486 research outputs found

    Thread-spawning schemes for speculative multithreading

    Get PDF
    Speculative multithreading has been recently proposed to boost performance by means of exploiting thread-level parallelism in applications difficult to parallelize. The performance of these processors heavily depends on the partitioning policy used to split the program into threads. Previous work uses heuristics to spawn speculative threads based on easily-detectable program constructs such as loops or subroutines. In this work we propose a profile-based mechanism to divide programs into threads by searching for those parts of the code that have certain features that could benefit from potential thread-level parallelism. Our profile-based spawning scheme is evaluated on a Clustered Speculative Multithreaded Processor and results show large performance benefits. When the proposed spawning scheme is compared with traditional heuristics, we outperform them by almost 20%. When a realistic value predictor and a 8-cycle thread initialization penalty is considered, the performance difference between them is maintained. The speed-up over a single thread execution is higher than 5x for a 16-thread-unit processor and close to 2x for a 4-thread-unit processor.Peer ReviewedPostprint (published version

    Object oriented execution model (OOM)

    Get PDF
    This paper considers implementing the Object Oriented Programming Model directly in the hardware to serve as a base to exploit object-level parallelism, speculation and heterogeneous computing. Towards this goal, we present a new execution model called Object Oriented execution Model - OOM - that implements the OO Programming Models. All OOM hardware structures are objects and the OOM Instruction Set directly utilizes objects while hiding other complex hardware structures. OOM maintains all high-level programming language information until execution time. This enables efficient extraction of available parallelism in OO serial code at execution time with minimal compiler support. Our results show that OOM utilizes the available parallelism better than the OoO (Out-of-Order) modelPeer ReviewedPostprint (published version

    Thread partitioning and value prediction for exploiting speculative thread-level parallelism

    Get PDF
    Speculative thread-level parallelism has been recently proposed as a source of parallelism to improve the performance in applications where parallel threads are hard to find. However, the efficiency of this execution model strongly depends on the performance of the control and data speculation techniques. Several hardware-based schemes for partitioning the program into speculative threads are analyzed and evaluated. In general, we find that spawning threads associated to loop iterations is the most effective technique. We also show that value prediction is critical for the performance of all of the spawning policies. Thus, a new value predictor, the increment predictor, is proposed. This predictor is specially oriented for this kind of architecture and clearly outperforms the adapted versions of conventional value predictors such as the last value, the stride, and the context-based, especially for small-sized history tables.Peer ReviewedPostprint (published version

    Micro-threading and FPGA implementation of a RISC microprocessor : a thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Computer Science at Massey University, Palmerston North, New Zealand

    Get PDF
    Appendix E removed due to copyright restrictions. Articles are available in the print copy held in the libraryThis thesis is the outcome of research in two areas of computer technology: microprocessor and multi-processor architectures (specifically from the perspective of how differently they tolerate highly-latent and non-deterministic events), and hardware design of complex digital systems containing both datapath and control (particularly microprocessors). This thesis starts by pointing out that in order to achieve high processing speeds, current popular superscalar microprocessors (e.g. Intel Pentiums, Digital Alpha, etc) rely heavily on the technique of speculating the outcome of instruction flow in order to predict the behaviour of non-deterministic computing operations (as in loading operands from high-latency memory into the processor). This is fine only if the speculation is correct. But, what if it isn't? If the speculation fails, this would mean that the processor has to abandon its current decision (which now proved to be the wrong one) for the instruction flow path taken and to start all over again with the other path (the actual correct one). This is a waste of valuable processing time and hardware resources and a reduction of performance when speculation fails. Therefore, these processors can achieve high performance only when the majority of speculations are successful (being able to predict the right path). In an attempt to overcome the above shortcomings, the first part of this thesis is an investigation of the novel vector micro-threading architecture as an alternative approach to the current superscalar-based speculative microprocessor designs. Micro-threading is based on the not-so-novel multithreading technique, which avoids speculation altogether and instead, starts running a different thread of instructions while waiting for the non-determinism to be resolved. This utilizes the chip resources more efficiently without waste of any processing power. The rest of this thesis focuses on the baseline RISC processor platform, the MIPS R2000, which is reviewed first then partially synthesized from the RTL (Register Transfer Level) description using VHDL and then simulated and tested. This is conducted in order for future research to build upon and add the micro-threading architectural add-ons and modifications. Keywords: Micro-threading, Latency Tolerance, FPGA Synthesis, RISC Architecture, MIPS R2000 processor, VHDL

    A Survey on Thread-Level Speculation Techniques

    Get PDF
    Producción CientíficaThread-Level Speculation (TLS) is a promising technique that allows the parallel execution of sequential code without relying on a prior, compile-time-dependence analysis. In this work, we introduce the technique, present a taxonomy of TLS solutions, and summarize and put into perspective the most relevant advances in this field.MICINN (Spain) and ERDF program of the European Union: HomProg-HetSys project (TIN2014-58876-P), CAPAP-H5 network (TIN2014-53522-REDT), and COST Program Action IC1305: Network for Sustainable Ultrascale Computing (NESUS)

    Out-of-Order Retirement of Instructions in Superscalar, Multithreaded, and Multicore Processors

    Full text link
    Los procesadores superescalares actuales utilizan un reorder buffer (ROB) para contabilizar las instrucciones en vuelo. El ROB se implementa como una cola FIFO first in first out en la que las instrucciones se insertan en orden de programa después de ser decodificadas, y de la que se extraen también en orden de programa en la etapa commit. El uso de esta estructura proporciona un soporte simple para la especulación, las excepciones precisas y la reclamación de registros. Sin embargo, el hecho de retirar instrucciones en orden puede degradar las prestaciones si una operación de alta latencia está bloqueando la cabecera del ROB. Varias propuestas se han publicado atacando este problema. La mayoría utiliza retirada de instrucciones fuera de orden de forma especulativa, requiriendo almacenar puntos de recuperación (checkpoints) para restaurar un estado válido del procesador ante un fallo de especulación. Normalmente, los checkpoints necesitan implementarse con estructuras hardware costosas, y además requieren un crecimiento de otras estructuras del procesador, lo cual a su vez puede impactar en el tiempo de ciclo de reloj. Este problema afecta a muchos tipos de procesadores actuales, independientemente del número de hilos hardware (threads) y del número de núcleos de cómputo (cores) que incluyan. Esta tesis abarca el estudio de la retirada no especulativa de instrucciones fuera de orden en procesadores superescalares, multithread y multicore.Ubal Tena, R. (2010). Out-of-Order Retirement of Instructions in Superscalar, Multithreaded, and Multicore Processors [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/8535Palanci

    Improving cache locality for thread-level speculation

    Full text link
    corecore