4,519 research outputs found

    Principal investigator in a box: Version 1.2 documentation

    Get PDF
    Principal Investigator (PI) in a box is a computer system designed to help optimize the scientific results of experiments that are performed in space. The system will assist the astronaut experimenters in the collection and analysis of experimental data, recognition and pursuit of 'interesting' results, optimal use of the time allocated to the experiment, and troubleshooting of the experiment apparatus. This document discusses the problems that motivate development of 'PI-in-a-box', and presents a high- level system overview and a detailed description of each of the modules that comprise the current version of the system

    Effects of dance therapy on balance, gait and neuro-psychological performances in patients with Parkinson's disease and postural instability

    Get PDF
    Postural Instability (PI) is a core feature of Parkinsonā€™s Disease (PD) and a major cause of falls and disabilities. Impairment of executive functions has been called as an aggravating factor on motor performances. Dance therapy has been shown effective for improving gait and has been suggested as an alternative rehabilitative method. To evaluate gait performance, spatial-temporal (S-T) gait parameters and cognitive performances in a cohort of patients with PD and PI modifications in balance after a cycle of dance therapy

    Multisystem proteinopathy due to a homozygous p.Arg159His VCP mutation : a tale of the unexpected

    Get PDF
    ObjectiveTo assess the clinical, radiologic, myopathologic, and proteomic findings in a patient manifesting a multisystem proteinopathy due to a homozygous valosin-containing protein gene (VCP) mutation previously reported to be pathogenic in the heterozygous state.MethodsWe studied a 36-year-old male index patient and his father, both presenting with progressive limb-girdle weakness. Muscle involvement was assessed by MRI and muscle biopsies. We performed whole-exome sequencing and Sanger sequencing for segregation analysis of the identified p.Arg159His VCP mutation. To dissect biological disease signatures, we applied state-of-the-art quantitative proteomics on muscle tissue of the index case, his father, 3 additional patients with VCP-related myopathy, and 3 control individuals.ResultsThe index patient, homozygous for the known p.Arg159His mutation in VCP, manifested a typical VCP-related myopathy phenotype, although with a markedly high creatine kinase value and a relatively early disease onset, and Paget disease of bone. The father exhibited a myopathy phenotype and discrete parkinsonism, and multiple deceased family members on the maternal side of the pedigree displayed a dementia, parkinsonism, or myopathy phenotype. Bioinformatic analysis of quantitative proteomic data revealed the degenerative nature of the disease, with evidence suggesting selective failure of muscle regeneration and stress granule dyshomeostasis.ConclusionWe report a patient showing a multisystem proteinopathy due to a homozygous VCP mutation. The patient manifests a severe phenotype, yet fundamental disease characteristics are preserved. Proteomic findings provide further insights into VCP-related pathomechanisms

    Effectiveness and cost-effectiveness of basic versus biofeedback-mediated intensive pelvic floor muscle training for female stress or mixed urinary incontinence: protocol for the OPAL randomised trial

    Get PDF
    This is the final version. Available on open access from BMJ Publishing Group via the DOI in this recordIntroduction Accidental urine leakage is a distressing problem that affects around one in three women. The main types of urinary incontinence (UI) are stress, urgency and mixed, with stress being most common. Current UK guidelines recommend that women with UI are offered at least 3 months of pelvic floor muscle training (PFMT). There is evidence that PFMT is effective in treating UI, however it is not clear how intensively women have to exercise to give the maximum sustained improvement in symptoms, and how we enable women to achieve this. Biofeedback is an adjunct to PFMT that may help women exercise more intensively for longer, and thus may improve continence outcomes when compared with PFMT alone. A Cochrane review was inconclusive about the benefit of biofeedback, indicating the need for further evidence. Methods and analysis This multicentre randomised controlled trial will compare the effectiveness and cost-effectiveness of PFMT versus biofeedback-mediated PFMT for women with stress UI or mixed UI. The primary outcome is UI severity at 24 months after randomisation. The primary economic outcome measure is incremental cost per quality-adjusted life-year at 24 months. Six hundred women from UK community, outpatient and primary care settings will be randomised and followed up via questionnaires, diaries and pelvic floor assessment. All participants are offered six PFMT appointments over 16 weeks. The use of clinic and home biofeedback is added to PFMT for participants in the biofeedback group. Group allocation could not be masked from participants and healthcare staff. An intention-to-treat analysis of the primary outcome will estimate the mean difference between the trial groups at 24 months using a general linear mixed model adjusting for minimisation covariates and other important prognostic covariates, including the baseline score. Ethics and dissemination Approval granted by the West of Scotland Research Ethics Committee 4 (16/LO/0990). Written informed consent will be obtained from participants by the local research team. Serious adverse events will be reported to the data monitoring and ethics committee, the ethics committee and trial centres as required. A Standard Protocol Items: Recommendations for Interventional Trials checklist and figure are available for this protocol. The results will be published in international journals and included in the relevant Cochrane review. Trial registration number ISRCTN57746448; Pre-results.National Institute for Health Research (NIHR

    Fuzzy logic: A ā€œsimpleā€ solution for complexities in neurosciences?

    Get PDF
    Background: Fuzzy logic is a multi-valued logic which is similar to human thinking and interpretation. It has the potential of combining human heuristics into computer-assisted decision making, which is applicable to individual patients as it takes into account all the factors and complexities of individuals. Fuzzy logic has been applied in all disciplines of medicine in some form and recently its applicability in neurosciences has also gained momentum.Methods: This review focuses on the use of this concept in various branches of neurosciences including basic neuroscience, neurology, neurosurgery, psychiatry and psychology.Results: The applicability of fuzzy logic is not limited to research related to neuroanatomy, imaging nerve fibers and understanding neurophysiology, but it is also a sensitive and specific tool for interpretation of EEGs, EMGs and MRIs and an effective controller device in intensive care units. It has been used for risk stratification of stroke, diagnosis of different psychiatric illnesses and even planning neurosurgical procedures.Conclusions: In the future, fuzzy logic has the potential of becoming the basis of all clinical decision making and our understanding of neurosciences

    Shaking hands:establishing objective parameters to differentiate between essential tremor and Parkinson's disease

    Get PDF
    In 1817, James Parkinson was the first physician to publish his observations about the shaking palsy (later: Parkinsonā€™s disease (PD)) and its differences compared to other tremulous disorders [1]. Nowadays, more than 200 years later, a lot more is known about neurodegenerative disorders. However, the exact pathophysiology is yet unknown. Furthermore, differentiation from other tremulous movement disorders, such as essential tremor (ET)], remains difficult due to overlapping symptoms such as tremor or timing deficits during voluntary movement and common diagnostic tools are often either invasive, time consuming, subjective, expensive and/or not widely available.Therefore, in my research I focused on finding objective parameters to differentiate PD from ET that can be measured with commonly available tools. For this purpose we simultaneously measured movement of the hands, using accelerometers, and brain activity using EEG and functional MRI to:1. quantify tremor occurrence and identifying corresponding cortical activity.2. quantify timing deficits during voluntary movement and identifying corresponding neuronal networks.Analyzing cortical activity during tremor revealed cortical involvement in tremor occurrence during rest in PD but not ET. A postural task revealed involvement of the associate and primary visual cortex in ET suggesting that these patients rely on visual guidance for maintaining a posture during tremor. To analyze timing deficits in ET and PD, subjects were asked to perform a bimanual motor task with an without an external cue. In both patient groups areas of motor planning, movement initiation, maintenance and coordination were active. However, activation of additional areas was found in both patient groups.From the results we can conclude that objective differentiation between ET and PD might be possible in the future using only commonly available tools. However, there is still a lot of work that needs to be done
    • ā€¦
    corecore