Object Oriented execution Model (OOM)

Nikola Markovic {, Daniel Nemirovsky {, Ruben Gonzalez t, Osman Unsal T,
Mateo Valero {, Adrian Cristal {1

Barcelona Supercomputing Center (BSC) 1
¢/ Jordi Girona, 31 08034, Barcelona (Spain)

Chalmers University of Technology (CUT) t
SE-412 96 Gothenburg (Sweden)

Artificial Intelligence Research Institut - Spanish National Research Council (IITA-CSIC) 1
E-08193 Bellaterra, Catalonia (Spain)

{nikola.markovic,daniel.nemirovsky, osman.unsal,mateo.valero, adrian.cristal } @bsc.es,
rgonzalez@chalmers.se

Abstract—This paper considers implementing the Object
Oriented Programming Model directly in the hardware
to serve as a base to exploit object-level parallelism,
speculation and heterogeneous computing. Towards this
goal, we present a new execution model called Object
Oriented execution Model - OOM - that implements the
0O Programming Models. All OOM hardware structures
are objects and the OOM Instruction Set directly utilizes
objects while hiding other complex hardware structures.
OOM maintains all high-level programming language
information until execution time. This enables efficient
extraction of available parallelism in OO serial code at
execution time with minimal compiler support. Our results
show that OOM utilizes the available parallelism better
than the 00O (Out-of-Order) model.

Index Terms—Object-Oriented, parallel and asyn-
chronous execution.

I. INTRODUCTION

HE Chip Multi Processor (CMP) has made a great

impact on processor design during the past two
decades since CPU design hit the power wall. During
the 1990’s, computer architects presented several CMP
designs [15], [16]. It provides several advantages over the
centralized superscalar approach [8]. Firstly, the simple
design of CMP enables high clock rate and allows the
implementation of fast communication network in each
of the processing units. Additionally time-consuming
design validation phase is alleviated. Finally, available
silicon space is better utilized [6]. In the past ten
years, many high-performance processor vendors have
introduced designs that can execute multiple threads
simultaneously on the same chip through simultaneous
multithreading [10], multiple cores [17] or a combination

of the two [11]. These designs utilize nonspeculative
Thread-Level Parallelism (TLP) smoothly.

Nevertheless, the execution time of a sequential appli-
cation or of a single thread of a parallelized application
still suffers from the same issues as twenty years ago.
Lam et al. [9] shows that finding a significant level
of parallelism in numerical programs where control
flow is not data dependent is a simple task for the
compiler, however that is not the case if the control
flow is data dependent. The study also points out that
in case of non-numerical programs, processors that do
not support speculative execution will hardly be efficient
in extracting parallelism. Recent approaches that are
usually referred to as speculative TLP decrease the
execution time of these applications. These approaches
execute several speculative threads in parallel. Threads
are speculative in the sense that they can be data or
control dependent on other threads and therefore their
proper execution and commitment are not guaranteed.
Two main ways to leverage speculative TLP are reducing
the execution time of high-latency instructions by means
of side effects with helper threads [3], [4], [13] and
parallelizing the application into speculative threads for
example in [1], [7], [14] among others.

On the other hand, writing parallel applications for
multicore processors still appears to be an extremely
difficult task for ordinary programmers [12]. A solution,
we believe, is to allow programmers to continue working
with the most successful programming model to date,
the Object-Oriented model, and to move the complexity
of parallelization of sequential applications for multiple
homogeneous or heterogeneous cores to hardware. As
a way of accomplishing that, we propose a new and
unique execution model, leveraging an Object-Oriented



(O0O) programming model. We see it as an architecture
that ports software concepts into hardware by forming
an abstract, virtual hardware layer. This hardware layer
is able to preserve semantic information specified by the
programmer in a high level language for execution time.

In this paper, we present an Object Oriented execution
model. In contrast to previously mentioned proposals
that tend to leverage parallelism by extracting blocks
of instructions with the least possible amount of data
and control dependences and forming separate threads
out of them, our OO model exploits parallelism by
preserving and leveraging information available at the
high level programming language code to hardware. Our
model represents data as objects, user defined functions
as contexts, and operations - hardware implemented
instructions and functions eg. add, sub, cmp, etc. An
object can store and manage multiple versions of a
data value. Each context has its own memory space.
By having memory space per context, we are breaking
the traditional stack into smaller pieces. The model also
defines a new ISA that consists of three basic instructions
and operations.

The OO model provides two main advantages. First,
better data locality, where objects are smaller units of lo-
cality. Second, an asynchronous, control independent and
parallel execution which preserves the sequential view of
program. The methods are executing asynchronously, in
their own context without any other interferences, where
input/output parameters are sent in an asynchronous way.
This opens up possibilities for dynamic optimization,
which was not feasible at compile time. We compare the
level of available parallelism, on the quicksort algorithm
applied on a linked list. Our results show that the ideal
OOM utilizes better available parallelism than the ideal
000 (Out-of-Order) model. It is also able to exploit
approximately the same level of parallelism for different
levels of operation granularity, which makes it very
flexible compared to the OoO model.

II. MODEL EXPLANATION

In this section, we describe the Object Oriented execu-
tion Model. First we describe OOM Instruction Set Ar-
chitecture (ISA), explaining in detail the most important
ISA instructions and their functionalities. Second, we
explain the concept of objects in our model. We provide
a detailed description of each object’s functionality and
its role in OOM. Finally we provide an explanation
of an asynchronous, control independent and parallel
execution flow.

A. OOM ISA

This ISA consists of three basic instructions and
operations. Operations are hardware-implemented in-
structions or functions e.g. add, sub, cmp, etc. The
three basic instructions are: call , send and select . The
instruction call triggers the execution of a context or an
operation. send sends the reference of an object to a
context or operation, while select fetches references of
objects encapsulated inside of an object - class attributes.
A set of these instructions is assigned to each context
(similar to the instructions inside of a function).

Each call instruction inside the list of instructions of
a context has a unique sequential number. This number
is statically assigned at compile time and represents
the sequential order in which the context or operation
invoked should be committed inside of the calling con-
text, like a sequential order of operation inside of the
function. While executed call instruction also assigns
a dynamically calculated ID to the created context or
operation. The call instruction calculates the ID based on
its parent context ID and the sequential number assigned
to it inside its parent context. This ID represents the
position of the invoked context or operation inside global
sequential commit view of the program.

B. OOM Objects

The OO model defines two types of objects: object
and context. User defined functions and methods are
represented as a kind of an object called context. The
context has its own memory space where it stores ref-
erences to objects that are argumenta and local values
of a user defined function or method. It also has the list
of instructions. The heart of the OO model are objects
which manage and store the data and behave “like hard-
ware threads”. All objects are hardware implemented.
The objects can be divided into two different kinds. First
kind of objects are basic objects. These objects are for
basic types like int, float, bool, char, etc. The basic object
stores and manages multiple versions of data through a
versioning mechanism, explained in Subsection II-B1.
The second kind of objects are complex objects. They
are for user-defined types like classes and structures. The
complex object has a set of references to other basic
or complex objects e.g. attributes of a class, fields of a
structure, etc.

Since each data type has a set of instructions or
methods that can be performed on it, for the basic types
like int they are the instructions like sub, add, cmp, mov,
etc. while for the class they are the methods and the
functions of the class, each basic object has the set of



operations and complex object has the set of contexts
that can be performed on it.

Both kinds of objects behave “like hardware threads”
of execution. When an instruction call is executed, a new
message is sent to an object to execute one of its contexts
or operation. Objects manage a list of its contexts or
operations scheduled for execution and executes them
when it gets the processor.

1) Versioning mechanism: A basic object has a table
of values. The table of values has two fields: a key and a
value. The table key is ID of operations that produced the
value. Whenever some operation produces a new value
for the object, a pair consisting of the operation’s ID and
the produced value is stored in the basic object table.
An entry to the table whose corresponding key is the ID
of a committed operation is called a committed entry.
Only one entry at the time can be the committed entry,
all other entries are considered to be speculative entries.
Allthough the entries may be stored out-of-order in the
table, they are always committed in a sequential order
when an operation corresponding to the key in the table
is committed. As the new entry becomes the committed
entry, the previous committed entry is deleted from the
table along with any entries stored by mis-speculatively
executed operations.

C. OOM execution

If the static program control flow is represented as a
directed graph, where nodes are contexts and operations
and arcs represent flow from one node to another, then
the program execution can be viewed as going through
that directed graph. The fact that the traditional stack
is broken allows this directed control flow graph of the
static program to be represented through smaller directed
graphs where each small graph contains only contexts
that share memory space. Small graphs become nodes of
the large graph. Allthough data and control dependencies
between small graphs still remain, their instructions
and operations can be scheduled for parallel execution
on different processing units. The fine granularity of
operations inside contexts allows for the execution of
only those instructions and operations that have their
input data ready.

III. OOM ARCHITECTURE

In Fig. 1. we present a possible architecture for the
Object Oriented execution Model. The Object Creation
and Allocation Unit creates objects and assigns them to
the Object Processors. Each Object Processor is associ-
ated with a scratch pad memory called Object Memory.
Several objects can be mapped on the same Object

Compiled Application Code

|

’—{ Object Creation & Allocation Unit }—
Main Shared Object
Memory References
Object = Object - -
Memory Processor Multiprocessor,
CMP, SMT,FPGA,
LI: L|:< Vector Porcessor

Fig. 1. Object-Oriented execution Model architecture

Processor. Shared Object References is a scratch pad
memory shared by all Object Processors in the system.
It keeps information where each object is located.

An Object Processor is the minimum execution unit.
The OOM Architecture is a group of Object Proces-
sors collaborating to do execution. This Architecture
implements a Virtual Hardware layer (Object Oriented
execution Model). Each Object Processor is internally
flexible. It can support different hardware implementa-
tions. Flexible Internal Hardware Model of the Object
Processor can be managed by many possible cores e.g.
Out-of-Order processor, In-order processor (embedded),
Multiprocessor, Vector processor, Processor + FPGA
(Reconfigurable Architectures), Data flow processor, etc.

IV. RESULTS

To depict the available parallelism for the quicksort
algorithm on the linked list we used DDG (Dynamic
Dependency Graph) analysis methodology of the algo-
rithm presented in [2]. The DDG of the program is a
partially ordered, directed, acyclic graph where the nodes
of the graph represent computation that occurred during
the execution of the program, and the edges represent
dependencies that force a specific order on the execution
of the instructions. To give an upper bound on the
available parallelism, we analyze a DDG containing only
true data dependencies. For the ideal OoO model we
used the Pin Tool to generate traces, while for the ideal
OOM we implemented the functional level simulator
to generate traces. For the ideal models we take that
all instructions, memory accesses and messages sent
through interconnection network take one cycle.

Fig. 2. shows the available parallelism (note that
horizontal axis represents the list size as the number of
elements in the list). For the ideal OOM, we present



250

“® 000 Inst
=000 BB
V-OOM FG
2 OOM CC

Available Parallelism

O o o

-
0 g & & g

10 100 1000 10000 100000

List size

Fig. 2. Available parallelism of the quicksort algorithm on the linked
list - for the ideal OoO model on the instruction and basic block level
and for the ideal OOM model on fine and coarse grained level

results for two levels of operation granularity. First one
is fine granularity where the operations are like sub, add,
cmp, etc. instructions of the basic types int, float, etc. The
second one is coarse grained where the operations are
whole functions like function that adds an element to the
list, function that pops an element form the list, etc. of
the class types list. Results from Fig. 2. show that while
the ideal OoO model always extracts approximately the
same level of parallelism, on the other hand our ideal
OOM is able to extract more parallelism as the number of
object and the instructions executed in system increases,
and even outpacing the OoO model, because it exploits
data locality in a natural way. Fig. 2. also shows that our
model is able to extract almost the same level of available
parallelism for different granularity of operations, which
is not the case for the OoO model.

V. CONCLUSION AND FUTURE WORK

The goal of this paper has been to propose a new
execution model that moves the high-level programming
language paradigm closer to hardware. It is based on the
Object Oriented Language Model, being one of the most
successful models, extracts better data and execution lo-
cality and helps to apply hardware optimizations related
to parallelism and speculation more effectively.

The OO execution Model offers a novel asynchronous,
control independent, parallel and object-aware execu-
tion model. In this model, methods are executed asyn-
chronously in their own context, where all input/output
communication between them is done in an asyn-
chronous way. This OO execution model can offer a
very aggressive approach in speculative scenarios. The
processor based on OOM does not require deterministic
hardware. Its execution unit can use anything from a sim-
ple execution unit, FPGA, 00O Processor, Multithreaded
Processor, to a complex CMP. The OO execution model

manages the execution of OOM ISA code through a
special software/hardware virtual layer. This opportunity
opens interesting windows for heterogeneous execution
where some objects can be bound to specific hardware.

Finally, we have demonstrated that the ideal OOM
utilizes the available parallelism better than the ideal
000 model and that it is able to extract almost the same
level of parallelism on fine and coarse grained level while
the OoO model fails to do so. We will continue working
on our functional level simulator, to extend it and port
it to an FPGA board using Bluespec environment.

REFERENCES

[1] H. Akkary, M. Driscoll, ”A Dynamic Multithreading Processor”,
Proc. 31st Int’l Symp. on Microarchitecture, pp. 226, 1998.

[2] T. Austin, G. Sohi, "Dynamic Dependency Analysis of Ordinary
Programs”, The 19th Int’l Symp. on Computer Architecture, pp.
342, 1992.

[3] R. Chappel, J. Stark, S. Kim, S. Reinhardt, Y. Patt, ”Simultaneous
Subordinate Microthreading (SSMT)”, Proc. 26th Int’l Symp.
Computer Architecture, pp. 186-195, 1999.

[4] J. Collins, H. Wang, D. Tullsen, C. Hughes, Y. Lee, D. Lavery,
J. Shen, ”Speculative Precomputation: Long Range Prefetching
of Delinquent Loads”, Proc. 28th Int’l Symp. Computer Archi-
tecture, pp. 14, 2001.

[S] M. Fillo, S. Keckler, W. Daly, N. Carter, A. Chang, Y. Gurevich,
W. Lee, "The M-Machine Multicomputer”, Proc. 28th Int’l Symp.
Computer Microarchitecture, pp. 146, 1995.

[6] L. Hammond, B. Neyfeh, K. Olukotun, ”A Single-Chip Multi-
processor”, Computer,vol. 30, no. 9, pp. 79, 1997.

[7]1 L. Hammond, M. Willey, K. Olukotun, "Data Speculation Sup-
port for a Chip Multiprocessor”, Proc. 8th Int’l Conf. Archi-
tectural support for Programming Languages and Operating
Systems, 1998.

[8] M. Johnson, “Superscalar Microprocessor Design”, Prentice
Hall, 1990.

[9] M. Lam, R. Wilson, ”Limits of Control Flow on Parallelism”,
Proc. 19th Int’l Symp. Computer Architecture, pp. 46, 1992.
[10] T. Marr et al., "Hyperthreading Technology Architecture and
Microarchitecture”, Intel Technology J.,vol. 6, no. 1, 2002.

[11] A. Mendelson et al., "CMP implementation in the Intel Core
Duo Processor”, Intel Technology J., vol. 10, no. 2, 2006.

[12] D.Patterson et al., ”The parallel computing landscape: a Berke-
ley view”, Low Power Electronics and Design, pp. 231, 2007.

[13] A. Roth, G. Sohi, ”Spevulative data-driven Multithreading”,
Proc. 7th Int’l Symp. High-Performance Computer Architecture,
pp. 37, 2001.

[14] S. Sarangi, W. Liu, J. Torrellas, Y. Zhou, "ReSlice: Selective
Re-Execution of Long-Retired Misspeculated Instructions Using
Forward Slicing”, Proc. 38stInt’l Symp. on Microarchitecture, pp.
257, 2005.

[15] J. Smith, S. Vajapeyam, “Trace Processors: Moving to Fourth
Generation Microarchitectures”, IEEE Computer,vol. 30, no. 9,
pp. 68, 1997.

[16] G. Sohi, S. Breach, T. Vijaykumar, “Multiscalar Processors”,
Proc. 22nd Int’l Symp. Computer Architecture, pp. 414, 1995.

[17] S. Storino, D. Borkenhagen, ”A Multithreaded 64-bit PowerPC
Commercial RISC Processor Design”, Proc. 11th Int’l Conf.
High-Performance Chips, 1999.

[18] D. Tullsen, S. Eggers, H. Levy, ”Simultaneous Multithreading:
Maximizing On-Chip Parallelism”, Proc. 22nd Int’l Symp. Com-
puter Architecture, pp. 392, 1995.



