15 research outputs found

    A Comparison of Petri Net Semantics under the Collective Token Philosophy

    Get PDF
    In recent years, several semantics for place/transition Petri nets have been proposed that adopt the collective token philosophy. We investigate distinctions and similarities between three such models, namely configuration structures, concurrent transition systems, and (strictly) symmetric (strict) monoidal categories. We use the notion of adjunction to express each connection. We also present a purely logical description of the collective token interpretation of net behaviours in terms of theories and theory morphisms in partial membership equational logic

    On the Model of Computation of Place/Transition Petri Nets

    No full text
    In the last few years, the semantics of Petri nets has been investigated in several different ways. Apart from the classical "token game", one can model the behaviour of Petri nets via non-sequential processes, via unfolding constructions, which provide formal relationships between nets and domains, and via algebraic models, which view Petri nets as essentially algebraic theories whose models are monoidal categories. In this paper we show that these three points of view can be reconciled. More precisely, we introduce the new notion of decorated processes of Petri nets and we show that they induce on nets the same semantics as that of unfolding. In addition, we prove that the decorated processes of a net N can be axiomatized as the arrows of a symmetric monoidal category which, therefore, provides the aforesaid unification

    A Linear Specification Language for Petri Nets

    Get PDF
    This paper defines a category GNet with object set all Petri nets. A morphism in GNet from a net N to a net N' gives a precise way of simulating every evolution of N by an evolution of N'. We exhibit a morphism from a simple message handler to one with error-correction, showing that the more refined message handler can simulate any behaviour of its simple counterpart. The existence of such a morphism proves the correctness of the refinement

    Zero-Safe Nets, or Transition Synchronization Made Simple

    Get PDF
    Abstract In addition to ordinary places, called stable, zero-safe nets are equipped with zero places, which in a stable marking cannot contain any token. An evolution between two stable markings, instead, can be a complex computation called stable transaction, which may use zero places, but which is atomic when seen from stable places: no stable token generated in a transaction can be reused in the same transaction. Every zero-safe net has an ordinary Place-Transition net as its abstract counterpart, where only stable places are maintained, and where every transaction becomes a transition. The two nets allow us to look at the same system from both an abstract and a refined viewpoint. To achieve this result no new interaction mechanism is used, besides the ordinary token-pushing rules of nets. The refined zero-safe nets can be much smaller than their corresponding abstract P/T nets, since they take advantage of a transition synchronization mechanism. For instance, when transactions of unlimited length are possible in a zero safe net, the abstract net becomes infinite, even if the refined net is finite. In the second part of the paper two universal constructions - both following the Petri nets are monoids approach and the collective token philosophy - are used to give evidence of the naturality of our definitions. More precisely, the operational semantics of zero-safe nets is characterized as an adjunction, and the derivation of abstract P/T nets as a coreflection

    Linear logic and petri nets: categories, algebra and proof

    Get PDF

    Process versus Unfolding Semantics for Place/Transition Petri Nets

    Get PDF
    In the last few years, the semantics of Petri nets has been investigated in several different ways. Apart from the classical "token game," one can model the behaviour of Petri nets via non-sequential processes, via unfolding constructions, which provide formal relationships between nets and domains, and via algebraic models, which view Petri nets as essentially algebraic theories whose models are monoidal categories. In this paper we show that these three points of view can be reconciled. In our formal development a relevant role is played by DecOcc, a category of occurrence nets appropriately decorated to take into account the history of tokens. The structure of decorated occurrence nets at the same time provides natural unfoldings for Place/Transition (PT) nets and suggests a new notion of processes, the decorated processes, which induce on Petri nets the same semantics as that of unfolding. In addition, we prove that the decorated processes of a net can be axiomatized as the arrows of a symmetric monoidal category which, therefore, provides the aforesaid unification

    Strong Concatenable Processes: An Approach to the Category of Petri Net Computations

    Get PDF
    We introduce the notion of strong concatenable process for Petri nets as the least refinement of non-sequential (concatenable) processes which can be expressed abstractly by means of a functor Q[_] from the category of Petri nets to an appropriate category of symmetric strict monoidal categories with free non-commutative monoids of objects, in the precise sense that, for each net N, the strong concatenable processes of N are isomorphic to the arrows of Q[N]. This yields an axiomatization of the causal behaviour of Petri nets in terms of symmetric strict monoidal categories. In addition, we identify a coreflection right adjoint to Q[_] and we characterize its replete image in the category of symmetric monoidal categories, thus yielding an abstract description of the category of net computations
    corecore