10)-(6.12) adapted to mixed-integer problems,

142 6 Numerical Results

code nsucc nacc nerr pallf nallf ptime ∅time
MISQP/soc/minlp 146 25 4 1.2 1629 1.3 24.17
MISQP/com/minlp 150 21 4 1.1 1506 1.3 23.74
MISQP/soc/minlp/⋆ 136 34 5 1.4 1745 1.2 17.46
MISQP/com/minlp/⋆ 139 31 5 1.0 1254 1.0 24.55

Table 6.6: Performance Results for a Set of 175 Mixed-Integer Problems

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MISQP/soc/minlp
MISQP/com/minlp
MISQP/soc/minlp/*
MISQP/com/minlp/*

Figure 6.2: Performance Profiles for a Set of 175 Mixed-Integer Problems

6.4 Mixed-Integer Optimization Problems 143

f(y)

1 2 3 4 5
y

f(3) + f ′(3) d

f(3) + f(4)−f(2)
2

d

Figure 6.3: Example of Approximation of Integer Derivatives

nerr - number of test runs terminated by an error message,
pallf - relative priority of all function calls including function calls used for

gradient approximations, evaluated over all successful test runs,
nallf - average number of all function calls including function calls used for

gradient approximations, evaluated over all successful test runs,
ptime - relative priority of execution times, evaluated over all successful test

runs,
∅time - average execution times in seconds, evaluated over all successful test

runs.

MISQP/soc/minlp and MISQP/com/minlp solve more problems successfully in case
partial derivatives with respect to integer variables are approximated internally, in-
stead of using external partial derivatives. On the other hand, it has to be mentioned
that MISQP/com/minlp/⋆ has the best priority value with respect to the total number
of function evaluations. MISQP/com/minlp is following closely with a value 1.1. But
taking into account that MISQP/com/minlp is able to solve 11 problems more, the
small difference in the priority value can be neglected.

A possible explanation for the superiority of the versions, where partial derivatives
with respect to integer variables are approximated internally, is given by Figure 6.3.
The displayed function f is non-convex and a phenomenon is illustrated that might

144 6 Numerical Results

arise for non-convex mixed-integer problems. The red line corresponds to the linear
approximation of function f at point y = 3 obtained by approximating the derivative
according to Procedure 5.1. Whereas, the blue line applies the analytical derivatives
of f . You can see that the information obtained by the blue line is completely mis-
leading for the mixed-integer problem, although it is a suitable approximation for the
continuous problem.

The additional neighborhood search, which is performed in case partial derivatives
are approximated by Procedure 5.1, can also be an explanation for the better re-
sults obtained by MISQP/com/minlp and MISQP/soc/minlp. The information gained
by Procedure 5.1 can guide the search to more promising areas. Thus, combining the
mixed-integer SQP steps and direct search strategies seems to be more reliable.

When comparing MISQP/com/minlp and MISQP/soc/minlp, you see that MISQP/
com/minlp solves more problems to optimality than MISQP/soc/minlp, independent
of the kind of partial derivative approximation. The average number of function eval-
uations required by MISQP/com/minlp reduces about more than 7% compared to
MISQP/soc/minlp. Four problems are not solved to feasibility. Both codes generate
an error message. When external partial derivatives are used, one more problem ter-
minates at an infeasible iterate. In a couple of other situations, the codes are unable to
solve the problems to global optimality and report that a feasible solution is obtained.
Taking the total number of function evaluations as performance criterion, it can be
concluded that MISQP/com/minlp is preferable. The aim of the development of Algo-
rithm 5.3, that corresponds to MISQP/com/minlp, was the reduction of the required
number of function evaluations. This goal is achieved obviously. This conclusion is
confirmed by Figure 6.2, where the performance profiles for the mixed-integer prob-
lems are shown. Overall it turns out that MISQP/com/minlp is the most efficient and
reliable code.

6.4.1 Results for Relaxed Problem Formulation

As already mentioned before, all test problems contained in the collection of mixed-
integer nonlinear problems are relaxable. In the remainder of this chapter the per-
formance results obtained on the mixed-integer problems are compared to the results
achieved on the relaxed formulation of the mixed-integer problems, i.e., the domain
of the integer variables is relaxed to R. Again, the performance of MISQP is compared
to the one of NLPQLP. The tests are executed with the same termination tolerances as
the mixed-integer codes, see Table 6.5.

The specific parameter values set for NLPQLP are listed in Table 6.1. NLPQLP is tested
with two different parameter settings. NLPQLP is executed in standard form by setting
MODE=0. Additionally, NLPQLP is called in safeguard mode with MODE=17. The codes
are denoted by NLPQLP (mode=0) and NLPQLP (mode=17), respectively. The value 17
for MODE stands for initial and repeated scaling every 17th step, i.e., the BFGS matrix
is reset to a multiple of the identity matrix.

For the relaxed problems the partial derivatives with respect to the integer and bi-

6.4 Mixed-Integer Optimization Problems 145

code nsucc nacc nerr pallf nallf ptime ∅time
MISQP/lag 150 17 8 1.0 1262 1.0 0.07
MISQP/soc 153 16 6 1.4 2300 2.5 0.55
MISQP/com 156 13 6 1.0 1790 1.2 0.35
NLPQLP (mode=0) 140 15 20 1.2 1296 1.0 0.05
NLPQLP (mode=17) 146 12 17 1.0 1042 2.9 0.14

Table 6.7: Results for a Set of 175 Relaxed Mixed-Integer Test Problems

1 2 3 4 5 6 7 8 9 10 11
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MISQP/lag
MISQP/soc
MISQP/com
NLPQLP (mode=0)
NLPQLP (mode=17)

Figure 6.4: Performance Profiles for a Set of 175 Relaxed Mixed-Integer Problems

146 6 Numerical Results

nary variables are approximated externally, as described above, i.e., partial derivatives
with respect to relaxed binary variables are computed by forward difference formula
(6.17), as for the continuous variables. For relaxed integer variables the two-sided
formula (6.18) is applied.

Table 6.7 summarizes the numerical results obtained for the relaxed reformulations
of the mixed-integer optimization problems. The column titles are the same as for
Table 6.6. Note that the returned objective function value of a run on the relaxed
problems has to be lower or equal to the best known objective function value of the
corresponding mixed-integer problem, in order to be considered a successful return.

More runs are terminated with an error message than in the mixed-integer case.
This indicates that the problems are hard to solve. The codes solve at most 156 prob-
lems successfully, i.e., they terminate at a feasible iterate where the KKT optimality
conditions are satisfied subject to a tolerance 10−6, and where the objective function
value is less than or equal to the known one for the mixed-integer problem formulation.
In all other situations, the codes either fail to solve the problem, or stop at a local
solution which is worse than the known one for the mixed-integer formulation. Thus,
it is hard to expect that MISQP will ever be able to get significantly higher scores for
nsucc for the more complex mixed-integer version of the test set.

The number of problems successfully solved by NLPQLP is lower than the ones ob-
tained by the different versions of MISQP. On this set of test problems, NLPQLP is less
reliable and robust than MISQP. It is the other way around on the previously tested
continuous set, see Section 6.3. The robustness of NLPQLP can be improved by changing
option MODE to 17. The price to pay is an increase of the average time spent in solving
a problem.

The average number of function evaluations needed by MISQP/soc is twice the one
required by MISQP/lag and both versions of NLPQLP. As the value is also higher for
MISQP/com, where the augmented Lagrangian merit function is chosen only locally,
this difference might be explained by the use of the L∞-penalty function as merit
function and the resulting subproblems. Some problems require significantly more
function evaluations in case the L∞-penalty function is employed.

The performance profiles for the relaxed problems are shown in Figure 6.4. According
to these profiles, NLPQLP (mode=17) is the most efficient code in more than 60% of
the problems. On the other hand, MISQP/com is more robust. Again MISQP/com and
MISQP/lag perform better than MISQP/soc. On the relaxed problems the performance
profiles indicate a similar behavior of MISQP/soc and NLPQLP (mode=0).

Finally, the results obtained on the relaxed test set, on the one hand, and the
mixed-integer version of the test set, on the other hand, are compared. The data are
shown in Table 6.8. The average number of function evaluations required by MISQP/soc
on the relaxed set is much higher than the one needed by MISQP/com/minlp and
MISQP/soc/minlp for the mixed-integer problems. Regarding priority value pallf , the
value calculated for MISQP/soc is almost identical to the ones obtained by the mixed-
integer solvers. This result is very interesting. Assume MISQP/soc is employed in a
basic branch-and-bound framework. Then the branch-and-bound method would re-

6.4 Mixed-Integer Optimization Problems 147

code nsucc nacc nerr pallf nallf ptime ∅time
MISQP/lag 150 17 8 1.0 1262 1.0 0.07
MISQP/soc 153 16 6 1.6 2300 3.5 0.55
MISQP/com 156 13 6 1.2 1790 2.3 0.35
MISQP/soc/minlp 146 25 4 1.6 1629 224.5 24.17
MISQP/com/minlp 150 21 4 1.5 1506 228.5 23.74

Table 6.8: Comparison Mixed-Integer Problems vs. Relaxed Problems

1 2 3 4 5 6 7 8 9 10 20 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MISQP/lag
MISQP/soc
MISQP/com
MISQP/soc/minlp
MISQP/com/minlp

Figure 6.5: Performance Profiles – Mixed-Integer Problems vs. Relaxed Problems

148 6 Numerical Results

quire more function evaluations just to obtain a solution to the root problem of the
branch-and-bound tree than MISQP/com/minlp needs to solve the mixed-integer prob-
lem to optimality.

Expectedly, the mixed-integer codes require much more effort than the continuous
counterparts with regard to the average time spent to solve the problems. Solving
mixed-integer quadratic problems is more complex as the applied branch-and-bound
method in the subproblem solver MIQL requires the solution of numerous continuous
quadratic problems.

Figure 6.5 shows the corresponding performance profiles with respect to the total
number of function evaluations. In almost 40% of the test problems MISQP/soc/minlp
and MISQP/com/minlp are the best solvers subject to the criterion under consideration.
The corresponding values for the continuous versions of MISQP are lower. Surprisingly,
MISQP requires almost the same effort to solve continuous and mixed-integer problems.

6.5 Summary

The FORTRAN subroutine MISQP is tested on continuous and mixed-integer test prob-
lems. The numerical results show the efficiency of the proposed Algorithm 4.1 for
continuous problems. The implementation is almost as efficient and reliable as the
well-established software NLPQLP by Schittkowski [104]. Moreover, the coded Algo-
rithm 4.1 outperforms an implementation of Algorithm 3.3, which applies second order
correction steps as proposed by Yuan [130]. The results also indicate that fast local
convergence is obtained in practice for Algorithm 4.1.

The aim of this thesis is to find techniques that lead to a reduction of the average
number of function evaluations required by an implementation of Algorithm 5.2. The
outcome is Algorithm 5.3 that avoids the calculation of second order correction steps.
The test results show that the total number of function evaluations has been reduced
about 7% when comparing the implementation of Algorithm 5.3 to the one of Algo-
rithm 5.2. Furthermore, the calculation of second order correction steps can be avoided
without getting less reliable. Since the numerical solution of the mixed-integer qua-
dratic subproblems is time-consuming, the codes should be applied to problems where
evaluating function values takes much more time than the internal calculations of the
algorithms.

7 Conclusion and Outlook

New algorithms are presented that address nonlinear optimization problems. The con-
sidered problems are restricted and contain equality and inequality constraints. More-
over, mixed-integer nonlinear optimization problems are considered. The proposed
algorithms approximate a solution to the considered problem iteratively by solving
a sequence of quadratic subproblems. The idea of the mixed-integer algorithms is to
extend the continuous SQP approach to mixed-integer optimization. The straightfor-
ward way is the substitution of the continuous quadratic subproblems by mixed-integer
quadratic subproblems. Hence, all methods belong to the class of sequential quadratic
programming methods. In order to stabilize the methods, the trust region approach is
used. The size of the primal step computed as a trial step in each iteration is restricted
by an additional constraint.

The main part of this thesis discuss the development of an algorithm that is ap-
plicable to continuous nonlinear problems, see Algorithm 4.1. The algorithm employs
an augmented Lagrangian function as a merit function. Powell and Yuan [93] also use
an augmented Lagrangian but their investigation is restricted to equality constrained
problems. Niu and Yuan [76] apply the augmented Lagrangian to problems that also
contain inequality constraints. In contrast to their algorithm the new trust region SQP
algorithm does not transform the inequality constraints into equality constraints by
introducing slack variables.

The occurrence of infeasible subproblems, that result from inconsistency of the lin-
earized constraints of the problem or inconsistency induced by adding the trust region
constraint, is handled by entering a feasibility restoration phase. Adding a feasibility
restoration phase instead of permanently relaxing the quadratic subproblems is also
applied by filter SQP methods, see Fletcher and Leyffer [42], and Fletcher, Leyffer, and
Toint [43]. The advantage of entering a special restoration phase is that no additional
penalty parameter in the subproblems is needed. The drawback of the suggested phase
is that more subproblems have to be solved. Future work will be the investigation of
a modified restoration phase.

Other trust region methods have to apply safety strategies in order to avoid the
so-called Maratos effect – a situation where fast local convergence is prevented. In
Yuan [130] a trust region algorithm is discussed that is applicable to equality and in-
equality constrained problems. The algorithm employs the L∞-penalty function that
can suffer the Maratos effect. Thus, additional second order correction steps are cal-
culated as proposed by Fletcher [39] and Yuan [129]. This is a commonly used mod-
ification to avoid the Maratos effect. The aim of this work was the construction of a
trust region algorithm that avoids these additional safeguards. As the local conver-
gence analysis indicates the use of an augmented Lagrangian function as merit function
leads to fast local convergence without the additional calculation of SOC steps.

Moreover, the theoretical analysis of the proposed algorithm shows that at least

149

150 7 Conclusion and Outlook

one accumulation point of the generated sequence satisfies the Karush-Kuhn-Tucker
optimality conditions. The assumptions made for the proof are used frequently by
other authors. The extended MFCQ is applied to ensure the convergence to feasible
points.

The new trust region SQP algorithm addressing continuous nonlinear problems, cf.
Algorithm 4.1, is developed to find strategies that can be applied to improve the per-
formance of the presented mixed-integer Algorithm 5.2 that is based on an algorithm
by Yuan [130]. A modified algorithm is stated that locally employs the augmented
Lagrangian merit function instead of the L∞-penalty function. The corresponding Al-
gorithm 5.3 does not calculate second order correction steps anymore.

It is well known that mixed-integer problems are extremely difficult to solve. Addi-
tionally, in highly complex technical simulation codes especially for engineering appli-
cations, it is often not possible to evaluate an objective or constraint function value for
fractional values of an integer variable. In case integer variables are not relaxable some
of the commonly used methods are not applicable. For example, branch-and-bound
methods require a relaxation, see Borchers and Mitchell [11]. Outer approximation
methods do not need relaxation but the convergence can be shown for convex prob-
lems only, see Fletcher and Leyffer [41]. Both mixed-integer algorithm introduced in
this thesis are applicable in this situation.

The discussed algorithms are implemented as a FORTRAN subroutine called MISQP.
Numerical results are presented which show the efficiency of the proposed algorithm
for continuous problems. The code is almost as efficient as the well-established code
NLPQLP by Schittkowski [104], where a line search strategy is used. It has also been
shown that the implementation of the new algorithm outperforms an implementation
of an algorithm proposed by Yuan [130], which applies second order correction steps.
The numerical results also indicate that the implementation of the proposed continuous
algorithm converges close to a solution with a fast rate what proves practically that
the theoretical results hold.

The numerical results presented in Chapter 6 also lead to the conclusion that the goal
of reducing the average number of function evaluations required by the new mixed-
integer Algorithm 5.3 has been achieved. The total number of function evaluations
has been reduced about 7% compared to the implementation of Algorithm 5.2. The
tests also show that the numerical solution of the mixed-integer quadratic subproblems
is costly. Thus, the approach is recommended in situations where the time spent in
evaluating function values dominates the internal calculation time of the algorithm.

Although the implemented mixed-integer algorithms are extremely efficient and stop
at a feasible solution after very few iterations, in most cases at the optimal solution,
a convergence proof does not exist, even not for convex problems. Future work will
be the extension of the mixed-integer algorithms to be able to prove convergence, at
least for convex problems. A possible extension is already stated in Exler, Lehmann,
and Schittkowski [36], where concepts of outer approximation methods are added to
Algorithm 5.2.

A Program Documentation MISQP

MISQP is an implementation of the trust region SQP algorithms outlined before. MISQP
is coded in FORTRAN. The arising mixed-integer quadratic programming subproblems
are solved by the FORTRAN code MIQL of Lehmann et al. [65]. MIQL applies a branch-and-
cut strategy to solve the mixed-integer quadratic problems. The underlying continuous
quadratic programs are solved by QL, see Schittkowski [105], a FORTRAN code tracing
back to Powell [89]. QL is an implementation of the primal-dual method of Goldfarb
and Idnani [50]. An extended documentation of the one presented here can be found
in Exler et al. [35].

MISQP requires user-provided model functions and gradients. The subroutine MISQP
is called according to the following rules:

1. Choose starting values for the variables to be optimized, and store
them in X, first the continuous, then the binary followed by the integer
variables. Initialize ROPT, IOPT, and LOPT.

2. Compute objective and all constraint function values at X and store
them in F and G, respectively.

3. Compute gradients of objective function and all constraints, and store
them in DF and DG, respectively. The j-th row of DG contains the
gradient of the j-th constraint, j = 1,. . . , m. Only partial derivatives
subject to the continuous variables and the integer variables specified
in IDERIV need to be provided.

4. Set IFAIL=0 and execute MISQP.
5. If MISQP terminates with IFAIL=0, the internal stopping criteria are

satisfied.
6. In case of IFAIL>0, an error occurred.
7. If MISQP returns with IFAIL=–1, compute objective function values

and constraint values for all variables found in X, store them in F and
G, and call MISQP again.

8. If MISQP terminates with IFAIL=–2, compute gradient values subject
to variables stored in X, and store them in DF and DG. Only partial
derivatives subject to the continuous variables and the integer vari-
ables specified in IDERIV need to be provided. Then call MISQP again.

Note that by default derivatives subject to integer variables are approximated by
MISQP internally using one-sided or two-sided differences at neighboring grid points.

151

152 A Program Documentation MISQP

The usage of MISQP and the meaning of the parameters are described below. Default
values, as far as applicable, are set in brackets. The option arrays contain parameters
passed to the subprogram MIQL. They are also presented and highlighted by MIQL.

Usage

The subroutine MISQP can be called by any FORTRAN program by using the following
command.

CALL MISQP(M , ME , MMAX , N , NBIN ,
/ NINT , X , F , G , DF ,
/ DG , XL , XU , ACC , MAXIT ,
/ MAXCUT , MAXNDE , IPRINT , IOUT , IFAIL ,
/ IDERIV , ROPT , IOPT , LOPT , RW ,
/ LRW , IW , LIW , LW , LLW)

Parameter Definition

M Input parameter defining the total number of constraints.
ME Input parameter defining the number of equality constraints.
MMAX Row dimension of array DG containing Jacobian of constraints. MMAX

must be at least one and greater or equal to M.
N Input parameter defining the total number of optimization variables,

continuous, binary and integer ones.
NBIN Input parameter defining the number of binary optimization vari-

ables, must be less than or equal to N.
NINT Input parameter for the number of non-binary integer variables, must

be less than or equal to N.
X(N) Input and output vector containing starting point at first call. On

return, X is replaced by the current iterate. The first N-NBIN-NINT
positions are assigned to continuous variables, the subsequent NBIN
coefficients to binary variables, and the remaining NINT positions to
non-boolean integer variables.

F Input parameter containing the objective function value at the cur-
rent iterate X.

G(MMAX) Input vector containing the values of the constraints at the cur-
rent iterate X, first ME equality constraints, then M-ME inequality
constraints.

DF(N) Input vector containing the values of the gradient of the objective
function at the current iterate X. It is sufficient to determine the
gradients subject to the continuous variables and variables specified
in IDERIV. See also description of IDERIV below.

153

DG(MMAX,N) Input matrix containing the values of the Jacobian of the constraints
at the current iterate X, first for the ME equality constraints, then for
M-ME inequality constraints. In the driving program, the row dimen-
sion of DG must be equal to MMAX. It is sufficient to determine the
gradients subject to the continuous variables and variables specified
in IDERIV. See also description of IDERIV below.

XL(N),
XU(N)

On input, the one-dimensional arrays XL and XU must contain the
upper and lower bounds of the variables, first for the continuous,
then for the binary and subsequently for the integer variables.

ACC Input parameter defining the tolerance for detecting integer values
and for termination. If ACC is less than machine precision, then ACC
is internally set to machine precision multiplied by 1,000 (1.0E-6).

MAXIT Maximum number of iterations (100).
MAXCUT To enable cut generation of the QP solver, row dimension MMAX is

enlarged internally by MAXCUT (500).
MAXNDE Maximum number of branch-and-bound nodes for solving MIQP

(10,000).
IPRINT Specification of the desired output level:

0 No output of the program.
1 Only a final convergence analysis is given.
2 One line of intermediate results is printed in each iteration.
3 More detailed information is printed for each iteration.
4 In addition, some messages of the QP solver are displayed.

IOUT Integer indicating the desired output unit number, i.e., all write-
statements start with WRITE(IOUT,....

IFAIL The parameter shows the reason for terminating a solution process.
Initially IFAIL must be set to zero. On return IFAIL could contain
the following values:

-2 Compute new gradient values for continuous variables and
variables specified in IDERIV in DF and DG. See description
of DF, DG and IDERIV.

-1 Compute new function values in F and G, see above.
0 Optimality conditions satisfied.
1 Termination after MAXIT iterations.
2 Trust region radius lower than ACCQP.
3 Penalty parameter SIGMA tends to infinity.
4 Termination at infeasible iterate.
5 Termination with zero trust region for integer variables.
6 Length of a working array is too short.
7 False dimensions, e.g., M>MMAX.

154 A Program Documentation MISQP

8 Inconsistent box constraints for an integer variable.
11 The continuous quadratic solver QL could not solve a qua-

dratic program after a maximal number of 40·(N+M) itera-
tions.

12 The termination accuracy is insufficient for the continuous
quadratic solver QL to satisfy the convergence criterion.

13 The continuous quadratic solver QL terminated due to an
internal inconsistency, division by zero.

14 Numerical instabilities prevent successful termination of
continuous quadratic solver QL.

>90 QP solver terminated with an error message IFQL, IFAIL=
IFQL+100.

IDERIV
(NBIN+NINT)

Logical input array specifying integer variables whose derivatives are
provided by the user and stored in DG and DF. Meaning of the value
of IDERIV(I):

.TRUE. Column NCONT+I of DG and position NCONT+I of DF
are set by the user.

.FALSE. Column NCONT+I of DG and position NCONT+I of DF are
set by MISQP by evaluating functions at neighboring
grid points.

Here NCONT=N-NINT-NBIN.
ROPT(60) Double precision option array, to be initialized with -1.0 for default

parameter setting:
◃ MISQP

ROPT(1) Termination tolerance of the QP solver for several tests, e.g., whether
optimality conditions are satisfied or whether a number is considered
as zero or not (ACCQP, 1.0E-12).

ROPT(2) Factor for increasing a penalty parameter, must be greater than one
(RPEN, 10). Ignored in case MFV=0.

ROPT(3) Factor for increasing the internal descent parameter ZETA, see
ROPT(5). ROPT(3) must be less than one (ZETDEC, 0.1). Ignored
in case MFV=0.

ROPT(4) Initial penalty parameter σ0 (SIGMA, 1,000).
ROPT(5) Initial scaling parameter ζ0 (ZETA, 0.05). Ignored in case MFV=0.
ROPT(6) Initial continuous trust region radius ∆c

0 or ∆0, respectively, greater
than zero (TRUSTC, 50).

ROPT(7) Initial integer trust region radius ∆i
0, not less than one (TRUSTI, 50).

155

IOPT(60) Integer option array, to be initialized with -1 for default parameter
setting:

◃ MISQP
IOPT(1) Function values are scaled internally:

1 Subject to their absolute values, if greater than one.
2 As above, but new function values evaluated at lower bounds

of integer variables, starting point not changed.

IOPT(2) Maximum number of successive iterations which are considered for
the non-monotone trust region algorithm, must be less than 100
(NONMON, 10). Ignored in case MFV=0.

IOPT(3) Print level of the subproblem solver MIQL (IPRQP, 2).
IOPT(4) Output for number of gradient evaluations.
IOPT(5) Output for number of function evaluations.
IOPT(6) Maximum number of successive restarts without improving solution.

Setting might lead to better results, but increases the number of
function evaluations (MRS, 2).

IOPT(7) Merit function (MFV):
0 Augmented Lagrangian (only if N=NCONT).
1 L∞-penalty function.
2 Combination of version of 0 and 1.

Default value is 0 if N=NCONT, and 2 otherwise.
◃ MIQL

IOPT(41) Branching rule (IBR, 1):
1 Maximal fractional branching.
2 Minimal fractional branching.

IOPT(42) Node selection strategy (INS, 3):
1 Best of all (large search trees).
2 Best of two (warm starts, less memory for search tree).
3 Depth first (good warm starts, less memory, many QPs

solved).

IOPT(44) Maximal number of successive warm starts, to avoid numerical in-
stabilities (WSTART, 100).

IOPT(45) Calculate improved bounds if best-of-all selection strategy is used
(IMPB, 0).

IOPT(46) Select direction for depth-first according to value of Lagrange func-
tion (DFDIR, 0).

156 A Program Documentation MISQP

IOPT(47) Cholesky decomposition mode (CHOLM, 1):
0 Calculate Cholesky decomposition once and reuse it.
1 Calculate new decomposition if warm start is not activated.

IOPT(48) Control the cutting process (CUT, 0):
0 No cuts.
1 Disjunctive cuts only.
2 Complemented mixed-integer rounding (CMIR) cuts only.
3 Both disjunctive and CMIR cuts.

IOPT(49) Maximal number of cycles for disjunctive cuts (MAXDC, 1).
IOPT(50) Maximal number of cycles for CMIR cuts (MAXCM, 1).
IOPT(51) Primal heuristic mode (PHM, 0):

0 No primal heuristics.
1 Nearest integer.
2 Feasibility pump.

LOPT(60) Logical option array, to be initialized with .TRUE. for default para-
meter setting:

◃ MISQP
LOPT(2) Internal scaling of continuous variables (SCALE, .TRUE.).
LOPT(3) Activates modification of Hessian approximation to get more accu-

rate search directions. Calculation time is increased in case of a large
number of integer variables (BMOD, .TRUE.).

◃ MIQL
LOPT(44) Transformation of MIQP to positive orthant (LPOS).

RW(LRW) Real working array of length LRW.
LRW Input parameter defining the length of RW, must be at least

7·N·N/2 + MMAX0·N + 102·N + 37·MMAX0 + 3·MAXNDE + 3·M·M/2
+ 4·M·N + 500,
where MMAX0=M+ME+MAX(NINT+NBIN,MAXCUT)+20.

IW(LIW) Integer working array of length LIW.
LIW Input parameter defining the length of IW, must be at least

14·N + 5·MMAX0 + 6·MAXNDE + 150.
LW(LLW) Logical working array of length LLW.
LLW Input parameter defining the length of LW, must be at least

4·N + MMAX0 + 150.

B Priority Theory

The priority theory traces back to Saaty [96]. The idea was applied by Lootsma [70]
in connection with comparing optimization software. Schittkowski [98] and Hock and
Schittkowski [62] also used the methodology to compare the performance of optimiza-
tion codes. The basic idea of the priority theory is summarized in the following.

It is assumed that N codes Ci, i = 1,. . . , N , are compared on a set of M test
problems TPj, j = 1, . . . , M . Let Si denote the set of test problems that are solved
successfully by code Ci, i = 1, . . . , N , i.e.,

Si := {j | TPj can be solved successfully by Ci, 1 ≤ j ≤ M} . (B.1)

The N codes are compared pairwise with respect to a chosen performance criterion,
e.g., calculation time or number of function evaluations. Let tij be the relevant result
obtained by code Ci on test problem TPj, tij > 0. Then a reciprocal matrix

R := (rik)i,k=1,...,N (B.2)

is defined, where the elements of R are calculated by

rik :=

∑
j∈Si∩Sk

tij∑
j∈Si∩Sk

tkj
, (B.3)

for i, k = 1, . . . , N . Note that only test problems TPj are considered which are solved
successfully by both codes Ci and Ck, i.e., j ∈ Si ∩ Sk. For all elements of R the
condition

rik = r−1
ki > 0 (B.4)

holds. Matrix R is considered to be an approximation to the matrix

P :=
(
wi
wk

)
i,k=1,...,N

, (B.5)

where the entries w1, . . . , wN are the true mean values of the stochastic variables that
are considered, i.e., the expectation value of the performance criterion for code Ci. For
simplicity, it is assumed that

N∑
i=1

wi = 1

and w := (w1, . . . , wN)T . Then P is a rank-one matrix with

Pw = Nw , (B.6)

157

158 B Priority Theory

code TP1 TP2 TP3 TP4 TP5 mean
C1 – 5.2 1.3 4.0 7.0 4.4
C2 0.3 – 1.5 – 8.2 3.3
C3 3.0 11.2 – – 12.2 8.8

Table B.1: Example of Calculation Times for 5 Test Problems and 3 Codes

i.e., N is the only positive eigenvalue of P and w is the uniquely determined normalized
eigenvector with positive elements.

According to a theorem of Perron-Frobenius, see for example Bellman [4], the largest
eigenvalue of R is real and positive, and there exists a uniquely determined eigenvector
with positive elements.

Since it is assumed that matrix R approximates P , the performance evaluation
consists of the following steps. First, the matrix R is calculated, see (B.3) and (B.2).
Then the maximum eigenvalue of R with positive eigenvector w is computed, where
w is considered to be a suitable approximation to w, cf. (B.6). In the end, the entries
of the eigenvector are scaled so that the smallest coefficient becomes one. Thus, a
performance value of one corresponds to the best code with respect to the criterion
under consideration.

An example is given to explain the performance evaluation, see also Exler et al. [36].
Some results obtained by a fictitious test run are shown in Table B.1, where ’–’ indicates
that the code cannot solve the corresponding test problem successfully. The mean
values of calculation times shown in Table B.1 are taken over all successful test runs.

Applying the priority theory as described above leads to the matrix

R =

 1.0 0.86 0.52
1.17 1.0 0.56
1.92 1.79 1.0

 ,

and the eigenvector corresponding to the largest eigenvalue of R is

w = (1.0, 1.1, 2.0)T .

The resulting w can be interpreted as follows. C1 is slightly faster than C2, whereas
C3 is about two times slower than C1 and, approximately, also twice slower than C2.
Taking the mean values given in Table B.1 leads to a different conclusion. The results
obtained by priority theory can be seen as more meaningful, since simple mean values
over successful test runs might penalize the more robust codes. A robust code that
solves difficult and time consuming problems might be handicapped in case mean
values are taken as performance criterion.

Bibliography

[1] Antelo, L.T., Exler, O., Banga, J.R., and Alonso, A.A. (2008): Optimal tuning
of thermodynamic-based decentralized PI control loops: Application to the Ten-
nessee Eastman Process. AIChE Journal, 54(11):2904–2924.

[2] Armijo, L. (1966): Minimization of functions having Lipschitz continuous first
partial derivatives. Pacific Journal of Mathematics, 16:1–3.

[3] Audet, C. and Dennis, J.E. (2001): Pattern search algorithm for mixed variable
programming. SIAM Journal on Optimization, 11:573–594.

[4] Bellman, R.E. (1997): Introduction to Matrix Analysis, Classics in Applied Math-
ematics, vol. 19. SIAM, Philadelphia, 2nd edn.

[5] Belotti, P. (2009): Couenne: a user’s manual. Technical Report, Department of
Mathematical Sciences, Clemson University, Clemson.

[6] Belotti, P., Lee, J., Liberti, L., Margot, F., and Wächter, A. (2009): Branching
and bounds tightening techniques for non-convex MINLP. Optimization Methods
and Software, 24(4-5):597–634.

[7] Boggs, P.T. and Tolle, J.W. (1995): Sequential Quadratic Programming. Acta
Numerica, 4:1–51.

[8] Boggs, P.T., Tolle, J.W., and Wang, P. (1982): On the local convergence of quasi-
Newton methods for constrained optimization. SIAM Journal on Control and
Optimization, 20:161–171.

[9] Bonami, P., Biegler, L.T., Conn, A.R., Cornuéjols, G., Grossmann, I.E., Laird,
C.D., Lee, J., Lodi, A., Margot, F., Sawaya, N., and Wächter, A. (2005): An
algorithmic framework for convex mixed integer nonlinear programs. Technical
Report RC23771, IBM Research Division, Pittsburgh.

[10] Bonami, P., Kilinc, M., and Linderoth, J.T. (2009): Algorithms and software
for convex mixed-integer nonlinear programs. Technical Report 1664, Computer
Science Department, University of Wisconsin, Madison.

[11] Borchers, B. and Mitchell, J.E. (1994): An improved branch and bound algorithm
for mixed integer nonlinear programming. Computers and Operations Research,
21(4):359–367.

[12] Bünner, M.J., Schittkowski, K., and van de Braak, G. (2004): Optimal design
of electronic components by mixed-integer nonlinear programming. Optimization
and Engineering, 5:271–294.

[13] Bussieck, M., Drud, A.S., and Meeraus, A. (2007): MINLPLib - A collection of
test models for mixed-integer nonlinear programming. Technical Report, GAMS
Development Corp., Washington D.C.

159

160 Bibliography

[14] Bussieck, M. and Vigerske, S. (2010): MINLP solver software. In: J.J. Cochran,
L.A. Cox, P. Keskinocak, J.P. Kharoufeh, and J.C. Smith (eds.), Wiley Ency-
clopedia of Operations Research and Management Science. John Wiley & Sons,
Hoboken.

[15] Byrd, R.H., Gilbert, J.C., and Nocedal, J. (2000): A trust region method based
on interior point techniques for nonlinear programming. Mathematical Program-
ming, 89:149–185.

[16] Byrd, R.H., Schnabel, R.B., and Shultz, G.A. (1987): A trust region algorithm
for nonlinearly constrained optimization. SIAM Journal on Numerical Analysis,
24:1152–1170.

[17] Celis, M., Dennis, J.E., and Tapia, R.A. (1985): A trust region algorithm for
nonlinear equality constrained optimization. In: P.T. Boggs, R.H. Byrd, and
R.B. Schnabel (eds.), Numerical optimization 1984, 71–82. SIAM, Philadelphia.

[18] Chamberlain, R., Lemarechal, C., Pedersen, H., and Powell, M.J.D. (1982): The
watchdog technique for forcing convergence in algorithms for constrained opti-
mization. Mathematical Programming Study, 16:1–17.

[19] Chen, Z. and Zhang, X. (2004): A nonmonotone trust-region algorithm with
nonmonotone penalty parameters for constrained optimization. Journal of Com-
putational and Applied Mathematics, 172:7–39.

[20] Coleman, T.F. and Li, Y. (2000): A trust region and affine scaling interior point
method for nonconvex minimization with linear inequality constraints. Mathe-
maticl Programming, 88:1–31.

[21] Conn, A.R., Gould, N.I.M., and Toint, P.L. (2000): Trust-Region Methods. MPS-
SIAM series on optimization. SIAM, Philadelphia.

[22] Deng, N.Y., Xiao, Y., and Zhou, F.J. (1993): Nonmonotonic trust region algo-
rithm. Journal of Optimization Theory and Applications, 76(2):259–285.

[23] Dennis, J.E. (1978): A brief introduction to quasi-Newton methods. In: G.H.
Golub and J. Oliger (eds.), Numerical Analysis, 19–52. American Mathematical
Society, Providence.

[24] Dennis, J.E., El-Alem, M., and Maciel, M.C. (1997): A global convergence theory
for general trust-region-based algorithms for equality constrained optimization.
SIAM Journal on Optimization, 7(1):177–207.

[25] Dennis, J.E., Heinkenschloss, M., and Vicente, L. (1998): Trust-region interior-
point SQP algorithms for a class of nonlinear programming problems. SIAM
Journal on Control and Optimization, 36:1750–1794.

Bibliography 161

[26] Dennis, J.E. and Schnabel, R.B. (1996): Numerical methods for unconstrained
optimization and nonlinear equations, Classics in Applied Mathematics, vol. 16.
SIAM, Philadelphia.

[27] Dolan, E.D. and Moré, J.J. (2002): Benchmarking optimization software with
performance profiles. Mathematical Programming, 91(2):201–213.

[28] Duran, M.A. and Grossmann, I.E. (1986): An outer-approximation algorithm
for a class of mixed-integer nonlinear programs. Mathematical Programming,
36:307–339.

[29] Edgar, T.F., Himmelblau, D.M., and Lasdon, L.S. (2001): Optimization of Chem-
ical Processes. Chemical engineering series. McGraw-Hill, Boston, 2nd edn.

[30] El-Alem, M. (1988): A global convergence theory for a class of trust region algo-
rithms for constrained optimization. Ph.D. thesis, Rice University, Houston.

[31] El-Alem, M. (1991): A global convergence theory for the Celis-Dennis-Tapia
Trust Region Algorithm for Constrained Optimization. SIAM Journal on Nu-
merical Analysis, 28(1):266–290.

[32] El-Alem, M. and El-Sobky, B. (1997): A new trust-region algorithm for general
nonlinear programming. Technical Report TR97-25, Department of Mathemat-
ics, Faculty of Science, Alexandria University, Alexandria.

[33] Exler, O. (2004): Gemischt-ganzzahlige nichtlineare Programmierung mit SQP-
Trust-Region-Verfahren. Diplomarbeit, Mathematisches Institut, Universität
Bayreuth.

[34] Exler, O., Antelo, L.T., Egea, J.A., Alonso, A.A., and Banga, J.R. (2008): A
Tabu search-based algorithm for mixed-integer nonlinear problems and its appli-
cation to integrated process and control system design. Computers and Chemical
Engineering, 32(8):1877–1891.

[35] Exler, O., Lehmann, T., and Schittkowski, K. (2011): MISQP: A Fortran subrou-
tine of a trust region SQP algorithm for mixed-integer nonlinear programming -
user’s guide. Technical Report, Department of Computer Science, University of
Bayreuth, Bayreuth.

[36] Exler, O., Lehmann, T., and Schittkowski, K. (2012): A comparative study of
SQP-type algorithms for nonlinear and nonconvex mixed-integer optimization.
Mathematical Programming Computation, 4(4):383–412.

[37] Exler, O. and Schittkowski, K. (2007): A trust region SQP algorithm for mixed-
integer nonlinear programming. Optimization Letters, 1(3):269–280.

162 Bibliography

[38] Fletcher, R. (1982): A model algorithm for composite non-differentiable optimi-
zation problems. Mathematical Programming, 17:67–76.

[39] Fletcher, R. (1982): Second order corrections for non-differentiable optimization.
In: G.A. Watson (ed.), Numerical Analysis, Lecture notes in mathematics, vol.
912, 85–115. Springer, Berlin.

[40] Fletcher, R. (2000): Practical Methods of Optimization. John Wiley & Sons,
Chichester, 2nd edn.

[41] Fletcher, R. and Leyffer, S. (1994): Solving mixed integer nonlinear programs by
outer approximation. Mathematical Programming, 66(1-3):327–349.

[42] Fletcher, R. and Leyffer, S. (2002): Nonlinear programming without a penalty
function. Mathematical Programming, 91:239–269.

[43] Fletcher, R., Leyffer, S., and Toint, P.L. (2002): On the global convergence of a
filter-SQP algorithm. SIAM Journal on Optimization, 13(1):44–59.

[44] Floudas, C.A. (1995): Nonlinear and Mixed-Integer Optimization: Fundamentals
and Applications. Topics in chemical engineering. Oxford University Press, New
York.

[45] Fukushima, M. (1986): A successive quadratic programming algorithm with global
and superlinear convergence properties. Mathematical Programming, 35:253–
264.

[46] Gauvin, J. (1977): A necessary and sufficient regularity condition to have
bounded multipliers in nonconvex programming. Mathematical Programming,
12:136–138.

[47] Geiger, C. and Kanzow, C. (2002): Theorie und Numerik restringierter Opti-
mierungsaufgaben. Springer, Berlin.

[48] Gill, P.E., Murray, W., Saunders, M.A., and Wright, M.H. (1986): Some theo-
retical properties of an augmented Lagrangian merit function. Technical Report
SOL 86-6, Department of Operations Research, Stanford University, Stanford.

[49] Gill, P.E., Murray, W., and Wright, M.H. (1981): Practical Optimization. Aca-
demic Press, London.

[50] Goldfarb, D. and Idnani, A. (1983): A numerically stable dual method for solving
strictly convex quadratic programs. Mathematical Programming, 27(1):1–33.

[51] Goldfeldt, S.M., Quandt, R.E., and Trotter, H.F. (1966): Maximization by qua-
dratic hill-climbing. Econometrica, 34:541–551.

Bibliography 163

[52] Gould, N.I.M. and Toint, P. (2000): SQP methods for large-scale nonlinear pro-
gramming. In: M.J.D. Powell and S. Scholtes (eds.), System Modelling and Opti-
mization, IFIP / International Federation for Information Processing, 149–178.
Kluwer Academic Publishers, Boston.

[53] Gould, N.I.M. and Toint, P.L. (2006): Global convergence of a non-monotone
trust region filter algorithm for nonlinear programming. In: W. Hager, S. Huang,
P. Pardalos, and O. Prokopyev (eds.), Multiscale Optimization Methods and Ap-
plications, 125–150. Springer, New York.

[54] Griffith, R.E. and Stewart, R.A. (1961): A nonlinear programming technique for
the optimization of continuous processing systems. Management Science, 7:379–
392.

[55] Grippo, L., Lampariello, F., and Lucidi, S. (1986): A nonmonotone line search
technique for Newtons’s method. SIAM Journal on Numerical Analysis, 23:707–
716.

[56] Grossmann, I.E. and Kravanja, Z. (1997): Mixed-integer nonlinear programming:
A survey of algorithms and applications. In: L.T. Biegler, T.F. Coleman, A.R.
Conn, and F.N. Santosa (eds.), Large-scale Optimization with Applications, The
IMA volumes in mathematics and its applications, vol. 93, 73–100. Springer, New
York.

[57] Gupta, O.K. and Ravindran, V. (1985): Branch and bound experiments in convex
nonlinear integer programming. Management Science, 31:1533–1546.

[58] Han, S.P. (1976): Superlinearly convergent variable metric algorithms for general
nonlinear programming problems. Mathematical Programming, 11:263–282.

[59] Han, S.P. (1977): A globally convergent method for nonlinear programming. Jour-
nal of Optimization Theory and Applications, 22(3):297–309.

[60] Hartwanger, C., Schittkowski, K., and Wolf, H. (2000): Computer aided design
of horn radiators for satellite communication by least squares optimization. En-
gineering Optimization, 33(2):221–244.

[61] Hock, W. and Schittkowski, K. (1981): Test examples for nonlinear programming
codes, Lecture notes in economics and mathematical systems, vol. 187. Springer,
Berlin.

[62] Hock, W. and Schittkowski, K. (1983): A comparative performance evaluation of
27 nonlinear programming codes. Computing, 30(4):335–358.

[63] Jiang, H., Fukushima, M., Qi, L., and Sun, D. (1998): A trust region method for
solving generalized complementarity problems. SIAM Journal on Optimization,
8(1):140–157.

164 Bibliography

[64] Kanzow, C. and Zupke, M. (1999): Inexact trust-region methods for nonlinear
complementarity problems. In: M. Fukushima and L. Qi (eds.), Reformulation
- Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods, 211–233.
Kluwer Academic Publishers, Dordrecht.

[65] Lehmann, T., Schittkowski, K., and Spickenreuther, T. (2009): MIQL: A Fortran
subroutine for convex mixed-integer quadratic programming by branch-and-bound
- user’s guide. Technical Report, Department of Computer Science, University
of Bayreuth, Bayreuth.

[66] Levenberg, K. (1944): A method for the solution of certain problems in least
squares. Quarterly Journal on Applied Mathematics, 2:164–168.

[67] Leyffer, S. (1993): Deterministic Methods for Mixed Integer Nonlinear Program-
ming. Ph.D. thesis, University of Dundee, Dundee, Scotland, UK.

[68] Leyffer, S. (2001): Integrating SQP and branch-and-bound for mixed integer non-
linear programming. Computational Optimization and Application, 18:295–309.

[69] Li, H.L. and Chou, C.T. (1994): A global approach for nonlinear mixed discrete
programming in design optimization. Engineering Optimization, 22:109–122.

[70] Lootsma, F.A. (1982): Performance evaluation of nonlinear optimization meth-
ods via multi-criteria analysis and via linear model analysis. In: M.J.D. Powell
(ed.), Nonlinear Optimization, vol. 82, 419–453. Academic Press, London.

[71] Maratos, N. (1978): Exact Penalty Function Algorithms for Finite Dimensional
and Control Optimization Problems. Ph.D. thesis, Imperial College, London.

[72] Marquardt, D. (1963): An algorithm for least-squares estimation of nonlinear
parameters. SIAM Journal on Applied Mathematics, 11:431–441.

[73] Mayne, D. and Polak, E. (1982): A superlinearly convergent algorithm for con-
strained optimization problems. Mathematical Programming Study, 16:45–61.

[74] Moré, J.J. (1983): Recent developments in algorithms and software for trust re-
gion methods. In: A. Bachem, M. Grötschel, and B. Korte (eds.), Mathematical
Programming: The State of the Art, 258–287. Springer, Berlin.

[75] Morrison, D.D. (1960): Methods for nonlinear least squares problems and con-
vergence proofs. In: J. Lorell and F. Yagi (eds.), Proceedings of the Seminar on
Tracking Programs and Orbit Determination, 1–9. Jet Propulsion Laboratory,
Pasadena.

[76] Niu, L. and Yuan, Y. (2010): A new trust-region algorithm for nonlinear con-
strained optimization. Journal of Computational Mathematics, 28(1):72–86.

Bibliography 165

[77] Nocedal, J. and Wright, S.J. (1999): Numerical optimization. Springer Series in
Operations Research. Springer, New York.

[78] Nowak, I. (2005): Relaxation and Decomposition Methods for Mixed Integer Non-
linear Programming, International Series of Numerical Mathematics, vol. 152.
Birkhäuser, Basel.

[79] Nowak, I., Alperin, H., and Vigerske, S. (2003): LaGO – An object oriented
library for solving MINLPs. In: C. Bliek, C. Jermann, and A. Neumaier (eds.),
Global Optimization and Constraint Satisfaction, Lecture Notes in Computer
Science, vol. 2861, 32–42. Springer, Berlin.

[80] Omojokun, E.O. (1989): Trust Region Algorithms for Optimization with Nonlin-
ear Equality and Inequality Constraints. Ph.D. thesis, University of Colorado,
Boulder.

[81] Ortega, J.M. and Rheinboldt, W.C. (1970): Iterative Solution of Nonlinear Equa-
tions in Several Variables. Academic Press, New York.

[82] Papalambros, P.Y. and Wilde, D.J. (2000): Principles of Optimal Design: Mod-
eling and Computation. Cambridge Univ. Press, Cambridge, 2nd edn.

[83] Powell, M.J.D. (1970): A Fortran subroutine for solving systems of nonlinear
algebraic equations. In: P. Rabinowitz (ed.), Numerical Methods for Nonlinear
Algebraic Equations, 115–161. Gordon and Breach, London.

[84] Powell, M.J.D. (1970): A hybrid method for nonlinear equations. In: P. Ra-
binowitz (ed.), Numerical Methods for Nonlinear Algebraic Equations, 87–114.
Gordon and Breach, London.

[85] Powell, M.J.D. (1970): A new algorithm for unconstrained optimization. In: J.B.
Rosen, O.L. Mangasarian, and K. Ritter (eds.), Nonlinear Programming, 31–65.
Academic Press, London.

[86] Powell, M.J.D. (1978): A fast algorithm for nonlinearly constrained optimization
calculations. In: G.A. Watson (ed.), Lecture Notes in Mathematics, 144–157.
Springer, Berlin.

[87] Powell, M.J.D. (1983): On the quadratic programming algorithm of Goldfarb
and Idnani. Technical Report DAMTP/1983/NA19, University of Cambridge,
Cambridge.

[88] Powell, M.J.D. (1983): Variable metric methods for constrained optimization. In:
Bachem A., M. Grötschel, and B. Korte (eds.), Mathematical Programming: The
State of the Art, 288–311. Springer, Berlin.

166 Bibliography

[89] Powell, M.J.D. (1983): ZQPCVX, A Fortran subroutine for convex quadratic
programming. Technical Report DAMTP/1983/NA17, University of Cambridge,
Cambridge.

[90] Powell, M.J.D. (1984): On the global convergence of trust region algorithms for
unconstrained minimization. Mathematical Programming, 29(3):297–303.

[91] Powell, M.J.D. (1986): Convergence properties of algorithms for nonlinear opti-
mization. SIAM Review, 28(4):487–500.

[92] Powell, M.J.D. and Yuan, Y. (1986): A recursive quadratic programming algo-
rithm that uses differentiable exact penalty functions. Mathematical Program-
ming, 35:265–278.

[93] Powell, M.J.D. and Yuan, Y. (1991): A trust region algorithm for equality con-
strained optimization. Mathematical Programming, 49:189–211.

[94] Rockafellar, R.T. (1973): The multiplier method of Hestenes and Powell ap-
plied to convex programming. Journal of Optimization Theory and Applications,
12:555–562.

[95] Rockafellar, R.T. (1974): Augmented Lagrangian multiplier functions and duality
in nonconvex programming. SIAM Journal of Control, 12:268–285.

[96] Saaty, T.L. (1977): A scaling method for priorities in hierarchical structures.
Journal of Mathematical Psychology, 15:234–281.

[97] Sahinidis, N. and Tawarmalani, M. (2010). Baron 9.0.4: Global optimi-
zation of mixed-integer nonlinear programs, user’s manual. Available at
http://www.gams.com/dd/docs/solvers/baron.pdf.

[98] Schittkowski, K. (1980): Nonlinear Programming Codes: Information, Tests,
Performance, Lecture notes in economics and mathematical systems, vol. 183.
Springer, Berlin.

[99] Schittkowski, K. (1981): The nonlinear programming method of Wilson, Han,
and Powell with an augmented lagrangian type line search function - Part 1:
Convergence analysis. Numerische Mathematik, 38:83–114.

[100] Schittkowski, K. (1983): On the convergence of a sequential quadratic program-
ming method with an augmented Lagrangian search direction. Optimization,
14:197–216.

[101] Schittkowski, K. (1986): NLPQL: A Fortran subroutine solving constrained non-
linear programming problems. Annals of Operations Research, 5(2):485–500.

Bibliography 167

[102] Schittkowski, K. (1987): More test examples for nonlinear programming codes,
Lecture notes in economics and mathematical systems, vol. 282. Springer, Berlin.

[103] Schittkowski, K. (1999): Mathematische Grundlagen von Optimierungsverfahren.
Technical Report, Department of Mathematics, University of Bayreuth, Bay-
reuth.

[104] Schittkowski, K. (2010): NLPQLP: A Fortran implementation of a sequential
quadratic programming algorithm with distributed and non-monotone line search
- user’s guide, version 3.1. Technical Report, Department of Computer Science,
University of Bayreuth, Bayreuth.

[105] Schittkowski, K. (2010): QL: A Fortran code for convex quadratic programming
- user’s guide, version 3.0. Technical Report, Department of Computer Science,
University of Bayreuth, Bayreuth.

[106] Schittkowski, K. (2011): A collection of 175 test problems for nonlinear mixed-
integer programming in Fortran - user’s guide. Technical Report, Department
of Computer Science, University of Bayreuth, Bayreuth.

[107] Schittkowski, K. and Yuan, Y. (2010): Sequential quadratic programming meth-
ods. In: J.J. Cochran, L.A. Cox, P. Keskinocak, J.P. Kharoufeh, and J.C. Smith
(eds.), Wiley Encyclopedia of Operations Research and Management Science.
John Wiley & Sons, Hoboken.

[108] Sendín, J.O.H., Exler, O., and Banga, J.R. (2010): Multi-objective mixed inte-
ger strategy for the optimisation of biological networks. IET Systems Biology,
4(3):236–248.

[109] Sorensen, D.C. (1982): Newton’s method with a model trust region modification.
SIAM Journal on Numerical Analysis, 19(2):409–426.

[110] Spellucci, P. (1993): Numerische Verfahren der nichtlinearen Optimierung. In-
ternationale Schriftenreihe zur numerischen Mathematik Lehrbuch. Birkhäuser,
Basel.

[111] Spellucci, P. (1998): A new technique for inconsistent QP problems in the SQP
method. Mathematical Methods of Operations Research, 47:355–400.

[112] Stoer, J. (1985): Foundations of recursive quadratic programming methods for
solving nonlinear programs. In: K. Schittkowski (ed.), Computational Mathe-
matical Programming, NATO ASI Series, Series F, Computer and Systems Sci-
ences, vol. 15, 165–208. Springer, Berlin.

[113] Sun, W. and Yuan, Y. (2006): Optimization Theory and Methods: Nonlinear
Programming. Springer, Boston.

168 Bibliography

[114] Tawarmalani, M. and Sahinidis, N. (2002): Convexification and global optimiza-
tion in continous and mixed-integer nonlinear programming: Theory, algorithms,
software, and applications, Nonconvex optimization and its applications, vol. 65.
Kluwer Academic Publishers, Dordrecht.

[115] Tawarmalani, M. and Sahinidis, N. (2004): Global optimization of mixed-integer
nonlinear programs: A theoretical and computational study. Mathematical Pro-
gramming, Series A, 99:563–591.

[116] Tawarmalani, M. and Sahinidis, N. (2005): A polyhedral branch-and-cut approach
to global optimization. Mathematical Programming, 103:225–249.

[117] Thomas, I. and Kröner, A. (2006): Mixed-integer optimization of distillation
column tray positions in industrial practice. In: W. Marquardt and C. Pantelides
(eds.), 16th European Symposium on Computer Aided Process Engineering and
9th International Symposium on Process Systems Engineering, Computer-aided
Chemical Engineering, vol. 21, 1015–1020. Elsevier, Amsterdam.

[118] Toint, P.L. (1981): Towards an efficient sparsity exploiting Newton method for
minimization. In: I.S. Duff (ed.), Sparse Matrices and Their Uses, 57–88. Aca-
demic Press, London.

[119] Toint, P.L. (1996): An assessment of nonmontone line search techniques for un-
constrained optimization. SIAM Journal on Scientific Computing, 17:725–739.

[120] Toint, P.L. (1997): Non-monotone trust-region algorithms for nonlinear optimi-
zation subject to convex constraints. Mathematical Programming, 77:69–94.

[121] Ulbrich, S. (2004): On the superlinear local convergence of a filter-SQP method.
Mathematical Programming, Series B, 100:217–245.

[122] Ulbrich, S. and Ulbrich, M. (2003): Non-monotone trust region methods for non-
linear equality constrained optimization without a penalty function. Mathemati-
cal Programming, Series B, 95:103–135.

[123] Vardi, A. (1985): A trust region algorithm for equality constrained minimiza-
tion: Convergence properties and implementation. SIAM Journal on Numerical
Analysis, 22:575–591.

[124] Viswanathan, J. and Grossmann, I.E. (1990): A combined penalty function and
outer approximation method for MINLP optimization. Computers and Chemical
Engineering, 14:769–782.

[125] Westerlund, T. and Pörn, R. (2002): Solving pseudo-convex mixed integer opti-
mization problems by cutting plane techniques. Optimization and Engineering,
3:253–280.

Bibliography 169

[126] Wilson, R.B. (1963): A simplicial algorithm for concave programming. Ph.D.
thesis, Harvard University, Cambridge.

[127] Winfield, D. (1973): Function minimization by interpolation in a data table.
Journal of the Institute of Mathematics and Its Applications, 12:339–347.

[128] Wolfe, P. (1969): Convergence conditions for ascent methods. SIAM Review,
11:226–235.

[129] Yuan, Y. (1985): On the superlinear convergence of a trust region algorithm for
nonsmooth optimization. Mathematical Programming, 31:269–285.

[130] Yuan, Y. (1995): On the convergence of a new trust region algorithm. Numerische
Mathematik, 70:515–539.

[131] Yuan, Y. (2000): A review of trust region algorithms for optimization. In: J.M.
Ball and J.C.R. Hunt (eds.), ICM99: Proceedings of the Fourth International
Congress on Industrial and Applied Mathematics, 271–282. Oxford University
Press, Oxford.

Danksagung

Mein herzlicher Dank gilt Herrn Prof. Dr. Klaus Schittkowski für die gute langjährige
Zusammenarbeit und Unterstützung. Viele hilfreiche Hinweise haben zur Entstehung
dieser Arbeit beigetragen. Außerdem bedanke ich mich bei Herrn Prof. Dr. Hans Josef
Pesch und Herrn Prof. Dr. Michael Ulbrich dafür, dass sie sich als Gutachter zur
Verfügung gestellt haben.

Mein Dank gilt auch meinen ehemaligen Kollegen bei der Angewandten Informatik
VII der Universität Bayreuth, meiner Familie und meinen Freunden, mit deren Hilfe
so manche Hürde aus dem Weg geräumt wurde. Insbesondere bedanke ich mich bei
Kathrin für ihre Unterstützung und ihre unendliche Geduld.

Oliver Exler
Nürnberg, im Dezember 2013

171

