1,147 research outputs found

    A Characterization of Hard-to-cover CSPs

    Get PDF
    a

    Global Cardinality Constraints Make Approximating Some Max-2-CSPs Harder

    Get PDF
    Assuming the Unique Games Conjecture, we show that existing approximation algorithms for some Boolean Max-2-CSPs with cardinality constraints are optimal. In particular, we prove that Max-Cut with cardinality constraints is UG-hard to approximate within ~~0.858, and that Max-2-Sat with cardinality constraints is UG-hard to approximate within ~~0.929. In both cases, the previous best hardness results were the same as the hardness of the corresponding unconstrained Max-2-CSP (~~0.878 for Max-Cut, and ~~0.940 for Max-2-Sat). The hardness for Max-2-Sat applies to monotone Max-2-Sat instances, meaning that we also obtain tight inapproximability for the Max-k-Vertex-Cover problem

    Rainbow Coloring Hardness via Low Sensitivity Polymorphisms

    Get PDF
    A k-uniform hypergraph is said to be r-rainbow colorable if there is an r-coloring of its vertices such that every hyperedge intersects all r color classes. Given as input such a hypergraph, finding a r-rainbow coloring of it is NP-hard for all k >= 3 and r >= 2. Therefore, one settles for finding a rainbow coloring with fewer colors (which is an easier task). When r=k (the maximum possible value), i.e., the hypergraph is k-partite, one can efficiently 2-rainbow color the hypergraph, i.e., 2-color its vertices so that there are no monochromatic edges. In this work we consider the next smaller value of r=k-1, and prove that in this case it is NP-hard to rainbow color the hypergraph with q := ceil[(k-2)/2] colors. In particular, for k <=6, it is NP-hard to 2-color (k-1)-rainbow colorable k-uniform hypergraphs. Our proof follows the algebraic approach to promise constraint satisfaction problems. It proceeds by characterizing the polymorphisms associated with the approximate rainbow coloring problem, which are rainbow colorings of some product hypergraphs on vertex set [r]^n. We prove that any such polymorphism f: [r]^n -> [q] must be C-fixing, i.e., there is a small subset S of C coordinates and a setting a in [q]^S such that fixing x_{|S} = a determines the value of f(x). The key step in our proof is bounding the sensitivity of certain rainbow colorings, thereby arguing that they must be juntas. Armed with the C-fixing characterization, our NP-hardness is obtained via a reduction from smooth Label Cover

    Robustly Solvable Constraint Satisfaction Problems

    Full text link
    An algorithm for a constraint satisfaction problem is called robust if it outputs an assignment satisfying at least (1−g(ε))(1-g(\varepsilon))-fraction of the constraints given a (1−ε)(1-\varepsilon)-satisfiable instance, where g(ε)→0g(\varepsilon) \rightarrow 0 as ε→0\varepsilon \rightarrow 0. Guruswami and Zhou conjectured a characterization of constraint languages for which the corresponding constraint satisfaction problem admits an efficient robust algorithm. This paper confirms their conjecture

    Constraint satisfaction parameterized by solution size

    Full text link
    In the constraint satisfaction problem (CSP) corresponding to a constraint language (i.e., a set of relations) Γ\Gamma, the goal is to find an assignment of values to variables so that a given set of constraints specified by relations from Γ\Gamma is satisfied. The complexity of this problem has received substantial amount of attention in the past decade. In this paper we study the fixed-parameter tractability of constraint satisfaction problems parameterized by the size of the solution in the following sense: one of the possible values, say 0, is "free," and the number of variables allowed to take other, "expensive," values is restricted. A size constraint requires that exactly kk variables take nonzero values. We also study a more refined version of this restriction: a global cardinality constraint prescribes how many variables have to be assigned each particular value. We study the parameterized complexity of these types of CSPs where the parameter is the required number kk of nonzero variables. As special cases, we can obtain natural and well-studied parameterized problems such as Independent Set, Vertex Cover, d-Hitting Set, Biclique, etc. In the case of constraint languages closed under substitution of constants, we give a complete characterization of the fixed-parameter tractable cases of CSPs with size constraints, and we show that all the remaining problems are W[1]-hard. For CSPs with cardinality constraints, we obtain a similar classification, but for some of the problems we are only able to show that they are Biclique-hard. The exact parameterized complexity of the Biclique problem is a notorious open problem, although it is believed to be W[1]-hard.Comment: To appear in SICOMP. Conference version in ICALP 201

    On the NP-Hardness of Approximating Ordering Constraint Satisfaction Problems

    Full text link
    We show improved NP-hardness of approximating Ordering Constraint Satisfaction Problems (OCSPs). For the two most well-studied OCSPs, Maximum Acyclic Subgraph and Maximum Betweenness, we prove inapproximability of 14/15+ϵ14/15+\epsilon and 1/2+ϵ1/2+\epsilon. An OCSP is said to be approximation resistant if it is hard to approximate better than taking a uniformly random ordering. We prove that the Maximum Non-Betweenness Problem is approximation resistant and that there are width-mm approximation-resistant OCSPs accepting only a fraction 1/(m/2)!1 / (m/2)! of assignments. These results provide the first examples of approximation-resistant OCSPs subject only to P ≠\neq \NP

    The wonderland of reflections

    Full text link
    A fundamental fact for the algebraic theory of constraint satisfaction problems (CSPs) over a fixed template is that pp-interpretations between at most countable \omega-categorical relational structures have two algebraic counterparts for their polymorphism clones: a semantic one via the standard algebraic operators H, S, P, and a syntactic one via clone homomorphisms (capturing identities). We provide a similar characterization which incorporates all relational constructions relevant for CSPs, that is, homomorphic equivalence and adding singletons to cores in addition to pp-interpretations. For the semantic part we introduce a new construction, called reflection, and for the syntactic part we find an appropriate weakening of clone homomorphisms, called h1 clone homomorphisms (capturing identities of height 1). As a consequence, the complexity of the CSP of an at most countable ω\omega-categorical structure depends only on the identities of height 1 satisfied in its polymorphism clone as well as the the natural uniformity thereon. This allows us in turn to formulate a new elegant dichotomy conjecture for the CSPs of reducts of finitely bounded homogeneous structures. Finally, we reveal a close connection between h1 clone homomorphisms and the notion of compatibility with projections used in the study of the lattice of interpretability types of varieties.Comment: 24 page

    A Characterization of Approximation Resistance for Even kk-Partite CSPs

    Full text link
    A constraint satisfaction problem (CSP) is said to be \emph{approximation resistant} if it is hard to approximate better than the trivial algorithm which picks a uniformly random assignment. Assuming the Unique Games Conjecture, we give a characterization of approximation resistance for kk-partite CSPs defined by an even predicate
    • …
    corecore