114

IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO.2, FEBRUARY 2004

Thread Partitioning and Value Prediction for
Exploiting Speculative Thread-Level Parallelism

Pedro Marcuello, Antonio Gonzalez, Member, IEEE Computer Society, and Jordi Tubella

Abstract—Speculative thread-level parallelism has been recently proposed as a source of parallelism to improve the performance in
applications where parallel threads are hard to find. However, the efficiency of this execution model strongly depends on the
performance of the control and data speculation techniques. In this work, several hardware-based schemes for partitioning the
program into speculative threads are analyzed and evaluated. In general, we find that spawning threads associated to loop iterations is
the most effective technique. We also show that value prediction is critical for the performance of all of the spawning policies. Thus, a
new value predictor, the increment predictor, is proposed. This predictor is specially oriented for this kind of architecture and clearly
outperforms the adapted versions of conventional value predictors such as the last value, the stride, and the context-based, especially

for small-sized history tables.

Index Terms—Speculative thread-level parallelism, value prediction, branch prediction, thread spawning policies, clustered

architectures.

1 INTRODUCTION

YNAMICALLY scheduled superscalar processors have

become the most popular processor microarchitecture
in recent years and many studies have been devoted to
improving their performance. This processor microarchi-
tecture is characterized by its ability to exploit at runtime
the instruction-level parallelism (ILP) that inherently exists
in programs.

The amount of ILP that these processors can exploit is
closely related to the size of the instruction window among
other issues. However, the effective size of the instruction
window is limited by the branch prediction accuracy since
the number of correctly speculated control-flow instructions
depends on the number of consecutive branches that have
been correctly predicted. This is due to the sequential
nature of the fetching mechanism of superscalar processors
since a single mispredicted branch prevents the instruction
window from growing beyond the branch, this being a
significant limitation in nonnumeric programs, which have
many difficult-to-predict branches. As a result of that, the
performance achieved by such processors is as far away
from the peak performance they can get and it results in a
poor usage of the resources of the processor.

In order to make better use of the resources of the
processors, some multithreaded architectures, such as the
Simultaneous Multithreading Processors [29], propose
executing different threads coming from either parallelized
applications or multiple applications. The select and the
wake-up logic of the processor can search for independent
instructions among all threads running in parallel. These
kinds of architectures usually provide a better usage of the

o The authors are with the Departament d’Arquitectura de Computadors,
Universitat Politecnica de Catalunya, Jordi Girona, 1-3 Modul D6, 08034
Barcelona, Spain. E-mail: {pmarcue, antonio, jorditj@ac.upc.es.

Manuscript received 14 june 2001; revised 19 July 2002; accepted 19 May
2003.

For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 114350.

0018-9340/04/$20.00 © 2004 IEEE

*

resources and a higher throughput, but it may increase the
execution time of sequential applications (compared with
their execution alone in a processor with the same amount
of resources) since the resources are shared with other
programs that are running simultaneously [28].

Some microarchitectures have recently been proposed to
boost performance for sequential applications by exploiting
coarse-grain parallelism in addition to instruction-level
(fine-grain) parallelism. These microarchitectures split pro-
grams into speculative threads and, then, they execute them
concurrently. This kind of parallelism is referred to as
Speculative Thread-Level Parallelism. Threads are specula-
tively executed because they are, in general, both control
and data dependent on previous threads since independent
threads are hard to find in many nonnumeric applications,
such as the SpecInt95. These microarchitectures support
execution roll-back in case of either a control or a data
dependence misspeculation.

These microarchitectures provide support for multiple
contexts and appropriate mechanisms to forward or to
predict values produced by one thread and consumed by
another. They differ inhow programs are splitinto threads. In
several proposals, such as the Multiscalar [6], [24], the SPSM
architecture [5], and the Superthreaded architecture [30], the
compiler splits the program into threads, whereas others rely
only on hardware techniques. Examples of the latter group
are the Dynamic Multithreaded Processor [1] and the
Clustered Speculative Multithreaded Processor [14], [15].

All these works have shown that speculative thread-level
parallelism has significant potential to boost performance.
Most of them use different heuristics to partition a
sequential instruction stream into speculative threads. Little
insight exists to explain the source of the advantages for
each particular partitioning approach and its interaction
with value prediction and other microarchitectural compo-
nents. In all cases, significant benefits have been reported,

Published by the IEEE Computer Society

MARCUELLO ET AL.: THREAD PARTITIONING AND VALUE PREDICTION FOR EXPLOITING SPECULATIVE THREAD-LEVEL PARALLELISM 115

but the absolute figures are not comparable due to very
different architectural assumptions.

In this work, the performance benefits of different
approaches of thread-level parallelism are studied. Various
speculative thread spawning policies—loop iterations, loop
continuations, subroutine continuations—are analyzed. Re-
sults for the SpecInt95 will show that spawning threads at
loop iterations with an unrestricted thread ordering policy
achieves a 3.1 speed-up for 16 thread units for perfect input
register value prediction and the degradation suffered by
this mechanism when a realistic increment value predictor
(which is a special value predictor especially targeted for
this kind of architecture) is considered on this architecture
is only 10 percent, on average, being higher than any other
spawning policy and value predictor considered. We also
show that value prediction is a must for this type of
microarchitecture and benchmarks. Without value predic-
tion, a speculative multithreaded processor has a perfor-
mance very close to a conventional superscalar one.

Below, Section 2 reviews related work. Different spec-
ulative thread spawning policies are described in Section 3
and their performance potential is analyzed in Section 4.
The impact on the performance of several key parts of the
processor is then analyzed, starting with the branch
prediction scheme in Section 5 and the value predictor in
Section 6. The overall processor performance is analyzed in
Section 7. Conclusions are summarized in Section 8.

2 REeLATED WORK

Several multithreaded architectures providing support for
thread-level speculation have been proposed. Pioneer work
on this topic was the Expandable Split Window Paradigm
[6] and the follow-up work, the Multiscalar [24]. In this
microarchitecture, the compiler is responsible for partition-
ing the program into threads based on several heuristics
that try to minimize the data dependences among active
threads or maximize the workload balance, among other
compiler criteria [32].

Other architectures, such as the SPSM [5] and the
Superthreaded architectures [30], also rely on the compiler
to split the program into threads, but, in these cases, threads
are assumed to be loop iterations instead of the more
complex analysis of the Multiscalar compiler. A common
feature of these architectures is the way to deal with data
dependences since all of them stall the execution of the
consumer of an interthread data dependent instruction until
the value is produced and forwarded by the producer
thread and no mechanisms for value prediction are
considered.

On the other hand, some other architectures try to exploit
thread-level parallelism speculating on threads dynamically
created by the processor without any compiler intervention.
The Speculative Multithreaded Processor [14] and its
successor, the Clustered Speculative Multithreaded Proces-
sor [15], identify loops at runtime and simultaneously
execute iterations in different thread units.

In the same way, the Dynamic Multithreaded Processor
[1] relies only on hardware mechanisms to divide a
sequential program into threads, but it speculates on loop
and subroutine continuations. Moreover, the architectural

design of the processor allows for out-of-order thread
creation, which requires communication among all hard-
ware contexts.

Trace Processors [20], [31] also exploit a certain kind of
speculative thread-level parallelism. Its mechanism to split
the sequential program into almost fixed-length traces is
especially suited to maximize the workload balance among
the different thread units by the help of the trace cache [21].

These last three multithreaded architectures provide
support for value prediction in order to avoid serialization
among concurrent threads, but the value predictors
considered in each of them are very different. Whereas
the mechanism provided in the Dynamic Multithreaded
Processors is based on copying the register file of the parent
thread into the child register file, a mechanism that can be
quite suitable for spawning threads at subroutines, the
Trace Processor and the Clustered Speculative Multi-
threaded architecture use more complex and general
predictors, like the context-based and the increment
predictors.

Several works on speculative thread-level parallelism on
multiprocessor platforms have been performed. The
I-ACOMA group [3], [12] and the STAMPede group ([27],
[26] among others) have proposed compiler-based techni-
ques to speculatively exploit thread level parallelism. In
both works, loops are considered as the main source of
speculative parallelism and the constraints for parallelizing
them are relaxed, especially those related to memory
disambiguation. In these architectures, the impact of
memory value prediction is also studied, providing small
benefits if the cost of misprediction is high or if some of
those predicted values can be eliminated, such as loop
induction variables. Some other proposals in this area can
be found in [10], [11].

A different approach for on-chip multiprocessor for
exploiting speculative thread-level parallelism is taken by
the Atlas multiprocessor [4]. Here, the different processing
elements are interconnected by means of a bidirectional
ring topology and to which support for thread and value
speculation has been added. Speculative threads are
obtained by means of the MEM-Slicing algorithm, which,
instead of spawning threads at points of the program with
high control independence, spawns threads at memory-
access instructions.

Finally, some work comparing different spawning
policies has been done in [4], [19]. In both cases, reported
results show that spawning threads at subroutines achieves
higher performance than spawning at loop iterations or
loop continuations. However, both studies consider as their
baseline architecture an on-chip multiprocessor where each
processing unit was single-issue and instructions were
issued in program order. With these assumptions, the
existing interactions between fine and coarse-grain paralle-
lism are not considered.

Some insight into the behavior of Speculative Multi-
threading has been done in [34]. In that work, the impact of
several parts of the microarchitecture is evaluated for the
module-level execution model, but it is not focused on
evaluating different spawning mechanisms.

116

—» Dynamic instruction stream >
Spawning point

TU, [I | >

TUp41 [I |

Control Quasi-Independent point

Fig. 1. Spawning and control quasi-independent points.

3 DYNAMICALLY EXPLOITING SPECULATIVE
THREAD-LEVEL PARALLELISM

For performance reasons, speculative multithreaded pro-
cessors could try to split a program into threads in such a
way that they are control and data independent since, then,
the processor would be able to execute them concurrently.
Unfortunately, these kinds of threads are very hard to find,
especially in nonnumerical programs.

The approach used to identify the points where the
speculative threads will be spawned becomes one of the
critical issues of this kind of architectures. Since spawning
threads only at control independent points strongly con-
strains the potential thread-level parallelism, speculative
multithreaded processors create new threads at points of
the program that are very likely to be executed in the near
future, although the path to reach them may vary a lot and
may be rather unpredictable. In this paper, these points will
be referred to as control quasi-independent points. Besides,
speculative threads should have few dependences with
previous threads in the program order that are executed in
parallel with or later that itself. Fig. 1 shows how
speculative multithreaded processors work. Thread Unit n
executes the instruction stream in the same way as a
conventional superscalar processor until it reaches a
Spawning Point. At this point, the processor identifies a
future instruction, the Control Quasi-Independent Point,
which will very likely be executed in the near future. Then,
Thread Unit n continues executing instructions up to the
Control Quasi-Independent Point, whereas the following
Thread Unit spawns a new thread, speculatively starting at
this instruction.

Candidates, among others, to be control quasi-indepen-
dent points are:

e The first instruction in static order of a loop since it is
very likely to be executed in following iterations
almost independently of the outcome of the
branches inside the loop. Here, the spawning point
and the control quasi-independent point will be the
target of a backward branch.

e The following instruction in static order after a
backward branch that closes a loop since it is very
likely to be executed when all the iterations have
been performed and it is also almost independent of
the control-flow inside the loop. Here, the spawning
point will be the target of the backward branch and
the control quasi-independent point the following
instruction in static order of a backward branch.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO.2, FEBRUARY 2004

e The following instruction in static order of a sub-
routine call since it is very likely to be executed when
the subroutine returns, independently of the path
followed inside it. Here, the spawning point will be
the call instruction and the control quasi-independent
point the following instruction in static order.

In this paper, the performance potential of these
spawning policies based on these control quasi-indepen-
dent points is evaluated. Note that other control quasi-
independent points can be assumed (e.g., [17]). In this
paper, the spawning policies associated with the above
three types of control quasi-independent points will be
referred to as loop-iteration, loop-continuation, and subroutine-
continuation, respectively.

3.1 Experimental Framework

For the experiments in this work, we will consider a
Clustered Speculative Multithreaded Processor [15]. This
microarchitecture is made up of several thread units, each
one being similar to a superscalar processor core. Each thread
unit concurrently executes different threads of a sequential
program. These threads are dynamically obtained by a
control speculation mechanism based on identifying spawn-
ing and control quasi-independent points creating a new
thread every time a spawning point is reached and there are
thread units available. Each thread unit has its own physical
register file, register map table, instruction queue, functional
units, local memory, and reorder buffer in order to execute
multiple instructions out-of-order. A clustered design is
selected due to its scalability.

There are multiple ways to interconnect the different
thread units that form the multithreaded processor. Two
extremes scenarios are: 1) a ring topology interconnection
network in which one thread unit can only send data to the
immediate successor and can only receive data from its
immediate predecessor and 2) a full-connectivity architec-
ture in which any thread unit can communicate with
anyone else. Other scenarios could also be considered. Fig. 2
shows a Clustered Speculative Multithreaded Processor
fully interconnected. The speculation engine is responsible
for allocating the new spawned threads in those thread
units that are available as well as all the tasks related to
thread initialization.

Performance statistics are obtained through trace-driven
simulation of the whole SpecInt95 benchmark suite.
SpecFP95 has not been considered for its evaluation in this
paper since conventional compilers can easily extract
nonspeculative thread-level parallelism in significant parts
of those programs. Some other authors [3] have investigated
schemes to speculatively parallelize some portions of these
codes that are hard to parallelize.

Programs were compiled with the Compaq compiler for
an AlphaStation 600 5/266 with full optimization (-O4) and
instrumented by means of the Atom tool [25]. For the
statistics, we simulated 300 million instructions after
skipping initializations. The programs are executed with
the ref input data since they reflect a more realistic
workload, in particular, for some parameters such as the
number of loop iterations.

MARCUELLO ET AL.: THREAD PARTITIONING AND VALUE PREDICTION FOR EXPLOITING SPECULATIVE THREAD-LEVEL PARALLELISM

117

Multi
Local Memory Version >
TUO Processor Cache
Core Local
"| Reg.File
Cache
B ;
Hierarchy
Multi
Version |9
TU, Processor Cache
Core Local =
Reg File 8
[0}
@ [P Speculation
o .
: 5 Engine
rocessor '
TU2 Core
Reg File
Multi
b Local Memory
TU3 rocessor
Core

Fig. 2. A clustered speculative multithreaded processor with four thread units fully interconnected.

The baseline speculative multithreaded processor has a
parameterized number of thread units (from 2 to 16) and
each thread unit has the following features:

e Fetch: up to four instructions per cycle or up to the
first taken branch, whichever is shorter.

e Issue bandwidth: Four instructions per cycle.

e Functional Units (latency in brackets): two simple
integer (1), two memory address computation (1), 1
integer multiplication (4), two simple FP (4), one FP
multiplication (6), and one FP division (17).

e Reorder buffer: 64 entries.

e Local branch predictor: 14-bit gshare. Local branch
prediction tables are assumed to be copied from the
parent thread to the new spawned thread at
spawning time. Other policies are evaluated in
Section 4.2.

e 32 KB nonblocking, 2-way set-associative local,
L1 data cache with a 32-byte block size and up to
four outstanding misses. The L1 latencies are three
cycles for a hit and eight cycles for a miss.

We will consider two different spawning ordering
policies: a sequential thread ordering policy and an
unrestricted ordering policy. For the former, threads are
created in a sequential order in such a way that one thread
cannot be spawned between two current threads. The latter
policy allows the creation of new threads without any
constraint.

In order to evaluate the potential of this architecture, the
following section studies the performance on an ideal
scenario. In this first analysis, three different approaches to
deal with data dependences among instructions in different
threads (interthread dependences for short) are considered.
In the first model, all values corresponding to interthread
dependences through both registers and memory are
assumed to be correctly predicted. This model is referred
to as perfect register and memory prediction. In the second
model, interthread dependent register values are assumed

to be correctly predicted, but interthread dependent
memory values must be forwarded from the producer to
the consumer and the delay has been estimated as three
cycles. This model is referred to as perfect register prediction.
Finally, the last model considers that the interthread
dependences cause a serialization between the producer
and the consumer instructions and is called the synchroniza-
tion model. In this last model, the delay of forwarding the
model from the producer thread unit to the consumer is
assumed to be three cycles for memory values and one cycle
for registers. In Section 6, realistic value predictors will be
considered and their implications on the performance will
be analyzed. Some other approaches could also be
considered between the two extreme scenarios, that in
which all dependent interthread register and memory
values are always correctly predicted and that in which
all interthread dependent values have to wait for their
computation in the producer thread.

In the next figures, the cost of spawning threads is
assumed to be zero. In the next section, the impact of
assuming an 8 and 16-cycle initialization overhead is
analyzed. Memory dependence violations are detected by
means of a MultiVersion Cache which implements a cache
coherence protocol based on the Speculative Versioning
Cache [9].

Performance is by default reported as the speed-up over
a single-threaded execution. A varying number of thread
units ranging from 2 to 16 has been considered.

4 DyNAMIC THREAD PARTITIONING

In addition to the thread spawning policy, the performance
of a speculative multithreaded processor strongly depends
on the underlying hardware architecture, in particular, the
interconnection capabilities among different hardware
contexts. Here, we consider two extreme scenarios: a ring
topology interconnection network and a full-connectivity
architecture. Obviously, in the case of a ring topology

118

IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO.2, FEBRUARY 2004

2.07 5.31Ms. 81 W2.90 2.07 3.70M 6 53
1.5+ 1.5+
=) =)
= =
g 1.0 3 1.0
v @
2, 2
7])
0.5+ 0.5+
0.0~ = 0.0- =
O & E SF N X EF S O & L SN A&y S
% & §&§ &5 & L L & N & & - R
F ¢ §%§5 ¢ F U8 S8
& S § &
SpecInt95 SpecInt95
@) (b)
2.0
1.5
o -
) = Synchronization
7 104 = Perfect Register Pred.
:2’. aPerfect Reg. and Mem. Pred.
0.5+
0.0- -
O & & &N %X F 8
g § £9
g S
SpecInt95

(©)

Fig. 3. Speed-ups for the three different spawning policies. (a) Loop-iteration. (b) Loop-continuation. (c) Subroutine-continuation for the sequential

thread ordering scheme.

interconnection, the penalty due to forwarding register
values from the producer thread unit to the consumer one is
one cycle per hop.

4.1 Sequential Thread Ordering

The most straightforward way to implement a speculative
multithreaded processor is by interconnecting the different
thread units by means of an unidirectional ring topology in
such a way that the communication among them is
restricted to only forward values from one unit to the
following one. The main advantage of a ring is its low
hardware complexity.

In a ring, the sequential order among threads (i.e., from
less to more speculative) always corresponds with the
physical order that they occupy once they have been
mapped to their corresponding thread units. Therefore,
when a thread (which may be speculative) decides to spawn
a new speculative thread and the next thread unit is already
busy, then the thread running on that busy unit is squashed,
which in turn causes the squashing of the following threads.

The new thread, which is less speculative than all the
squashed ones, is allocated to the first freed unit.

Fig. 3 shows the speed-up of each benchmark over a
single-threaded execution, as well as the harmonic mean,
for a 16 thread unit configuration. The three bars for each
program correspond to the three different approaches to
deal with interthread dependences (synchronization, per-
fect prediction of register values, and perfect prediction of
register and memory values). We can observe that the
speed-up achieved for the loop-iteration and loop-continua-
tion spawning policies is somewhat higher than for the
subroutine-continuation scheme and it is especially sig-
nificant for ijpeg. The reason is that, in these two models,
there are more threads that are created in their sequential
order than for the subroutine-continuation model and, thus,
they generate fewer squash operations. The low perfor-
mance of the subroutine-continuation scheme is due to the
thread ordering scheme imposed by the ring topology,
which restricts the thread speculation mainly to leaf
subroutines. To illustrate this problem, let us assume a

MARCUELLO ET AL.: THREAD PARTITIONING AND VALUE PREDICTION FOR EXPLOITING SPECULATIVE THREAD-LEVEL PARALLELISM 119

100
~ 801
S
3
8 60 = Loop-iteration Scheme
] = Loop-continuation Scheme
2 40 = Subroutine-continuation Scheme
= 40
®
1]
s
A 204
" SSeESEIS &
> { ; g
& & § % .\§ OS
3 5
g <
SpecInt95

Fig. 4. Percentage of code executed in parallel with other threads for
each spawning policy.

subroutine A, which is being executed in thread unit 1, that
calls subroutine B, which in turn calls subroutine C. When
the call to subroutine B is found, a speculative thread that
executes the continuation of B (rest of subroutine A) is
spawned and allocated to thread unit 2, whereas thread
unit 1 proceeds with the execution of subroutine B. Then,
when subroutine B calls subroutine C, thread unit 1
proceeds with subroutine C and the speculative thread
corresponding to the continuation of C (rest of B) is
allocated to thread unit 2, which causes the thread running
the continuation of B to be squashed.

Note that the subroutine-continuation scheme does not
improve the single-threaded execution of compress since
the evaluated part of the program does not contain any
subroutine call that returns to the following instruction in
static order. Therefore, for the average calculation of this
scheme, compress is not considered

4.2 Unrestricted Thread Ordering

In opposition to the ring topology, we can think of other
topologies that allow each thread unit to communicate with
anyone else. In this case, when a new speculative thread is
created, any thread unit can be allocated for its execution.
An idle unit will be chosen if any; otherwise, the unit
running the most speculative thread will be chosen and the
thread currently running on it will be squashed. This thread
management is more complex than that of the sequential
ordering scheme because the hardware must be aware of
the logical (sequential) order of the speculative threads
running in parallel since, now, the logical order no longer
corresponds to the physical order of thread units. Besides,
the hardware must provide full connectivity among thread
units. On the other hand, the processor can speculate at
different loop nesting levels, that is, the processor can
simultaneously execute different iterations of different
nested loops or different nested subroutines instead of the
single level of speculation that the sequential thread
ordering scheme permits.

Fig. 4 shows the percentage of code that is being
executed in parallel with the code of some other threads
on the 16-thread unit configuration speculating at different

loop/subroutine levels and assuming perfect register value
prediction. We can observe that a high percentage of code is
executed in parallel. Observe that, for codes such as
m88ksim, 1i, perl, and ijpeg, practically the whole
code is executed in parallel with some other part of the code
when speculating on loop iterations. On average, 83 percent
of the code is executed in parallel for this scheme. The
percentage of code for the subroutine spawning policy is
also quite high (76 percent on average) and this percentage
suffers a significant drop for the loop-continuation scheme,
which explains its much lower performance.

These high percentages of parallelized code are trans-
lated into high speed-ups, as shown in Fig. 5, especially for
the models that speculate on loop iterations and subroutines.
For these two scenarios, the processor can achieve an average
speed-up of 5.66 and 3.08, respectively, with 16 thread units.
Nonetheless, observe that the speed-up achieved by the
model that speculates on loop continuations is lower than
those of the two other policies (only 2.07 on average). This is
due to the fact that this policy is very similar to speculating on
loop iterations for any noninnermost loop because, in a loop
nest, the continuation of a given loop corresponds to an
iteration of the next outer loop in such a way that the
granularity of the speculated threads will be larger than for
the loop iteration model. The size of the threads depends on
the number of iterations of the innermost loop and differences
among different threads cause load imbalance, which
significantly penalizes performance.

We can observe, comparing Figs. 3 and 5, that the
unrestricted thread ordering clearly outperforms the sequen-
tial thread ordering. Even for the best performing thread
speculation model (loop-iteration) with perfect value predic-
tion for both interthread register and memory dependences,
the speed-up achieved by 16 thread units is lower than 1.7,
whereas the unrestricted thread ordering scheme has a much
higher performance potential (i.e., for perfect value predic-
tion, the best performing thread speculation model is again
the loop-iteration and the average speed-up is close to 6 for 16
thread units). In addition, it is also remarkable that the
subroutine-continuation scheme, which provides the lowest
speed-up in the restricted thread ordering model, is better
than the loop-continuation scheme in the unrestricted thread
ordering model.

Fig. 6 shows the average speed-up for a number of
thread units ranging from 2 to 16, for the loop-iteration and
subroutine-continuation spawning schemes. For each
scheme, the figure shows the speed-up achieved when
considering a perfect predictor for either register values or
both register and memory values. Observe that perfor-
mance scales quite well for all cases, especially when all
data values are predicted. Moreover, the performance for
the loop-iteration scheme is always higher than for the
subroutine-continuation approach.

5 THE IMPACT ON BRANCH PREDICTION ACCURACY

A centralized branch predictor would not be adequate for
speculative multithreaded processors since it would require a
large number of ports. In addition, branches are not fetched in
sequential order and, thus, the history information, especially
global history registers, would be significantly degraded by

IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO.2, FEBRUARY 2004

151 _ 154
2, 101 o, 101
= =
= =
(% (-5
%3 %3
2, 2,
7 &
54 5+
o 1o N il 1w il
SE ¢ & N > & s O . L KN N s
TV TS $ TS TEeF §
S éQ S S Qis S S < L Q;S
& & & &
SpecInt95 SpecInt95
(a) (b)
151
10
;3‘ = Synchronization
3 = Perfect Register Pred.
% aPerfect Reg. and Mem. Pred.
5_
O_ N N
et g
§F § £
§ o8
SpecInt9s

(©

Fig. 5. Speed-ups for the three different spawning policies. (a) Loop-iteration. (b) Loop-continuation. (c) Subroutine-continuation for the unrestricted

thread ordering scheme.
8 —

EEEPSERISIE
wv%{o

Thread Units
Fig. 6. Speed-up for different number of thread-units.

this. For the experiments in Section 4, a distributed branch
prediction scheme was assumed. It consisted of a local
branch predictor for each thread unit that worked com-
pletely independent of the other predictors once a thread is

== | oops & Perfect Reg. Prediction

=] oops & Perfect Reg. and Mem. Prediction
= Subr. & Perfect Reg. Prediction

= Subr. & Perfect Reg. and Mem. Prediction

started. We also assumed that, when a thread is initialized,
its branch prediction table is copied from the table of the
parent thread. This may imply a too high initialization
overhead. Alternatively, branch prediction tables could be

MARCUELLO ET AL.: THREAD PARTITIONING AND VALUE PREDICTION FOR EXPLOITING SPECULATIVE THREAD-LEVEL PARALLELISM 121

o Local & Subr.

[y*]
(=)
1

1004
2 .
< L
£ 801 |
s
3
<« = Global gshare
§ 60+ = Copy & Loops
k] = Copy & Subr.
?E 404 o Local & Loops
~
=
<
£
«
St
)

o
L

|| B i .
S TEES S
& S s TsF
3 & v

<)
SpecInt95

Fig. 7. Branch prediction accuracy.

not initialized at thread creation. Instead, when a new
thread is started in a thread unit, it simply inherits the
prediction table as it was left by the previous thread
executed in that unit.

Predicting the outcome of branches only based on the
history of branches executed in the same thread unit may
cause negative effects in the accuracy of the predictor and,
therefore, in the overall performance of the processor. In
this section, these performance implications are evaluated.

Fig. 7 compares the branch prediction accuracy of branch
predictors initialized from the parent at thread creation and
that of a noninitialization policy considering the fully
connected Clustered Speculative Multithreaded Processor
with 16 thread units and for the perfect register prediction
configuration. In addition, it also shows the prediction
accuracy of a centralized predictor that processes all branches
in sequential order as a superscalar microprocessor does, as a
baseline for comparison. Observe that the degradation
suffered when the copy mechanism is implemented is very
low (only 1 percent for a loop-iteration spawning policy and
4 percent for the subroutine-continuation one), but it is
significant when predictors are independently managed
(higher than 10 percent on average).

Fig. 8 shows the impact of this loss in branch prediction
accuracy on the overall performance of the speculative
multithreaded processor. This figure depicts the slow-down
caused by not initializing the local predictors. On average,
the slow-down is close to 10 percent and significant for
some programs such as perl for the subroutine-continua-
tion spawning policy.

6 THE PERFORMANCE OF VALUE PREDICTION

From the study in Section 4, we concluded that value
prediction of values produced by one thread and consumed
by others is crucial for speculative multithreaded proces-
sors. Without value prediction, the contribution of thread-
level parallelism would be almost negligible for nonnu-
meric applications.

This section is devoted to analyzing the performance of
value prediction in the context of a Clustered Speculative
Multithreaded processor fully interconnected. For this

1.0+
0.8
=
z 0.6+
Q‘I’ = Loop-it.
= = Subroutine-cont.
= 044
7}
0.2
0.0- L
N7 g S
§F & 7 7%
< 9;
SpecInt95

Fig. 8. Slow-down when independent local branch predictors are used.

analysis, we consider the loop-iteration scheme when
spawning speculative threads since, as shown in the
previous section, this approach provides the highest
speed-up among the three analyzed alternatives. The
performance of this type of architecture strongly depends
on the ability to predict values flowing through interthread
data dependences. Thus, we start by studying the accuracy
of different value predictors, including a scheme especially
targeted for such architectures, for values produced by one
thread and consumed by a different one.

6.1 Value Predictors

Predictors usually exploit the correlation with past values of
the instruction operand to be predicted. This approach is
followed by the so-called instruction-based predictors.
Examples, among others, of instruction-based predictors
are the last value (LV) [13], stride (STR) [7], [8], [22], context-
based (FCM) [23], and hybrid schemes [2], [33] that include
multiple predictors and a selector. In particular, we will
consider the stride-context (HYB-S) predictor, which con-
sists of both a stride predictor and a context-based
predictor.

The performance of instruction-based predictors can be
improved if information about the trace to which the
instruction operand belongs is also used [16], [18]. This
results in the so-called trace-based value predictors. The
increment predictor (INC) [16] is one scheme that follows this
strategy. In our particular study, a trace always refers to the
code executed by a particular loop iteration. Nevertheless,
this predictor can be used together with other criteria to
divide the dynamic sequence of instructions into traces.

The INC predictor predicts only data computed inside a
trace. It predicts a trace output value as the value of that
storage location at the beginning of the trace plus an
increment. This increment is computed as the value at the
end of the trace minus the value at the beginning of the
trace in previous executions of the same trace. The
predicted increment is updated when a new increment is
seen twice in a row. The main difference between such a
predictor and the stride value predictor is that the stride
predictor computes a difference between two consecutive
values of an operand at the same instruction address.

122
10.0
w2
]
2 80
[
-
= 60 = memory
% 4.0 = register
= 20
=
0.0
F&F FS&
NS 7O
R &’
S &
&
e

Fig. 9. Average number of inputs/outputs and distance-3 inputs/outputs
per trace.

Writes to the same storage location produced between two
instructions affect the accuracy of the predictor. Instead, we
have observed that, in general, it is better to base the value
prediction of a storage location on the difference (the
increment) of its value between two given points of the
execution that always correspond to the same high-level
structure, such as the beginning and the end of a thread.

A hybrid scheme composed of an increment predictor
and a context-based predictor (HYB-I) will also be analyzed.
For hybrid predictors, the choice between the two predic-
tions is guided by confidence fields located in each
individual predictor which are implemented by means of
3-bit up/down saturating counters. The prediction with the
highest counter is chosen.

Trace-based value predictors access the history tables
through an identifier of the control flow followed by the
trace and an operand identifier (e.g., register identifier).
Since, in our particular case, a trace is a loop iteration, we
have considered that the identifier of the control flow of an
iteration consists of the instruction address of the first
instruction of the loop along with a bit vector with the result
of all conditional branches inside. This is not a unique
identifier because target branch addresses of indirect
unconditional branches are not considered.

6.2 Prediction Accuracy

This section analyzes the accuracy of the above described
value predictors when they are used by a speculative
multithreaded processor.

When a thread is spawned to execute a loop iteration, the
values flowing through interthread dependences should be
predicted. One possibility is to predict all input values
needed by the new speculative thread. Another possibility
is to predict all output values produced by the previous
thread in sequential order. We have computed the average
number of input and output thread values (see the two left-
most bars of Fig. 9) and we have observed that there are
slightly fewer output than input values.

Moreover, there is no need to predict all input or all
output values. Among all the inputs or outputs of a thread,
only the prediction accuracy of those that are used
speculatively will have an impact on performance. In other
words, if a given input or output is already available at the
time it is used or an output is never utilized, the
performance of the processor will be the same, regardless
of the result of its prediction. In other words, performance is

IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO.2, FEBRUARY 2004

100.0-
—*—HYB-I
——HYB-§
80.0- W =9k
- ——FCM
g / ——1y
£ e
g 6004
<
=
£
£]
2 400
4
=
20.0-
0.0 ; ; ; ; ;

\%' b:&' XS & ey
Fig. 10. Predicting distance-3 values of loop traces.

related to the prediction accuracy of those input values that
are produced in the latest previous threads or those output
values that are read by the earliest next threads. As an
approximation of this, we have computed the average
number of distance-3 input values (input values produced by
any of the previous three threads) and distance-3 output
values (output values consumed by any of the following
three threads). We can observe in Fig. 9 (the two rightmost
bars) that there is a lower number of distance-3 outputs
than distance-3 inputs. This led us to use value predictors
for thread output values. Fig. 9 also shows that the average
number of distance-3 memory inputs and outputs is rather
low. Because of that, we have focused on the prediction of
register values.

Fig. 10 shows the prediction accuracy for distance-3
output register values and different predictors. The capacity
of the history tables is depicted along the X-axis.

As observed for superscalar processors [23], an FCM
predictor can achieve a high prediction accuracy, but it
requires very large history tables. The STR predictor can
achieve better accuracy for small-sized tables. The LV
predictor is the least accurate.

A remarkable fact is that the INC predictor significantly
outperforms the STR predictor for distance-3 output values.
This is explained by the fact that the stride predictor suffers
from interferences from other instructions with different
addresses that write to the same storage location, whereas
these interferences are avoided by a trace-based predictor
such as the INC.

The INC predictor obtains a similar performance
(73 percent hit rate for the whole range of table capacity)
and the HYB-I predictor can achieve an 80 percent hit ratio
with relatively small tables (16 KB in total).

As conclusions up to this point, for a speculative
multithreaded architecture based on loop iterations, the
INC predictor for small sized tables and its hybrid version,
the HYB-I predictor, for larger tables outperform the other
value predictors. An increment predictor can achieve a
quite high hit rate with very small tables (73 percent for a
1 KB table). Moreover, this predictors can be easily added to
other multithreaded architectures.

For the four predictors with higher accuracy (HYB-],
HYB-S, INCR, FCM), Fig. 11 shows the percentage of traces
whose all distance-3 output values are correctly predicted.

MARCUELLO ET AL.: THREAD PARTITIONING AND VALUE PREDICTION FOR EXPLOITING SPECULATIVE THREAD-LEVEL PARALLELISM 123

100.0

80.0 |
3
8
&
§ 600+
= —— HYB-I
2 e nuyBs
z = —a— INCR
2 —&— FCM
=7
= 40.0 4
=
&
&
i
=]
<~

20,0

0.0 T T T T T T
1KB 4KB 16 KB 64 KB 256 KB 1MB

Fig. 11. Percentage of traces that have all their distance-3 output values
correctly predicted.

This gives an estimation of the percentage of threads that
can be executed as if they were parallel. Note that many
traces can be parallelized due to value prediction, even with
small predictors (50 percent for 1-KB INCR predictor). With
large history tables, this percentage can be as much as
70 percent (with a HYB-I predictor). Note also that the
percentage of correctly predicted traces is strongly corre-
lated with the prediction accuracy for individual values.

7 OVERALL PERFORMANCE

Fig. 12 shows the speed-up achieved by a Clustered
Speculative Multithreaded processor with 16 thread units
fully interconnected over a single-threaded execution for
different register value predictors. The misprediction
penalty considered in this work is the elapsed time until
the correct value is available plus an extra cycle to forward
the correct value plus one cycle. Note that the average
number of cycles waiting for the computation is, in general,
significantly larger than the other two factors. Moreover, a
selective reissue mechanism is also considered in such a

8_
6_
-9
) = [ncrement
g 44 = Stride
2 o Context-Based
7]
2_
0_
£ & &L E N oF & &
‘¥ Ty § 8§ g
F & v oo F
& &

SpecInt95

Fig. 12. Speed-up for the different value predictors and for the loop-
iteration spawning policy.

81
64
2
= = ()-cycle overhead
T 4+ = 8-cycle overhead
% o 16-cycle overhead
24
0-
°2 § ¢é/ 5 ¥ 1?0 é\\ ‘é}' §
g % 5 SRS &
N S N S S
o A
§ & <
SpecInt95

Fig. 13. Speed-up when an overhead penalty is considered.

way that only dependent instructions of the mispredicted
value have to be reexecuted. Memory values are not
predicted and dependent values are forwarded from the
producer to the consumer with a delay of three cycles by
means of the cache coherence protocol based on the
Speculative Versioning Cache [9].

On average, the losses due to a realistic value predictor
in comparison with perfect register value prediction are
16 percent for the loop-iteration spawning scheme. Overall,
the benefits of speculative thread-level parallelism are still
quite high. The loop-iteration model achieves an average
speed-up of 2.84.

Starting a new thread in a thread unit requires several
operations that may take some nonnegligible time. In
particular, registers that are live at the beginning of a
thread must be initialized with their predicted values and
the remaining registers that are not written by this new
thread and may be read by any subsequent thread must be
initialized with the same value as the parent thread, either
at thread creation or when the parent produces this value.
The penalty associated with all these operations is referred
to as initialization overhead. Note that several registers per
cycle can be read/written in a multiport register file and
several values can be forwarded in parallel, depending on
the bandwidth of the interconnection network.

Fig. 13 shows that the impact of the initialization
overhead for a penalty of either 8 or 16 cycles is evaluated,
which may be reasonable for 32 integer and 32 FP registers.
On average, the performance loss is about 8 percent for the
loop-iteration spawning scheme with an increment register
value predictor, assuming an 8-cycle overhead penalty, and
10 percent when a 16-cycle overhead penalty is considered.

8 CONCLUSIONS

In this work, some main design parameters that strongly
affect the performance of speculative multithreaded pro-
cessors have been analyzed, such as the spawning policy
and the impact of value prediction. We have first shown
that a ring topology has a very limited performance since it
can only speculate successfully when speculative threads
are created in their sequential order. On the other hand, a

124

full-connectivity architecture with an unrestricted thread
ordering scheme provides very high performance benefits.
Then, we have shown that the loop-iteration speculation
scheme is the one with the highest performance if all values
corresponding to interthread dependences could be cor-
rectly predicted.

For this spawning policy, the impact of branch predictor
and value prediction have been analyzed. First, we note that
a centralized branch predictor is not appropriate since
branches are not fetched in program order. However,
initializing the local branch prediction tables with the
contents of the parent table every time a thread is created is
very costly and it can dramatically increase the overhead
initialization penalty. Then, we have shown that using the
previous contents of the branch prediction tables only
degrades the performance by 10 percent on average.

On the other hand, the performance of different value
predictors has been studied. Experimental results have
shown that the increment predictor, which is a special
predictor targeted to this kind of microarchitectures, obtains
the highest prediction accuracy for small-sized history
tables when it is compared with other value predictors.
This accuracy is increased for larger history tables by means
of a hybrid predictor that combines an increment and a
context-based predictors. Average accuracy for SpecInt95
ranges from 73 percent to 84 percent, depending on the
capacity of the history table.

Finally, the effect of the thread initialization overhead
has been studied. For an 8-cycle initialization overhead, the
degradation suffered by the processor for the best value
predictor is only 8 percent and it is 10 percent for 16 cycles.

Overall, we conclude that the loop-iteration spawning
policy with an increment predictor, 8-cycle spawning
thread overhead and a full-connectivity architecture is an
effective organization to exploit speculative thread-level
parallelism in nonnumerical applications. On average, a
16-thread configuration provides a speed-up of 2.70 for the
SpecInt95 suite, which consists of programs which are very
hard to parallelize. Finally, note that several spawning
policies may be implemented in the same microarchitecture
together with some heuristics that identify the most
effective one for each particular section of code. We are
currently investigating appropriate techniques for this
hybrid spawning scheme.

ACKNOWLEDGMENTS

This work has been supported by grants CICYT TIC 511/98,
ESPRIT 24942, and AP96-52274600. The research described
in this paper has been developed using the resources of the
European Center for Parallelism of Barcelona (CEPBA). The
authors would like to thank Bodo Parady (Sun Micro-
systems, Inc.) for his insightful comments on this paper.

REFERENCES

[1] H. Akkary and M.A. Driscoll, “A Dynamic Multithreading
Processor,” Proc. 31st. Ann. Int’l Symp. Microarchitecture, 1998.

[2] B. Calder, G. Reinman, and D. Tullsen, “Selective Value
Prediction,” Proc. 26th Int’l Symp. Computer Architecture, 1999.

(3]

(4]

(5]

o]

(7]
(8]

]

(10]

(1]

(12]

(13]

(14]

[15]

[10]

[17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

[20]

(27]

IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO.2, FEBRUARY 2004

M. Cintra and]. Torrellas, “Eliminating Squashes through
Learning Cross-Thread Violations in Speculative Parallelization
for Multiprocessors,” Proc. Eighth Int’'l Symp. High-Performance
Computer Architecture, pp. 36-47, 2002.

L. Codrescu and D. Wills, “On Dynamic Speculative Thread
Partitioning and the MEM-Slicing Algorithm,” Proc. Int’l Conf.
Parallel Architectures and Compilation Techniques, pp. 40-46, 1999.
P.K. Dubey, K. O’Brien, KM. O’Brien, and C. Barton, “Single-
Program Speculative Multithreading (SPSM) Architecture: Com-
piler-Assisted Fine-Grained Multithreading,” Proc. Int’l Conf.
Parallel Architectures and Compilation Techniques, pp. 109-121, 1995.
M. Franklin and G. Sohi, “The Expandable Split Window
Paradigm for Exploiting Fine Grain Parallelism,” Proc. Int’l Symp.
Computer Architecture, pp. 58-67, 1992.

F. Gabbay and A. Mendelson, “Speculative Execution Based on
Value Prediction,” Technical Report #1080, Technion, 1996.

J. Gonzalez and A. Gonzalez, “Memory Address Prediction for
Data Speculation,” Technical Report UPC-DAC-1996-51, Univer-
sitat Politecnica de Catalunya, 1996.

S. Gopal, T.N. Vijaykumar, J.E. Smith, and G.S. Sohi, “Speculative
Versioning Cache,” Proc. Fourth Int’l Symp. High-Performance
Computer Architecture, 1998.

L. Hammond, M. Willey, and K. Olukotun, “Data Speculation
Support for a Chip Multiprocessor,” Proc. Int’l Conf. Architectural
Support for Programming Languages and Operating Systems, 1998.
G.A. Kemp and M. Franklin, “PEWs: A Decentralized Dynamic
Scheduler for ILP Processing,” Proc. Int'l Conf. Parallel Processing,
pp- 239-246, 1996.

V. Krishnan and]. Torrellas, “Hardware and Software Support for
Speculative Execution of Sequential Binaries on a Chip-Multi-
processor,” Proc. ACM Int’l Conf. Supercomputing, pp. 85-92, 1998.
M.H. Lipasti, C.B. Wilkerson, and J.P. Shen, “Value Locality and
Load Value Prediction,” Proc. Seventh Conf. Architectural Support
for Programming Languages and Operating Systems, pp. 138-147, Oct.
1996.

P. Marcuello, A. Gonzalez, and]. Tubella, “Speculative Multi-
threaded Processors,” Proc. 12th Int’l Conf. Supercomputing, pp. 77-
84, 1998.

P. Marcuello and A. Gonzélez, “Clustered Speculative Multi-
threaded Processors,” Proc. 13th Int’l Conf. Supercomputing, pp. 365-
372, 1999.

P. Marcuello, J. Tubella, and A. Gonzalez, “Value Prediction for
Speculative Multithreaded Architectures,” Proc. 32nd Int’l Conf.
Microarchitecture, pp. 230-236, 1999.

P. Marcuello and A. Gonzalez, “Thread Spawning Schemes for
Speculative Multithreaded Architectures,” Proc. Eighth Int’l Conf.
High Performance Computing Architecture, 2002.

T. Nakra, R. Gupta, and M.L. Soffa, “Global Context-Based Value
Prediction,” Proc. Fifth Int'l Conf. High Performance Computing
Architecture, pp. 4-12, 1999.

J. Oplinger, D. Heine, and M. Lam, “In Search of Speculative
Thread-Level Parallelism,” Proc. Int’l Conf. Parallel Architectures
and Compilation Techniques, pp. 303-313, 1999.

E. Rotenberg, Q. Jacobson, Y. Sazeides, and J.E. Smith, “Trace
Processors,” Proc. 30th Int’l Symp. Microarchitecture, pp. 138-148,
1997.

E. Rotenberg, S. Bennet, and J.E. Smith, “Trace Cache: A Low
Latency Approach to High Bandwidth Instruction Fetching,” Proc.
29th Int’l Symp. Microarchitecture, 1996.

Y. Sazeides, S. Vassiliadis, and J.E. Smith, “The Performance
Potential of Data Dependence Speculation & Collapsing,” Proc.
29th Int’l Symp. Microarchitecture, Dec. 1996.

Y. Sazeides and].E. Smith, “Implementations of Context-Based
Value Predictors,” Technical Report #ECE-TR-97-8, Univ. of
Wisconsin-Madison, 1997.

G. Sohi, S.E. Breach, and T.N. Vijaykumar, “Multiscalar Proces-
sors,” Proc. Int’l Symp. Computer Architecture, pp. 414-425, 1995.
A. Srivastava and A. Eustace, “ATOM: A System for Building
Customized Program Analysis Tools,” Proc. Int'l Conf. Program-
ming Panguages Design and Implementation, 1994.

J. Steffan, C. Colohan, A. Zhai, and T. Mowry, “Improving Value
Communication for Thread-Level Speculation,” Proc. Eighth Int’l
Symp. High-Performance Computer Architecture, pp. 58-68, 2002.

J. Steffan and T. Mowry, “The Potential of Using Thread-Level
Data Speculation to Facilitate Automatic Parallelization,” Proc.
Fourth Int’l Symp. High-Performance Computer Architecture, pp. 2-13,
1998.

MARCUELLO ET AL.: THREAD PARTITIONING AND VALUE PREDICTION FOR EXPLOITING SPECULATIVE THREAD-LEVEL PARALLELISM 125

(28]

[29]

(30]

(31]

(32]

(33]

(34]

D.M. Tullsen and P.]. Brown, “Handling Long-Latency Loads in a
Simultaneous Multithreading Processor,” Proc. 34th Int’l Symp.
Microarchitecture, pp. 318-327, 2001.

D.M. Tullsen, S.J. Eggers, and H.M. Levy, “Simultaneous Multi-
threading: Maximizing On-Chip Parallelism,” Proc. Int’l Symp.
Computer Architecture, pp. 392-403, 1995.

J.Y. Tsai and P.-C. Yew, “The Superthreaded Architecture: Thread
Pipelining with Run-Time Data Dependence Checking and
Control Speculation,” Proc. Int'l Conf. Parallel Architectures and
Compilation Techniques, pp. 35-46, 1996.

S. Vajapeyam and T. Mitra, “Improving Superscalar Instruction
Dispatch and Issue by Exploiting Dynamic Code Sequences,” Proc.
24th Int’l Symp. Computer Architecture, pp. 1-12, 1997.

T.N. Vijaykumar, “Compiling for the Multiscalar Architecture,”
PhD thesis, Univ. of Wisconsin-Madison, 1998.

K. Wang and M. Franklin, “Highly Accurate Data Value
Prediction Using Hybrid Predictors,” Proc. 30th Int’l Symp.
Microarchitecture, 1997.

F. Warg and P. Stenstrom, “Limits on Speculative Module-Level
Parallelism in Imperative and Object-Oriented Programs on CMP
Platforms,” Proc. Int’l Conf. Parallel Architectures and Compilation
Techniques, pp. 221-230, 2001.

Pedro Marcuello received the degree in com-
puter science in 1995 and the PhD degree in
computer science in 2003, both from the
Universitat Politécnica de Catalunya at Barcelo-
na, Spain. He has been a member of the
Computer Architecture Department at the Uni-
versitat Politécnica de Catalunya since 1997 and
a full-time teaching assistant since 2000. His
current research topics include speculative
multithreading and value prediction.

Antonio Gonzalez received the MS and PhD
degrees from the Universitat Politécnica de
Catalunya (UPC), Barcelona, Spain. He has
been a faculty member of the Computer Archi-
tecture Department at UPC since 1986 and he is
currently a full professor. He leads the Intel
Barcelona Research Center at UPC, whose
: research focuses on new microarchitecture
t\ » paradigms and code generation techniques for
| s future microprocessors. He has published more
than 150 papers in technical journals and symposia and has served on
more than 40 program committees for international symposia in the field
of computer architecture. Dr. Gonzalez is a member of the IEEE
Computer Society.

Jordi Tubella received the degree in computer
science in 1986 and the PhD degree in computer
science in 1996, both from the Universitat
Politecnica de Catalunya, Barcelona, Spain. He
has been a member of the Computer Architec-
ture Department at the Universitat Politecnica de
Catalunya since 1988 and has been an associ-
4 RN\ ate professor since 1998. His research interests
/ :) \\,\ focus on processor microarchitecture and paral-
L FWS el processing, with special interest on multi-
threading, value prediction, and instruction reuse.

> For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

	footer1:

