
Noname manuscript No.
(will be inserted by the editor)

A Feasible Method for Optimization with Orthogonality Constraints

Zaiwen Wen · Wotao Yin

Received: date / Accepted: date

Abstract Minimization with orthogonality constraints (e.g., X>X = I) and/or spherical constraints (e.g.,

‖x‖2 = 1) has wide applications in polynomial optimization, combinatorial optimization, eigenvalue problems,

sparse PCA, p-harmonic flows, 1-bit compressive sensing, matrix rank minimization, etc. These problems are

difficult because the constraints are not only non-convex but numerically expensive to preserve during iterations.

To deal with these difficulties, we apply the Cayley transform — a Crank-Nicolson-like update scheme — to

preserve the constraints and based on it, develop curvilinear search algorithms with lower flops compared to

those based on projections and geodesics. The efficiency of the proposed algorithms is demonstrated on a variety

of test problems. In particular, for the maxcut problem, it exactly solves a decomposition formulation for the

SDP relaxation. For polynomial optimization, nearest correlation matrix estimation and extreme eigenvalue

problems, the proposed algorithms run very fast and return solutions no worse than those from their state-

of-the-art algorithms. For the quadratic assignment problem, a gap 0.842% to the best known solution on the

largest problem “tai256c” in QAPLIB can be reached in 5 minutes on a typical laptop.

Keywords Orthogonality constraint · spherical constraint · Stiefel manifold · Cayley transformation ·

curvilinear search · polynomial optimization · maxcut SDP · nearest correlation matrix · eigenvalue and

eigenvector · invariant subspace · quadratic assignment problem

Mathematics Subject Classification (2010) 49Q99 · 65K05 · 90C22 · 90C26 · 90C27 · 90C30

The work of Z. Wen was supported in part by NSF DMS-0439872 through UCLA IPAM. The work of W. Yin was supported

in part by NSF grants DMS-07-48839 and ECCS-10-28790, and ONR Grant N00014-08-1-1101.

Zaiwen Wen

Department of Mathematics and Institute of Natural Sciences, Shanghai Jiaotong University, China

E-mail: zw2109@sjtu.edu.cn

Wotao Yin

Department of Computational and Applied Mathematics, Rice University, Texas, 77005, U.S.A.

E-mail: wotao.yin@rice.edu

2 Zaiwen Wen, Wotao Yin

1 Introduction

Matrix orthogonality constraints play an important role in many applications of science and engineering. In

this paper, we consider optimization with orthogonality constraints:

min
X∈Rn×p

F(X), s.t. X>X = I, (1)

where I is the identity matrix and F(X) : Rn×p → R is a differentiable function. The feasible set Mp
n :=

{X ∈ Rn×p : X>X = I} is often referred to as the Stiefel manifold, which reduces to the unit-sphere manifold

Spn−1 := {x ∈ Rn : ‖x‖2 = 1} when p = 1. We also consider the generalized orthogonality constraints

X∗MX = K, where X ∈ Cn×p, M ∈ Rn×n is a symmetric positive definite matrix, and K ∈ Cp×p is a

nonsingular Hermitian matrix. The corresponding minimization problem becomes

min
X∈Cn×p

F(X), s.t. X∗MX = K. (2)

When there are more than one such constraint, the problem is written as

min
X1∈Cn1×p1 ,··· ,Xq∈Cnq×pq

F(X1, · · · , Xq), s.t. X∗1M1X1 = K1, . . . , X
∗
qMqXq = Kq, (3)

where Mi and Ki, i = 1, . . . , q, are given positive definite and nonsingular symmetric matrices.

It is generally difficult to solve problems (1), (2) and (3) since the orthogonality constraints can lead to

many local minimizers and, in particular, several of these problems in special forms are NP-hard. There is no

guarantee for obtaining the global minimizer except for a few simple cases (e.g., finding the extreme eigenvalues).

Even generating a sequence of feasible points is not easy since preserving the orthogonality constraints can be

numerically expensive. Most existing constraint–preserving algorithms either use matrix re-orthogonalization

or generate points along geodesics of Mp
n. The former requires matrix factorizations such as the singular value

decompositions (SVDs), and the latter must compute matrix exponentials or solve partial differential equations

(PDEs). In this paper, we develop optimization algorithms based on the Cayley transform for preserving the

constraints. For simplicity of exposition but no fundamental reasons, we present our algorithms and analysis

for the simpler problem (1). The results apply to the more general problems (2) and (3) after trivial changes.

1.1 Constraint-Preserving Update

Given a feasible point X and the gradient G := DF(X) =
(
∂F(X)
∂Xi,j

)
, we define a skew-symmetric matrix A as

either

A := GX> −XG> or (4)

A := (PXG)X> −X(PXG)>, where PX := (I − 1

2
XX>). (5)

The new trial point is determined by the Crank-Nicolson-like scheme

Y (τ) = X − τ

2
A (X + Y (τ)) , (6)

A Feasible Method for Optimization with Orthogonality Constraints 3

where Y (τ) is given in the closed form:

Y (τ) = QX and Q := (I +
τ

2
A)−1(I − τ

2
A). (7)

Known as the Cayley transformation, Q leads to several nice properties: the curve Y (τ) is smooth in τ , Y (0) = X,

and most importantly (Y (τ))>Y (τ) = X>X for all τ ∈ R. Moreover, d
dτ Y (0) equals the projection of (−G) into

the tangent space of Mp
n at X (the two different definitions of A in (4) and (5) correspond to two different

metrics of the tangent space); hence {Y (τ)}τ≥0 is a descent path. Similar to line search along a straight line,

curvilinear search can be applied to finding a proper step size τ and guaranteeing the iterations to converge to

a stationary point.

Formulation (7) requires inverting (I + τ
2A) in order to preserve the orthogonality constraints. It is often

numerically cheaper than computing SVDs or geodesics. When p = 1, the inverse (I+ τ
2A)−1 (and thus Y (τ)) is

given in a closed form with a few vector-vector products. When p is much smaller than n/2 — which is the case

in many applications — A has rank 2p; hence it follows from the Sherman-Morrison-Woodbury (SMW) theorem

that one only needs to invert a smaller 2p × 2p matrix. The total flops for computing Y (τ) is 4np2 + O(p3),

and updating Y (τ) for a different τ needs 2np2 + O(p3) flops. When p is greater than or approximately equal

to n/2, we can either compute (I + τ
2A)−1 directly or apply the SMW theorem recursively. Furthermore,

since orthogonality is preserved by any skew-symmetric matrix A, there exist many different ways to generate

low-rank matrices A and descent curves Y (τ) that are easy to compute.

Preliminary numerical experiments on a wide collection of problems show that the proposed algorithms

have very promising performance. While global minimization cannot be guaranteed, our algorithms run very

fast and often return solutions and objective values no worse than those obtained from specialized solvers for a

variety of problems. Global optimality can be proved for a low-rank decomposition formulation for the maxcut

SDP relaxation. It is worth mentioning that the proposed algorithm returns very good approximate solutions

rapidly for the quadratic assignment problem (QAP), which is rewritten with constraints X>X = I and X ≥ 0.

It took merely 5 minutes on a laptop to reach a gap of 0.842% to the best known solution for the largest

problem “tai256c” in QAPLIB.

1.2 Relationships to Existing Work

1.2.1 Cayley transformation

The update formula (7) is widely known as the Cayley transformation, which has been long used in matrix

computations such as inverse eigenvalue problems [21]. It is also dubbed as the Crank-Nicholson scheme for

solving the heat equation and similar PDEs. Despite its long existence, the formula has not been widely applied

for solving (1) or developed into practical algorithms and codes. Also, it has not been considered to take general

update directions other than those based on the gradients such as (4) and (5).

We developed the update from our previous work on p-harmonic flow (see next subsection) by extending its

update formula to handle matrices. We soon became aware that the update is the Cayley transform. Later, an

4 Zaiwen Wen, Wotao Yin

anonymous referee brought to our attention the work [39] on learning algorithms for neural networks, which also

uses the same update. Compared to existing work, the contributions of this paper include further developing the

update with monotone and non-monotone curvilinear search, efficient implementations especially for the case

p� n, some extensions and generalizations, as well as numerical experiments on a wide collection of problems

with comparisons to their state-of-the-art algorithms.

1.2.2 p-Harmonic Flow

The formulas (4)-(7) can be obtained by extending the authors’ previous work [23] for finding a p-harmonic flow

U(x), which is the minimizer of E(U) :=
∫
Ω
‖∇U(x)‖p2dx subject to the point-wise unit spherical constraints

‖U(x)‖2 = 1 for x ∈ Ω. For U(x) ∈ R3, [23] introduces the formula

Uk+1 = Uk − τ (Uk ×DEk)×
Uk+1 + Uk

2
, (8)

where × is the cross-product operator and DEk := D · (‖DU‖p−2DU) (where D· stands for divergence) is the

Fréchet derivative of E(U) at Uk. It is shown in [23] that ‖Uk+1(x)‖2 = ‖Uk(x)‖2, ∀x ∈ Ω. Since (x× g)× y =

(gx> − xg>)y for vectors x, g, y ∈ R3, we can rewrite the last term in (8) as

τ(Uk ×DEk)×
Uk+1 + Uk

2
=
τ

2
((DEk)(Uk)> − Uk(DEk)>)(Uk+1 + Uk),

which looks nothing but the last term in (6) with A given by (4).

1.2.3 Optimization on Manifolds

The term “optimization on manifolds” is applied to algorithms that preserve manifold constraints during

iterations. Generally speaking, preserving constraints has advantages in many situations, for example, when

the cost functions are undefined or of little use outside the feasible region and when the algorithm is terminated

prior to convergence yet a feasible solution is required. Theories and methods for optimization on manifolds

date back to the 1970s, and algorithms for specific problems, e.g., various eigenvalue problems, appeared even

earlier. Most of the general-purpose algorithms for (1), however, did not appear until the 1990s [2].

While it is trivial to generate trial points in Rn along straight search lines, it is not as easy to do so in the

curved manifold Mp
n. A natural choice is the geodesic, which is the analog of straight line: it has the shortest

length between two points in the manifold. Unfortunately, points on a geodesic ofMp
n are difficult to compute.

As a relaxation of geodesic, retraction [2] smoothly maps a tangent vector to the manifold. Our Y (τ) is a

retraction; see page 59 of [2] for the definition. Specifically, as discussed in subsection 4.1, given any tangent

direction D of the manifold at the current point X, we obtain a curve Y (τ) on the manifold via (15) in which

we set W = PXDX
> − XD>PX (where PX is defined in (5)), and Y (τ) obeys Y ′(0) = −D. The two specific

versions of Y (τ) corresponding to (4) and (5) can be recovered in this way by setting D as the projections

of ∇XF to the tangent space at X under the canonical metric and the Euclidean metric, respectively; see

subsection 4.1. Comparing to other retraction-based methods [1–4,48], the computational cost of ours can be

cheaper under certain cases. It is worth noting that while Y (τ) given by (4) or (5) is generally not a geodesic of

A Feasible Method for Optimization with Orthogonality Constraints 5

Mp
n for p > 2, in the vector case p = 1 it is a geodesic of Spn−1 — the geodesic rooted at X along the tangent

direction (−AX). Also note that in the latter case, τ is not the geodesic length.

There are various optimization methods in Riemannian manifolds that apply to (1)–(3), and most of them

rely on geodesics or projections. The rather simple methods are based on the steepest descent gradient ap-

proach; see, for example, [2,29,53] and references therein. The conjugate gradient method and Quasi-Newton

method have been extended to Riemannian manifolds in [18] and [9,43], respectively. Newton’s methods, such

as those in [2,18,41,50,51,53], use the second-order information of the objective function to achieve super-

linear convergence. Riemannian and implicit Riemannian trust-region methods are proposed in [1,4]. Since the

second-order methods may require some additional computation depending on the form of cost functions, they

can run slower than the simpler algorithms only based on the gradient. It is shown in [2] that under reasonable

conditions, global convergence can be obtained for the steepest descent gradient method, Newton’s methods

and trust-region method in the framework of retractions.

1.2.4 Other Approaches

Problem (1) can also be solved by infeasible approaches such as various penalty, augmented Lagrangian, and

SDP relaxation methods, which typically relax the constraints and penalize their violations and thus generate

infeasible intermediate points. As the focus of this paper is a feasible method, we do not discuss infeasible

methods in this paper.

1.3 Broad Applications

Minimization with respect to an orthogonal matrix X arises in many interesting problems, which can be

widely found in [18,2,31,37,6,12,20,47,57,61,32]. Examples include linear and nonlinear eigenvalue problems,

subspace tracking, low-rank matrix optimization, polynomial optimization, combinatorial optimization, sparse

principal component analysis, electronic structures computations, etc. Let us briefly describe a few applications

below.

1-bit compressive sensing. Compressive sensing (CS) [8] acquires a sparse signal of interest, not by taking

many uniform samples, but rather by measuring a few incoherent linear projections followed by an optimization-

based reconstruction. Instead of measuring the linear projections, 1-bit CS records just the signs of the linear

projections, which can be done at very high speed by a simple comparator. Since there is no magnitude informa-

tion in signs, [33] recovers the angle of the unknown u by minimizing its `1-norm subject to the normalization

constraint ‖u‖2 = 1 using a constraint-preserving algorithm. Likewise, normalization constraints are widely

used on variables that are angles, chromaticity, surface normals, flow directions, etc.

Low-rank matrix optimization. Semidefinite programming (SDP) is a useful tool for modeling many appli-

cations arising in combinatorial optimization, nonconvex quadratic programming, systems and control theory,

statistics, etc. One class of SDP, including examples such as the maxcut SDP relaxation [10] and correlation

matrix estimation [22,49], is to find a low-rank positive semidefinite matrix Y with Yii = 1, i = 1, · · · , n. Since

6 Zaiwen Wen, Wotao Yin

a rank–p matrix Y can be expressed as V >V for V = [V1, . . . , Vn] ∈ Rp×n, the original problem over Y can

be transformed into one over V subject to spherical constraints ‖Vi‖2 = 1, i = 1, . . . , n. This transform is also

useful for solving SDP relaxations for binary integer programs.

Eigenvalue problems and subspace tracking. To compute p largest eigenvalues of a symmetric n-by-n matrix A,

one can maximize tr(X>AX) with respect to X ∈ Rn×p satisfying X>X = I. The solution X spans the same

subspace as does the p eigenvectors associated with the p largest eigenvalues. To solve the generalized eigenvalue

problem Ax = λBx, one can maximize tr(X>AX) subject to X>BX = I. Computing the principle invariant

subspace of a symmetric or Hermitian matrix arises in adaptive filtering, direction finding, and other signal

processing problems [46,59]. For example, in a time-varying interference scenario (e.g., for airborne surveillance

radar [56]), one computes the principal invariant subspace of Xk = Xk−1 + xkx
>
k at discrete times k. Since the

new solution is close to the previous one, an optimization algorithm starting from the previous solution can be

more efficient than the traditional eigenvalue and singular value decompositions.

Sparse principal component analysis (PCA). PCA methods such as [15,58] are widely used is data analysis

and dimension reduction. The sparse PCA problem is to find principal components consisting of only a few

of the original variables while maintaining the good features of PCA such as uncorrelation of the principle

components and orthogonality of the loading vectors. As an example, the recent work [34] introduces the

model: min ρ|V | −Trace(V >ΣV) subject to V >V = I and V >ΣV being diagonal.

Assignment problems. One of the fundamental combinatorial optimization problems is the assignment prob-

lem. In the QAP, there are a set of n facilities and a set of n locations, as well as a distance between each pair

of facility and location. Given the flows between all the facility pairs, the problem is to assign the facilities to

the locations to minimize the sum of the distance–flow products over all the pairs. These problems can be for-

mulated as minimization over a permutation matrix X ∈ Rn×n, that is, X>X = I and X ≥ 0. It is well-known

that the QAP is NP-hard in theory and difficult to solve even for moderately large n in practice.

The proposed algorithms were compared to the state-of-the-art solvers on some of the above problems and

the numerical results are reported in Section 5. Note that some problems with additional constraints do not

directly take the form of (3), yet they can be reduced to a sequence of subproblems in the form of (3).

1.4 Notation

A matrix W ∈ Rn×n is called skew-symmetric (or anti-symmetric) if W> = −W . The trace of X, i.e., the sum of

the diagonal elements of X, is denoted by tr(X). The Euclidean inner product between two matrices A ∈ Rm×n

and B ∈ Rm×n is defined as 〈A,B〉 :=
∑
jk Aj,kBj,k = tr(A>B). The Frobenius norm of A ∈ Rm×n is defined

as ‖A‖F :=
√∑

i,j A
2
i,j . The set of n× n symmetric matrices is denoted by Sn and the set of n× n symmetric

positive semidefinite (positive definite) matrices is denoted by Sn+ (Sn++). The notion X � 0 (X � 0) means

that the matrix X ∈ Sn is positive semidefinite (positive definite). The notion X ≥ 0 (X > 0) means that X is

component-wise nonnegative (strictly positive). Given a differentiable function F(X) : Rn×p → R, the gradient

A Feasible Method for Optimization with Orthogonality Constraints 7

of F with respect to X is denoted by G := DF(X) :=
(
∂F(X)
∂Xi,j

)
. The derivative of F at X in a direction Z is

DF(X)[Z] := lim
t→0

F(X + tZ)−F(X)

t
= 〈DF(X), Z〉 . (9)

We reserve ∇F for gradients in tangent planes.

1.5 Organization

The rest of this paper is organized as follows. Subsection 2.1 gives the optimality conditions of problem (1),

and subsection 2.2 describes the proposed constraint-preserving scheme, as well as fast ways to compute it. A

globally convergent monotone curvilinear search algorithm, whose step size is chosen according to the Armijo-

Wolfe condition, is presented in subsection 3.1. A faster nonmonotone curvilinear search method with the

Barzilai-Borwein step size is given in subsection 3.2. The proposed basic scheme is interpreted using the manifold

concepts in subsection 4.1. Extensions to problems (2) and (3) are discussed in subsection 4.2. Global optimality

for some special cases is discussed in subsection 4.3. Finally, numerical results on a variety of test problems are

presented in section 5 to demonstrate the efficiency and robustness of the proposed algorithms.

2 Constraint-Preserving Update Schemes

2.1 Optimality Conditions

In this subsection, we state the first–order and second–order optimality conditions of problem (1). Since the

matrix X>X is symmetric, the Lagrangian multiplier Λ corresponding to X>X = I is a symmetric matrix. The

Lagrangian function of problem (1) is

L(X,Λ) = F(X)− 1

2
tr(Λ(X>X − I)). (10)

Lemma 1 Suppose that X is a local minimizer of problem (1). Then X satisfies the first-order optimality conditions

DXL(X,Λ) = G−XG>X = 0 and X>X = I with the associated Lagrangian multiplier Λ = G>X. Define

∇F(X)1 := G−XG>X and A := GX> −XG>.

Then ∇F = AX. Moreover, ∇F = 0 if and only if A = 0.

Proof It follows from X>X = I that the linear independence constraint qualification is satisfied. Hence, there

exists a Lagrange multiplier Λ such that

DXL(X,Λ) = G−XΛ = 0. (11)

Multiplying both sides of (11) by X> and using X>X = I, we have Λ = X>G. Since Λ must be a symmetric

matrix, we obtain Λ = G>X and DXL(X,Λ) = G − XG>X = 0. Finally, it is easy to verify the last two

statements.

1 do not confuse ∇F(X) with G = DF(X)

8 Zaiwen Wen, Wotao Yin

By differentiating both sides of X>X = I, we obtain the tangent vector set of the constraints, which is also

the tangent space of Mp
n at X:

TXMp
n := {Z ∈ Rn×p : X>Z + Z>X = 0}. (12)

Besides (12), another expression is TXMp
n = {XΩ +X⊥K : Ω> = −Ω,K ∈ R(n−p)×p}, where X⊥ ∈ Rn×(n−p)

such that XX> +X⊥X
>
⊥ = I. We can state the second-order optimality conditions as follows.

Lemma 2 1) (Second-order necessary conditions, Theorem 12.5 in [40]) Suppose that X ∈Mp
n is a local minimizer

of problem (1). Then X satisfies

tr
(
Z>D(DF(X))[Z]

)
− tr(ΛZ>Z) ≥ 0, ∀Z ∈ TXMp

n, where Λ = G>X. (13)

2) (Second-order sufficient conditions, Theorem 12.6 in [40]) Suppose that for X ∈ Mp
n, there exists a Lagrange

multiplier Λ such that the first–order conditions are satisfied. Suppose also that

tr
(
Z>D(DF(X))[Z]

)
− tr(ΛZ>Z) > 0, (14)

for any matrix Z ∈ TXMp
n. Then X is strict local minimizer for (1).

2.2 The Update Scheme

The proposed update scheme is an adaptation of the classical steepest descent step to the orthogonality con-

straints, which are preserved at a reasonable computational cost. Since ∇F = AX is the gradient of the

Lagrangian function (also the steepest descent direction in the tangent plane at X; see section 4.1), a natural

idea is to compute the next iterates as Y = X− τAX, where τ is a step size. The obstacle is that the new point

Y may not satisfy Y ∈Mp
n. Using the similar technique as in [23,54], we modify the term ∇F and compute the

new iteration YA(τ) from the equations YA(τ) = X − τA
(
X+YA(τ)

2

)
. Replacing A by W just for the notation

reason, the curve YW (τ) is given by

YW (τ) = X − τW
(
X + YW (τ)

2

)
(15)

which satisfies YW (τ)>YW (τ) = X>X for any skew-symmetric W and τ ∈ R. When there is no confusion,

we omit the subscripts A and W and write both YA(τ) and YW (τ) as Y (τ). Lemma 3 below shows that the

orthogonality constraints are preserved and Y (τ) defines a descent direction at τ = 0.

Lemma 3 1) Given any skew-symmetric matrix W ∈ Rn×n, then the matrix Q := (I +W)−1 (I −W) is well-

defined and orthogonal, i.e., Q>Q = I.

2) Given any skew-symmetric matrix W ∈ Rn×n, the matrix Y (τ) defined by (15) satisfies Y (τ)>Y (τ) = X>X.

Y (τ) can be expressed as

Y (τ) =
(
I +

τ

2
W
)−1 (

I − τ

2
W
)
X, (16)

and its derivative with respect to τ is

Y ′(τ) = −
(
I +

τ

2
W
)−1

W

(
X + Y (τ)

2

)
, (17)

A Feasible Method for Optimization with Orthogonality Constraints 9

Fig. 1 An illustration using Sp2 := {x ∈ R3 : ‖x‖2 = 1}. The point x + τAx is not feasible. The curve y(τ) satisfying

y = x+ τ
2
A(x+ y) is feasible and a geodesic.

−0.2

0

0.2

0.4

0.6

0.8
−0.4

−0.2

0

0.2

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Sp2

x

−Df(x)

geodesic

x

−Df(x) × x

Ax

1
2Ax

1
2Ay

y

and, in particular, Y ′(0) = −WX.

3) Set W = A = GX> −XG>. Then Y (τ) is a descent curve at τ = 0, that is,

F ′τ (Y (0)) :=
∂F(Y (τ))

∂τ

∣∣∣
τ=0

= −1

2
‖A‖2F . (18)

For simplicity, we let F ′τ (Y (τ)) denote the derivative of F(Y (τ)) with respect to τ .

Proof Part 1): The proof of this part is well-known; see [24], for example. We give it for the sake of completeness.

Since W is skew symmetric, v>(I +W)v = ‖v‖22 holds for any nonzero v ∈ Rn; hence, (I +W) is invertible and

Q is well-defined. Using the skew-symmetry and (I +B)(I −B) = (I −B)(I +B) for any matrix B, we obtain

Q>Q = (I +W) (I +W)−1 (I −W)−1 (I −W) = I.

Part 2): From part 1) and (15), we obtain (16). Since τ
2W is skew-symmetric, part 1) gives Y (τ)>Y (τ) =

X>X. Differentiating both sides of (15) with respect to τ , we obtain Y ′(τ) = −W
(
X+Y (τ)

2

)
− τ

2WY ′(τ), which

gives (17).

Part 3): Using the chain rule, we obtain F ′τ (Y (τ)) = tr
(
DF(Y (τ))>Y ′(τ)

)
. At τ = 0, DF(Y (0)) = G and

Y ′(0) = −(GX> −XG>)X. Therefore, F ′τ (Y (0)) = −tr(G>(GX> −XG>)X) = −1
2‖A‖

2
F .

The matrix inverse
(
I + τ

2W
)−1

dominates the computation of Y (τ) in (16). Next, we study a few fast ways

to compute it. In particular, this inversion becomes very cheap when W is formed as the outer product of two

low–rank matrices.

10 Zaiwen Wen, Wotao Yin

Lemma 4 1) Suppose W = LR>−RL>, where L,R ∈ Rn×p. Rewrite W = UV > for U = [L, R] and V = [R, −L].

If I + τ
2V
>U is invertible, then (16) is equivalent to

Y (τ) = X − τU
(
I +

τ

2
V >U

)−1

V >X. (19)

2) The vector case: suppose W = ab> − ba>, where a, b ∈ Rn. Then (16) is given explicitly by

y(τ) = x− β1(τ)a− β2(τ)b, (20)

where β1(τ) = τ
x>b− τ

2 ((a>b)(x>b)−(x>a)(b>b))
1−(τ2)2

(a>b)2+(τ2)2‖a‖22‖b‖22
and β2(τ) = −τ x

>a+ τ
2 ((a>b)(x>a)−(a>a)(x>b))

1−(τ2)2
(a>b)2+(τ2)2‖a‖22‖b‖22

.

Proof To I + τ
2W = I + τ

2UV
>, we apply the SMW formula:

(B + αUV >)−1 = B−1 − αB−1U(I + αV >B−1U)−1V >B−1 (21)

with B = I and obtain
(
I + τ

2W
)−1

= I − τ
2U(I + τ

2V
>U)−1V >. With I − τ

2W = I − τ
2UV

>, we have

Y (τ) = X − τ

2
U

((
I +

τ

2
V >U

)−1 (
I − τ

2
V >U

)
+ I

)
V >X

= X − τU
(
I +

τ

2
V >U

)−1

V >X.

In case of p = 1, (20) implies that computing y(τ) reduces to essentially five inner products or even two inner

products when b = x. Since the SMW formula can be numerically unstable, the feasibility of Y (τ)>Y (τ) = I

may deteriorate after a certain number of iterations and we restore it using a modified Gram-Schmidt process.

If p� n, inverting I + V >U ∈ R2p×2p is much easier than inverting (I + τ
2W) ∈ Rn×n, so (19) should used

to compute Y (τ). When W = GX> − XG>, forming V >U needs 2np2 flops, and V >X is a part of V >U so

V >X comes for free. The inversion
(
I + τ

2V
>U
)−1

takes O(p3), and the final assembly of Y (τ) takes another

2np2 +O(p3). Hence, the computation complexity of Y (τ) in (19) is 4np2 +O(p3). The work of updating Y (τ)

for a different τ (during backtracking line search) is the inversion and final assembly, so it has a lower cost at

2np2+O(p3). In comparison, the QR-based retraction [2] has a complexity of 4np2 since computing the gradient

∇F(X) and obtaining the QR-decomposition need 2np2 each. Moving along the geodesic on Stiefel manifold is

more expensive [18] at a complexity of 8np2 + O(p3) since, referring to Corollary 2.2 of [18], computing each

one of H, Y (t), A and QR there takes 2np2.

If p ≥ n/2, then (19) has no advantage over (16). Nevertheless, one can still apply the SMW formula

recursively though the computational efficiency of this approach is yet to be verified in practice. Suppose that

W in part 1) of Lemma 4 can be decomposed as

W =
k∑
i=1

W (i) for W (i) := L(i)(R(i))> −R(i)(L(i))>,

where L(i), R(i) ∈ Rn×pi and
∑k
i=1 pi = p. First, the inverse of B(1) := I + τ

2W
(1) can be computed using the

SMW formula. Then the resulting (B(1))−1 can plugged in (21) as B for computing the inverse of B(2) :=

B(1) + τ
2W

(2). Iterate this process and finally I + τ
2W = B(k−1) + τ

2W
(k) can be inverted.

Since Y (τ) is easier to compute when W has lower rank, we show how to construct a rank–1 matrix W from

A = GX> −XG> and still obtain a descent path Y (τ).

A Feasible Method for Optimization with Orthogonality Constraints 11

Lemma 5 Let A = GX> −XG> and W = G(q)X
>
(q) −X(q)G

>
(q), where q is a column index chosen as

q := arg maxi=1,··· ,p

{
tr
(
XG>(G(i)X

>
(i) −X(i)G

>
(i))
)}

. (22)

Then Y (τ) given by (16) is a descent path, which satisfies

F ′τ (Y (0)) ≤ − 1

2p
‖A‖2F . (23)

Proof It follows from Lemma 3 and the outer product form of the matrix multiplication that

−1

2
‖A‖2F = −tr(XG>(GX> −XG>)) = −

p∑
i=1

tr
(
XG>(G(i)X

>
(i) −X(i)G

>
(i))
)

(24)

Hence, it must hold that tr
(
XG>(G(q)X

>
(q) −X(q)G

>
(q))
)
> 0, where q is defined in (22). Therefore, we have

−1

2
‖A‖2F ≥ −p tr

(
XG>(G(q)qX

>
(q) −X(q)G

>
(q))
)
.

Hence, (23) holds for the curve Y (τ) defined by (15) with W = G(q)X
>
(q) −X(q)G

>
(q).

The above result can be easily extended to forming a rank–2r matrix W from certain r columns of G and

X and obtaining a descent path Y (τ). There are generally many choices of (low–rank) matrices W that will

lead good search paths; however, we leave this exposition to the future.

3 Curvilinear search approaches

3.1 Monotone curvilinear search algorithm

In this section, we assume that the curve Y (τ) is generated by a skew-symmetric matrix W satisfying the

following condition:

Condition 1 The matrix W in (15) is continuous in X and satisfies

F ′τ (Y (0)) ≤ −σ‖A‖2F , (25)

where σ > 0 is a constant.

It is well known that the steepest descent method with a fixed step size may not converge. However,

by choosing the step size wisely, convergence can be guaranteed and its speed can be accelerated without

significantly increasing the cost at each iteration. At iteration k, one can choose a step size by minimizing

F(Yk(τ)) along the curve Yk(τ) with respect to τ . Since finding its global minimizer is computationally expensive,

one is usually satisfied with an approximate minimizer such as a τk satisfying the Armijo-Wolfe conditions [40,

52,19]:

F(Yk(τk)) ≤ F(Yk(0)) + ρ1τkF ′τ (Yk(0)) (26a)

F ′τ (Yk(τk)) ≥ ρ2F ′τ (Yk(0)), (26b)

12 Zaiwen Wen, Wotao Yin

Algorithm 1: A gradient descent method with curvilinear search

1 Given an initial point X0 ∈Mp
n.

2 Initialization: Set k ← 0, ε ≥ 0 and 0 < ρ1 < ρ2 < 1.

3 while true do

4 Prepare. Generate A according to (4).

5 Compute the step size τk. Call line search along the path Yk(τ) defined by (15) for W = A to obtain a step size τk

that satisfies the Armijo-Wolfe conditions (26a) and (26b).

6 Update. Set Xk+1 ← Y (τk).

7 Stopping check. If ‖∇Fk+1‖ ≤ ε, then STOP; Otherwise, k ← k + 1 and continue.

where 0 < ρ1 < ρ2 < 1 are two parameters. To find τk satisfying (26a) and (26b), we refer to algorithms 3.2 and

3.3 in [40], which are based on interpolation and bisection. For a more detailed description of such strategies,

see [36]. Our curvilinear search approach is given in Algorithm 1.

Since F(Y (τ)) is continuously differentiable and bounded from below, it is not difficult to prove that there

exists a τk satisfying the Armijo-Wolfe conditions (26a) and (26b). Therefore, every iteration of Algorithm 1 is

well defined. Formally, we have

Lemma 6 (Lemma 3.1 of [40]) If 0 < ρ1 < ρ2 < 1 and F ′τ (Yk(0)) < 0, there exist nonempty intervals of step

lengths satisfying the Armijo-Wolfe conditions (26a) and (26b).

We now study the convergence properties of the sequence {Xk} generated by Algorithm 1. Starting from

X0 ∈ Mp
n, the sequence {Xk} generated by Algorithm 1 stays in a compact set X = {X | F(x) ≤ F(X0), X ∈

Mp
n}, since F(Xk) decreases monotonically and Xk ∈M

p
n for all k. Hence, there exists at least one accumulation

point. If limk∈K τk = 0, it can verified that the sequence {Yk(τk)}k∈K defined by formula (15) satisfies

lim
k∈K

‖Yk(τk)− Yk(0)‖F = 0 and lim
k∈K

‖Y ′k(τk)− Y ′k(0)‖F = 0.

Using the same proof as in [23], the following result shows that {∇Fk} converges to zero.

Theorem 2 Suppose Condition 1 is satisfied for the sequence {Xk} generated by Algorithm 1. Then

limk→∞‖∇F(Xk)‖F = 0. (27)

In fact, as we point out in the introduction, the Cayley transform is a retraction. Hence, the convergence results

in [2] regarding retractions apply directly to Algorithm 1.

3.2 Nonmonotone Line Search with the BB step size

While our steepest descent Algorithm 1 is extremely simple, the well-known Barzilai-Borwein (BB) step size

[5] is often able to accelerate the gradient method at nearly no extra cost. Our numerical experience in [23] of

minimizing the p-harmonic flow energy subject spherical constraints is that the BB step size can significantly

reduce the total number of steepest descent iterations. Hence, we apply the BB step size for solving (1), which

A Feasible Method for Optimization with Orthogonality Constraints 13

we shall now describe. In Algorithm 1, instead of choosing a step size τk to satisfy (26a) and (26b), we simply

set τk to either

τk,1 =
tr
(

(Sk−1)>Sk−1

)
|tr ((Sn−1)>Yk−1) |

or τk,2 =
|tr
(

(Sk−1)>Yk−1

)
|

tr ((Yk−1)>Yk−1)
, (28)

where Sk−1 = Xk −Xk−1 and Yk−1 = ∇F(Xk)−∇F(Xk−1).

Since the BB step size does not necessarily decrease the objective value at every iteration, it may invalidate

convergence, but this issue can be solved by introducing a globalization technique, which guarantees global

convergence by regulating the step sizes in (28) only occasionally; see [14,44]. We adopt a non-monotone line

search method based on a strategy in [62]. Specifically, the new points are generated iteratively in the form

Xk+1 := Yk(τk), where τk = τk,1δ
h or τk = τk,2δ

h and h is the smallest integer satisfying

F(Yk(τk)) ≤ Ck + ρ1τkF ′(Yk(0)), (29)

where each reference value Ck+1 is taken to be the convex combination of Ck and F(Xk+1) as Ck+1 = (ηQkCk+

F(Xk+1))/Qk+1, where Qk+1 = ηQk + 1 and Q0 = 1.

Algorithm 2: A Curvilinear Search method with BB steps

1 Given X0, set τ > 0, ρ1, δ, η, ε ∈ (0, 1), k = 0.

2 while ‖∇F(Xk)‖ > ε do

3 while F(Yk(τ)) ≥ Ck + ρ1τF ′(Yk(0)) do

4 τ ← δτ

5 Xk+1 ← Yk(τ), Qk+1 ← ηQk + 1 and Ck+1 ← (ηQkCk + F(Xk+1))/Qk+1.

6 Set τ ← max
(
min

(
τk+1,1, τM

)
, τm

)
, k ← k + 1.

4 Extensions

4.1 The Manifold Interpretation

In this subsection, we interpret the constraints-preserving scheme (15) in the setting of Stiefel manifold Mp
n

and extend it to taking any tangent directions. The basic analysis of this manifold can be found, for example,

in [18]. The tangent space TXMp
n of Mp

n at X is particularly important here. In order to measure the length

of the tangent vectors and define “steepest”, an inner product 〈·, ·〉X for TXMp
n needs to be defined. There

are two commonly known metrics for TXMp
n : the Euclidean metric 〈Z1, Z2〉e := tr(Z>1 Z2) and the canonical

metric

〈Z1, Z2〉c := tr(Z>1 PXZ2) = tr(Z>1 (I − 1

2
XX>)Z2),

where Z1, Z2 ∈ TXMp
n.

Given a differentiable scalar function F on Mp
n, the gradient of F at X is defined as the unique element of

TXMp
n that satisfies

〈∇XF , ξ〉X = DF(X)[ξ], ∀ξ ∈ TXMp
n, (30)

L

14 Zaiwen Wen, Wotao Yin

where DF(X)[ξ] is defined in (9). The gradient under the Euclidean metric is

∇eF := Xskew(X>G) + (1−XX>)G, (31)

and the gradient under canonical metric is

∇cF := G−XG>X = ∇F , (32)

which is used throughout Sections 2 and 3. The two gradients are equivalent in the sense that ∇cF = (I +

XX>)∇eF and the eigenvalues of (I +XX>) are bounded between 1 and 2.

Given an arbitrary direction D ∈ TXMp
n, the curve Y (τ) defined by (15) with W := DX> −XD> satisfies

Y ′(0) = −(D −XD>X) 6= −D. However, we can obtain Y ′(0) = −D by letting

W := PXDX
> −XD>PX (33)

(see (5) for PX), which is still skew symmetric and thus preserves orthogonality. From the chain rule, Y ′(0) = −D

and the definition (30), we obtain

F ′τ (Y (0)) = tr(G>Y ′(0)) = −tr(G>D) = −〈∇XF , D〉X .

Therefore, D defines a descent curve as long as 〈∇XF , D〉X > 0. As examples, we set D as ∇eF ,∇cF ∈ TXMp
n

each and, from (33), obtain

W =

PXGX
> −XG>PX , if D = ∇eF ,

GX> −XG>, if D = ∇cF ,

which gives derivatives of F along Y (τ), respectively, as

F ′τ (Y (0)) =

−〈∇eF ,∇eF〉e , if D = ∇eF ,

−〈∇cF ,∇cF〉c = −1
2‖W‖

2
F , if D = ∇cF .

This clarifies the two different definitions (4) and (5) of A as follows: the former and latter correspond to the

canonical and Euclidean metrics, respectively. With minor changes, the results in Sections 2 and 3 apply to A

defined in (5).

The formula (33) lets one move along any tangent direction D by defining W and its associated curve Y (τ).

It is possible to choose D corresponding to conjugate gradient, Newton, and quasi-Newton directions on Mp
n,

but these expositions are outside the scope of this paper.

4.2 Generalizations

A matrix W ∈ Cn×n is called skew-Hermitian if W ∗ = −W . The inner product of two complex matrix L,R ∈

Cn×p is defined as

Tr(L∗R) = tr(real(L)>real(R)) + tr(imag(L)>imag(R)),

where real(L) and imag(L) are the real and imaginary parts of L. The results in Lemmas 1 and 3 for problem

(1) similarly apply to the complex problem (2) as follows.

A Feasible Method for Optimization with Orthogonality Constraints 15

Lemma 7 1) Given any skew-Hermitian matrix W ∈ Cn×n and symmetric positive definite matrix M ∈ Rn×n,

the matrix Q := (I +WM)−1 (I −WM) is well-defined and Q∗MQ = M . For any τ ∈ R the solution Y (τ) of the

equations

Y (τ) = X − τ

2
WM (X + Y (τ)) (34)

satisfies Y (τ)∗MY (τ) = X∗MX, and Y (τ) can be expressed as

Y (τ) =
(
I +

τ

2
WM

)−1 (
I − τ

2
WM

)
X =

(
M +

τ

2
MWM

)−1 (
M − τ

2
MWM

)
X. (35)

Furthermore, Y ′(0) = −WMX.

2) Suppose X is a local minimizer of (2). Then, X satisfies the first-order necessary optimality conditions:

∇F := G−MXG∗XK−1 = 0, which are equivalent to AX = 0, where A := GX∗M −MXG∗. Hence, the scheme

(34) with W := A defines a descent direction at τ = 0 and F ′τ (Y (0)) = −1
2‖A‖

2
F .

Proof Since M is positive definite, we have

Q := (I +WM)−1 (I −WM) = (M +MWM)−1 (M −MWM) .

Since x∗(M +MWM)x = x∗Mx > 0 for any nonzero x ∈ Cn, (M +MWM)−1 and thus Q are well-defined. By

following steps analogous to those in statement 1 of Lemma 3, we obtain

Q∗MQ = (M +MWM) (M −MWM)−1
M (M +MWM)−1 (M −MWM) = M.

All other statements can be proved in a similar fashion as in Lemmas 1 and 3.

Since the variables X1, . . . , Xq are not coupled in the constraints of problem (3), the results of Lemmas 1,

3 and 7 naturally extend to problem (3).

4.3 Discussions on Global Optimality

Although spherical and orthogonality constraints are nonconvex, there are simple cases in which any local

minimizer is provably a global one. Hence, in these cases our algorithms return global solutions as long as the

saddle points, if any, are avoided (e.g., by starting from a random point or applying random perturbations).

In this subsection, we present the global optimality results for the p largest eigenvalue problem and problems

corresponding to SDPs with constraints on the diagonal entries only. The proof is based on checking the first

and second-order necessary conditions for local minimizers.

Consider the SDP problem

max
X�0

tr(CX), s.t. Xii = 1, i = 1, · · · , n, (36)

where C is a given symmetric matrix. As is reviewed in subsection 1.3, if the solution X̄ of (36) has rank p, then

through the decomposition [10] X = V >V with V := [V1, . . . , Vn] ∈ Rp×n, we obtain the equivalent problem

max
V=[V1,...,Vn]

tr(CV >V), s.t. ‖Vi‖ = 1, i = 1, . . . , n. (37)

Compared to (36), (37) has fewer variables but is nonconvex. Largely based on results in [10], we have:

16 Zaiwen Wen, Wotao Yin

Theorem 3 There exists p̄ ≤ n such that, if p ≥ p̄, any local minimizer V̄ of (37) is globally optimal and V̄ >V̄

solves (36). In particular, p̄ can be taken as (n+ 1)− inf{rank(C +D) : D is diagonal} or n, whichever is smaller.

Proof Problem (37) satisfies the linear constraint qualification. Hence, V̄ satisfies the first-order optimality

condition: (C−Λ)V̄ > = 0 with the Lagrange multiplier Λ := diag(CV̄ >V̄), as well as the second-order necessary

condition: tr((C−Λ)Z>Z) ≤ 0 for all Z = [Z1, . . . , Zn] ∈ Rp×n satisfying Z>i V̄i = 0, i = 1, . . . , n, where V̄i denotes

the ith column of V̄ .

If rank(V̄) < p, there exists z ∈ Rp such that z>V̄i = 0, i = 1, . . . , n. Take an arbitrary α ∈ Rn, and

let Zi = αiz, i = 1, . . . , n. The second-order condition above reduces to (z>z)α>(C − Λ)α ≤ 0 and thus

(C −Λ) � 0. From the strong duality for SDP, this result and the first-order condition above give the following

optimality results: (V̄ >V̄ ,diag(Λ)) is a pair of optimal primal–dual solutions for (36) and thus V̄ is globally

optimal for (36). If p = n and rank(V̄) = n, the first order condition means that (C − Λ) = 0 and thus

(C − Λ) � 0, which again give the above optimality results. This means that, as long as p = n, the optimality

results always hold. Finally, from the first-order condition, we have rank(V̄) ≤ n − rank(C − Λ). Hence, if

p ≥ p̄ = (n+ 1)− inf{rank(C +D) : D is diagonal}, then p > rank(V̄) and the above optimality results hold.

The result of this theorem obviously holds for SDPs with constraints Xii = bi, i ∈ Ω ⊆ {1, . . . n}, where

bi’s are any given positive scalars. Problem (36) appears as the maxcut SDP relaxation, where C equals the

negative of the graph weight matrix. For certain cographs, rank(C +D) can be derived; see [13].

Given a symmetric matrix A ∈ Rn×n, it is known from [30] that the sum of the p largest eigenvalues of A

equals maxX∈Rn×p{tr(X>AX) : X>X = I}. The first-order and second-order necessary conditions for a local

minimizer X are, respectively,

AX −XΛ = 0,

tr
(
Z>AZ

)
− tr

(
ΛZ>Z

)
≤ 0, ∀Z ∈ Rn×p satisfying X>Z + Z>X = 0,

where Λ = X>AX is the Lagrangian multiplier matrix. It can be shown that any X satisfying these conditions

must span the same subspace as that spanned by the p eigenvectors corresponding to the p largest eigenvalues

(counting multiples).

5 Numerical Results

In this section, we demonstrate the effectiveness of our approaches on a wide variety of test problems. We

implemented both Algorithms 1 and 2 in MATLAB (Release 7.9.0). They use the search curve Y (τ) generated

by the skew-symmetric matrix W := GX> −XG>. The Armijo–Wolfe step size in Algorithm 1 is determined

by the code “DCSRCH” [36] with an initial step size of 10−2 and parameters ρ1 = 10−4 and ρ2 = 0.9. Since

Algorithm 2, which uses the BB step size and nonmonotone curvilinear search, appears to be more efficient in

most test sets, we compare both algorithms on the first test set in subsection 5.2 and compare only Algorithm

2 with one or two state-of-the-art algorithms on problems in the remaining test sets except the quadratic

assignment problem. All experiments were performed on a Lenovo Workstation with an Intel Xeon E5506

Processor with access to 5GB of RAM.

A Feasible Method for Optimization with Orthogonality Constraints 17

5.1 Termination Rules and Detection of Stagnation

Since convergence of first-order methods can slow down as the iterates approach a stationary point, it is critical

to detect this slowdown and stop properly. In addition, it is tricky to correctly predict whether an algorithm is

temporarily or permanently trapped in a region when its convergence speed has reduced. Hence, it is usually

beneficial to have flexible termination rules. In our implementation, in addition to checking the norm of the

gradient ‖∇F(Xk)‖, we also compute the relative changes of the two consecutive iterates and their corresponding

objective function values:

tolxk =
‖Xk −Xk+1‖F√

n
and tolfk =

F(Xk)−F(Xk+1)

|F(Xk)|+ 1
. (38)

We let our algorithms run up to K iterations and stop them at iteration k < K if ‖∇F(Xk)‖ ≤ ε, or tolxk ≤

εx and tolfk ≤ εf , or

mean([tolxk−min(k,T)+1, . . . , tolxk]) ≤ 10εx and mean([tolfk−min(k,T)+1
, . . . , tolfk]) ≤ 10εf .

The defaults values of ε, εx, εf , T and K are 10−5, 10−5, 10−8, 5 and 1000, respectively.

5.2 Distribution of Electrons on a Sphere

The first set of test problems, originating from Thomson’s plum pudding model of the atomic nucleus, was

obtained from the benchmark set COPS 3.0 [17] for nonlinearly constrained optimization. These problems seek

the lowest energy configuration of np-point charges on a conducting sphere. The potential energy of np points

(xi; yi; zi) is given by

F(x, y, z) :=

np−1∑
i=1

np∑
j=i+1

(
(xi − xj)2 + (yi − yj)2 + (zi − zj)2

)− 1
2

and the constraints over these np points are x2i + y2i + z2i = 1, i = 1, . . . , np.

We compared Algorithms 1 and 2 to the nonlinear programming software package “ipopt” [55] (version

3.8). The results are summarised in Table 1, where “F”, “feasi” and “nrmG” denote the final values of the

objective function, constraint violation
√∑

i(‖(xi; yi; zi)‖ − 1)2, and ‖∇F(X)‖, respectively, and “nfe” denotes

the total number of function evaluations. The advantage of Algorithm 2 is large when np ≥ 100. Note that the

final objective values obtained by “ipopt” were slightly smaller than those by Algorithm 2 when n = 400 and

500, but the feasibility values of the “ipopt” solutions were much worse. Although “ipopt” took fewer function

evaluations, as a second-order type method requiring expensive matrix factorizations, it spent more CPU time

on the larger problems. Comparing Algorithm 1 with Algorithm 2, the latter took less CPU time and fewer

function evaluations to achieve a similar solution accuracy. We depict their running objective values in Figures

2 (a) and (b), corresponding to n = 400 and n = 500, respectively. It is clear that Algorithm 2 converges faster

than Algorithm 1 though the latter may sometimes achieve a slightly smaller objective function value.

18 Zaiwen Wen, Wotao Yin

Table 1 Computational summary for distribution of electrons on a sphere

np 50 100 200 300 400 500

IPOPT

F 1.055182e+03 4.448351e+03 1.843904e+04 4.213206e+04 7.558306e+04 1.188266e+05

feasi 1.968843e-07 2.517183e-07 4.160197e-07 5.003297e-07 5.923942e-07 5.999943e-07

nrmG 1.425497e-05 5.090285e-05 2.087299e-04 4.365843e-04 8.096863e-04 1.250355e-03

nfe 36 186 111 117 210 157

cpu 0.461 9.283 41.193 216.945 674.548 1244.886

Algorithm 1

F 1.055182e+03 4.448411e+03 1.843905e+04 4.213169e+04 7.558339e+04 1.188274e+05

feasi 5.087681e-16 6.181460e-16 9.614813e-16 9.992007e-16 1.280372e-15 1.447554e-15

nrmG 4.096349e-03 1.818747e-02 5.080282e-02 5.005146e-01 1.543954e-01 1.658408e+00

nfe 514 767 1070 1234 1338 1423

cpu 3.001 9.411 33.185 70.317 119.702 184.784

Algorithm 2

F 1.055182e+03 4.448351e+03 1.843906e+04 4.213177e+04 7.558316e+04 1.188271e+05

feasi 4.002966e-16 7.108896e-16 8.599751e-16 1.180183e-15 1.241267e-15 1.417438e-15

nrmG 1.213968e-03 5.441015e-03 2.660580e-02 2.950865e-02 8.700482e-02 9.229441e-02

nfe 151 242 331 229 418 558

cpu 0.779 2.906 10.140 12.915 37.016 71.741

Fig. 2 Objective function values versus iterations for examples in section 5.2

0 100 200 300 400 500 600 700 800 900
7.558

7.5585

7.559

7.5595

7.56

7.5605

7.561
x 10

4

iter

F

Algorithm 1

Algorithm 2

(a) n=400

0 200 400 600 800 1000
1.1882

1.1883

1.1883

1.1884

1.1884

1.1885

1.1885

1.1885

1.1886
x 10

5

iter

F

Algorithm 1

Algorithm 2

(b) n=500

5.3 Application in Polynomial Optimization

In this subsection, we evaluate Algorithm 2 on polynomial optimization with spherical constraints, which arise

from wide applications, see, [27,38]. Extensive research has been concentrated on relaxation techniques including

the sum of squares (SOS) and Lasserres relaxations. Although the SOS relaxations and the associated SDPs

have approximation bounds, their sizes are much larger than the original problems and thus become difficult to

solve even when the original problems only have a few tens of variables. Here we apply Algorithm 2 to directly

1~ I I

•
' \

1~ I

~;::- = =-------1

A Feasible Method for Optimization with Orthogonality Constraints 19

minimizing homogeneous polynomials subject to spherical constraints. Note that unlike the SDP, Algorithm 2

has no approximation guarantees.

Four homogeneous polynomial problems listed in Table 2 were taken from the recent work [38], in which

the resulted SDPs were solved by a specialized numerical method tailored from algorithms in [35,63] and the

corresponding objective function values fhmgsos are presented in Table 2. Since Algorithm 2 may reach different

local minimizers, it was called multiple times from different random initial points, specifically, 10 and 1000

times for the first two and last two polynomials in Table 2, respectively. The minimal, mean and maximal final

objective values, as well as the mean CPU seconds and feasibilities, are presented in the last three columns of

Table 2. From the table, we can see that Algorithm 2 was able to find the same SDP solutions on three out

of the four problems. While the SDP solver took more than a few hours on each of these problems in [38], the

total time of Algorithm 2 counting the multiples runs is on the order of tens of seconds. We should point out

that our approach and the SDP approach are not directly comparable due to different models.

Table 2 Polynomial optimization on a sphere

SDP Algorithm 2

F(x) fhmgsos F(x) (min, mean, max) mean CPU sec. feasi∑
1≤i<j<k<l≤50

(−i− j + k + l)xixjxkxl -140.4051 (-140.4051,-140.4051,-140.4051) 2.45 8.0e-16∑
1≤i<j<k≤49

xixjxk + x2i xj − x2i xk + xjx
2
k -124.9645 (-124.9645,-124.9645,-124.9645) 0.10 3.8e-16∑

1≤i≤20

x6i +
∑

1≤i≤19

x3i x
3
i+1 3.446e-5 (0.00006, 0.00143, 0.00391) 0.01 2.2e-15∑

1≤i<j<k≤20

x2i x
2
jx

2
k + x3i x

2
jxk + x2i x

3
jxk + xix

3
jx

2
k -0.3827 (-0.3827, -0.2725, -0.1059) 0.01 1.3e-15

The second set of problems compute stability numbers of graphs. Given a graph G = (V,E), the stability

number α(G) is the cardinality of the biggest stable subset of V (whose vertices are not connected to each

other). It is shown in [38] that

α(G)−1 = min
‖x‖2=1

n∑
i=1

x4i + 2
∑

(i,j)∈E
x2i x

2
j .

We generated a few graphs G in the same way as [38] by first choosing a random subset M ⊂ V with cardinality

n/2 and then adding the edge ei,j with probability 1
2 for each {i, j} 6⊂M . We ran Algorithm 2 from 10 different

random points for each graph. The summary of performance is given in the last three columns of Table 3. For

each graph, the best one of the 10 solutions of Algorithm 2 matches the SDP solution, yet the SDP algorithm

in [38] took hours to run.

The third test set consists of homogeneous polynomial optimization problems with multiple spherical con-

straints from [27] in the form of

max F(x, y, z, w) :=
∑

1≤i≤n1,1≤j≤n2,1≤k≤n3,1≤l≤n4

aijklxiyjzkwl s.t. ‖x‖2 = ‖y‖2 = ‖z‖2 = ‖w‖2 = 1,

where A = (aijkl) is a fourth-order tensor of size n×n×n×n. In the test, A was generated randomly with i.i.d.

standard Gaussian entries. We compared Algorithm 2 with the approximation algorithm “a1max4” proposed

20 Zaiwen Wen, Wotao Yin

Table 3 Stability number α(G)

Algorithm 2

n α(G) CPU (min, mean, max) feasi

20 10 (0.004, 0.006, 0.007) 1.7e-15

30 15 (0.007, 0.009, 0.011) 7.8e-15

40 20 (0.005, 0.007, 0.010) 1.4e-15

50 25 (0.008, 0.010, 0.012) 5.5e-15

60 30 (0.009, 0.012, 0.015) 3.6e-15

80 40 (0.013, 0.015, 0.020) 2.0e-15

100 50 (0.018, 0.023, 0.036) 2.4e-15

in [27]. Since both algorithms are heuristics, they were called only once. Algorithm 2 was started from a

random initial point. The main computation of “a1max4” is as cheap as calculating a few eigenvectors. From

their performance reported in Table 4, we can see that Algorithm 2 was slower but returned higher (better)

objective values than “a1max4”.

Table 4 Numerical results on polynomial optimization with multiple spherical constraints

n 2 5 10 20 30 40 50 60 70

a1max4

F 3.253 5.668 7.930 10.662 11.995 13.498 16.029 17.305 18.161

feasi 8.429e-08 5.960e-08 1.788e-07 1.333e-07 2.920e-07 2.666e-07 1.686e-07 3.476e-07 2.065e-07

CPU 0.001 0.003 0.005 0.024 0.058 0.104 0.271 0.511 1.059

Algorithm 2

F 3.347 7.139 9.200 14.740 17.233 20.297 23.230 25.443 26.636

feasi 4.827e-15 1.064e-14 4.474e-15 1.898e-14 1.365e-14 2.150e-14 1.848e-14 2.443e-14 1.954e-14

nfe 55 112 105 116 125 133 141 144 153

CPU 0.185 0.381 0.900 3.595 10.843 25.723 53.291 97.453 172.634

5.4 Maxcut SDP Relaxation

Given a graph G = (V,E) with |V | = n and the weight matrix W = (wij), the maxcut problem partitions V

into two nonempty sets (S, V \S) so that the total weights of the edges in the cut is maximized. This problem

is NP-hard. For each node i = 1, . . . , n, let xi = 1 if i ∈ S and, otherwise, xi = −1. The maxcut problem can be

formulated as

max
x

1

2

∑
i<j

wij(1− xixj), s.t. x2i = 1, i = 1, . . . , n, (39)

Relaxing the rank–1 matrix xx> to a positive semidefinite matrix X and ignoring the rank–1 requirement,

we obtain the SDP relaxation problem (36),where C is the Laplace matrix of the graph divided by 4, i.e.,

A Feasible Method for Optimization with Orthogonality Constraints 21

C = −1
4 (diag(We) −W). Substituting the positive definite variable X = V >V with V := [V1, . . . , Vn] ∈ Rp×n,

we obtain problem (37) with multiple spherical constraints.

Theorem 3 means that with a mild p, the smaller problem (37) can yield the solution for (36), and a larger

p is unnecessary. This low-rank structure has made the formulation (37) being popular and a few methods

used it to construct cheap numerical methods for solving (36). The algorithm SDPLR [10] solves (37) using an

augmented Lagrangian method, in which each subproblem is minimized by limited-memory BFGS iterations.

Problem (37) can also be solved by EXPA [25], which forms an unconstrained differentiable exact penalty

function and minimizes it using nonmontone Barzilai-Borwein gradient iterations. As opposed to our algorithms,

these two algorithms do not preserve the spherical constraints during the iterations.

We compared Algorithm 2 to SDPLR’s special maxcut version 0.130301 (written in the C-Language) on two

test sets. EXPA was not tested since it is not publicly available. The first set includes four “torus” graphs in

the DIMACS library. The second set includes all the “G”-set problems [7,28] with more than 2000 nodes, and

these graphs were generated by “rudy”, a machine independent graph generator by G.Rinaldi. The parameters

of SDPLR were set according to the best parameter files “p.maxcut5” in its package. The dimension p of the

vectors vi in (37) was set to max(min(round(
√

2n/2), 20), 1) and the maximal number of iterations K was set

to 600 for Algorithm 2. The comparison results are summarized in Table 5, where “obj” denotes the objective

values returned by the solvers. From the table, we can see that Algorithm 2 solved most maxcut SDP relaxation

problems more efficiently than SDPLR in terms of both CPU time and objective values. The CPU times of

Algorithm 2 for the graphs from “G63” to “G81” did not increase too much may imply that these problem are

relatively easy to solve.

5.5 Low-Rank Nearest Correlation Estimation

Let C ∈ Sn be a given symmetric matrix and H ∈ Sn a given nonnegative weight matrix. The rank constrained

nearest correlation matrix problem estimates from C a matrix X ∈ Sn+ with rank p or less as follows:

min
X�0

1

2
‖H � (X − C)‖2F , Xii = 1, i = 1, . . . , n, rank (X) ≤ p. (40)

Many approaches have been proposed to solve (40); see the comprehensive literature reviews in [49,22].

Similar to the approach for the maxcut problem in section 5.4, we express the rank constraints rank (X) ≤ p

explicitly as X = V >V with V = [V1, . . . , Vn] ∈ Rp×n. Hence, (40) is reduced to the minimization of a quadratic

polynomial over spheres as follows:

min
V ∈Rp×n

1

2
‖H � (V >V − C)‖2F , s.t. ‖Vi‖2 = 1, i = 1, . . . , n. (41)

The same decomposition X = V >V are employed in the geometric optimization methods [26], majorization

method [42] and trigonometric parametrization methods [45].

The test problems are Examples 5.1, 5.3 and 5.5 in [22] as follows:

Ex1: n = 500, the entries Gij = 0.5+0.5e−0.05|i−j| for i, j = 1, . . . , n. The weight matrix H is either the identity

or a random matrix whose entries are uniformly distributed in [0.1,10] except for 2 × 100 entries in [0.01,

100].

22 Zaiwen Wen, Wotao Yin

Table 5 Computational results for the maxcut SDP relaxation on the torus and Gset problems. “T1” to “T4” denote the

graphs ’torusg3-8’, ’torusg3-15’, ’toruspm3-8-50’ and ’toruspm3-15-50’, respectively.

SDPLR Algorithm 2

Name n obj CPU p obj CPU nfe feasi

T1 512 4.573576e+02 0.57 16 4.573580e+02 0.38 343 4.8e-15

T2 3375 3.134523e+03 20.32 20 3.134567e+03 8.46 625 1.2e-14

T3 512 5.278072e+02 0.45 16 5.278086e+02 0.24 236 4.7e-15

T4 3375 3.475072e+03 11.24 20 3.475131e+03 7.88 583 1.2e-14

G22 2000 1.413577e+04 9.31 20 1.413595e+04 2.10 300 1.0e-14

G23 2000 1.414519e+04 7.27 20 1.414551e+04 1.79 241 9.6e-15

G24 2000 1.414060e+04 9.23 20 1.414086e+04 1.78 240 9.3e-15

G25 2000 1.414406e+04 9.65 20 1.414425e+04 1.80 261 9.7e-15

G26 2000 1.413272e+04 6.34 20 1.413287e+04 1.47 220 9.3e-15

G27 2000 4.141531e+03 10.30 20 4.141659e+03 1.33 206 9.4e-15

G28 2000 4.100691e+03 11.46 20 4.100790e+03 2.23 332 9.5e-15

G29 2000 4.208853e+03 10.89 20 4.208889e+03 1.47 233 9.1e-15

G30 2000 4.215364e+03 17.34 20 4.215382e+03 1.86 249 9.6e-15

G31 2000 4.215444e+03 14.13 20 4.215462e+03 1.76 218 9.5e-15

G32 2000 1.567615e+03 3.69 20 1.567627e+03 3.55 635 9.6e-15

G33 2000 1.544291e+03 3.94 20 1.544296e+03 3.89 618 9.5e-15

G34 2000 1.546676e+03 3.72 20 1.546685e+03 3.90 623 8.8e-15

G35 2000 8.014551e+03 13.66 20 8.014737e+03 2.99 425 9.6e-15

G36 2000 8.005909e+03 18.64 20 8.005956e+03 4.60 617 9.6e-15

G37 2000 8.018327e+03 15.24 20 8.018621e+03 3.04 454 9.3e-15

G38 2000 8.014767e+03 13.44 20 8.014969e+03 2.97 445 9.4e-15

G39 2000 2.877588e+03 19.32 20 2.877644e+03 2.78 430 9.6e-15

G40 2000 2.864778e+03 12.94 20 2.864784e+03 2.49 369 9.7e-15

G41 2000 2.865195e+03 25.86 20 2.865215e+03 2.50 378 9.3e-15

G42 2000 2.946239e+03 21.21 20 2.946251e+03 2.70 433 9.3e-15

G48 3000 5.999956e+03 7.38 20 6.000000e+03 2.14 251 1.2e-14

G49 3000 5.999839e+03 5.26 20 6.000000e+03 2.07 240 1.1e-14

G50 3000 5.988114e+03 4.88 20 5.988172e+03 4.66 547 1.2e-14

G55 5000 1.103920e+04 14.72 20 1.103946e+04 7.75 407 1.5e-14

G57 5000 3.885369e+03 16.48 20 3.885403e+03 12.41 627 1.5e-14

G58 5000 2.013593e+04 90.80 20 2.013539e+04 13.63 620 1.5e-14

G60 7000 1.522191e+04 18.59 20 1.522224e+04 14.90 523 1.8e-14

G62 7000 5.430703e+03 23.19 20 5.430777e+03 16.96 623 1.7e-14

G63 7000 2.824334e+04 77.89 20 2.824284e+04 19.49 638 1.8e-14

G64 7000 1.046582e+04 128.52 20 1.046561e+04 20.19 644 1.7e-14

G65 8000 6.205298e+03 28.38 20 6.205384e+03 20.25 620 1.9e-14

G66 9000 7.076941e+03 33.58 20 7.077048e+03 22.02 624 2.0e-14

G67 10000 7.744093e+03 38.28 20 7.744265e+03 24.84 624 2.1e-14

G70 10000 9.861247e+03 52.12 20 9.861523e+03 24.78 626 2.1e-14

G72 10000 7.808215e+03 37.10 20 7.808381e+03 24.47 622 2.2e-14

G77 14000 1.104509e+04 51.25 20 1.104550e+04 33.10 636 2.5e-14

G81 20000 1.565514e+04 74.79 20 1.565574e+04 44.98 634 3.0e-14

A Feasible Method for Optimization with Orthogonality Constraints 23

Ex2: n = 943, G is based on 100,000 ratings for 1682 movies by 943 users from the Movielens data sets.

The weight matrix H is either the identity or the one provided by T. Fushiki at Institute of Statistical

Mathematics, Japan.

We compared Algorithm 2 with the majorization code Major [42] and the majorized penalty code PenCorr

[22]. Their performance is presented in Table 6, where “resi” denotes the residual ‖H � (X −C)‖F and “feasi”

denotes the violation of Xii = 1. The CPU time of PenCorr decreased as the rank p increased in most cases,

but Algorithm 2 did the opposite. The advantage of latter algorithm becomes larger when the weight H 6= I.

It is worth noting that the implementation of Major and thus its speed could be improved.

5.6 Linear Eigenvalue Problem

We next compute a few extreme eigenvalues and their corresponding eigenvectors. Given a symmetric matrix

A ∈ Rn×n and an arbitrary unitary matrix V ∈ Rn×p, the trace of V >AV is maximized when V is an orthogonal

basis of the eigenspace associated with the p largest eigenvalues. Let λ1 ≥ . . . ≥ λn be the eigenvalues of A. The

p-largest eigenvalue problem can be formulated as

p∑
i=1

λi := max
X∈Rn×p

tr(X>AX) s.t. X>X = I, (42)

that is, F(X) = −tr(X>AX).

We compared Algorithm 2 with the MATLAB function “eigs”, which calls the Fortran library ARPACK, on

two sets of positive definite matrices. It is worth noting that the performance of ARPACK through a direct call

can be better than “eigs” due to Matlab’s interface implementation. We, however, did not tune the interface

since our goal is not to tell which is faster but to demonstrate the potential of Algorithm 2 as a general manifold

algorithm. The first set includes a few randomly generated dense Wishart matrices assembled as A = Ā>Ā,

where Ā ∈ Rn×n is a matrix whose elements are sampled from the standard Gaussian distribution. The results

in Table 7 correspond to n varying from 500 through 5000 and a fixed p = 6 (hence, the objective value F equals

the sum of 6 largest eigenvalues). In this table, “err” denotes the relative error between the objective values

given by eigs and Algorithm 2, “nAx” denotes the total number of matrix-vector products in eigs, and “nfe”

denotes the total number of function evaluations in Algorithm 2. We can see that our code works well when n

is large. The results corresponding to varying p but fixed n = 5000 are presented in Tables 8, which show that

Algorithm 2 performs well when p was relatively small. The second test set contains 39 large sparse matrices

with n ≥ 4000 from the UF Sparse Matrix Collection [16]. We tested computing two largest eigenvalues and the

results are presented in Table 9, where, “resi” denotes the residual ‖AX −Xdiag(λ1, . . . , λp)‖F = 1
2‖∇F(X)‖F

corresponding to the computed eigenpairs. Since ‖∇F(X)‖F ≤ ε = 10−5 is one of our termination rules in section

5.1, only moderately accurate solutions were computed. We can see that Algorithm 2 was quite competitive on

most problems in terms of F , i.e., the summation of the first two eigenvalues, for achieving a residual on the order

of 10−5. The performance of both eigs and Algorithm 2 varied over different runs due to different initializations.

It is worth noting that although eigs failed on problems “fv1” to “fv3” and “t2dal e”, it can become successful

24 Zaiwen Wen, Wotao Yin

Table 6 Computational results for the Low-Rank nearest correlation problem.

Major PenCorr Algorithm 2

p resi CPU feasi resi CPU feasi resi CPU feasi nfe

Ex1, H = I

2 1.564201e+02 8.34 1.2e-13 1.564172e+02 53.20 4.3e-09 1.686832e+02 0.25 3.5e-15 42

5 7.883390e+01 4.54 1.4e-13 7.883423e+01 10.34 3.1e-08 7.882875e+01 1.12 3.7e-15 200

10 3.868525e+01 5.25 5.2e-15 3.868518e+01 6.30 2.9e-07 3.868258e+01 1.01 4.0e-15 182

20 1.570825e+01 12.64 5.6e-15 1.570796e+01 5.31 7.8e-08 1.570688e+01 1.26 5.1e-15 195

50 4.140789e+00 142.30 7.1e-15 4.139455e+00 2.29 5.2e-07 4.139235e+00 5.71 5.9e-15 533

100 1.471204e+00 928.58 9.5e-15 1.466498e+00 2.56 2.4e-07 1.467395e+00 19.46 8.0e-15 1076

125 1.055070e+00 1731.39 9.4e-15 1.048114e+00 2.85 3.0e-08 1.049154e+00 24.65 8.1e-15 1036

Ex1, random H

2 9.106583e+02 14.64 1.4e-13 9.109902e+02 163.18 4.6e-07 9.778999e+02 0.76 3.6e-15 105

5 4.536099e+02 31.42 1.2e-13 4.537458e+02 91.15 7.7e-07 4.535966e+02 2.04 3.9e-15 281

10 2.204165e+02 67.21 5.1e-15 2.204421e+02 69.79 5.4e-07 2.204043e+02 2.08 4.2e-15 275

20 8.812054e+01 218.99 5.4e-15 8.812887e+01 69.65 3.6e-07 8.851307e+01 3.36 4.9e-15 381

50 2.203931e+01 2022.31 7.1e-15 2.191649e+01 94.46 8.6e-07 2.188864e+01 27.36 6.0e-15 2076

100 7.110542e+00 9649.30 9.2e-15 6.389784e+00 121.00 2.6e-07 6.457456e+00 39.97 8.0e-15 2074

125 5.030963e+00 13801.88 1.0e-14 4.179018e+00 151.09 9.6e-07 4.348972e+00 48.05 8.8e-15 2090

Ex2, H = I

5 4.127677e+02 10.63 1.6e-13 4.128428e+02 172.70 6.5e-08 4.127542e+02 2.72 5.3e-15 162

10 3.265122e+02 46.72 6.2e-15 3.263352e+02 185.19 1.2e-07 3.262344e+02 2.73 5.6e-15 166

20 2.887315e+02 27.11 7.6e-15 2.887228e+02 88.19 3.2e-08 2.886782e+02 9.87 6.6e-15 488

50 2.763023e+02 78.99 1.0e-14 2.762742e+02 51.40 7.5e-08 2.762733e+02 11.74 8.8e-15 364

100 2.758067e+02 260.08 1.4e-14 2.757853e+02 9.44 1.7e-08 2.757854e+02 6.35 1.1e-14 121

150 2.758095e+02 925.63 1.7e-14 2.757853e+02 9.44 1.7e-08 2.757854e+02 7.40 1.3e-14 101

250 2.758087e+02 1676.32 2.1e-14 2.757853e+02 9.44 1.7e-08 2.757854e+02 11.11 1.6e-14 97

Ex2, H given by T. Fushiki

5 1.141113e+04 407.47 2.6e-13 1.147849e+04 2480.31 5.7e-07 1.140483e+04 35.89 5.1e-15 1406

10 7.586522e+03 1299.88 6.1e-15 7.638036e+03 2305.20 2.8e-07 7.586921e+03 33.17 5.8e-15 1247

20 5.200671e+03 1733.57 7.3e-15 5.219117e+03 2062.14 2.7e-07 5.194958e+03 30.54 6.1e-15 1007

50 3.712916e+03 4154.29 9.0e-15 3.718507e+03 1356.16 2.0e-09 3.711896e+03 21.99 7.8e-15 512

100 3.503209e+03 6426.36 1.2e-14 3.507128e+03 906.02 3.3e-07 3.502541e+03 22.05 9.7e-15 346

150 3.501124e+03 8734.17 1.6e-14 3.505351e+03 824.69 3.1e-07 3.500676e+03 27.78 1.1e-14 324

250 3.501170e+03 15595.92 2.0e-14 3.505351e+03 864.67 3.1e-07 3.500654e+03 40.59 1.4e-14 312

after using a different set of carefully chosen parameters. Moreover, the matrices “crystm01” to “crystm03”,

“Muu” and “fv1” to “fv3” are perhaps not among those one would compute the leading eigenvalues since they

have most of their eigenvalues clustered together, i.e., the leading eigenvalues do not clearly stand out. The

advantage Algorithm 2 is more obvious if only the largest eigenvalue is computed while this advantage fades

as p grows. Although “nfe” of Algorithm 2 was smaller than “nAx” of eigs on most of these problems in both

sets, Algorithm 2 needs matrix multiplications like AX, X ∈ Rn×p, which is p-times more expensive than the

A Feasible Method for Optimization with Orthogonality Constraints 25

matrix-vector multiplications Ax, x ∈ Rn, used by eigs. We expect to improve the performance of Algorithm 2

for eigenvalue problems by making use of advanced eigenvalue techniques in linear algebra.

Table 7 Eigenvalues on randomly generated dense matrices for fixed p = 6

n 500 1000 2000 3000 4000 5000

eigs

F 1.153e+04 2.316e+04 4.717e+04 7.075e+04 9.469e+04 1.187e+05

feasi 5.972e-15 8.545e-15 4.295e-15 9.169e-15 6.618e-15 7.112e-15

nAx 132 202 248 354 290 335

cpu 0.113 0.500 2.132 6.040 9.008 16.052

Algorithm 2

F 1.153e+04 2.316e+04 4.717e+04 7.075e+04 9.469e+04 1.187e+05

feasi 6.468e-16 9.314e-16 8.921e-16 1.073e-15 1.419e-15 1.852e-15

nfe 58 43 74 59 67 84

cpu 0.127 0.410 2.030 3.408 7.094 13.727

err 1.255e-06 9.882e-07 4.649e-06 5.341e-06 4.936e-06 9.378e-06

Table 8 Eigenvalues of a randomly generated 5000-dimensional dense matrix

n 1 3 5 7 9 11 13 15

eigs

F 1.986e+04 5.940e+04 9.873e+04 1.379e+05 1.769e+05 2.157e+05 2.545e+05 2.932e+05

nAx 200 350 350 372 439 515 468 384

feasi 1.776e-15 3.739e-15 6.531e-15 9.950e-15 8.200e-15 1.455e-14 1.337e-14 1.211e-14

cpu 9.281 16.405 16.133 17.274 20.355 23.849 22.183 17.768

Algorithm 2

F 1.986e+04 5.940e+04 9.873e+04 1.379e+05 1.769e+05 2.157e+05 2.545e+05 2.932e+05

feasi 4.441e-16 1.884e-15 1.587e-15 2.047e-15 1.740e-15 1.361e-15 2.384e-15 3.537e-15

nfe 91 104 94 98 102 92 101 131

cpu 4.148 13.550 14.867 16.016 17.843 16.714 19.711 27.867

err 1.325e-06 2.102e-07 1.431e-07 1.438e-06 5.221e-06 4.307e-06 2.292e-07 1.053e-08

5.7 Total Energy Minimization in Electronic Structure Calculation

We next test a class of nonlinear eigenvalue problem called Kohn-Sham equations. The continuous problem

was first discretized by expressing a single electron wavefunction ψ(r) as a linear combination of planewaves

ψ(r) =
∑ng
j=1 cje

ig>j r, where gj ∈ R3, j = 1, · · · , ng are frequency vectors arranged in a lexicographical order.

Then the uniformly sampled ψ(r) can be denoted by a vector x ∈ Cn with c = Fx, where F is the discretized

Fourier transformation matrix. Let X ∈ Cn×p be a matrix that contains p discretized wavefunctions. The

26 Zaiwen Wen, Wotao Yin

Table 9 Computing the first two largest eigenvalues of 39 instances in the UF Sparse Matrix Collection

eigs Algorithm 2

Name n F CPU nAx resi F err CPU nfe resi

mhd4800b 4800 4.392537e+00 0.041 54 1.3e-15 4.392537e+00 4.9e-09 0.021 15 6.9e-06

bcsstk36 23052 3.523673e+08 0.747 91 1.6e-15 3.523671e+08 4.5e-07 0.608 49 8.8e-05

bcsstk38 8032 8.042155e+11 0.055 20 7.4e-16 8.042155e+11 9.0e-14 0.045 12 3.5e-07

bcsstm39 46772 5.542200e+01 1.370 178 3.5e-15 5.542200e+01 1.6e-10 1.354 67 8.7e-06

crystm01 4875 1.061139e-11 0.143 126 1.7e-15 1.061139e-11 1.2e-19 0.064 35 2.8e-05

crystm02 13965 3.522817e-12 0.599 178 2.5e-15 3.522817e-12 3.5e-19 0.200 39 7.5e-05

crystm03 24696 1.957652e-12 1.242 195 2.7e-15 1.957651e-12 8.7e-20 0.359 37 5.7e-05

ct20stif 52329 1.773180e+12 0.714 38 4.3e-15 1.773180e+12 1.8e-10 1.514 44 1.4e-05

msc04515 4515 6.275788e+10 0.416 406 3.4e-15 6.275693e+10 1.5e-05 0.222 131 1.0e-04

msc10848 10848 1.185087e+12 0.264 38 2.5e-15 1.185087e+12 4.1e-09 0.279 36 2.0e-05

msc23052 23052 1.409469e+09 0.725 91 2.2e-15 1.409468e+09 1.1e-06 0.682 58 5.8e-05

pwtk 217918 2.016957e+08 181.390 1920 5.1e-15 2.016942e+08 7.2e-06 21.946 138 3.5e-04

sts4098 4098 5.099813e+08 0.021 20 1.1e-15 5.099813e+08 1.6e-10 0.062 43 5.9e-06

s1rmq4m1 5489 1.371517e+06 0.601 321 3.0e-15 1.371515e+06 2.0e-06 0.304 93 9.6e-05

s1rmt3m1 5489 1.930501e+06 0.592 341 4.6e-15 1.930499e+06 1.5e-06 0.229 94 2.1e-04

s2rmq4m1 5489 1.371527e+05 0.528 287 4.8e-15 1.371526e+05 3.6e-07 0.408 143 8.1e-05

s2rmt3m1 5489 1.930449e+05 0.579 341 3.4e-15 1.930449e+05 1.3e-08 0.242 102 1.7e-05

s3rmq4m1 5489 1.371619e+04 0.603 322 2.4e-15 1.371617e+04 1.4e-06 0.244 92 8.2e-05

s3rmt3m1 5489 1.930698e+04 0.581 341 5.0e-15 1.930698e+04 3.4e-07 0.240 101 4.1e-05

s3rmt3m3 5357 1.916587e+04 0.452 270 6.1e-15 1.916585e+04 1.4e-06 0.166 70 9.6e-05

ex15 6867 2.218375e+10 0.190 145 2.1e-15 2.218375e+10 1.9e-07 0.192 89 5.9e-05

bcsstk16 4884 9.028529e+09 0.146 73 2.5e-15 9.028529e+09 3.9e-09 0.070 27 4.6e-05

bcsstk17 10974 2.470064e+10 0.177 56 9.1e-16 2.470063e+10 1.4e-08 0.138 30 3.2e-05

bcsstk18 11948 7.723856e+10 0.131 55 1.9e-15 7.723856e+10 3.1e-09 0.105 28 1.9e-05

bcsstk25 15439 2.120041e+15 0.174 55 2.9e-15 2.120041e+15 1.5e-11 0.101 19 3.0e-06

bcsstk28 4410 1.244298e+09 0.036 20 7.1e-16 1.244298e+09 1.6e-10 0.049 22 5.5e-06

bcsstm25 15439 1.395419e+09 0.247 161 2.8e-15 1.395419e+09 3.7e-09 0.092 23 6.3e-05

Kuu 7102 1.080637e+02 0.885 394 1.9e-15 1.080637e+02 2.2e-07 0.276 86 3.0e-05

Muu 7102 1.679791e-03 1.560 969 3.6e-15 1.679771e-03 2.0e-08 0.500 194 8.8e-05

finan512 74752 5.611798e+01 2.184 127 2.2e-15 5.611798e+01 3.0e-09 1.658 43 6.6e-06

nd3k 9000 2.541715e+02 2.859 214 2.5e-15 2.541715e+02 2.2e-08 1.203 72 1.4e-05

nasa4704 4704 4.132959e+08 0.045 38 5.7e-16 4.132959e+08 2.6e-10 0.027 15 1.4e-05

nasasrb 54870 5.296036e+09 5.285 272 2.3e-15 5.296036e+09 9.0e-08 2.688 78 1.9e-05

fv1 9604 0.000000e+00 24.078 17318 9.8e-01 9.019638e+00 9.0e+00 0.466 173 5.6e-05

fv2 9801 0.000000e+00 26.560 17678 9.8e-01 9.019546e+00 9.0e+00 0.478 163 6.0e-05

fv3 9801 0.000000e+00 26.144 17678 9.4e-01 7.999393e+00 8.0e+00 0.455 165 5.6e-05

t2dal e 4257 0.000000e+00 3.725 7688 1.4e+00 4.144770e-05 4.1e-05 0.047 41 1.9e-05

aft01 8205 1.000000e+15 0.149 88 4.0e-16 1.000000e+15 8.4e-13 0.034 11 1.5e-07

cfd1 70656 1.358235e+01 4.774 215 3.7e-15 1.358228e+01 5.3e-06 4.260 97 3.8e-05

A Feasible Method for Optimization with Orthogonality Constraints 27

finite-dimensional approximation to the continuous total energy function is defined as

Etotal(X) := tr

(
X∗(

1

2
L+ Vion)X

)
+

1

2
ρ>L†ρ+ ρ>εxc(ρ) + EEwald + Erep. (43)

Here, L is a finite dimensional representation of the Laplacian operator in the planewave basis which can be

decomposed as L = F ∗DgF , and Dg is a diagonal matrix with ‖gj‖2 on the diagonal. Vion denotes the ionic

pseduopotentials sampled on the suitably chosen Cartesian grid. For simplicity, we let the function ρ(X) :=

diag(XX∗) be denoted by ρ. The pseudo-inverse L† is defined as L† = F ∗D†gF , where D†g is a diagonal matrix

whose diagonal entries dj = ‖gj‖−2 if gj 6= 0, otherwise dj = 0. The term εxc(ρ) represents the exchange-

correlation energy per particle in a uniform electron gas of density ρ. The term Erep measures the degree of

repulsiveness of the local pseudo-potential with a term that corresponds to the non-singular part of ion-ion

potential energy and the detail of EEwald can be found in [60]. Hence, the discretized minimization problem is

min Etotal(X) s.t. X∗X = I, (44)

whose first-order optimality conditions are

H(X)X −XΛ = 0, X∗X = I,

where H(X) := 1
2L + Vion + diag(L†ρ) + diag(µxc(ρ)), where µxc(ρ) = dεxc(ρ)/dρ and Λ is the Lagrangian

multiplier that is a symmetric matrix.

The implementation of the objective function and its gradient used in Algorithm 2 was based on a MATLAB

toolbox KSSOLV [60]. We compared Algorithm 2 with the three methods provided in KSSOLV: the self-

consistent field (SCF) iteration, a direct constrained minimization (DCM) algorithm, and a trust-region enabled

DCM algorithm (TRDCM), on seven examples. The test results are presented in Table 10. Algorithm 2 was

able to achieve the same objective values on most problems. However, its advantage in terms of speed is not

clear since the most expensive task, that is the computation of the objective function values and gradients, was

not optimized.

5.8 Quadratic Assignment Problem

Given matrices A,B ∈ Rn×n, the QAP [11] minimizes a quadratic function over a permutation matrix X as

min
X∈Rn×n

tr(A>XBX>), s.t. X>X = I, X ≥ 0. (45)

It is well-known that the QAP is NP-hard and numerically challenging even for moderately large n in practice.

Our purpose here is to demonstrate that Algorithm 2 can return high-quality QAP solutions in very short times.

Since the entries of any feasible X are binary, we replace X by the equivalent X � X, where � is Hadamard

product, and solve the equivalent model

min
X∈Rn×n

ψ(X) := tr(A>(X �X)B(X �X)>), s.t. X>X = I, X ≥ 0. (46)

instead of (45). From our limited numerical experience, we found that Algorithm 2 can often return better

(local) solutions on (46) than (45).

28 Zaiwen Wen, Wotao Yin

Table 10 Numerical results on total energy minimization

sih4

solver F nrmG feasi cpu solver F nrmG feasi cpu

scf -6.176928e+00 1.35e-06 2.34e-15 11.25 dcm -6.176928e+00 8.96e-06 7.18e-06 13.27

trdcm -6.176928e+00 9.74e-06 3.40e-15 13.62 Alg 2 -6.176928e+00 2.08e-05 2.28e-15 12.28

qdot

scf 2.771133e+01 1.96e-01 4.14e-15 13.34 dcm 2.780181e+01 4.07e-01 1.85e-02 12.06

trdcm 2.772539e+01 3.64e-01 2.40e-15 11.71 Alg 2 2.770286e+01 7.58e-03 3.03e-10 25.21

ptnio

scf -2.234837e+02 9.26e-02 1.84e-14 179.20 dcm 8.711967e+01 3.02e+01 4.43e+00 144.28

trdcm -2.265951e+02 1.41e-01 1.94e-14 171.38 Alg 2 -2.267828e+02 5.69e-03 5.66e-14 304.35

co2

scf -3.512440e+01 1.84e-06 2.99e-15 16.22 dcm -1.384362e+01 2.70e+00 1.13e+00 16.93

trdcm -3.512440e+01 1.20e-04 3.28e-15 17.13 Alg 2 -3.512440e+01 7.05e-06 2.21e-14 18.66

h2o

scf -1.644051e+01 8.97e-07 1.29e-15 10.16 dcm -1.710034e+01 9.85e-01 1.32e+00 12.67

trdcm -1.644051e+01 2.30e-05 2.22e-15 11.96 Alg 2 -1.644051e+01 1.79e-06 1.70e-14 14.89

hnco

scf -2.863466e+01 2.79e-06 3.68e-15 23.51 dcm -1.039781e+01 2.99e+00 1.76e+00 23.81

trdcm -2.863466e+01 1.11e-04 4.64e-15 22.43 Alg 2 -2.863466e+01 5.36e-06 5.46e-14 33.54

c2h6

scf -1.442049e+01 1.71e-06 3.83e-15 16.60 dcm -1.178454e+01 1.46e+00 9.46e-03 17.21

trdcm -1.442049e+01 8.34e-05 3.13e-15 19.42 Alg 2 -1.442049e+01 2.39e-06 7.34e-15 20.32

Unlike X>X = I, the nonnegative constraints X ≥ 0 were not preserved by the iterations of Algorithm 2.

Instead, the standard augmented Lagrangian framework [40] was applied to deal with them. The augmented

Lagrangian function is

Lµ(X,Λ) := ψ(X) +
∑
i,j

ρ(Xij , Λij , µ),

where µ > 0 is the penalty parameter and

ρ(t, σ, µ) :=

−σt+ 1
2µt

2, if t− σ
µ ≤ 0,

− 1
2µσ

2, otherwise.

Starting from µ0 > 0, Λ0 = 0, and an initial orthogonal matrix X0, the augmented Lagrangian method iterates

between solving a subproblem and updating µ and Λ. In the experiment, the kth subproblem

min
X∈Rn×n

Lµk(X,Λk), s.t. X>X = I (47)

was solved by Algorithm 2, and the solution Xk+1 was used to update

Λk+1 := max (Λk − µkXk+1, 0) and µk+1 = 1.2µk.

The entries of the final solution X∗ were rounded to integers.

A Feasible Method for Optimization with Orthogonality Constraints 29

We tested the above method on the 136 instances in QAPLIB, a quadratic assignment problem library.

Since it often returned local solutions and their qualities varied with the penalty parameter µ, we ran the

above method from 40 different random initial points for µ0 = 0.1, 1, 10 each and report the best one among

the 120 solutions for each instance. This procedure was also stopped if the best known or a better upper

bound is achieved. It is worth noting that no permutation matrices could be taken as initial points since all

of them satisfy the first-order optimality conditions and thus are stationary points. Starting from them would

immediately stall the algorithm. The quality of the solution is measured by its relative gap to the best feasible

solution given in QAPLIB:

gap% =

(
best upper bound− ψ(X)

best upper bound
× 100

)
%,

as well as the feasibility violation:

feasi = ‖X>X − I‖F + ‖min (X, 0) ‖1.

The smallest gap found by our algorithm was less than 5% on all problems except the “chr”-family problems

and “esc32a”. Hence, in order to save space, we only present the computational results on problems whose best

upper bounds are achieved and whose size n is greater than 80 in Tables 11 and 12, respectively. In these tables,

“obj” denotes the best upper bound, “min gap” denotes the smallest gap achieved by our greedy procedure,

and “µ” and “feasi” denote the corresponding penalty parameter and feasibility at this point, respectively. The

numbers “med gap”, “max gap” and “CPU” denote the median and maximal of gap among all generated local

solutions, and the averaged CPU time measured in seconds, respectively. As we can see from Table 11, the

greedy method is able to find the best upper bound for 38 problems, including larges problems such as “esc128”,

“lipa80b” and “lipa90b”. For all 21 large problems with n ≥ 80 reported in Table 12, our approach was able to

identify feasible solutions whose gap is less than 3%. In fact, 15 of the best gaps were less than 1% and 16 of the

worst gaps were only less than 5%. In particular, the best and worst gaps for the largest problem “tai256c” were

0.842 and 2.401, respectively. Our numerical results are promising even comparing these of the well-developed

LP and SDP relaxations techniques and their variants in terms of speed. Most of the average time spending on

each random instance is no more than half a minute or even less. The most expensive problem “tai256c” only

took around 4.5 minute for each instance. Hence, the total time for all of the 120 random instances are still

not large. Since the worst gap is often reasonable, the computational time can be saved if a reasonably good

approximation is acceptable.

6 Conclusions

Spherical and orthogonal constraints appear in many important classes of optimization problems. In this paper,

we study a feasible approach for these problems. The main contribution is the development of a constraint-

preserving update with curvilinear search and careful implementation into an efficient algorithm. The update

formula is analyzed in the Stiefel manifold and generalized to one that can move along any given tangent

directions.

30 Zaiwen Wen, Wotao Yin

Table 11 QAPLIB: exact recovery

Algorithm 2

Name n obj µ min gap % med gap % max gap % CPU feasi

chr12b † 12 9742 1.0e+01 0.000 58.222 134.223 0.59 0

esc128 † 128 64 1.0e+00 0.000 7.812 15.625 22.01 0

esc16a † 16 68 1.0e+00 0.000 5.882 8.824 0.35 0

esc16b † 16 292 1.0e+00 0.000 0.343 0.685 0.71 0

esc16c † 16 160 1.0e+00 0.000 0.000 0.000 0.61 0

esc16d † 16 16 1.0e+00 0.000 12.500 12.500 0.26 0

esc16e † 16 28 1.0e+00 0.000 7.143 7.143 0.28 0

esc16f † 16 0 1.0e+00 0.000 0.000 0.000 0.01 0

esc16g † 16 26 1.0e+00 0.000 7.692 7.692 0.17 0

esc16h † 16 996 1.0e+00 0.000 0.000 0.000 0.83 0

esc16i † 16 14 1.0e+00 0.000 0.000 0.000 0.23 0

esc16j † 16 8 1.0e+00 0.000 12.500 25.000 0.12 0

esc32b † 32 168 1.0e+00 0.000 20.238 35.714 0.90 0

esc32c † 32 642 1.0e+00 0.000 0.000 0.000 1.76 0

esc32d † 32 200 1.0e+00 0.000 6.000 11.000 1.18 0

esc32e † 32 2 1.0e+00 0.000 0.000 0.000 0.69 0

esc32g † 32 6 1.0e+00 0.000 33.333 33.333 0.78 0

esc64a † 64 116 1.0e+00 0.000 0.000 0.000 5.75 0

had12 † 12 1652 1.0e+00 0.000 0.726 2.179 0.70 0

had14 † 14 2724 1.0e+00 0.000 0.404 1.762 0.81 0

had16 † 16 3720 1.0e+00 0.000 0.215 0.591 0.93 0

had18 † 18 5358 1.0e+00 0.000 0.336 0.859 1.19 0

had20 † 20 6922 1.0e-01 0.000 0.520 2.427 1.22 0

lipa20a † 20 3683 1.0e+00 0.000 2.675 3.204 1.18 0

lipa20b † 20 27076 1.0e+00 0.000 14.614 15.951 0.79 0

lipa30a † 30 13178 1.0e+00 0.000 1.829 2.254 2.34 0

lipa30b † 30 151426 1.0e+00 0.000 16.295 16.640 1.38 0

lipa40b † 40 476581 1.0e+00 0.000 9.576 18.493 2.26 0

lipa50b † 50 1210244 1.0e+00 0.000 0.000 0.000 0.55 0

lipa60b † 60 2520135 1.0e+00 0.000 19.244 19.889 7.63 0

lipa70b † 70 4603200 1.0e+00 0.000 10.108 20.217 6.43 0

lipa80b † 80 7763962 1.0e+00 0.000 21.205 21.550 15.08 0

lipa90b † 90 12490441 1.0e+01 0.000 21.430 22.119 21.08 0

nug12 † 12 578 1.0e+00 0.000 5.536 13.495 0.46 0

nug14 † 14 1014 1.0e-01 0.000 5.128 10.454 0.53 0

nug16a † 16 1610 1.0e+00 0.000 4.099 8.571 0.67 0

nug16b † 16 1240 1.0e+00 0.000 1.129 2.258 0.60 0

tai12a † 12 224416 1.0e+00 0.000 8.753 14.529 0.49 0

A Feasible Method for Optimization with Orthogonality Constraints 31

Table 12 QAPLIB: n ≥ 80

Algorithm 2

Name n obj µ obj min gap % med gap % max gap % CPU feasi

esc128 † 128 64 1.0e+00 64 0.000 7.812 15.625 22.01 0

lipa80a 80 253195 1.0e+00 254922 0.682 0.813 1.048 17.69 0

lipa80b † 80 7763962 1.0e+00 7763962 0.000 21.205 21.550 15.08 0

lipa90a 90 360630 1.0e+00 362890 0.627 0.732 0.933 23.82 0

lipa90b † 90 12490441 1.0e+01 12490441 0.000 21.430 22.119 21.08 0

sko100a 100 152002 1.0e+01 153210 0.795 1.601 2.751 22.59 0

sko100b 100 153890 1.0e-01 155048 0.752 1.598 2.611 22.44 0

sko100c 100 147862 1.0e-01 148992 0.764 1.824 2.903 22.52 0

sko100d 100 149576 1.0e+01 150810 0.825 1.579 2.474 22.37 0

sko100e 100 149150 1.0e-01 150436 0.862 1.820 3.002 22.76 0

sko100f 100 149036 1.0e+00 150392 0.910 1.621 2.558 22.84 0

sko81 81 90998 1.0e+01 92020 1.123 1.875 2.750 14.47 0

sko90 90 115534 1.0e+01 116506 0.841 1.695 2.820 18.04 0

tai100a 100 21052466 1.0e+00 21636148 2.773 3.342 4.068 26.46 0

tai100b 100 1185996137 1.0e+00 1206641180 1.741 5.642 9.388 51.31 0

tai150b 150 498896643 1.0e+01 508524940 1.930 3.199 4.523 118.96 0

tai256c 256 44759294 1.0e-01 45136316 0.842 1.352 2.401 270.49 0

tai80a 80 13515450 1.0e+01 13916084 2.964 3.629 4.637 15.10 0

tai80b 80 818415043 1.0e-01 824640287 0.761 4.859 8.515 29.33 0

tho150 150 8133398 1.0e+00 8230504 1.194 2.040 2.795 84.77 0

wil100 100 273038 1.0e+01 274048 0.370 0.776 1.102 22.24 0

The proposed algorithms compare favorably with state-of-the-art algorithms on a variety of test problems.

In particular, they can provide multi-fold accelerations over SDP algorithms on several problems arising from

polynomial optimization, combinatorial optimization and the correlation matrix estimation, thus extending our

ability in solving difficult and large-scale instances of these problems. However, further research is still needed

to develop approximation guarantees for the proposed algorithms.

In nonlinear programming, infeasible methods are sometimes good choices since they can perhaps avoid

certain local minimizers. Our numerical results, however, suggest that on many problems, preserving spherical or

orthogonality constraints does not cause local minimization. When local minimizers are unavoidable, its speed

advantage offsets its potential drawbacks. It remains theoretically interesting to identify suitable conditions

under which the constraint–preserving algorithms can indeed find the global minimizes with either full or high

probability.

Acknowledgements

We would like to thank Yin Zhang, Xin Liu, and Shiqian Ma for the discussions on optimization conditions,

Jiawang Nie for the discussions on polynomial optimization, Chao Yang for the discussions on the Kohn-Sham

32 Zaiwen Wen, Wotao Yin

equation, as well as Franz Rendl and Etienne de Klerk for their comments on QAPs. We would also like to

thank Defeng Sun and Yan Gao for sharing their code PenCorr and their improvement for Major, as well as

sharing the test data for the nearest correlation matrix problem. The authors are grateful to Adrian Lewis, the

Associate Editor and three anonymous referees for their detailed and valuable comments and suggestions.

References

1. P.-A. Absil, C. G. Baker, and K. A. Gallivan, Trust-region methods on Riemannian manifolds, Found. Comput. Math.,

7 (2007), pp. 303–330.

2. P.-A. Absil, R. Mahony, and R. Sepulchre, Optimization algorithms on matrix manifolds, Princeton University Press,

Princeton, NJ, 2008.

3. R. L. Adler, J.-P. Dedieu, J. Y. Margulies, M. Martens, and M. Shub, Newton’s method on Riemannian manifolds

and a geometric model for the human spine, IMA J. Numer. Anal., 22 (2002), pp. 359–390.

4. C. G. Baker, P.-A. Absil, and K. A. Gallivan, An implicit trust-region method on Riemannian manifolds, IMA J.

Numer. Anal., 28 (2008), pp. 665–689.

5. J. Barzilai and J. M. Borwein, Two-point step size gradient methods, IMA J. Numer. Anal., 8 (1988), pp. 141–148.

6. G. Bencteux, E. Cancés, W. W. Hager, and C. Le Bris, Analysis of a quadratic programming decomposition algorithm,

SIAM J. Numer. Anal., 47 (2010), pp. 4517–4539.

7. S. J. Benson, Y. Ye, and X. Zhang, Solving large-scale sparse semidefinite programs for combinatorial optimization,

SIAM J. Optim., 10 (2000), pp. 443–461.

8. P. Boufounos and R. Baraniuk, 1-bit compressive sensing, Conf. on. Info. Science and Systems (CISS), Princeton, New

Jersey,, (2008).

9. I. Brace and J. H. Manton, An improved bfgs-on-manifold algorithm for computing weighted low rank approximations,

in the 17th International Symposium on Mathematical Theory of Networks and Systems, 2006, pp. 1735–1738.

10. S. Burer and R. D. C. Monteiro, A nonlinear programming algorithm for solving semidefinite programs via low-rank

factorization, Math. Program., 95 (2003), pp. 329–357.

11. R. E. Burkard, S. E. Karisch, and F. Rendl, QAPLIB—a quadratic assignment problem library, J. Global Optim., 10

(1997), pp. 391–403.

12. E. Cancès, C. Le Bris, and P.-L. Lions, Molecular simulation and related topics: some open mathematical problems,

Nonlinearity, 21 (2008), pp. T165–T176.

13. G. J. Chang, L.-H. Huang, and H.-G. Yeh, On the rank of a cograph, Linear Algebra Appl., 429 (2008), pp. 601–605.

14. Y.-H. Dai and R. Fletcher, Projected Barzilai-Borwein methods for large-scale box-constrained quadratic programming,

Numer. Math., 100 (2005), pp. 21–47.

15. A. d’Aspremont, L. El Ghaoui, M. Jordan, and G. R. Lanckriet, A direct formulation for sparse pca using semidefinite

programming, SIAM REVIEW, 49 (2007), pp. 434–448.

16. T. A. Davis, The university of florida sparse matrix collection, tech. report, University of Florida, 2010.

17. E. D. Dolan, J. J. Moré, and T. S. Munson, Benchmarking optimization software with cops 3.0, tech. report, Mathematics

and Computer Science Division, Argonne National Laboratory, February 2004.

18. A. Edelman, T. A. Arias, and S. T. Smith, The geometry of algorithms with orthogonality constraints, SIAM J. Matrix

Anal. Appl., 20 (1999), pp. 303–353.

19. R. Fletcher, Practical methods of optimization, A Wiley-Interscience Publication, John Wiley & Sons Ltd., Chichester,

second ed., 1987.

20. J. B. Francisco, J. M. Mart́ınez, L. Mart́ınez, and F. Pisnitchenko, Inexact restoration method for minimization

problems arising in electronic structure calculations, Computational Optimization and Applications, (2010).

21. S. Friedland, J. Nocedal, and M. L. Overton, The formulation and analysis of numerical methods for inverse eigenvalue

problems, SIAM J. Numer. Anal., 24 (1987), pp. 634–667.

A Feasible Method for Optimization with Orthogonality Constraints 33

22. Y. Gao and D. Sun, A majorized penalty approach for calibrating rank constrained correlation matrix problems, tech.

report, National University of Singapore, 2010.

23. D. Goldfarb, Z. Wen, and W. Yin, A curvilinear search method for the p-harmonic flow on spheres, SIAM Journal on

Imaging Sciences, 2, pp. 84–109.

24. G. H. Golub and C. F. Van Loan, Matrix computations, Johns Hopkins Studies in the Mathematical Sciences, Johns

Hopkins University Press, Baltimore, MD, third ed., 1996.

25. L. Grippo, L. Palagi, and V. Piccialli, An unconstrained minimization method for solving low-rank sdp relaxations of

the maxcut problem, Mathematical Programming, (2009), pp. 1–28. 10.1007/s10107-009-0275-8.

26. I. Grubǐsić and R. Pietersz, Efficient rank reduction of correlation matrices, Linear Algebra Appl., 422 (2007), pp. 629–

653.

27. S. He, Z. Li, and S. Zhang, Approximation algorithms for homogeneous polynomial optimization with quadratic con-

straints, Mathematical Programming, 125 (2010), pp. 353–383.

28. C. Helmberg and F. Rendl, A spectral bundle method for semidefinite programming, SIAM J. Optim., 10 (2000), pp. 673–

696.

29. U. Helmke and J. B. Moore, Optimization and dynamical systems, Communications and Control Engineering Series,

Springer-Verlag London Ltd., London, 1994. With a foreword by R. Brockett.

30. R. A. Horn and C. R. Johnson, Matrix analysis, Cambridge University Press, Cambridge, 1985.

31. E. Kokiopoulou, J. Chen, and Y. Saad, Trace optimization and eigenproblems in dimension reduction methods, tech.

report, University of Minnesota, 2010.

32. M. Kruž́ık and A. Prohl, Recent developments in the modeling, analysis, and numerics of ferromagnetism, SIAM Rev.,

48 (2006), pp. 439–483.

33. J. N. Laska, Z. Wen, W. Yin, and R. G. Baraniuk, Trust, but verify: Fast and accurate signal recovering from 1-bit

compressive measurements, tech. report, Rice University, 2010.

34. Z. Lu and Y. Zhang, An augmented lagrangian approach for sparse principal component analysis, arXiv:0907.2079, (2009).

35. J. Malick, J. Povh, F. Rendl, and A. Wiegele, Regularization methods for semidefinite programming, SIAM Journal

on Optimization, 20 (2009), pp. 336–356.

36. J. J. Moré and D. J. Thuente, Line search algorithms with guaranteed sufficient decrease, ACM Trans. Math. Software,

20 (1994), pp. 286–307.

37. A. Nemirovski, Sums of random symmetric matrices and quadratic optimization under orthogonality constraints, Math.

Program., 109 (2007), pp. 283–317.

38. J. Nie, Regularization methods for sum of squares relaxations in large scale polynomial optimization, tech. report, Depart-

ment of Mathematics, UCSD, 2009.

39. Y. Nishimori and S. Akaho, Learning algorithms utilizing quasi-geodesic flows on the stiefel manifold, Neurocomput., 67

(2005), pp. 106–135.

40. J. Nocedal and S. J. Wright, Numerical Optimization, Springer Series in Operations Research and Financial Engineering,

Springer, New York, second ed., 2006.

41. B. Owren and B. Welfert, The Newton iteration on Lie groups, BIT, 40 (2000), pp. 121–145.

42. R. Pietersz and P. J. F. Groenen, Rank reduction of correlation matrices by majorization, Quant. Finance, 4 (2004),

pp. 649–662.

43. C. Qi, K. A. Gallivan, and P.-A. Absil, Riemannian bfgs algorithm with applications, in Recent Advances in Optimization

and its Applications in Engineering, M. Diehl, F. Glineur, E. Jarlebring, and W. Michiels, eds., Springer Berlin Heidelberg,

2010, pp. 183–192.

44. M. Raydan, The Barzilai and Borwein gradient method for the large scale unconstrained minimization problem, SIAM J.

Optim., 7 (1997), pp. 26–33.

45. R. Rebonato and P. Jäckel, The most general methodology to create a valid correlation matrix for risk management

and option pricing purposes, The Journal of Risk, 2 (1999), pp. 17–27.

46. R. Roy and T. Kailath, Esprit — estimation of signal parameters via rotational invariance techniques, IEEE Trans.

Acoust., Speech, Signal Processing, (1989), pp. 984–995.

34 Zaiwen Wen, Wotao Yin

47. R. Schneider, T. Rohwedder, A. Neelov, and J. Blauert, Direct minimization for calculating invariant subspaces in

density functional computations of the electronic structure, J. Comput. Math., 27 (2009), pp. 360–387.

48. M. Shub, Some remarks on dynamical systems and numerical analysis, in Dynamical systems and partial differential

equations (Caracas, 1984), Univ. Simon Bolivar, Caracas, 1986, pp. 69–91.

49. D. Simon and J. Abell, A majorization algorithm for constrained correlation matrix approximation, Linear Algebra Appl.,

432 (2010), pp. 1152–1164.

50. S. T. Smith, Geometric optimization methods for adaptive filtering, ProQuest LLC, Ann Arbor, MI, 1993. Thesis (Ph.D.)–

Harvard University.

51. S. T. Smith, Optimization techniques on Riemannian manifolds, in Hamiltonian and gradient flows, algorithms and control,

vol. 3 of Fields Inst. Commun., Amer. Math. Soc., Providence, RI, 1994, pp. 113–136.

52. W. Sun and Y.-X. Yuan, Optimization Theory and Methods, vol. 1 of Springer Optimization and Its Applications, Springer,

New York, 2006. Nonlinear programming.

53. C. Udrişte, Convex functions and optimization methods on Riemannian manifolds, vol. 297 of Mathematics and its

Applications, Kluwer Academic Publishers Group, Dordrecht, 1994.

54. L. A. Vese and S. J. Osher, Numerical methods for p-harmonic flows and applications to image processing, SIAM J.

Numer. Anal., 40 (2002), pp. 2085–2104.

55. A. Wächter and L. T. Biegler, On the implementation of an interior-point filter line-search algorithm for large-scale

nonlinear programming, Math. Program., 106 (2006), pp. 25–57.

56. J. Ward, Space-time adaptive processing for airborne radar, Technical report of MIT, (1994).

57. V. Weber, J. VandeVondele, J. Hütter, and A. M. Niklasson, Direct energy functional minimization under orthogo-

nality constraints, The Journal of Chemical Physics, 128 (2008).

58. D. M. Witten, R. Tibshirani, and T. Hastie, A penalized matrix decomposition, with applications to sparse principal

components and canonical correlation analysis, Biostatistics, 10 (2009), pp. 515–534.

59. B. Yang, Projection approximation subspace tracking, IEEE TRANSACTIONS ON SIGNAL PROCESSING, 43 (1995),

pp. 95–.

60. C. Yang, J. C. Meza, B. Lee, and L.-W. Wang, Kssolv—a matlab toolbox for solving the kohn-sham equations, ACM

Trans. Math. Softw., 36 (2009), pp. 1–35.

61. C. Yang, J. C. Meza, and L.-W. Wang, A constrained optimization algorithm for total energy minimization in electronic

structure calculations, J. Comput. Phys., 217 (2006), pp. 709–721.

62. H. Zhang and W. W. Hager, A nonmonotone line search technique and its application to unconstrained optimization,

SIAM J. Optim., 14 (2004), pp. 1043–1056.

63. X. Zhao, D. Sun, and K. Toh, A newton-cg augmented lagrangian method for semidefinite programming, SIAM Journal

on Optimization, 20 (2010), pp. 1737–1765.

