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I 

Abstract 

This thesis explores three ways in which linear logic may be used to define a 

specification language for Petri nets, by giving precise correspondences, at different 

levels, between linear logic and Petri nets. 

Firstly, we define categories NC by analogy with de Paiva's dialectica cate-

gories GC. The category Met has objects- the elementary Petri nets and mor-

phisms refinement maps. We show that GC induces in NC sufficient structure 

for NC to be a sound model of linear logic. We demonstrate the computational 

significance of the net constructors induced by the interpretation in NSet of the 

linear connectives ®, A, —o, ED and (_)1•  Our framework unifies several existing 

approaches to categories of nets, and gives a model of full linear logic based on 

nets. 

Secondly, we show that the possible evolutions of a net generate a quantale. 

Quantales are algebraic models of linear logic. Further, we show that certain re-

strictions on nets, including being safe or bounded, arise as subquantales induced 

by suitable conuclei. This approach allows us to give a sound semantics for lin-

ear logic using sets of markings of a given net. Thus the provability of certain 

assertions in linear logic corresponds to properties of nets. 

Thirdly, we define a semantics for a fragment of linear logic f o  in terms of nets, 

by giving a partial function from formulae of linear logic to nets. This semantics is 

complete and sound where defined. Further, we show that whenever a net N can 

evolve to a net N', there is a canonical proof in L o  that the formula interpreted 

by N entails the formula interpreted by N'. A canonical proof expresses the causal 

dependencies of a net in a precise way, using the (Cut) rule. This approach allows 

us to use the techniques of proof theory to study the evolution of nets. 
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Part I 

Introduction and Preliminaries 



Chapter 1 

Introduction 

The theory of computable functions is relatively well-understood, and for many 

purposes this theory is adequate for reasoning about the meanings of sequential 

computer programs. Ultimately, such reasoning is essential to the practice of 

programming, since one can prove important properties of programs within the 

theory. Logics for computable functions also provide a means of formally specifying 

and verifying programs, and have formed the theoretical basis for machine assisted 

proof systems. 

By contrast, the theory of the behaviour of processes and its application to the 

study of concurrent programs is less well developed. There is little consensus on 

what is an appropriate treatment, and a number of alternative approaches exist. 

Petri nets and event structures ( [Win82] [Win80] [11ei85]) use causal independence 

to establish when two processes can occur concurrently, whereas other models, such 

as state-transition systems (which include CCS [Mi189] and CSP [Hoa85]) simulate 

concurrency by the non-deterministic interleaving of atomic actions. Petri nets, 

event structures and transition systems are all relatively concrete models. There 

are more abstract models, such as the powerdomain model [P1o76], and models 

based on observational equivalence or failure-sets. There is still more diversity if 

we consider also the various process logics which can be used to express properties 

and reason about any of these models. 

Among these models, that of Petri Nets is appealing on intuitive grounds. 

However, it has proved difficult to provide tractable theories of the behaviours 

10 
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described by Petri Nets (see for example [Win87], and the introduction to [Mi189}). 

The aim of this thesis is to explore the theory of Petri Nets from a novel point of 

view, in particular by applying ideas from linear logic and from category theory 

to address the problems of specification and compositionality. 

In this thesis, we establish precise relationships between Petri nets, a concrete 

model of concurrency, and linear logic [Gir86]. Each of the Parts II, III and IV 

of the thesis describes a correspondence between linear logic and Petri nets: each 

approach could be developed further to give a linear specification language for Petri 

nets, thus addressing a central problem in the theory of concurrent programming 

languages. In the analysis of concurrent programs, simultaneous satisfaction of 

conditions (their "conjunction") is a primary consideration, and so linear logic, 

which is meticulous in the "book—keeping" of resources, has a natural application. 

The results of Parts III and IV exploit this feature of linear logic to describe the 

behaviour of Petri nets. 

The results of Part II suggest a deeper connection between linearity and con-

currency. In Part II, we define a category Met, which is a sound model of linear 

logic, and has as objects the elementary Petri nets and morphisms which are refine-

ments. This allows us to address a fundamental weakness in the theory of Petri 

nets, the lack of a compositional approach. Petri nets are an appealing model 

of concurrency as they are based on the idea of causal independence and thus 

on synchrony, rather than a non—deterministic, interleaving semantics. However, 

there is as yet no fully satisfactory description of how to combine nets as algebraic 

structures in such a way that the behaviour of a composite net can be expressed in 

terms of the behaviour of its component nets. This problem is most fully consid-

ered in [WinSS]. Such a compositional description is essential to developing both a 

specification language for Petri nets, and a means of verification that a net satisfies 

its specification. If we have a compositional model, we can verify the behaviour of 

a complex concurrent process by verifying that the behaviours of its component 

parts satisfy sub—specifications, and then composing these verifications. Without 

compositionality we cannot establish a means of step—wise refinement such as is 

used to verify sequential programs [Wir7l], [ST88]. The category NSet provides 
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a compositional approach to Petri net structure. In particular, since NSet is a 

sound model of linear logic, each of the connectives 0,  —o, A, 0 and (_)1  has an 

interpretation as a combinator of nets. This gives us a rich language for describing 

composite nets. 

The introduction to Part II indicates our reasons for choosing a categorical 

approach to models of concurrency. In Chapter 4, we describe some existing 

categories whose objects are Petri nets, and describe de Paiva's dialectica category 

GC, which is a sound model of linear logic. We define a category NC by analogy 

with GC, and consider the category NSet with objects the elementary Petri nets, 

obtained by putting C = Set. In Chapter 5, we characterise NC as a limit in 

Cat, showing that the structure of GC induces in NC sufficient structure for NC 

to be a sound model of linear logic. We consider in detail the interpretation as 

net combinators of the linear connectives 0, —o, A, e and (_)1.  In Chapter 6, 

we illustrate the flexibility of our approach, giving several categories of nets based 

on the construction NC. In particular, we are able to unify in our framework two 

of the existing categories of nets. Thus NPSet is the category of elementary nets 

defined in [NRT90], while Winskel's category SafeNet [Win88] can be obtained 

as a Kleisli category on NSet=, a subcategory of NSet. The work presented here 

is the first model of full linear logic to have been based on Petri nets: all other 

approaches model only a fragment of the logic. 

In Part III, we show that the possible evolutions of a Petri net generate a 

quantale. Quantales are algebraic models of linear logic. Further, we show that 

such restrictions on nets as being safe, or bounded, arise as the subquantales 

induced by suitable conuclei. This approach allows us to give a sound semantics 

for linear logic in terms of sets of markings of a particular Petri net. Thus the 

provability of certain assertions in linear logic indicates properties of the net. This 

approach could be expanded to give a specification language for net behaviour. 

A useful extension would be the addition of quantifiers to the logic. Several of 

the results presented here have also been shown independently by Engberg and 

Winskel [EW89]. 

In Part IV, we show that certain formulae of linear logic correspond precisely to 
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Petri nets with finite sets of events and conditions. We give a semantics for linear 

logic in terms of nets using a partial function from formulae of linear logic to Petri 

nets. This semantics is a complete model of the fragment of linear logic 'C l , and is 

sound where it is defined. Further, we show that whenever a net N can evolve to 

a net N', there is a canonical proof in 4 that the formula interpreted by N entails 

the formula interpreted by N'. A canonical proof expresses causal dependencies 

of the net precisely in its restricted use of the (Cut) rule. This approach allows 

us to apply techniques of proof theory to the study of the evolution of nets, as is 

done by Gehiot and Gunter [GG90]. The results presented here are independent 

of those of Gehlot and Gunter, and use a considerably larger fragment of linear 

logic. 

Each of the three parts has an introduction describing its aims and indicating 

related work. The necessary definitions of Petri net theory, together with some 

references, are given in Chapter 2. Chapter 3 offers a basic introduction to linear 

logic, with references and essential definitions. 

There are several possibilities for further development of the ideas presented in 

this thesis. Work in progress with de Paiva shows how to generalise the dialectica 

categories to obtain categories with arbitrary nets as object set. The quantales 

based on net behaviour seem limited in scope: work in progress with Tofts will 

describe quantales generated by CCS processes. The results of Part IV could be 

extended to give a sound and complete model of (second-order) linear logic in 

terms of evolution of nets. Further application of proof theory to this work is 

also appropriate Finally, - we should consider the 

relationship between the results of the three parts of this thesis. The natural 

approach to this is to regard the models as categories and consider the functors 

between them. 



Chapter 2 

Preliminary Definitions: Petri Nets 

An introduction to Petri nets is given in [Rei85]. Interesting papers can also be 

found in [ACP86b], [ACP86a], and elsewhere. 

2.1 Multisets and Multirelations 

We give the elementary definitions concerned with relations and multirelations 

which are necessary to define Petri nets. 

Notation 2.1.1 We write 1 for the one-element set, {*}, 

2 for the two-element set and 

N for the natural numbers, including 0. 

Remark 2.1.2 

We shall also use 1 to denote the terminal object of categories other than Set. 

Definition 2.1.3 A relation from a set S to a set B is a function 12:8 x B - 2. 

Notation 2.1.4 We write Set for the category with sets as objects and functions 

as morphisms, with functional composition. 

Remark 2.1.5 

A relation 12:5 x B -* 2 can be regarded as a subobject in Set of S x B. 

14 
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Definition 2.1.6 Let .11: S x B —* 2 be a relation. The opposite relation to 1? is 

the function B °2  from B x S to 2 given by 

= R((e,b)) for all (e, b) e S x B. 

Definition 2.1.7 A multirelation from a set S to a set B is a function 

a:r C X13 , N, which we shall denote a:S * m  B. 

Notation 2.1.8 Let a:S — * m B be a multirelation. We write a?for  ae;b)). 

Definition 2.1.9 Let a: S — * 7,1 B and fi: B _*m B' be multirelations. Their com-

position is the multirelation (oe;f5): S —*,,, 13' is the formal sum (not necessarily 

convergent) given by 

ei•b.W 

Definition 2.1.10 Let a: S * m  B be a multirelation. Let 5' C S. Then the 

restriction of a to 5' is the multirelation a l: 5' —*,, B given by 

a 1 6, ((ei)) = aeh)) for (q, b) E 

Definition 2.1.11 Let S and 5' be disjoint sets. Let a: S _*m  B and a': Sf_*m  B' 

be multirelations. The union of a and 9e5 the multirelation (a U a'): S US' 

SuB' given by 

a((e,b)) eES and beB 

a'((e,b)) eeS' and beB' 

0 	eES' and bE(B\B') 

0 	eES and be(B'\B). 
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Definition 2.1.12 A multiset over a set A is a multirelation a: 1 * m  A, 1 = {*} 

is a distinguished one—element set. 

Notation 2.1.13 Let a be a multiset over A. We write a(a) for a((*, a)). 

Definition 2.1.14 

A multirelation a: A' - A is an inclusion if A' ç A and a is given by 

1 if a' = a 
aa'a  = 

0 otherwise. 

Definition 2.1.15 Let a: 1 #m  A and /3: 1 -+,, B be multisets. We say 0 is a 

multi—subset of a, written 0 c,, a, if B C A and for every E 5 /3(b) :~ a(b) 

Let a E A. If a(a) > 0 then a is a member of the multiset a over A, written 

a E. a. 

Definition 2.1.16 Let a be a multiset over A and 0 a multiset over B. If  cm  a 

then we define the subtraction of  from a to be the multiset (a—,3): 1 _*m  A given 

by 

a(a)—/3(a) a E B 
(a - 0)(a) = 

	

a(a) 	ae(A\B). 

	

Definition 2.1.17 Let a: 1 -+,,, A and 	0: 1 	B be multisets. We define the 

sum of a and /3 to be the multiset (a + /3): 1 * m  (A QB) given by 

a(a)+/i(a) ae(AflB) 

	

(a+/3)(a)= j a(a) 	ae(A\B) 

	

/3(a) 	a E (B\A). 

	

We define the intersection of a and 	/3 to be the multiset a fl/i: 1 	(An B) 

given by 

(an /3)(a) = min{a(a), /i(a)}. 
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Definition 2.1.18 A multiset a over a set A is finite if 

{a € A I a(a) > 11 

is a finite set. 

Definition 2.1.19 

A multiset a over a set A is non—empty if there exists a E A such that a(a) > 1. 

Definition 2.1.20 

The empty multiset over a set A is the multiset 0 given by 0(a) = 0 for all a E A. 

Definition 2.1.21 Let a be a rnultiset over A and let B C A. The restriction of 

a to B, written a In, is the inultiset over B given by 

ala (b) = a(b) for all bE B. 

Remark 2.1.22 Let F: 13' -* B be a function. We regard F 1  as a multirelation 

F': B m 13' by putting 

F'(b 131 	
1 ifF(b')=b 

= 
0 otherwise. 

Definition 2.1.23 Let F: A ~ B be a function. The linear extension of F to 

multisets over A is given by 

F(a) = Ea(a) F(a), for any multiset a over A. 
aEA 

Remark 2.1.24 We often regard multisets as sums. Thus the sum A + 2B rep-

resents the multiset a over {A, B} given by a(A) = 1, a(B) = 2. 

If A and B are linear logic atoms, we shall often regard a as a tensor sum of 

atoms, written A® 2B. 
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2.2 Petri Nets 

Definition 2.2.1 A Petri Net is a 4—tuple (E,13,pre,post), where S and B are 

sets, and pre and post are multirelations from S to S. 

Notation 2.2.2 We write Petri for the set of Petri nets. 

Remark 2.2.3 A note on size considerations is given in Section 2.4. 

We shall call elements of S events and elements of B conditions. We shall call pre 

and post the pre— and post—condition relations of N respectively. 

Notation 2.2.4 We write N for the Petri net (S,B,pre,post), No  for the net 

(50 , So , pre0 ,post 0), and so on. 

Notation 2.2.5 With each of the multirelations pre and post: S 
-~ 

13, we asso-

ciate a function with the same name, from S to multisets over B, defined by 

pre(e) = Epre(e, b)b and post(e) = Epost(e, b)b. 
beS 	 bEtS 

We call pre(e) the pre—condition set of e, and post(e) the post—condition set of e. 

We extend the functions pre and post to multisets of events as follows: 

pre(A) = LA(e)pre(e) for any multiset A over 5, and 
eEC 

post(A) = EA(e)post(c) for any multiset A over S. 
eEC 

Definition 2.2.6 Let N be a Petri net. A marking of N is a multiset M over B. 

Remark 2.2.7 Various authors add further conditions to the definition of a net, 

or of its markings, to ensure convergence of the formal sums involved in the corn- 

position of multirelations. We do not make such restrictions here. In Part 11 



Chapter 2. Preliminary Definitions: Petri Nets 	 19 

we consider structure rather than behaviour, and so considerations of convergence 

are inappropriate. In Fart III, the definitions of evolution are sufficient to ensure 

convergence, while in Part IV, the finiteness conditions on elements of MPetri 

are sufficient to ensure convergence. We shall therefore always identify the formal 

sum of Definition 2.1.9 with its evaluation. 

Notation 2.2.8 We write Mark(N) for the set of all markings of N. 

Definition 2.2.9 A marked Petri net is a 5—tuple (E,B,pre,post,M) such that 

(E,13,pre,post) is a Petri net N, and M is a marking of N. We call M the initial 

marking of the marked net (E,13, pre, post, M). 

Notation 2.2.10 We write N for the marked Petri net (E,8,pre,post,M), No  

for the marked net (E0 ,130) pre0 ,post0 ,M0), and so on. To avoid ambiguity we 

shall state whether a net is marked or not. 

Definition 2.2.11 Let N be a Petri net. An event e E S is a multiple event if 

there exists an e' E S such that e 0 e' and both 

pre(e) = pre(e') and post(e) = post(e'). 

Definition 2.2.12 We write MPetri for the set of marked Petri nets N such that 

S and B are finite and C contains no multiple events. 

The set of nets MPetri is of particular concern to us in Part IV. 

2.2.1 Representing Petri Nets Graphically 

There is a graphical representation of Petri nets in which events are represented 

by labelled boxes, conditions by labelled circles, and the pre— and post—condition 

relations by weighted, directed arcs. 
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Example 2.2.13 The net N with S = {e, e'}, 13 = Ito, x,y,z} and pre— and 

post—condition relations given by 

pre(e) = 2w pre(e') = to posi(e) = x + y post(e') = z 

is represented graphically by 

X 

The marking of a net is represented by small, shaded circles within the circle 

representing the marked condition. Thus 

represents the marking 2a, and 

represents the marking no. 

We shall call these shaded circles tokens. 

2.3 The Evolution of Petri Nets 

Definition 2.3.1 Let N be a marked Petri net, and let A be a multiset over S. 

The multiset A is enabled if pre(A) c,,. M, where M is the initial marking of N. 

Definition 2.3.2 Let N be a marked Petri net. Let A be a multiset over S enabled 

in N. We say that N one—step evolves under A from the marking M to the marking 
M I if  

M' = (M - pre(A)) + post(A). 

In this ease, the events of A are said to occur concurrently. 

Definition 2.3.3 Let N be a Petri net and let A be a rnultiset over S. A firing of 

A is the process of one—step evolution under A. 
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Definition 2.3.4 Let N be a marked net. Let A 0  and A, bemultisets Otc.'rEenabled 

by marking M. If A 0  A and pre(A 0)jpre(A i ) 'tF1 then A 0  and A 1  are in 

conflict. 

Notation 2.3.5 

If N one—step evolves under A from M to M' then we write M' < 1  M. 

Definition 2.3.6 

The derivability relation of a net N, written , is the transitive closure of <1. 

Remark 2.3.7 By definition, i  is reflexive
>
swiCe. 	tt.t oa..vs ea'oIV€ 

t4s1cLty the ewnp4 flijA4t o4: ewen+-s, I€mvisg Ths tnvkinj wneiianjeol. 

Definition 2.3.8 A net N evolves from a marking M to a marking M' if M' < M. 

Definition 2.3.9 Let k be a positive integer. A k—bounded Petri net is a marked 

Petri net (E,!3,pre,post,M) such that 

M(b) < k for all b € B, and 

whenever M' 	we have M'(b) < k for all be B. 

Definition 2.3.10 A safe Petri net is a 1—bounded Petri net. 

2.3.1 Subnets, Augmentation and Restriction 

Definition 2.3.11 Let N and N' be Petri nets. N' is a subnet of Nif there is an 

inclusion q: C -* S and an inclusion : B' * m  B such that for every multiset A 

over 5', 

pre'(qA) = 0(pre(A)) 	and post'(qA) = 0(post(A)). 

Definition 2.3.12 Let N = (S,B,pre,post,M) be a Petri net. Let 5' ç E. 

Let B' be the set {b E B I 9e € E'.(b E. (pre(e) + post(eD)}. Let pre' and 



Chapter 2. Preliminary Definitions: Petri Nets 
	

22 

post '  be the restrictions of pre and post respectively to multirelations from 8' to 

B'. Then the restriction of N to event set 5', written NrC is the net 

(5',B',pre 1p, post Is'). 

Remark 2.3.13 N[C is the subnet of N with event set 8' and pre and post rela-

tions given by 

for each e E 5', pre'(e) _> pr 

and 	post'(c) =yc3t (C) 

Definition 2.3.14 Let N be a Petri net. The removal of an event e from N results 

in the net N1(S \ {e}). 

Definition 2.3.15 Let N be a Petri net. Let e be an event not in S with pre-

condition set pre'(e) and post-condition set post'(e) (the multisetspre'(e) and 

post'(e) need not be disjoint from B). Let B' be the set B U {b I b Em  pre'(e) + 

post' (e)}. 

The augmentation of N by e results in the net 

(8 U {e}, B', pre U pre',post U post'). 

2.4 Important note on the Definition of Nets 

We have tried throughout to avoid unnecessarily strong restrictions on our def-

inition of a Petri net. Thus our basic definition allows a net to have event and 

condition sets of arbitrary size. In particular, they may be uncountable. Also, our 

basic definition allows a net to have multiple events. 

Certain parts of the theory presented here require a more restricted notion of net: 

where such restrictions are necessary, they are stated. 
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In Part II, we consider primarily elementary nets, all of whose pre— and post—

condition sets and markings are multisets with no multiplicities exceeding 1. 

In Part III, we need not make any restrictions. However, the use of quantales 

renders equivalent two nets which differ only with respect to multiple events, or 

events which are never enabled. In Section 7.7 of Part III, we show how more 

restricted notions of net (for example, nets which are bounded or safe) can be 

expressed using quantales. 

In Part IV we consider marked nets with finite event sets and condition sets, and 

no multiple events. 



Chapter 3 

An Introduction to Linear Logic 

Linear Logic was introduced by Girard in [0ir86}, and this remains the most 

complete reference. A useful introduction is given by Lafont in the Appendix 

to [GLT89]. In this chapter, we review the salient features which distinguish linear 

logic from other logics, give sequent calculi for the various versions of the logic 

which concern us, define some derived rules and give some definitions pertaining 

to linear logic formulae. 

3.1 Salient Features of Linear Logic 

Linear logic differs from intuitionistic logic primarily in the absence of the struc-

tural rules of weakening and contraction. Weakening allows us to prove a propo-

sition in the context of irrelevant (unused) assumptions, while contraction allows 

us to use a premise an arbitrary number of times. Linear logic has been called a 

"resource—conscious logic", since the premises of a sequent must appear exactly 

as many times as they are used. If the rules for weakening and contraction were 

added to the logic, then the rules for ® and A would be inter—derivable, and we 

would lose the distinction which linear logic makes between these two "flavours" of 

and. A® B is to be regarded as a resource consisting of exactly one resource A and 

one resource B: by contrast, A A B has the potential to be either a resource A or 

a resource B, but cannot be both. Dropping weakening and contraction decreases 

24 
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the expressibility of the logic in some ways, although we can regain their power 

in a controlled way by using the "of course" operator, written !. This is a modal 

operator with the following proof rules: 

F,!A,!A F B 
(Cont 

F,!A I- B 
F, AF B 
F, !A F 

FFB 
F, !A F 

!F F_A YR  

!FF!A 

These rules are together equivalent to the single rule 

!A F IAAA(!AØ 

From this rule we see that if we can assert !A, then we can make arbitrarily many 

(that is, zero or more) assertions of A. 

3.2 The Sequent Calculi of Linear Logic 

There are two basic presentations of linear logic, one using sequents with single 

conclusions, and one allowing multiple conclusions. The use of multiple conclusions 

makes clearer the symmetries between connectives, and is used in Part II, where 

we consider categorical models of linear logic. In Parts III and IV we are not 

concerned with the connective 0 (which Girard calls par, and others have called a 

tensor sum), and therefore use calculi with single conclusions. 

Remark 3.2.1 There are several approaches to naming the constants of linear 

logic. We here follow a category-theoretic tradition, using I as the unit of the 

symmetric monoidal structure ®, 1 for the terminal object and unit of A, 0 for 

the initial object and unit of e, and I for absurdity, the unit of the symmetric 

monoidal structure 0 . 

Elsewhere, the reader will find F and T used as the units of A and e respec- 

tively, in the tradition of lattice-based models. Also, 1 is sometimes used for the 
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unit of 0, since it is essentially a unit with respect to multiplication, by contrast 

with 0, the unit with respect to addition (D). 

We now present the various calculi which will be used in this thesis. 

3.2.1 Sequents with Multiple Conclusions 

Our sequents have the form 

Go , Gi ,",Gn F Do , Di ,",Dm)  

where the commas on the left are interpreted as conjunction and correspond to 

the connective 0,  while the commas on the right are interpreted as disjunction 

and correspond to the connective j. 

We assume a countably infinite set of linear atoms, and a set comprising the 

constants 1, 1, 0 and 1. The sequents of Classical Linear Logic are generated 

using the following rules, in which roman capitals represent formulae of Lin as 

defined in Section 3.4.1, and Greek capitals represent sequences of such formulae: 

Axioms: 

A F- AtitY) 

FE- i,A 1  

A F- A-'-1 
(negR) 

Structural Rules': 

F,0 F- 

A (neL) 

FF A 	 FFA, 	A,F'FLX' 

uP F- 	(Exch) 	 I- 	
(Cut) 

Logical Rules: 

F,AF FFA,L 

F F As,(R) 	F, A' F (varL) 

1 1n the rule (Exch), a and r are permutations of the sequences F and A respectively. 
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Rules for the Multiplicatives: 

PEA IL 

F,THA 

F,A,B H A 

F,A®BH 

F,AEA F',BHA' 
(IlL) 

F,F',AIlB I- A, A'  

PEA 

FE 

rI-A,A F'I-B,A' 

F,F'HA®B,A,A 

FI-  A,B,A 
(Il R) FEAIlB,A 

FHA,A F',BHA' 	 F,AHB,A 
F , Ff , ABHA, Al ( U 

Rules for the Additives: 

FI-A,A FHB,A 	F,AHA 	 F,BHA 

FHAAB,A 
(AR) F, A A BHA(A L1 ) F, A A BHA(A L2 ) 

F,AHA F,BHA 	r 	 F H B,A
A,A (Rl) FHA$B,A(®2) E P,ABA (eL) FHAB,A 

Rules for the Modalities 2 : 

F,AHA 	 PEA 
(Derel) 	 (Weak) 

F,!AHA 	 F,!AHA 

F, !A, IA I- A(Ct) 	IF I- A (IR) 

IF H IA F, !A HA 

21f F is the sequence G 0 ,• ,G, we understand IF to stand for the sequence obtained 

by applying I to each of the members of F, thus IF = !G 0 , ! G 1 , . . 
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3.2.2 The Fragment LL,, of Linear Logic 

The fragment LL of linear logic, which we shall be using in Part II of this thesis, 

is intuitionistic rather than classical in flavour. 

It consists of all the rules for classical linear logic given above, other than the 

rules (negL) and (varR). Thus there are only two rules for negation: 

P I- B,z 

A H 
11 	

- 
(neR) and P,B HA (varL). 

3.2.3 Sequents with Single Conclusions 

We now present the single conclusioned sequent calculus for linear intuitionistic 

logic without negation. 

Axioms: 

(Identity) 	—(IR) 
AHA 	 HI 

FHi 1 	P,OHA °  

Structural Rules: 

PH A zX,A F B 
(Cut)  F 
	L\ I ,A,B, 	C(Exh) 

P,AHB 	 P,B,A,AHC 

Rules for the Multiplicatives: 

PHA 	 P,A,BI- C 	 PHA AFB
P,IHAUL) 	 F,A®BFC® 	P,AHAØB(® 

PHA LX,BHC 	 P,AHB 
P,&ABHCHU 	 PHAB 
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Rules for the Additives: 

FE-A FE-B 

FFAAB 
(AR) 

F,AHC 	 F,BHC 
F,AA BHCVL fl 	F,AA BHC L2 ) 

Fl-A 

PH A ED B 

FE- B 	F,AHC F,BHC 
FFA®B(®R2) 	F,A®BFC 

((DL) 

Rules for the Modalities: 

F,AI- B 
	

F  

F,!A F- 
	 F,!A F- 

F, !A, !A F- B 

F,!AE-B 
(Cont) 

!F F- A 
('R 

!F I- !A 

The fragment of this logic which we shall use most often is C 1 , which consists 

of all the above rules other than the three rules for ED, the rule (-o R) and the 

rules (0) and (1). 

The fragment £ is £ together with the rule (-o R). 

The fragment L O  is C j  without the three rules for A. Thus C O is essentially the 

multiplicative fragment of linear logic, together with the modalities. These three 

fragments of linear logic are the calculi used in Parts III and IV of this thesis. 
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3.3 Some Useful Derived Rules 

There are three derived rules which we shall find useful. The first of these gives a 

useful insight into the meaning of the ! operator: 

jCopy). 
!AH(A,fl® !A; 

Using this rule it is easy to see that from a resource of type !A we can obtain as 

many copies as we like of the resource A. We derive this axiom in C j  as follows: 

(Identity) 

I-I 	 Al-A 
(Weak) 	 (Derel) 

!AI-I 	 !AI- A 
(Identity) 	 (AR) 

!A !A 	 !AF- AAI 
(®R) 

- 	(Cont) 

!A I-Vt')ttk; 

Another useful derived rule is the rule (Imp), 

Al-A F,BE-C 

F,A,(A 	)AI H 

This rule is derived in C j  using the rules (—o L) and (ALl). 

We use the derived rule (Id), which is in fact an axiom scheme, to abbreviate a 

sequence of (®R) and (Identity) rules. (Id) is given by the following scheme, where 

12 is a non-zero integer: 

C1,C21...,CFC1®C20 _17t 

(Id) 

(Id) is derived using the rules (Identity) and (®R). For instance, for ii = 3, the 

derivation is: 
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(Identity) 	 (Identity) 

Al-A 

	

l . 

	

(Identity) 

A,BI- AØB 
	

Cl- C 
(øR) 

A,B,CI - A&BØC 

Cirard's rule for dereliction, which we have called (Derel), is as follows: 

F,A I- B 
 Derel 

F, !A I- 

In place of this rule we shall often use the rule (Der), which is as follows: 

F,AAI,!AI - B 
F,!AHB 

(Der) 

It is easy to show that (Der) and (Derel) are interderivable in L, and £: 

(Der) = (Derel) 

	

F,AHB 	
(ALl) 

F,(AAI)F-B 	
(Weak) 

F,(AAI),!Al-B 
(Der) 

(Derel) =- (Der) 

r, (MI), !A 	
(Copy) 

F,tAA:I)®!A' ~ B !A I- 1AA1L&!A 
(Cut) 

F, !A H B 
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3.4 Formulae of Linear Logic 

Definition 3.4.1 

Linear logic formulae are words over the following alphabet: 

parentheses "(" and fl 
 

atoms a0 , a 1 ,..., which are assumed to constitute a countably infinite set, 

constants I, 1, 0, and I, and 

binary operators 0, A, —o, #1 , and 

a unary operator!. 

The set of linear logic formulae Lin is defined inductively to be the least set satis-

fying the rules: 

a E Lin 
a an atom 	

c Lin 
a constant 

M€Lin NELin 

(MoN)e Lin 
a binary operator 

MeLin 

E Lin 

Convention 3.4.2 

Outermost parentheses are not written. 

0 is associative. 

8. 0 binds more strongly than any other binary operator, and so whenever (MON) 

is not bound by a ! operator, we shall omit the parentheses and write MO N. 
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The binary connectives all associate to the right. 

We shall write A 1  as an abbreviation for A —o .1. 

Remark 3.4.3 

The above conventions allow us to omit parentheses from formulae without ambi-

guity. 

Definition 3.4.4 Let A and F be linear logic formulae. We define a relation "is 

a subformula of" on Lin, written , as follows: 

A<M 

	

A<A 	A<!M 

A<M 

A :5 
(M ON)  o a binary operator 

A<N 
a a binary operator 

A<(MoN) 

Definition 3.4.5 

Let F be a linear logic formula. We define the set At of atoms of F by 

At(F) = {a I a < F,a an atom.} 

Definition 3.4.6 Let A and F be linear logic formulae. We define a relation 'Is 

a factor of" on Lin, written 1,  as follows: 

AIM 

	

AIA 	AI!M 

AM 	 AIN 

	

AI(M (3N) 	AI(MØN) 
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Remark 3.4.7 We use the intuitive definition of an occurrence of a subformula 

in a formula. Formal details of the definition may be found in [Hue85]. 

Definition 3.4.8 Let F be a linear logic formula, and let A be a set of atoms 

distinct from .At(F) such that there is a bijective function r: At(F) -* A. Then 

r gives rise to a formula F' with At(P) = A, where F' is obtained by replacing 

each occurrence of each atom a in F by r(a). 

We say F' is obtained from F by replacement using r. 

Example 3.4.9 Let F = A®((B —o C)AD), and let r: {A,B, C, D} -* {W,X, Y, Z} 

be given by r(A) = W, r(B) = X, r(C) = Y and r(D) = Z. Then the formula 

W ® ((X —a Y) A Z) is the formula obtained from F by replacement using r. 

Definition 3.4.10 Let F and F' be linear logic formulae. We say there is a 

formula isomorphism from F to F' if either 

we can find a bijection r: At(F) -* At(P) such that F' is obtained from F by 

replacement using r, or 

we can find a formula F" such that .At(F") is distinct from .At(F) and from At(F') 

and bijections r1 :At(F) -+ At(F") and r2 :At(F") -* At(F') such that 

F" is obtained from F by replacement using r1 , and 

F' is obtained from F" by replacement using r2 . 

By abuse of notation, we shall say that F' is obtained from F by replacement 

using r, where r=r1 ;r2 . 

Definition 3.4.11 A transposition of a formula M is either 

the substitution of a subformula A® B of M by B ® A, or 

the substitution of a subformula A A B of M by B A A. 

Definition 3.4.12 

*1 is a permutation of N if M results from N by a sequence of transpositions. 
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Notation 3.4.13 We shall be concerned with the set of equivalence classes of Lin 

under permutation, which we shall denote Lin. 

Convention 3.4.14 

We shall use formulae in the same equivalence class of Lin interchangeably. 

Remark 3.4.15 The motivation for this convention is that formulae which are 

permutations of one another are interderivable in the fragment 'C l of linear logic. 

Interderivability of A ® B and B 0 A follows immediately from the (Exch) rule. 

It is also easy to show that A A B and B A A are interderivable: 

(Id) 	 (Id) 

Al-A 	 BI- B 
(ALl) 	 (AL2) 

	

AABF-A 	 AABF-B 
(AR) 

AABI-BAA 

We shall call the derived axiom A A B H B A A the rule (Corn). 

It follows that formulae which are permutations of one another are always inter-

derivable using only the rules (Exch) and (Com), and so we identify them when 

doing proofs. This convention prevents proofs from becoming unnecessarily long 

and cumbersome, as it allows us to omit applications of the rules (Com) and 

(Exch). For example, we write 

	

(Id) 
	

(Id) 

Al- A 	B,C,DHBoC®D 

to stand for the derivation 
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(Id) 

B,C,D I- B®CØD 
(Id) 	 (Exch) 

Al- A 	B,D,CI- B®CØD 
(-oL) 

B,D,A,A-oCFBQC®D 
(Exch) 

B,A,D,A-oCFBØCØD 
(Exch) 

B,A,A -o C, Dl- B® C® D, 

and 
F,AABI-C Al-BAA 

(Cut) 
F,A I- C 

to stand for the derivation 

(Corn) 

Al-BAA 	BAAI-AAB 
(Cut) 

F,AABI-C 	 AFAAB 	
(Cut) 

F,Al- C. 

The connectives of most interest to us in Part IV are 0  and -c. If we think in 

terms of resources, then whenever A and B represent resources, A 0 B represents 

a resource comprising both A and B. The rule (OR) expresses the idea that if 

resources F can be used to prove A, and also resources A can be used to prove B, 

then the resources F 0  A can be used to prove A 0 B. We can think of the two 

proofs going on in parallel, since there is no communication between them and 

each is valid independent of the other. 

Thus 0 joins two resources which have no causal interdependence. 

In contrast, because of the absence of weakening in linear logic (other than in 

the special case of formulae of the form !F), whenever it is the case that A -o B and 

there is no formula F such that A = 	, then it must be the case that B has a real 
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causal dependence on A, since A is used up whenever B is produced. Therefore, 

linear implication can be used to show when a necessary causal dependence exists 

between two formulae or resources. 

In order to produce an algorithm which does a computation in parallel, it is 

necessary to establish exactly which parts of the algorithm can proceed indepen-

dently of one another, and which are necessarily dependent. Since (as we saw 

above) linear logic explicitly expresses both these relationships between portions 

of a computation, it is natural that linear logic should lend itself to describing 

parallel computation. In what follows, we shall see that there is a close connection 

between linear logic and Petri nets. 



Part II 

A Categorical Linear Framework 

for Petri Nets 

38 



Introduction to Part II 

In this part we shall define several closely related categories, each of which has 

as its object set either the set Petri of Petri nets or a subset of Petri. We now 

outline briefly three major benefits of putting Petri nets (and also other models 

of concurrency) in a categorical framework. 

Firstly, viewing processes as the objects of a category gives us a compositional 

treatment of processes. In particular, if the category has sufficient structure, it 

will give us various ways of building up a large process from smaller ones in such 

a way that the behaviour of the whole can be expressed in terms of the behaviour 

of its parts. This modular approach facilitates both specification and verification 

of complex processes. 

Secondly, given a category whose objects are processes, we aim to use cate-

gorical logic to develop proof systems and specification languages which describe 

parallel processes. 

Finally, the use of categories allows us to relate different models of concur-

rency. Glynn Winskel [Win84a] has shown that if we view each class of models 

for processes as a category, by providing it with a suitable notion of morphism, 

then in many cases the relationship between the models arises as a co—reflection 

of categories. Since right adjoints preserve limits and left adjoints colimits, this 

allows us to pass smoothly from the semantics of one model to those of another. 

This part consists of three chapters. Some of the work is to be found in [B090] 

and [BG}. 

In Chapter 4 we give an overview of existing approaches to categories of Petri 

nets and describe Valeria de Paiva's dialectica category GO, which is a sound 

39 
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model of linear logic. We modify her construction to define a category NC whose 

objects are elementary Petri nets, and discuss the interpretation of morphisms in 

NC as refinements of Petri nets. 

In Chapter 5 we characterise NC as the kernel pair of the forgetful functor from 

GC into C x C'. This enables us to show that the relevant structure of GC 

lifts to NC, which is therefore also a sound model of linear logic. We describe the 

structure of NC in detail, and interpret it in terms of Petri nets. 

In Chapter 6 we show that the category NSet is closely related to Winskel's 

category SafeNet and that NPSet is precisely the category described by Nielsen, 

Rozenberg and Thiagarajan in [NRT90], with object set the set of elementary 

nets. We discuss three modifications to our notion of refinement, and the extent 

to which the modified categories remain sound models of linear logic. We show 

that Winskel's category SafeNet is isomorphic to the Kleisli category on NSet 

for a particular choice of monad. 

In 	 describe briefly a generalisation of de Paiva's work which 

allows us to define a category with object set the set Petri of all Petri nets. This 

category has sufficient structure to be a sound model of linear logic. 



Chapter 4 

A New Category of Petri Nets 

4.1 Summary of the Chapter 

In this chapter we aim to establish the connection between linear logic and Petri 

nets by relating categories of Petri nets to the Dialectica category models of linear 

logic constructed by de Paiva [deP89a}. For a suitable choice of base category C, 

the Dialectica category GC is a model of a slight variant of intuitionistic linear 

logic based on that presented by Girard [Gir86]. Using the constructions described 

in [deP89a], we define a category whose objects are Petri nets and whose mor-

plthms, constructed from those in GC, are refinement maps of Petri nets. All the 

connectives of linear logic can be interpreted by constructions in GC, and these 

give us constructions in our category of nets which have a computational interpre-

tation in terms of Petri nets. This approach generates both existing constructions 

on nets, and also some novel constructions which have a useful computational 

interpretation. 

The structure of this chapter is as follows. We first describe some existing work 

on categories with object set a subset of Petri. We next define de Paiva's category 

GC, and describe its structure. We define by analogy with GC a category NC 

and show that the category NSet obtained by putting C = Set has elementary 

Petri nets as objects. We discuss morphisms in NSet in detail'and with examples, 

interpreting them as refinement maps of nets. 

41 
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In Chapter 5, we shall show that NC is the kernel pair in Cat of the forgetful 

functor from GC into C x 

4.2 Existing Categories of Petri Nets 

There are at least three important approaches to a categorical treatment of Petri 

nets in the literature. The first is that of Winskel, described in [Wins?] and 

[Win88], which relates very closely to the categories presented here, as is shown 

in Section 6.5.1. The second is that of Mesegüer and Montanan, described 

in [MM88a], which is also closely related to our approach. In [DMM89] a dif-

ferent approach is taken, in which an individual Petri net is seen as generating a 

category. This approach will not concern us here. 

4.2.1 Winskel's Category, Net 

Winskel defines a category of Petri nets as follows: 

• objects are marked Petri nets, 

• a morphism from N = ( E, B, pre, post, M) to N' = ( C, S', pre', post', M') is a 

pair (q, 3), where ij is a partial function from S to 5', and 0 is a multirelation 

from B to B', such that 

/3M = M' and 

for every multiset A over 5, 

pre'(qA) = 0(pre(A)) and po.st'(qA) = fl(post(A)), 

• and composition is componentwise. 

We shall call this category Net. A morphism (q,/3): N -* N' in Net is interpreted 

as associating with every possible behaviour of N an induced behaviour in N'. The 

maps q and 0 describe the components in N' of events and conditions in N. The 
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components in N' of the event e € S are local in the sense that 77(e), where defined, 

is a single event. Because q  is partial, not every event of N has a component in 

I 	 . 	 . . 	"partial 	. 	,, 	• 	, 
N , and so we think of the map (q, /3) as giving a partial simulation of N in N 

The following theorem shows how morphisms in Net preserve behaviour: 

Theorem 4.2.1 Let (77, /3): N - N' be a morphism in Net. Whenever a marking 

M of N can evolve under a multiset of events A to marking M', the marking [3M 

can evolve in N' under 77A to the marking [3M'. 

Definition 4.2.2 A morphism (q,13) in Net is synchronous if rj is total. 

Notation 4.2.3 We write Net 3  for the subcategory of Net with object set Petri 

and morphisms the synchronous morphisms. 

4.2.2 Structure in Net 

We now describe briefly some of the categorical structure of Net. 

Net has an initial object, which is the net nil = (, {*}, 0, 0, *), consisting of a 

single condition, marked with multiplicity one, and no events. 

Net has a terminal object, which is the net null = (, , , , 0), with no conditions, 

events or marking. 

The set of safe nets is the object set of a full subcategory of Net, which we shall call 

SafeNet. SafeNet has a subcategory SafeNet 3  of safe nets and synchronous 

morphisms. SafeNet has the same initial object and terminal object as Net. 

Winskel states that Net has all finite products, but not all finite coproducts, 

while SafeNet has all finite products and coproducts. 

We now give the binary product in Net explicitly. 

Let Nk = (&k,Bk,prek,postk,Mk) be Petri nets for Ac = 0, 1, and let 0 be distinct 

from each 5k•  The product net N o  x N 1  is the net (E,B, pre, post, M), where 

8j3, pre, post and Mare defined as follows: 

S = {(e0 ,0) I e0  € Sol U 1(0,e 1 ) I e l  € 91  1 U {(e0 ,e1 ) I e0  E 80 ,e 1  € El  I 
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and 

B = So  W 8 1 , the disjoint union of 50  and 81 . 

For Ic = 0,1 we define a partial function Irk from 6 to 6k  by 

Ck if 6k 
irk(eo)el) = 

undefined otherwise. 

For Ic = 0,1 we define 	to be the opposite relation to the injection Pk: Bk —* B. 

Finally, 

M = p ,"M0  + p7M1 , 

pre(e) = ppre0 (ir0e)] + ppre1 (r1 e)] 	for all e E 6, and 

op 
post(e) = pg"[post0 (ir0e)] + p 1  ost 1 (r1 e)] for all e e S. 

The projections from N o  x N1  to Nk are the morphisms (7rk,p7). 

The following theorem shows how the behaviour of the net N o  x N1  is related 

to the behaviour of its component nets. 

Theorem 4.2.4 

Let N o  and N 1  be Petri nets. 

A multiset M is a marking of N o  x N1  if and only if p0M is a marking of No  and 

p1 M is a marking of N 1 . 

Moreover, the marking M of No  x N1  can evolve by a multiset of events A over S 

to a marking M' if and only if for i = 0 and i = 1, the marking pM can evolve in 

Ni by the multiset of events ir0 A to the marking p1 M'. 

It can be shown that Net does not have all finite coproducts (see [Win87]). How- 

ever, Winskel states that SafeNet does have all finite coproducts. We now de- 

scribe explicitly the coproduct in SafeNet of two nets with non—empty initial 
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markings. 

Let Nk  = (L k ,Ek ,prek ,post k , Mk) for It = 0,1 be safe nets with non-empty initial 

markings. Their coproduct No  + N 1  is the net N = (E, B, pre, post, M), where 

E,13, pre, post and Mare defined as follows: 

£ = £0 I±J £, the disjoint union of the event sets of the components. For It = 0,1 

we write 2k  for the injection from tk  into S. 

M = M0  x M 1 , the cartesian product of sets. 

B = {(b0 ,0) lb (=- i3 \ M0 1 U {(0,b 1 ) I b1  e B \ M 1 } U M. 

The injection relations Po  and Pi  on the condition sets are opposite to the evident 

partial functions taking an element of B to its first or second component, and they 

are given by: 

b0p0 b 	3b1  € B U {0}.b = (b 0 , b1 ), and 

b1 p 1 b44' 3b0  e 1%u {0}.b = (b0, b1 ). 

We define pre as follows: for e0  € go, 

pre(in0 e0 ) = p0 [pre0 (e0 )] = {b I be B, b = (b0 , b1 ) with b0  E pre(e0 ), b1  € B U 1011 

and similarly pre(in1 e 1 ) for e1  € £. 

We define post analogously 

The behaviour of the coproduct net can be described in terms of the behaviour 

of its components using the following theorem: 

Theorem 4.2.5 

Let No  and N 1  be safe Petri nets with non-empty initial makings. 

A marking M can evolve in NO  +N 1  by a multiset of events A over £ to the marking 

lvi' if and only if either for i = 0 or for i = 1, there exist multisets M1 , A 1  and M 

with M = p1 M1 , A = in1 A 1  and M'= p1 M, such that the marking Mi  can evolve 

in Ni  by the multiset of events A 1  to the marking M,'. 

Winskel states that the definition and theorem extend to sums of safe nets with 

empty initial markings. 
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Synchronisation Algebras 

A variety of parallel compositions on nets can be obtained from the product. 

Winskel shows how restrictions of the event set of the product net can be specified 

using a synchronisation algebra [Win84b], in a way which we describe here briefly 

Definition 4.2.6 

A synchronisation algebra is a tuple (L, ., X, 0) where L is a set containing the 

distinct, distinguished elements X and 0, the set L \ {X, 0} has at least one ele- 

ment, and • is a commutative, associative, binary operation on L such that for all 

0,Oo ,Qi EL, 

a . 0 = 0 and 

a 0  sal =X if and only if Oo  = =X. 

We call elements of L labels. 

We interpret the synchronisation algebra (L, .,X, 0) in the following way. We 

associate with a set of events S a function 1:5 —* (L \ {X, 0}). An event e E S cart 

occur asynchronously if and only if 1(e) • X 0. Two events e0  and e 1  can never 

synchronise if 1(e0 ) • 1(e 1 ) = 0. 

Definition 4.2.7 

Let No  and N 1  be Petri nets. Let<L),X4be a synchronisation algebra. 

Fork= 0,1 let 1k  be a function from 5k  to (L \ {X, O}), called a labelling function. 

We define the parallel composition of N o  and N 1  with respect to L to be the net 

obtained by restricting No  x N 1  to events 

5' = {e E 00  x 51  1 10r0 (e) • 1 1 r1 (e) 0 0}. 

There is an induced labelling function 1:5' -* L given by 

1(e) = 10 7r0(e) • 117r1(e). 
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Synchronisation algebras can be used to obtain uniformly all binary, commu-

tative, associative parallel compositions which are based on synchronisation. Un-

fortunately, Winskel can define restriction and parallel composition as categorical 

operations only in the more complex framework of indexed categories, see [Win88]. 

The difficulties involved are a special case of the problem of presenting subobjects 

in a category constructively. 

4.2.3 Meseguer and Montanan's Categories of Nets 

In [DMM89], Degano, Meseguer and Montanari define four categories to corre-

spond to each Petri net N. These categories are all aimed at axiomatising the 

behaviour of N as a category, and thus work at a different level from the construc-

tions which we shall be considering in this chapter. 

In their earlier paper, Meseguer and Montanan [MM88a] introduce more than 

25 categories whose objects are either Petri nets or behaviours of Petri nets. We 

summarise their constructions briefly. Their approach is to regard a Petri net as 

algebraic structure over a directed graph. 

Definition 4.2.8 A (directed) graph is a 4-tuple (E, V, 8, 	where E and V are 

sets, called edges and nodes respectively, and bo  and 61  are functions from E to V 

called respectively Source and Target. 

Definition 4.2.9 

A (directed) graph morphism from (E, 1/ 6, 6) to (E', V', 6, 8) is a pair of func-

tions (f, g) with f: E -* P2' and g: V -# V such that 

= 6f and 961  = 6f. 

In a natural way, we can regard a Petri net N = ( 8, B, pre, post) as a directed graph 

whose set of nodes is the free commutative monoid 5 63  over the set of conditions 

13, the source and target maps 60  and fij  from 8 to 1$ being determined in the 

evident way by pre and post respectively. Nets regarded in this way, together with 
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(directed) graph morphisms which respect the monoid operation e and leave the 

neutral element, 0, of Be  fixed, form a category Petri with finite products and 

coproducts. The product of two nets in Petri is a synchronous product in much 

the same way as Winskel's product, pairing events and taking the union of the 

condition sets. The coproduct represents juxtaposition without interaction. 

To allow events to be "erased" by a mapping (equivalently, to allow the map 

on events to be partial), we build a new category Petri0  by adding to the event 

set of each net a special element 0, and restricting morphisms to morphisms of 

Petri which leave 0 fixed. Meseguer and Montanari state that product and co-

product are as before. Further, if we give the event set of each net a commutative 

monoid structure (C, +, 0) (thought of as representing parallel composition) and 

restrict morphisms to those morphisms of Pet ri0  whose first component is a monoid 

homomorphism, we have a category CMonPetri. CMonPetri has products and co-

products, and these coincide. Meseguer and Montanari suggest that the monoid 

on an event set need not be free, as it is intended to reflect the synchronisation 

structure of the net. However, there is no apparent way to prevent its being free, 

unless we consider some further structure to be associated with the net, such as a 

synchronisation algebra. 

If we add to every net an identity event corresponding to each node, we obtain 

from Petri and CMonPetri two further categories, RPetri and CMonRPetri, with 

forgetful functors as follows: 

CMonRPetri 	'RPetri 

t _ 
 

I 
CMonPetri 	- Petri 

Finally, given a Petri net N = (E,B,pre,post), we can define a partial func- 

tion from C x C to C which is defined for exactly those pairs (e, e') for which 

= 80(e') . is intended to represent sequential composition of events. Several 

axioms are satisfied by , the most important of which are associativity and a 

form of distributivity of + over . This states that for all events e, e', x, x' for 



Chapter 4. A New Category of Petri Nets 	 49 

which the compositions are defined, we have 

(e + e'); (x + x) = (e; x) + (e'; x'). 

Morphisms are morphisms of CMonRPetri with the additional constraint that 

whenever e; e' is defined for events e, e' in a net N, and (1,9) is a morphism from 

N to N', f(e; e') = f(e); 1(ë). This defines a category which we shall call CaiPetri. 

Between these categories there are evident forgetful functors as follows: 

CaiPetri - CMonRPetri -* CMonPetri -* Petri0  -+ Petri. 

There exists a left adjoint 7 to the composite forgetful functor from CatPetri to 

Petri which assigns to each net N a category 7(N) which has an arrow for every 

possible computation of the net N, including all sequential and parallel composi-

tions of events in N or identity events. Further details are given in [DMM89]. 

The morphisms in the categories defined are classified as follows, according to 

their action on events: 

s in Petri, an event e in N maps to an event e' in N', 

• in Peti', an event e in N maps to an event e' in N', or is erased, 

• in CMonPetri, an event e in N maps to a parallel composition of events in 

N', or is erased, 

• in CMonflPetri, an event e in N maps to a parallel composition of events in 

N' and idle (identity) events, or is erased 

• in CatPetri, an event e in N maps to a computation in N' with possibly many 

sequential and parallel steps, or is erased. 

In the construction of the above categories, the objects are given increasingly more 

structure, and morphisms are chosen to respect that structure. It is of course pos-

sible to form categories with object set Petri, but with increasingly general mor-

phisms to correspond to those in the categories defined above. In particular, using 
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morphisms from the categories Petri.3 , CMonPetri, CMonRPetri and CatPetri, we 

obtain the categories £synchPetri, LinPetri, CPctri and jjgplPetri respectively, 

which relate to one another as follows: 

Petri C AAynchPetri ç LinPetri ç CPetri C jrnplPetri. 

For any of these categories we could prove a theorem analogous to Theo-

rem 4.2.1, showing that morphisms preserve dynamic behaviour. 

Each of the categories discussed in this section has an analogue for marked 

nets whose initial marking is a set. 

Meseguer and Montanari do not offer any judgement as to which of these is the 

most useful category for increasing our understanding of Petri nets. It seems that 

some of the categories relate better to existing concepts than others. The choice 

of strict monoidal functors as morphisms between nets is a strong restriction on 

morphisms, and perhaps does not give rise to categories with interesting, useful 

structure. Moreover, it is debatable whether parallel composition should be as-

sumed to diétribute over sequential. For instance, if we wish to consider the time 

taken by processes, or their causal dependencies, we certainly do not want such a 

distributivity law (see [Gur901). 

4.3 The Dialectica Category GC 

The work of de Paiva on dialectica categories, described in [deP89b], [deP89a] 

and [deP87], was begun with the aim of providing a categorical treatment of 

Cödel's "Dialectica Interpretation" of higher order arithmetic [06d58} [G8d80]. 

Dc Paiva defines a category whose objects represent essentially the Ob 
D  where OD 

is a formula in higher—order arithmetic and ( is the Dialectica translation, 

see [Tro73}. Morphisms then correspond to Dialectica interpretations of implica-

tion. In the usual manner of categorical logic, a map from 'J? to 19 can be taken 

to be some kind of realisation of the formula "4 -* In the case of the 
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Dialectica Interpretation this realisation can be given abstractly, leading to the 

notion of a Dialectica category DC for an arbitrary category C with finite limits. 

The dialectica category DC is not cartesian closed, but has a product and 

a symmetric monoidal structure, each of which corresponds to a notion of con-

junction. These observations led to the realisation that DC is a model of the 

intuitionistic fragment of linear logic [GL87]. Following a suggestion of Girard, de 

Paiva constructed a category CC which is a model of the version LL of linear 

logic. It is the category CC which we shall use and extend in this part. CC is an 

interesting model of linear logic in the sense that it has distinct interpretations of 

all five binary connectives (®, A, $, 0 and —o), and distinct objects interpreting 

the units 1, 1, 0 and I. Many models identify one or more of these connectives, 

and similarly one or more of the constants. 

We now define the category CC and describe its structure. 

Definition 4.3.1 

Let C be a category with finite limits. The Dialectica category CC is given as 

follows: 

• an object of CC is a pair (E,B) of objects of C, together with a subobject 

	

A '-+ S x B in C. We shall denote such an object (S 	7 	5). 

	

• A morphism in CC from (5 	7 	5) to (5' '1 	B'), is a pair of mor- 

phisms f S -* 5' and F 5' -* B in C such that there exists a morphism k 

(necessarily monic and unique up to isomorphism) such that the triangle in 

Ja 

	

B'> 	-SxS' 	.SxB 

	

J 	I idxF 

f x id 

B>  
a' 
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commutes, and 

• composition is given by composition in C in each component. 

Notation 4.3.2 We shall depict a morphism from (6 7 B) to (6'  

in GC by: 
a 

1< L IF 
a 

In the case where C is Set and a and a' are set-theoretic relations, the pair 

(f, F) is a morphism from a to a' if and only if, whenever e a F(b') then f(e)  a' b'. 

This is the intended interpretation of 4. Composition respects 4. 

In [deP89a], de Paiva considers the system LL of intuitionistic linear logic. 

The rules of LL are given in Section 3.2.2 of Chapter 3. They include all the 

usual rules for the connectives 0,  0, A, ED, and -o, together with the structural 

rules (Cut) and (Exch) and the axiom (Id). The rules for negation are 

Pt- A,C 	 __ 

F, A'- F- C 
(varL) and 

A F- 
_

A
__

11 
(negR). 

In this part, unless otherwise stated, the phrase "is a sound model of linear logic" 

is to be understood to mean "is a sound model of the fragment LL of linear logic". 

If we choose a base category C with certain additional structure, to be de-

scribed below, then we find that GC has induced additional structure. 

Notation 4.3.3 We shall write A to stand for the object (6 	7 B) and A' to 

stand for the object (6' i 1 	B'). 

Definition 4.3.4 Let A be an object of a category C. The slice category of C 

over A, written C/A, has as objects the morphisms of C with codoinain A and as 
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morphisms commuting triangles in C of the following form: 

A, 

together with the evident composition. 

Definition 4.3.5 A category C is locally cartesian closed if C has a terminal 

object, and for every object A of C, the slice category C/A is cartesian closed. 

Remark 4.3.6 From this definition we see that if C is locally cartesian closed 

then C is also cartesian closed. 

Definition 4.3.7 A symmetric monoidal category is a tuple (C, 0, 1, a, A, a) where 

C is a category, 0 is a functor from C x C to C, I is an object of C, and a, A and 

a are natural isomorphisms such that: 

a = 

A = A X : IOxx, 

a = a:x®yy®x, 

and the following diagrams commute: 

x®(y®(z®w)) 	
a 	

(xøy)®(z®w) 
a 
 ((x(gy)®z)®w 

id®a 	 a®id 

x®((y(9z)®w) 	 - (x®(y®z))®w, 
a 

x®y 

or 
I \id 

y®x 	.xOy, 
or 

xO(I®y) a 
	

(xOfl®y 

id®A 	 a®id 

x®y.  . 	(I®x)Oy 
A® id 
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and 

xØ(yOz) a -(xOy)Oz 
C 
 -  zØ(xoy) 

idØa 	 la 

	

xO(z(Dy) 	- (x(gz)Oy 	- (zØx)Oy. 
a 	 aØid 

Definition 4.3.8 A symmetric monoidal closed category is a symmetric monoidal 

category (C, (9, 1, a, A, a) in which each functor (—)®A: C -* C has a specified right 

adjoint [A,—]. 

Notation 4.3.9 If (C, 0 )  1, a, A, a) is a symmetric monoidal (closed) category, we 

say that C has a symmetric monoidal (closed) structure 0. 

Notation 4.3.10 Let (C, (9, 1, a, A, a) is a symmetric monoidal category. We call 

the functor 0 a tensor product. 

We now give some of the results of [deP89b], omitting some details. 

Lemma 4.3.11 If C is locally cartesian closed then GC has a symmetric monoidal 

structure given by 

	

00a' 
I 	B"), 

where C' = S x C and B" =?' x 0'S  and a 0  a' is defined by taking pullbacks. 

We shall describe a 0  a' explicitly in Section 5.5. 

The unit ofOisl=(1 	t 	1). 

The proof appears in [deP89b]. When e,C,B and 5' are sets, the relation a 

can be expressed by 

(e, e') a 0 a' (b, Li') if and only if e a f(e') and b a' g(e). 

Lemma 4.3.12 

There exists an internal hom [-, — ] GC: GC" x GC —* GC given by 

,, 
I 	5"), 

where C' = 9 5̀  x p5',  By  = E x 9. Again, (a')' is defined by taking pullbacks. 
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When 6,6', B and 13' are sets, the relation (ci)" can be expressed by 

(1' F) (a')" (e,  b') if and only if (e a F(b) = f(e) a' b'). 

The adjunction —®A H [A, -IGC gives GC a symmetric monoidal closed structure. 

Definition 4.3.13 A category C has finite (small) disjoint coproducts if for any 

finite (small) family (AA)ACA of objects in C, the coproduct A = J A, exists, each 
AEA 

of the canonical injections in s : AA -* A is a monomorphism, and for each pair of 

distinct indices A,A' the pullback of i nA along inxs is the initial object. 

Definition 4.3.14 We say that A as above is stable under pullbacks if given any 

map f: B ~ A, if we take the pullbacks of each of the canonical injections m A  
along f: B -* A and call them f*Ax,  then the induced map from U f*A A  to B is 

AEA 
an isomorphism. 

Definition 4.3.15 C has disjoint, stable coproducts if C has disjoint coproducts 

and every coproduct in C is stable. 

Lemma 4.3.16 Let C be a finitely complete category with disjoint, stable, finite 

coproducts. There exists a second symmetric monoidal structure on CC, denoted 

, given by 

AA' = 
 ve ll

I 	B"), 

B" 	 ___ where 9"  =  EL" xE ,L3  and B" =5 >< 13'.  The unit oflis  given byl =(1 	I 	1) 

When 6, 6', 13 and B' are sets, the relation ada' can be expressed by 

(f, g) ada' (b, b') if and only if f(b') a b or g(b) a' b'. 

Lemma 4.3.17 Let C be a finitely complete category with disjoint, stable finite 

coproducts. Then GC has finite products and finite coproducts. 

Remark 4.3.18 If C has small products and disjoint, stable, small coproducts, 

then GC has small products and small coproducts. 
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Binary products in GC are given by 

AAA '=(E" 	I 
aAa' nil 

 

il S" where t =5 xE' and 511=5+81. 

When 5, 5', 8 and B' are sets, the relation a A a' can be expressed by 

I (b, 0) 	ifeab 

(b', 1) if e' a' Y. 

The terminal object of GC is 1 = (1 	1 	0), where 1 and 0 are the terminal 

and initial objects of C respectively. 

Binary coproducts in GC are given 

nil 

where C' = S + 5' and B" = B x B'. 

When 5, C, B and B' are sets, the relation a G a' can be expressed by 

(e,0) aea' (b, e) if and only if eb, and 

(e', 1) a 	a' (b, b') if and only if e' a' b'. 

The initial object of GC is 0 = (0 i 1 	1). 

Notation 4.3.19 

We write (—) -L for the functor [-, -L]Gc from GC" to GC. 

To an object A = (6 E i 	B) of GC, the functor (—' assigns the object 
S c 

(B E  I 4 When Sand Bare sets, for all ee Sand beB, 

bI° e if and only if (eab=I) 

Since ± is the empty relation, if our objects are decidable relations in Set, then 

b La  e if and only if it is not the case that e a b. 
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We therefore call the functor 
(_)1  linear negation. 

Formulae of linear logic can now be interpreted as objects of the category CC. 

We assume an interpretation of the atoms of the logic as objects of CC. We then 

interpret the logical connectives as follows: 

the connective 0  is interpreted by the monoidal structure 0, 

linear implication —o by internal horn [-, ]GC' 

A by binary product, A, 

E) by binary coproduct, +, 

linear negation by the functor 

I and I, the units of 0 and j by the units I and .1. of the 

monoidal structures 0  and , 

and 

1 and 0, the units of A and 	by the terminal object 1 and 

initial object 0 respectively. 

Notation 4.3.20 We write JAI for the interpretation in CC of the formula A of 

linear logic. It is evident that I - I is a function from formulae of linear logic to 

objects of CC. 

Theorem 4.3.21 Let C be a locally cartesian closed category with disjoint, sta-

ble, finite coproducts. Then the symmetric monoidal closed category CC is a 

model of LL: that is, whenever there is an entailment F 1LL.  A, there exists a 

morphism (f, F) in CC from the interpretation of F to the interpretation of A. 

Remark 4.3.22 Let T be a topos. Then T is locally cartesian closed and has 

disjoint, stable coproducts. Hence CT is a sound model of intuitionistic linear 

logic. 
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De Paiva shows how the modal operators of linear logic, "!" and "?", can be 

modelled in CC by a comonad and a monad respectively. We shall not go into 

the details of her constructions here, as we shall not be discussing the action of 

the modalities on nets. It is certainly possible to interpret the action of "I" and 

on Petri nets, and if that interpretation proves useful, it will be considered in 

future work. 

4.4 A Category of Elementary Petri Nets 

We shall now show how a simple extension of de Paiva's work gives rise to a 

category which is also a model of linear logic, but whose objects are Petri nets. 

In general in this part we concentrate on the structural properties of a net rather 

than its dynamic behaviour, and so we discuss properties of unmarked nets. 

Definition 4.4.1 We say a Petri net N = (E,13, pre, post) is elementary if for all 

events e € 8, pre(e) and post(e) are both multisets in which no element occurs 

with multiplicity greater than one. 

Remark 4.4.2 Elementary nets are studied in [NRT90], [Roz87] and [Thi8I], 

where they are called elementary net systems. 

We shall first consider elementary nets, and illustrate the application to Petri nets 

of constructions arising from CC. Analogous constructions exist for general nets, 

as we mention in Jy3(.415ji and in [B090]. A full treatment of general nets 

requires an extension of de Paiva's work, and is to be the subject of a joint paper 

with de Paiva. 

Let C be a category with finite limits. 

We define a category NC by analogy with CC as follows: 

. objects of NC are pairs of subobjects A 0 	S x 13, and A 1  -* S x 13, which 

we shall write as (S 	B), 
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a 	 a '  

. a morphism from (S 	B) to (5' 	8') is a pair (1 F) of morphisms 

in C such that for i = 0 and i = 1, (f, F) is a morphism in CC from 

	

a' 	 (a')' 	

B'), 

	

(5' I 	B)to(E' 	I  

• and composition is componentwise. 

Notation 4.4.3 A morphism from (S ¶j B) to (C 'ii B') in NC will be 

depicted thus: 
a 

fl 	4 	IF 

II 	B' 

a 

Notation 4.4.4 Unless otherwise stated, any diagram V in NC with arrows la-

belied a, a' etc. stands for two diagrams in CC, V1 , in which for i = 0, 1 the labels 

a and a' are replaced by a' and (a')' respectively. 

We are primarily interested in the particular case where C is Set, the category of 

sets and functions. Since Set is a topos, it has all the properties required for its 

dialectica category GSet to be a sound model of intuitionistic linear logic. 

Remark 4.4.5 For any monic a in Set into an object S x B, we have an evident 

canonical choice for the subobject A of S x B. Consequently, pullbacks are defined 

up to equality, rather than up to isomorphism, and so the conditions (4.1) hold up 

to equality, rather than isomorphism. 

Observe that objects of NSet are precisely elementary nets. We shall identify the 

net (S,B, pre, post) with the object (S 	j B) of NSet by putting 

0 	 1 a =pre and a =post. 

a 

Suppose that (f, F) is a morphism in NSet from (S 	B) to (5' 	B') 

The pullback condition for morphisms in NSet can be expressed as 

for all e E Sand b'€B', 	eaF(b') =' f(e)a' b'. 
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Expressing this as a condition on each relation, we have 

	

F 1 (pre(e)) c pre'(f(e)) 	and F'(post(e)) c post'(f(e)). 	(4.1) 

Conversely, if 1:8 - 8' and F: B -* B' are morphisms in Set, (1 F) is amorphism 

in NSet whenever the conditions (4.1) are satisfied. 

The map (f, F) shows how N' is a refinement of N, in a way we now make precise. 

Definition 4.4.6 Let N = (8,B, pre, post) be a Petri net, and let e, e' eL. Then 

e is a refinement of c' if 

	

pre(e) cm pre(e') 	and post(e) cm post(e') 

Thus the event e' consumes at least as many resources as e, and produces at least 

as many: we can think of this as meaning that the pre— and post—condition sets 

of e' are more specified than those of e. 

Definition 4.4.7 Let N = (8,13,pre,post) and N' = (E',B',pre',post') be Petri 

nets, and let F be a function from 9 to B. Then e' refines e relative to F if for 

each e € 8, 

-1 	 , , 	 -1 	 , I 

	

F (pre(e)) cm pre (e) 	and F (post(e)) cm post (e). 

Definition 4.4.8 A refinement map from a Petri net N = (8,13,pre,post) to a 

Petri net N' = (8', B', pre, post) is a pair of functions (f, F) with f: S -* 8' and 

F: B' - B such that for every e € 8, f(e) refines e relative to F. 

N' is a refinement of N if there exists a refinement map (f,F):N -* N'. 

Proposition 4.4.9 

Refinement maps between elementary nets are precisely the morphisms of NSet. 

Proof: Immediate. 	 0 
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Proposition 4.4.10 Let (f, F) be a morphism in Met from the safe net N = 

(E, !3, pre, post) to the safe net N' = (E',B',pre',post'). Whenever a marking M0  

can evolve in N by a multiset of events A to a marking M1 , there exist markings 

S and S  of N' with 

r'(M0 ) c S0  and r1 (M1 ) C 

such that S can evolve by the multiset of events 1(A) to S. 

Proof: Put So  = F1(M0)+pre'(fA) - F 1 (pre(A)) and 

S1  = F'(M1 ) + post'(fA) - F'(post(A)). 

Since M1  = M0  - pre(A) + post(A), we have 

F 1 (M1 ) = F 1 (M0 ) - F' (pre(A)) + F'(posi(A)). 

By linearity, the conditions (4.1) give 

F 1 (pre(A)) ç pre'(f A) and F(post(e)) ç post'(fe). 

Now by hypothesis pre(A) g M, and so F'(pre(A)) c 

Hence pre'(f A) c  F 1 (M0) + pre'(f A) - F 1 (pre(A)) = S, and the 

multiset of events f  is enabled in N' with the marking S. 

After a firing of f A, N' has marking 

Si = F t (M) + post'(fA) - F 1 (pre(A)) 

J F(Mo) + F 1  (pre(A)) - F'(pre(A)) 

= F(M0). 
This completes the proof. 

Remark 4.4.11 This proposition is exactly analogous to the result which Wins/cd 

presents in Theorem 4.2.1. It illustrates what we mean by refinement, since it 

shows that given any evolution of a net N, a refinement of N is able to simulate 

that evolution. 

Remark 4.4.12 It should be possible to extend this proposition to the behaviour 

of all elementary nets, rather than just safe nets. The delicacy lies in the fact that 

if M0  is a multiset containing some element of B in multiplicity greater than one, 
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F'(M0) may not be well-defined. Where the linear extension of F to multisets 

over B' is an invertible multirelation, the extension of the proposition is straight-

forward. 

The following proposition characterises isomorphism in NSet, and is of con-

siderable importance in later chapters. 

Proposition 4.4.13 A morphism (f,F) in NSet from N = (E,B,pre,post) to 

N' = (E',B',pre',post') is an isomorphism if and only if 

• f: S - 5' is a bijection in Set, 

F: B' -* B is a bijection in Set, and 

• for each e E 5, 

F(pre'(fe)) = pre(e) and F(post'(fe)) = post (e). 

Proof: The inverse of a morphism (f, F) in NC, where it exists, is 

-1  	
i 

-i 	
i 	i 	

-1 
(f , F -1 ),  where f s the inverse n C of f, and F the inverse in 

C of F. Thus (f, F) is an isomorphism in NC if and only if f and F 

are isomorphisms in C, and (f,F 1 ) is a morphism in NC. 

Thus a morphism (f, F) in NSet is an isomorphism if and only if f 

and F are isomorphisms in Set and the triangle in the diagram 

,iJ 	

-' Ia', 

	

Y> 	SxB 	.SxB 
_] idxF' 

Hi x id 

'S'xB' 
a 

commutes. 
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Since isomorphisms in Set are preserved under pullback, recalling Re-

mark 4.4.5 we have 

X'=X and Y'= Y. 

Since (f, F) is a morphism in NSet, the diagram 

X I'  

'ExB' 	ExL3 
_J 	 idxF 

fxid 

..E'xB' 
a' 

commutes in Set, and so we have 

X" = X and Y" = Y. 

Ic is auniqne map from X' to Y', and Ic' is a unique map from X" to 

Y". Since X' = X" and Y = , we have X" = 

Now 

= {(e, b') F(b') a e} and Y" = {(e, b') jb' a' fe}. 

I 	
i Since X = Y I, 	

i , F(b) € pre(e) f and only f bI 
 € preI  (fe) and similarly 

for the post—condition relations, that is, 

F(pre(fe)) = pre(e) and F(post(fe) = posi(e). 

4.4.1 Some Examples of Refinement Maps 

We now give some examples of nets N and N' with refinement maps (f, F) from 

N to N'. 
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Example 4.4.14 

a 	 b 
N = 

2; 	 z 
N'= 

Y 

Put 1(e) = e', F(x) = F(y) = a and F(z) = b. 

Observe that the conditions (4.1) are satisfied, since 

F 1 (pre(e)) = F 1 ({a}) = {x,y} = pre(fc) and 

F 1 (post(e)) = F'({b}) = {z} = post(fe). 

Thus (f, F) is a refinement map from N to N'. 

Example 4.4.15 

a 	 b 
N = 

N' = 

Put 1(e) = e', F(x) = F(y) = b and F(w) = a. 

Observe that the conditions (4.1) are satisfied, since 

-1 	 -1 F (pre(e)) = F ({a}) = {w} cm 2w = pre(fe) and 

F'(post(e)) = F 1 ({b}) = {x,y} = post(fe). 

Hence (f, F) is a refinement map from N to N'. 
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Notice that we can refine an elementary net into a net which is not elementary. 

To illustrate this notion of refinement further, we now give an example of two 

nets between which there cannot exist a refinement in the sense of Definition 4.4.8. 

Example 4.4.16 
a 	 b 

N=Q—--C 

N'= 

We now consider possible functions f: {e} -* {e',e"} and F: {w,x,y,z} -* {a, b}. 

We shall consider the case where f(e) = e', the argument being similar when 

f (e) = e". 

Suppose F is given by 

F(x) = F(y) = b and F(z) = F(w) = a. 

Then we have 

-1 	 -1 F (pre(e)) = F ({a}) = {z,w} g. pre(fe). 

The problem is caused by the extraneous z. Our only alternative is to map z to b 

by F, putting 

F(x) F(y) = F(z) = b and F(w) = a. 

Then we have 

-1 	 -1 F (pre(e)) = F ({a}) = {w} cm pre(fe) = 2w. 

The condition on the post—condition relation is not satisfied, however as 

F'(post(e)) = F'({b}) = {x,y,z} m post(fe). 

Thus i' i> plain that we cannot have a refinement map from N to N', as there is 

no condition in N to which we can map z without violating the conditions (4.1). 
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This example illustrates a strength of our approach. The morphisms in NSet 

are contravariant in the second argument, and so any refinement map from net N 

to N' must map every condition in N' to some condition in N. While a refinement 

map allows the image net to contain a greater number of conditions than the net 

N being refined, the additional conditions must be intimately connected with their 

images in N. In Example 4.4.16, it is exactly because z is the post-condition of 

an event not in the image of f that there is no refinement map from N to N'. This 

conforms to the slogan of algebraic specification, "no junk!" [B081]. 

It is not the case, however, that every event in the refinement N' must corre-

spond to an event in N. We illustrate this point by the example below. 

Example 4.4.17 

a 	 b 
N=Q—.LJ--Q 

N'= 

Put f(e) = e', F(x) = F(y) = F(z) and F(w) = a. 

Observe that the conditions (4.1) are satisfied, since 

r1 (pre(e)) = F 1 ({a}) = {w} cm 2w = pre(fe) and 

F'(post(e)) = F 1 (1b)) = {x,y,z} = post(fe). 

Thus there is a refinement map from N to N', even though f is not surjective. 

Thus our definition allows the refinement of a net N to have more events than N 

itself. This is also true of the maps in Winskel's category Net, since the maps on 

events need not be surjective functions. Consider a morphism (77, )3):N -* N' in 

Net. Since the map 3 on conditions is an arbitrary multirelation, there may be 

conditions in N' which have no relationship to any condition in N. By contrast, in 

the case of a morphism (f, F): N -* N' in NSet, the map on conditions requires 
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every condition in N' to relate to at least one in N: pre— and post—conditions of 

any events not in the image of f are heavily restricted in that they must be part 

of the refinement relative to F of at least one event of the original net. 



Chapter 5 

Structure in Met 

In this chapter we give an elegant characterisation of NC as a limit in Cat, where 

Cat is the category whose objects are small categories and whose morphisnis are 

functors. This allows us to prove that all the relevant structure of GC lifts to NC, 

proving it to be a sound model of linear logic. We then interpret the connectives of 

linear logic as constructions on Petri nets. The expressiveness of linear logic stems 

from the variety of its connectives: we exploit that expressiveness to compose nets 

in various ways. We now describe the interpretation as net constructors of the 

product, coproduct, tensor product, internal horn and negation of linear logic. We 

also show how restriction is expressed in the category NC. This, combined with 

the constructions of product and tensor on nets, allows us to construct in NC 

the net corresponding to the parallel composition of two nets with respect to any 

chosen synchronisaton algebra. We also discuss the interpretation of the constants 

I, T, 0 and 1 as nets. Essentially, we interpret product and tensor product as 

parallel composition of nets, coproduct as a choice between nets, and internal hom 

as refinement. 

We can also interpret , the comonad ! and the monad 1 as net constructors 

These connectives are not discussed here. 

Throughout this chapter we shall assume that C has sufficient structure for 

GC to be a sound model of linear logic. Further, we shall assume that all relevant 

1.1 
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structure of C is assigned. This ensures that the relevant structure of GC and 

of NC is also assigned. 

5.1 Characterising NC as a limit in Cat 

We now show that whenever C is a locally cartesian closed category with disjoint, 

stable, finite coproducts, NC inherits from GC sufficient structure to be itself a 

model of linear logic. To do this we appeal to the following theorem: 

Theorem 5.1.1 

NC is the pullback in Cat of the forgetful functor U: GC - C x C °" along itself. 

Proof: Let the following diagram: 

X 	-GC 
-J 

U 

GC 	•Cxcop  
U 

be a pullback in Cat. 

Then an object of X is a map from the terminal object 1 of Cat into 

X, equivalently, a pair of maps (A 0 , A 1 ) from 1 into GC such that 

UA 0  = UA 1 , equivalently a pair of objects (A 0 , A 1 ) of GC such that 

UA 0  = Uk. 

Similarly, an arrow in X from (A O , A 1 ) to (At, A'1 ) is a pair ((f, F), (g, C)) 

of arrows in GC with (f, F): A 0  -* A and (g, C): A 1  -* A'1  such that 

U(f,F) =U(g,G). 

Thus 	objects 	of 	X 	are 	pairs 	of 	the 	form 

((S0 	Be), (,61  i 1 	51)) such that 

	

00 	 01 

U(10 	I 	80)=U(E1 	I 
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that is, such that E = 9 1  and 8o = j• Thus an object of X is a 

4—tuple (E,5,a° ,a 1 ) in which C and Bare objects of C and a and a 1  

are subobjects of & x B. 

Similarly, morphisms in X are pairs ((f, F), (g, C)) of morphisms in 

GC for which for which f = g and F = C. 

Thus the object set of X is the set of pairs of subobjects (6 	5), 
a 	 a' 

and a morphism from (6 	5) to (C 	B') is a pair (f, F) of 

morphisms in C for which the following diagrams 

	

a 0 	 a 1 

J: 	and 
	fJ 	F 

	

(a) 
	

(a) 

commute. Thus X = NC. 	 EM 

Remark 5.1.2 NC is the kernel pair of U. 

Corollary 5.1.3 NC is a subcategory of GC x GC. 

Lemma 5.1.4 U strictly preserves the product and coproduct of GC. 

Proof: We suppose that C has assigned products, coproducts and 

internal horns. Then C x C °1' has assigned products defined by 

(&,5)<(C,B') = (Cx &',B+B') 

Now 

5)x(&' 1' B')) = U(E x C i
aA& 

	

I 	8+5') 

= (Cx C,s+s') 
= (9', L3') 

= (U(& ?_ 5))(U(C 	9)). 
The empty case is trivial. 

Thus U strictly preserves the product of GC. 

The proof that U strictly preserves the coproduct is similar. 	0 
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Lemma 5.1.5 U strictly preserves the monoidal structures and 0 of GC, and 

the closed structure [-, -] corresponding to 0. 

Proof: 

Consider the binary operation o on C x C °  defined by 

(6,5)0(6 ' ,!?' ) = (6 x C',?' x 

It is readily seen that o induces a symmetric monoidal structure on 

C x C° . Then for objects A and A' of GC, 

U(A) 0 U(A') = U(A 0 A'). 

Further, if a, \ and a are the natural isomorphisms expressing re-

spectively the associativity, left identity and symmetry of 0,  then Ua, 

U.\ and Uc are natural isomorphisms expressing the associativity, left 

identity and symmetry of o, and satisfy the appropriate coherence con-

ditions. Thus U strictly preserves the symmetric monoidal structure 

0. 

A similar argument shows that the binary operation b on C >< C °" 

defined by 

(6,5) b (6',!?') = (
gC x 	x B') 

gives C x C ° ' a symmetric monoidal structure. For objects A and A' 

of GC, 

U(A) b U(A') = U(AIjA'). 

Again, it is evident that U strictly preserves the symmetric monoidal 

structure . Finally, o is a symmetric monoidal closed structure on 

C x C° , with internal hom given by 

[(6,5),(6',S')] = (6's X 
53), 
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as shown by the following sequence of natural isomorphisms: 

C x C ° ((E, 5) o (C, 5'), (8", 5")) 

= C x C° ((E x 9 ', B c'  x 

C(E,E"t ) x C(S',5) x C(5",B' t ) 

C(e,C'' x S"") >< C(E' >< 5",B) 

C >< cop ((9, 5), (e8' x B'", 6' x 5")). 

Thus U strictly preserves the closed structure of GC as given in Lemma 4.3.12. 

ii 

Theorem 5.1.1 and Lemmata 5.1.4 and 5.1.5 suffice to prove that the product, 

coproduct, symmetric monoidal structures and internal horn of GC lift to NC, as 

we now show. 

Consider the following categories of (small) categories with structure: 

• (symmetric) monoidal categories and strict (symmetric) monoidal functors, 

• closed categories and functors strictly preserving the closed structure, 

• categories with assigned finite products, and functors strictly preserving 

these, 

• categories with assigned finite coproducts, and functors strictly preserving 

these. 

These are all monadic over Cat. The evident forgetful functor from any of them 

into Cat creates all limits (see [ML71]). Since the product (x), coproduct (+), 

symmetric monoidal structures (0 and ji) and internal hom of GC are strictly 

preserved by U, and since NC is the kernel pair of U, NC has the products, 

coproduct, symmetric monoidal structures and internal horn induced by those in 

GC. 

Corollary 5.1.6 NC is a sound model of linear logic, that is, whenever there 

is an entailment F F- A in LL, there exists a morphism (f, F) in NC from the 

interpretation of F as a net to the interpretation of A as a net. 
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Proof: Follows from Theorem 5.1.1 and Lemmata 5.1.5 and 5.1.4. 

0 

Thus we can interpret all the connectives of linear logic as constructors on Petri 

nets. For example, we can give a meaning as a net to "N 0  0 N1 " or "N0  A N 1 " or 

"N0  —o N 1 " for arbitrary nets N o  and N1 . Applying these constructors to Petri 

nets allows us to build up composite nets whose behaviour can be expressed in 

terms of the behaviour of their components. 

We now examine in detail the structure of NSet, the category of elementary 

Petri nets. 

5.2 Restriction 

We now illustrate the application of the category NSet to obtain the restriction 

of a net elegantly, something which is not always possible in an algebraic model. 

Let N = (S ir B) be a Petri net and let 8' ç E. Then N[S', the restriction of 

N to the event set 6' is readily constructed in NSet. We take pullbacks in Set as 

follows 

vrc"[ 

	1p

re 

S'xB>— •SxB 

1"> 
-J 

post 

Y 	
post 

S'xB> .SxB. 

Now X' = {(e,b) €6' X8 Ie€ S',e pre b} and 

Y'={(e,b)eS'xl3Ie€S',e post b}. 

Thus the relations pre' and post' are such that for each e E 6', 

pre'(e) = {b I e pre b} and post'(e) = fb I e post b}. 

Thus N' = (6', B, pre', post') is precisely N {S', the restriction of N to event set 5'. 
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Notation 5.2.1 We shall write 

a 
Cl 	I 	B 

L 

a 
I 	B 

to stand for the pair of diagrams 

A' 	<A' 

Y 
I 

	

a 	 aIi 
 

ExB- <&'xB 

This simple construction is available precisely because we can work at two levels 

(that of C and that of CC), and the relations pre and post of a Petri net are 

morphisms in our base category C, but are composed by morphisms in our higher 

level category CC. By contrast, the pre and post condition relations in Winskel's 

category Net appear only as structure on the objects of the category, and so 

cannot be manipulated directly. 

We shall give examples and applications of restriction in the category NSet in 

Sections 5.3.1 and 5.6.2. 

5.3 The Product of Two Nets 

a0 

By Theorem 5.1.1, the product in NSet of nets N o  = (So 	8) and 

N1 = 
(S 	(I B) is that induced by the product in GSet. We shall now de- 

scribe the product in NSet explicitly. 

	

The product of two objects (S 	
ar 	B) and (EI 

	
B) in GSet is 

a0 A a1 

X S 	I 	B + Br ), where the relation a0  A a is given by 

(b0 , O) if e0  a0  bo  
(60, el) 0o A a1  

(b 1 ,1) if e 1  a1  b1. 
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00 

	

al 

 
Hence the product in NSet of objects (S 0 	5) and (E 	B) is 

a0Aa1 
(50 xE1 	II 

where the two relations (a 0  A a 1 )°  and (a0  A a1 )' are given by 

1 (b0 ,0) ife 0 ab0  

e,) (a0  A a,)
0 

1 (1,, 1) ifeja?bi 	and 

1 (b0 ,0) ife0 ab0  
(e0,e1)(a0Aa1)

1 

1 (b,,1) if e l  a b1 . 

For k = 0,1 let Irk be the projection from EO  x 5, to 5k'  and let in k  be the 

injection of '3k  into 50  + B 1 . Then the projection in NSet from N = N o  x N 1  to 

Nk is the map (lrk,ink). 

The pre— and post—condition relations in the product net N o  x N1  are given as 

follows: 

pre((e0 ,e1 )) = {( b0 ,0) 1 eo  pre0  b0 } U {(b1 ,1) I e 1pre1 b1 }, and 

post((e01 e1 )) = {( b0 ,0) 1 eo  post0  b0 } U {(b,, l) I e1post1b,}. 

An event in the product net is the synchronisation of two events, one in each of 

the component nets: that is, a firing in the product net is the concurrent firing of 

an event in the first component and an event in the second. 

Evidently the product in NSet is closely related to the product of two nets 

N o  and N, in Winskel's category Net, as described in Section 5.3. The event set 

of Winskel's product net N = N o  x N, is the set ((So).. >< (E)) \ (*, *), formed 

by lifting the two event sets, taking their cartesian product and removing the pair 

(*, Ic). The set of conditions is B  W 5, with the evident relations. In the product 

net N, events are either of the form (€0, *) or (*, e l ), in which case they correspond 

to a single event in the appropriate component net, or of the form (c o , e l ), in which 

case they correspond to a synchronisation of two events, one in each component 
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net. In Section 5.6, we show that the net (N 0  + I) x (Ni  + I) has events which 

correspond exactly to the events of Winskel's product net N o  x N1 , together with 

the additional isolated event I. 

We relate the behaviour of the net N o  x N 1  to that of its component nets as follows: 

Proposition 5.3.1 Let N o  = (80 ,80,pre0 ,po.st0 ) and N 1  = ( E1 ,81 ,pre1 ,posi1 ) be 

Petri nets, and let N = (S,B, pre, post) be the product net N o  x N1 . 
For k = 0, 1 let Irk be the projection from Eo x 91  to Ek, and let in k  be the injection 

from 13k  to 50  + B1 . 

A multiset M is a marking of N if and only if in°il'(M)  is a marking of Nk for each 

/c, and 

the marking M of No  x N 1  can evolve by a multiset of events A over S to a marking 

M' if and only if for It = 0 and It = 1, the marking in7M can evolve in Nk by the 

multiset of events lrkA to the marking inrM'. 

The proof is straightforward. The above proposition is the analogue for Met of 

Winskel's Theorem 4.2.4. 

The construction of a product is essential for modelling parallel compositions, 

since we can use a synchronisation algebra to determine exactly which synchroni-

sations may occur. 

Example 5.3.2 Consider the two nets N o  and N 1  given below: 

	

a 	 b 
No  = 

N 1 = 

The product net N o  x N1  has event set 

9 = {( e,e5,(e,e")} 
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and condition set 

B = {(a, 0), (b, 0), (w, 1), (x, 1), (y, 1), (z, 1)}. 

The pre— and post—conditions of N o  x N1  are given by: 

pre ((e, e')) = {(a, 0), (w, 1)}, 

' ' pre(je,eI, )) 
= {(a,0),(w,1)} 	and 

post((e, e')) = {(b, 0), (x, 1), (y, 1)}, 

' ' post(je,e if 

)) = {(b,0),(z,1)}. 

Thus the product net No  x N1  is given by: 

No  x N 1  = 

(x,i) 

(y, 1 ) 

(b,0) 

(z,1) 

In 	[Win84a], Winskel defines the synchronous product of nets 

N o  = (80 ,80 ,preo ,post 0 ) and N 1  = (81 ,131 ,prc1 ,post j ) to be (No  XNet N I )[(EO X&l ), 

the restriction of their product in Net to the event set S o  x 81.  He states that the 

synchronous product of two nets is their product in the category Net 3 , of Petri 

nets and synchronous morphisms (see Section 4.2.1). 

Remark 5.3.3 

The product of two nets in NSet is precisely their synchronous product. 

5.3.1 Restriction of the Product Net 

The restriction of the net N o  x N1  of Example 5.3.2 to the singleton event set 

{(e, e')} is the net 
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(a, 0) 

N0  x N1  1{(e, e')} = (w, 1) 

(x,1) 

(Y' 1 1 
(b, 0) 

The synchronisation algebra for the restriction given above is (L, .,X, 0) where 

L = {A01 -\11 A 21 X,01 and the operation • is given as follows: 

A.0=0 fori=0,1,2, 

A.X=O fori=0,1,2, 

A 0 .A1 =A3 , A 1 .A2 =0 and A 2 •A3 _0. 

The labelling function of the net N o  is given by 10(e) = o. 

The labelling function of the net N 1  is given by 4(e') = A 1  and 11(e") = A2. 

The synchronisation algebra indicates that in the parallel composition of N o  

and N 1  with respect to £, none of the events e, e' and e" can occur asynchronously, 

e can synchronise with e' but not with e", and e' cannot synchronise with e". Thus 

the only event of the parallel composition of N o  and N 1  with respect to £ is the 

synchronisation of e and e', that is, the event (e, e'). 

Remark 5.3.4 Given nets No  and N 1  together with a synchronisation algebra L 

for them, we can construct a subset 6 of 6 0 x El  such that the net (N0  x N1 ) [E has 

precisely the synchronisations specified by the algebra L. 

5.3.2 The Terminal Object in NC 

0 
The terminal object in NC is 1 = (1 	II 	0), the unit of product. In Set, 

the initial object 0 is the empty set 0, and the terminal object is the singleton 

set {*}. Hence the constant 1 in NSet is the net consisting of a single event, no 

conditions and empty pre— and post—condition relations. By contrast, the terminal 
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object 1Net  in Winskel's category Net [Win88] is the null net, with no events or 

conditions and empty initial marking. 1 is also the terminal object of Winskel's 

category Net, 

Thus we have 

'NSet = 'Net,,, =LJ 	and 'Net = 	{ } 

Example 5.3.5 We illustrate the action of x on nets by proving that 1 is the 

unit of product in NSet. 

Let N = (E,B, pre, post) be a net. 

We shall show that N x 1 is isomorphic in NSet to N. 

The event set of the net N x 1 is S x 1 S. 

The condition set of the net N x 1 is B W 	B. 

For each e € 5, 

prc((e,*)) = pre(e) t±J 0 = pre(e), 

and similarly post ((e,*)) = post(e). 

Applying Lemma 4.4.13, we see that N x 1 is isomorphic to N in NSet. 

Similarly, 1 x N is isomorphic to N in NSet. 

5.3.3 Sequentialising the Behaviour of a Net using Products 

We illustrate an application of the product in NSet with an example taken 

from [Win84a}. 

Example 5.3.6 We can represent a ticking clock by the net I, given by 

1= 

Remark 5.3.7 Notice that I is the unit of the tensor  in Met, see Section 5.5.2. 
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For any safe net N = (E,B, pre, post) , we can interleave the occurrences of events 

in N by synchronising the occurrence of each event with a tick of the clock. We 

do this by forming the product in NSet of N with I. 

Events in N x I are pairs (e, t), for e E 6. The condition set of N x I is the set 

B 11 {p}. We shall assume that p 0 8 and write b for (b, 0) and p for (p, 1). 

For each e E 6, 

pre((e,t)) =pre(e)+p and post((c,t)) =posi(e)+p. 

Proposition 5.3.8 

Let N have initial marking the set M. Let I have initial marking p. 

Al' is a reachable marking of N x I if and only if (M' - p) is a reachable marking 

of N. 

Moreover, the marking M can evolve in N x I under the multiset A of events to 

marking M' if and only if A = (c, t) for some e, and the marking (M - p) can 

evolve in N under the event e to the marking (M' -  p). 

Proof: Follows immediately from the definition of the product net. 

n 

5.4 The Coproduct of Two Nets 

The coproduct in GC is dual to the product, interpreting the linear logic connec- 

tive e. 	The coproduct of two nets No = ( SO 	 B) and 
a1 

N 1  = ( El 	5) is the net N = (E+6 	II 	B. x I3).  The pre— and 

post—condition relations in N are again determined by the behaviour of the co-

product in GSet, applying Theorem 5.1.1 and arguing as in Section 5.3. Thus we 

have: 

(eo ,0) pre0  EDpre1  (b0 , b 1 ) if e0  pre0  b0  and 

(e,1) pre0 pre1  (b0 , b 1 ) if e 1 prc1  b1, 
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and similarly for the post—conditions. 

Consider the event (e07  0) in N. We have 

pre(e0 ,0) = {(b0 ,b1 ) I b0  e pre0 (e),b j  e L3} and 

post(e0 ,0) = {(b0,b1 ) I bo  e posto (e),bi  e B, 1. 

We now give an example which illustrates the difficulties of expressing the 

behaviour of a coproduct net in terms of its components. 

Example 5.4.1 Consider the following two nets: 
a 	 I' 

No = 

N1 = 
X 	 y 

The coproduct net No  + N1  has event set {(c 0)  0), (e 1 , 1)}, -and condition set 

{(a, x), (a, y), (b, x), (b,y)}: The pre— and post—condition relations of N o  + N1  are 

given as follows: 

pre(e 0 ,0) = {(a,x)(a,y)}, 	post (eo ,O) = {(b,x)(b,y)} 

pre(e 1 ,1) = {(a,x)(b,x)} 	and post (e 1 ,1) = {(a,y)(b,y)}. 

In order to establish the behaviour of the coproduct net, we must express its 

markings in terms of those of its component nets. The best way of doing this is 

not immediately obvious, and different choices imply different interpretations of 

the coproduct. 

A natural choice is to define the pair (e 0 , c1 ) to be marked in N o  + N 1  if and 

only if c,3  is marked in No  and c1  is marked in N 1 . Thus the event (e0 , 0) can occur 

whenever a is marked in N o  and both x and  are marked in N 1 . A firing of (e 0 , O) 

marks b in No  and x and y in N 1 . This appears promising: an event derived from 

the first component has its usual properties in that component, and does not affect 

the marking of the second component. 
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The 	pre—conditions 	of 	the 	multiset of 	events 	(60)  0) + 	(e1 , 1) are 

(a,z)+(a,y)+(b,x)+(a,x), or 2 (a, x) + (a, y) + (b, x). It is not clear whether a is 

marked with multiplicity 1 or 2 in N 0 . This illustrates the fundamental difficulty 

in this choice of interpretation of a marking of the compound net. 

The behaviour of the coproduct net, while easy to state, is difficult to interpret. 

There is no tidy theorem such as Theorem 4.2.5 or Theorem 5.3.1. Further work 

will examine the behaviours of nets in addition to their structural properties, and 

we hope this will allow us to give a computationally useful interpretation to the 

coproduct of two nets. 

We now sketch a possible interpretation of the behaviour of the coproduct 

net. Our aim is to interpret the behaviour of the coproduct net in terms of 

its component nets by means of a function Behav from Mark(N o ) x Mark(N 1 ) 

to Mark(N 0  + N 1 ). It is routine to construct a category from the transition 

graph 7(N) of a net N: we shall denote this category by 7(N). We expect 

our function Behav on markings to extend to a functor from 7(N 0 ) x 7(N 1 ) to 

7(N0  + N1 ). We extend our notion of marking to include functions from the 

condition set into the ordinal w + 1. A possible choice for Behav is the function 

Behav0  which preserves the markings of N o  and marks every condition of N 1  in 

multiplicity w. This does give rise to a functor of transition graphs. Similarly, 

there is a function Behav1  which preserves the markings of N 1  and marks every 

condition of N o  in multiplicity w. If we consider our map on markings to be a 

non—deterministic choice between Behav0  and Bchav 1 , then the operator W  gives a 

non—deterministic choice between the two component nets (as does the coproduct 

in Meseguer and Montanan's category of marked Petri nets, MPetri). The net 

No  + N 1  behaves either as net N o  or as net N 1 , but we cannot determine externally 

which net's behaviour it will adopt. The choice is made at the level of the function 

on markings. 

This interpretation of the coproduct of two nets agrees with our intuition as to 

the meaning of linear logic . This interpretation appears to relate to Plotkin's 

powerdomain construction [P1o76]. 
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5.4.1 The Initial Object in NC 

4,  
The initial object in NC is 0 = (0 	1), the unit of the coproduct. Thus in 

NSet, 0 is the net with one condition and no events. It corresponds to Winskel's 

initial net nil which consists of one condition, marked in multiplicity one. 

Thus we have 

o=Q 	and °Net =  0 

Example 5.4.2 We illustrate the action of + on nets by proving that 0 is the 

unit of coproduct in NC. 

Let N = ( E,B, pre, post) be a net. 

We shall show that N + 0 is isomorphic in Met to N. 

The event set of the net N + 0 is C 	C. 

The condition set of the net N + 0 is S x 1 B. 

For each e E C, 

pree, 0)) = {(b, *) I e pre b} 	prc(c). 

and similarly post((e, 0)) post(e). 

Applying Lemma 4.4.13, we see that N + 0 is isomorphic to N in Met. 

Similarly, 0 + N is isomorphic to N in Met. 

5.5 Tensor Product as Concurrent Composition 

The tensor of a pair of objects (C0 	I 
a0 	

and (C1 	
aj

B) in GC is 
aoøa, 	 e 

(C0  x C 	I 	x °)• It is formed by pulling back a 0  to a0  along the map 

id >< ir; cv (where ir is projection from 91  x 13' x BfO  to C x 13 and cv is evaluation 

cv: 91  x B -* B ), pulling back a1  to a along the map id x cv'; ir' (where ir' is 

projection from Eo  x Bf° x B to E0  x 	and ev' is evaluation cv' : C x 	-* 

and then pulling back a' along aç. Thus (suppressing the structural isomorphisms) 

we have: 
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X®Y> 	 x' 	 -x 
VJ 	 V 

I l 	 I 
ao  1a0  

60 xE1 x13' xs? 	- E0 x80  
-I a id 

d x iii ; ev' 

13k , 

a1  

and a0 ® a, is the inclusion of X ® Yin E x5 1  x 	x 

When 60,61,50  and 81  are sets, we have 

(es , e) (a® fi) (f, g) if and only if 6o  a0  f(e 1 ) and e l  a1  9(60). 

Applying Theorem 5.1.1, this symmetric monoidal structure lifts to a symmet-

ric monoidal structure on NC, which we shall also write as 0. For e o  E Co , and 

e l  E 61, the pre— and post—condition relations of N 0 ® N 1  in Met is: 

prc((eo , 61)) = {(f,g) E B' x sf° I f(e 1 ) € pre0 (e0), 9(60) E pre1 (e 1 )} 

and 

post((e0 ,ej )) = {(f,g) € 	x 13f°  f(e i ) Eposto (eo ), g(eo ) Eposi 1 (e 1 )}. 

We now consider a simple example of a tensor product in Met. 

Example 5.5.1 Consider the nets N o  and N1  given below. 

No 

= CIZ: C  
N 1  = 

X 	 y 

We put No  = (60 , Bo , pre0 ,post0 ) and N 1  = (91 ,131 ,pre1 ,post1 ). 

Thus EO = {el, 62} and 91  = { e'}, and Bo  {a,b,c} and 5 = {x, y}. 
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In our example, the possible functions f: 6, -* B 0  and g: 6 -* 	are given as 

follows: 

Me') = a 	g(e1) = x 	 = ii 

Me') = b 	g(e1) = y 	g(e2) = y 

Me ) = 	 = x 	g(e2 ) = 

g(e1) = y - 	g(c2) = x. 

The event set of the tensor net N 0 ® N1  is go  x 61. 

The condition set of the tensor net N o  ® N is 

{f,g)f:E i  —+L?0  and g:60 —*5 1 }. 

The pre— and post—relations are as follows: 

pre((e1,e')) = {( fa , gxx) , ( fa , gxy)} ,  

pos4(e1,e')) = 

pre((e2,e')) = {Ua,flxx),(fa,Yyx)} 

and post((e2,e')) = 

The tensor net N o  ® N1  is given by: 

(1, 	(\ 	 ("s (Jo, gyy) 

(h. gxx) 

(I., gpr) 

(Jo, ,=) 

(fe, g,y) 

(J gyy 

together with the isolated conditions 

{(fa, g,), (.4, 	(f6, 	 (f g$} 

none of which is connected to any part of the net N 0 ® N 1 . Notice that the conflict 

in net No  is reflected by conflict in net N 0 ® N1. 
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We now relate the behaviour of the composite net N o 0  N 1  to synchronised be-

haviours of the component nets N o  and N1 . 

We interpret the tensor product of arbitrary nets N o  and N 1  as follows. Con-

sider one of the pre—conditions (f,g)  of an event (e0 , e 1 ) in N0 ®N 1 . We understand 

the function f as representing a channel of communication between event e, in No  

and pre1(e1) in N1 , and the function g as representing a channel of communication 

between el  in N1  and pre0(e0) in N0 . This is justified by the fact that (interpret-

ing 7r 1 ((f0 ,f1 )) as fi  for i = 0, 1), we have 7r0 ((f,g)) (ir o (eo ,ei )) E pre0(ea) and 

r1((f,g)) (7rj(e0,e1)) € pre, (el); 

We consider the channel f to be marked if a communication is possible along it, 

and that communication confirms that f(e) is marked. 

We consider the pair (f, g) to be marked exactly when the channels f and g are 

both marked. 

The marking of No  ® N1  at a certain moment then tells us which communications 

are possible and successful at that moment. Whenever the set 

{(f,g) I f: E -* 13, g: Co  - 13k , f(e 1 ) E pre0(eo), g(e0) E pre1(e1)} 

is marked in N O ON,, el can "check" via the {f} that all conditions in pre0(e0) are 

marked, and similarly eo checks via the {g} that pre1 (e 1 ) is marked. The event 

(e0 , el) can fire, with the effect of e0 and e 1  firing in synchronisation. After this 

firing, a new set of communications post((e0 , e l )) has become possible, indicating 

that post0 (e0 ) and post 1 (e j ) are marked in N o  and N 1  respectively. Evolution of 

the net N0 ® N 1  proceeds in this way. 

Remark 5.5.2 Returning to Example 5.5.1, the fact that the tensor net has a 

number of isolated conditions indicates that the communications channels which 

these conditions represent are not essential to any synchronisation of the two nets 

N and N'. This may prove to be an advantage of the tensor product over the carte-

sian product, (both in the category NSet and in Winskel's category Net) in that 

the construction of the tensor product makes explicit the necessary communica-

tions between the component nets, while the cartesian product leaves such issues 
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unresolved. Thus, forming the tensor product of two nets not only gives us infor-

mation about what synchronisations are possible, but also about what physical links 

are required between the nets to achieve those synchronisations. 

5.5.1 Other Tensor Products 

The symmetric monoidal structure 0 differs from the tensor in [MM88b]. It 

has a plausible computational interpretation. The tensor introduced by Brown 

in [Bro89b] (see Chapter 8.1), Section 9.3.1) which we shall here call 0',  is the 

second tensor product mentioned by de Paiva in [deP89a], and is not adjoint to 

00

0 ,01  'a 1 

the internal horn. It is the monic 	x E 	I 	!3o  x 13k)  given by 

(e01  e 1 ) (ao  0' a1 ) ( b0 , b1 ) if and only if e0  a0  b0  and e 1  a1  1,1 . 

Let No  and N 1  be safe nets. As before, we shall consider the place (b0 , b1 ) in the 

composite net be marked exactly when b0  is marked in No  and b1  is marked in 

N 1 . Then the net No  0' N1  has precisely the same behaviour as the product net 

No  x N 1 . 

5.5.2 The Unit of the Monoidal Structure 0 

id 
The unit of the tensor 0  in NC is I = 1 	1. Thus the constant I in NSet 

is the net consisting of one condition * and one event having pre—condition * and 

post—condition *. 

Thus we have 

Example 5.5.3 

To illustrate the action of 0  on nets, we prove I is the unit of 0 in NSet. 

Let N = (E,!3, pre, post). We shall show that the tensor product N 0  I is 

isomorphic in NSet to N. 
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The event set of N® I is the set S x 1 S. 

The condition set of N® I is the set 5' x l 	B 

For each e e S we have 

pre((e,*)) = {(f,) If: 1 -* B,g:E -* 1,f(*) E pre(e) and g(e) € 11. 

The only function 9:6 -* 1 is the constant map sending every element of S to *. 

Hence the condition on g  is always satisfied, and we have 

pre((e,*)) {f I f: 1 -* B and f(*) € pre(e)}. 

Now S is isomorphic to B 1 , via the map which sends b € S to the function f6 

which maps * to b (that is, the map A(ir,: 1 x S * B)). Hence 

pre((c,*)) 	{b I .4 € pre(e)} 	pre(e). 

Similarly, post((e,*)) 	post(e) for each e € S. 

Applying Lemma 4.4.13, we see that N® I is isomorphic in Met to N. 

A similar argument shows that I® N is isomorphic to N in Met. 

5.6 Expressing Synchrony and Asynchrony 

We have seen that an event (e0 , e 1 ) in the product net N o  x N 1  is enabled whenever 

the events e0  and e 1  in the component nets are both enabled at the same time. 

Thus events of the product net correspond to synchronisations of events in the 

component nets. We use a new example to demonstrate how events may occur 

asynchronously in a product net. 

Definition 5.6.1 

An event (e 0 , e,) of the product net No  x N 1  is asynchronous if either 

pre((e0 , e 1 )) = in0 (pre(e0)) and post((e0 , e 1 )) = in0 (post(e 0)), or 

pre((e0 ,e,)) = in,(pre(e1 )) and post((e0 ,e 1 )) = in1(post(e1)). 
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Thus an asynchronous event is an event of a product net whose firing concerns 

only one of the component nets of the product. 

Example 5.6.2 Let No  and N 1  be the nets: 

a 	 b 
No = 

N1 = 
X 	y 

We shall form the product of the two nets N o  + ± and N 1  + .1. where I is the 

unit of 0 , described in Section 5.8. The constant .L is the net consisting of one 

event and one condition, with empty pre— and post—condition relations. Thus 

We put E0 = { eo,*}, 1 = { e,*}, 13 0 = (a,*), (b,*)} and B,  

Then the product net N o  x N1  is given by: 

(a, 0) 

(X, 1) 

(b,O) 

(Y' 1 ) 

Since the event * has empty pre—condition, the synchronisation of any event e 

with * can occur whenever the pre—conditions of e are satisfied. Thus the event 

(60, *) can fire whenever 6o can fire in N 0 . Similarly, the event (*, 61) can fire 

whenever 6i can fire in N 1 . Thus the occurrence of an event synchronously with 

* depends only on the marking of one of the component nets of the product 

No  x N 1 , and alters the marking of that component alone. Thus (e o ,*) and (*, e) 

are asynchronous events in the product net N o  x N1 . 

Thus the event set of net (N 0  + I) x (N 1  + I) contains all possible synchronisa-

tions of events in N o  and N 1 , together with an asynchronous event corresponding 

to each event of either N o  or N 1 . These constitute the events of Winskel's product 

net [Win88]. In addition, the product net in NSet includes the isolated event 
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(*,*), which is precisely the event which Winskel must exclude in order that the 

universal property for the product is satisfied. 

5.6.1 Restrictions of the Product of two Nets 

Let N. = (S0 	fi , 13) and N 1  = (E ' 	, 8) be objects of Met. Restrictions 

of the product N o  x N 1  are given by a particular class of subobjects of the relation 

a A Oj. If we wish to restrict the product net to the subset of events x C 

EO  x S1, we simply use x 5 to construct a subobject S of A A B. The monic 

from S into (Eo  x E1 ) x (8 + 81) is the net (N 0 (9 N 1 ){(E x E), thus: 

ExE- 	 S 

1' 	
aoAajIg 

E0 x5 1 . 	80+81 . 

Oo A c 1  

In view of the following commuting diagrams (in which we write S to stand for 

the event set E x El'): 

\7r, 	

Cfi N 
13. + S 

I  
5,  

\7r. 

it is readily seen that 

S 

a0 Aa1  

I. 

II 

II 

anti  

iT 
a0  A aj [S 

1.1 
	 En 

(ao  A c11) Iqxe; 	A 01 5' I 
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5.6.2 Restrictions of the Tensor Product of two Nets 

Let No  = (E0 ir B) and N 1  = (E1 	V 5) be objects of NSet. Restrictions 

of the tensor product No  ® N 1  are given by a particular class of subobjects of 

the relation a0  ® a. If we wish to restrict the tensor net to the subset of events 

C CO  x E, we simply use E x 6 to construct a subobject S of A® B. The 

monic from S into E x E, x 3f° x Sf' is the net (N 0 ® N1)E  x 5). 

Let i. be the inclusion of E x 	in 0  x E. Then S is simply the pullback of 

o 0 a along t x id, thus: 

5> 
—j 

- 	 txzd 

.x®Y 

l

ao ® a1  

S x 1  x S x 50  

Then 

S = {(e 0 , e l , f,g) I (e0 , e 1 ) e (E x5) and e1  f(e 0 ) and e0  a g(e1 )}. 

By constructing subobjects in NSet of product or tensor nets, we can restrict 

these nets on arbitrary sets of events. In particular, by restricting a product net, 

we can specify events which may only occur in synchronisations (as is done by re-

striction in Milner's CCS [Mil89]), or events which can only occur asynchronously. 

Thus subobjects give a way of constructing in this framework most existing notions 

of parallel composition (compare [Win87]). We have a straightforward way of han-

dling restriction, which is often a difficulty in algebraic treatments of concurrency 

theory. 

Remark 5.6.3 The properties of pullbacks ensure that the two other candidates 

for the construction of the restriction (N0 ® N 1 ){(E x 5) yield the same net, 5, 

as we now show. 
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The first alternative is to take the tensor product of N 0  FC and N 1  [e as follows: 

	

X' ®Y' 	 -. 

	

j 	
0 	1 	

idxir;ev 

zdx7r F ;ev F  

a 
1 

sE1 x13 1  
a1  

-x 

I I V 	ao 

x 1% >-.- S0  x So 

It is evident that X' ® Y' = 8, with the same inclusion into x S x 	x 

The third possible approach is to pullback the relations a 0  and a1  along the 

composition of the inclusion t x id of x x x into o  x x x 131.  

with the maps into e0  x BO  and El  x B respectively, obtaining the objects x"  and 

Y" respectively. Thus, x"  is the pullback of a0  along (t x id); (id x ir; cv) and Y" 

is the pullback of a 1  along (i x id); (id x 1V; cv'). We then pullback again to 8, as 



S 

N 
x®Y 

if >__ 
I I 

 

.S x Bf 0 x 0 	j 	 jao  

-50 x80  

x l,  

TN X  

X 

x 
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shown below: 

I_i 	 I 	 idxr;ev 

[id x lr';ev' 

Y 	 -81 x13 1  
a1  

Again, it is readily seen that 

S = {(e0 , el,  f,g) I (e, e 1 ) e (S x6) and e1  a1  f(e 0 ) and eo  a0  g(e1 )J. 

5.7 The Exponential of Two Nets 

\\Te  define an internal horn on GC as follows. 

a0  
' al 'T 	So), (91 	 = (,01-00

a
I 	Lo x 8 ) 

Again, a° is constructed using successive pullbacks. 

The adjunction - 0 A H [A, -} gives GC a symmetric monoidal closed structure. 

Remark 5.7.1 In order to guarantee the existence of a greatest subobject of 

gfo x 5131  x S o  x 5,  de Paiva requires that the underlying category C be locally 

cartesian closed: in fact, it is sufficient to ensure that the subobjects of any object 
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of C form a complete Heyting algebra, and this condition is easier to prove in 

some cases than de Paiva's. 

When £0, 1, 0 and B  are sets, we have 

,-n 	ao (f, F) a (e0 , b 1 ) if and only if e0  a0  F(b1 ) = f(e) a 1  b1 . 

In Met, putting N = [N 0 , N1 ] we have 

(CO) b1 ) E pre((f,F)) if and only if F(b1 ) e pre0 (e0 ) = b 1  E prei (fe o ) 

and 

e0 , b 1 ) € postf, F)) if and only if F(b1 ) € post 0 (e0 ) 	b1  € post 1 (fe 0 ). 

If for all b 1  € 8 we have (c o , b 1 ) € pref, F)) then 

for all ti, F(b1 ) e pre0 (e0 ) 	b1  € prei (fe o ), 

and hence 

F 1 (pre0 (eo )) c pre1 (fe o ), 

and hence fe 0  refines e0  relative to F. 

Thus the pre—conditions of an event (f, F) in the exponential net [N 0 , N 1 ] 

indicate the extent to which N 1  is a refinement of N 0 . 

In particular, if go  x L?, ç pref, F)), then N 1  is a refinement of N o  and (f, F) is 

a refinement map from N o  to N 1 . 

Conversely, if there is no event (f, F) of the exponential net [N 0 , N 1 1 for which 

So  >< B, c pre((f, F)), then N1  is not a refinement of N0. 
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5.8 Negation in NSet 

We shall not be discussing the connective on Petri nets, although Theorem 5.1.1 

shows that it is possible to interpret the logical connective 0 as a constructor of 

nets. However, the unit .L of 0 is of interest to us in that it is used to define the 

linear negation of a net. 

0 

The unit of 0 in NC is I, given by .L = 1 	II 	1. Thus the constant net 

± in NSet is the net with one place and one event having empty pre- and post-

conditions: 

Recall that the linear negation A 1  of an object A of GC, is the object [A, I]. In 

Met, where relations are decidable, the negation of the object (S 	j 	B) is 

the object (B 	5), where the relation Ia  is given as follows, for i = 0,1: 

bla. e if and only if e 

Thus we have: 

	

pre(b)= {ee5 Ibpre(e)} 	and 

post(b) = {e E S I b post(e)}. 

Remark 5.8.1 Negating a net interchanges its condition and event sets. 

We now give some definitions from graph theory which characterise those nets 

whose negations are, in a precise way, simpler than the nets themselves. 

Definition 5.8.2 The order of a directed graph C = (1/, E, Source, Target) is 

Vi, the number of vertices of C. 

Definition 5.8.3 The size of a directed graph G = (V, E, Source, Target) is El, 

the number of edges of C. 
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Definition 5.8.4 Let G = (1', B, Source, Target) be a directed graph. A loop in 

C is an edge e € B such that Source(e) = Target(e). 

Definition 5.8.5 Let C be a directed graph of order n and size in with no loops. 

The density of C, written d(G), is n(n-1) 

Definition 5.8.6 Let C be a directed graph. 

If d(C)> then C is dense. 

If d(G) .c 1  then C is sparse. 

The density of a directed graph is a measure of the number of pairs of its vertices 

which are joined by an edge. The specific choice of 1  and 2  in the definitions of 

sparse and dense graphs is unimportant, but these figures suffice for our purposes. 

Definition 5.8.7 A directed graph C = (V, B, Source, Target) is a bipartite graph 

with vertex classes V 1  and V2  if V = V1  UI"2 , V1  flV = 0, and for each c € B, V1  

contains either Source(e) or Target(e), but not both. 

Remark 5.8.8 A directed bipartite graph has no loops. 

Remark 5.8.9 A Petri net can be regarded as a directed bipartite graph by putting 

171 =8,172 =8 and 

B = { ( VI ,v2) e V1  x 172) I v2 €pre(v1)} U {(v2,v1) € 112  x 111 I v2 € post(v1)}. 

The negation of a net N is of particular interest where N is dense when viewed as a 

directed bipartite graph. In this case we can establish properties N by considering 

properties of its negation, which is sparse. 

We now give some examples of nets and their negations. 
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Example 5.8.10 

Consider the net N given below: 

N = Y 

 

The net N' is given by: 

1 = 

Example 5.8.11 

Consider the net N given below: 

The net N' is given by: 

Example 5.8.12 The following net is a dense directed bipartite graph: 

N = 
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The negation of N is sparse: 

N1  = e 

ccc 
rn-C 

e l  

There are certain structural properties of a net which are easier to prove of a 

sparse net than of a dense net. Hence we can use negation to simplify the proof 

of certain properties of a dense graph. 

5.9 The Constants in NC 

NC has a distinct object interpreting each of the linear constants I, T, 0 and 1. 

L and T axe interpreted by the units of 0 and 0 respectively, while 0 and 1 are 

interpreted respectively by the initial and the terminal object. 

The constants in NSet are as follows: Li;:F 	
0 0 

o=Q i=j. 

The constants in Winskel's category Net (and also in SafeNet) are as follows: 

o=Q 	1={}. 

Each of the four constants has an important individual role. Although the constant 

nets 0 and I appear very similar, and one might argue that we cannot distinguish 

them by their behaviour, they have very different behaviour when placed in parallel 

with another net. 

Let N = (E,B, pre, post). The net N x 0 has event set S x 	and condition 

set 8 t±J 1 8. The pre- and post-condition relations of N x 0 are empty. 
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The net N x I has event set S x 1 5, and condition set 13W 1 B. The pre-

and post-condition relations are such that for each e E 1, 

pre((e,*)) 	pre(e) 	and post((c,*)) 	posl(e). 

Notice that N x I is not isomorphic to N, since there is no bijection between the 

condition sets of the two nets. 

Let M0  be an initial marking of 0 and of I. If M is reachable from M0  in 

either 0 or I then M = M0 . In this sense 0 and I have the same behaviour. 

We can associate with any Petri net a transition system by labelling vertices 

with markings and arrows with parallel and sequential compositions of events. 

Then the transition system associated with 0 has no arrows, whereas the tran-

sition system associated with I has an identity arrow at each vertex, and no other 

arrows. 

The transition systems of these two nets are neither bisirnilar nor observation-

ally equivalent, and so we should not be surprised by their different properties 

when placed in parallel with another net. 
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Exploiting the Generality of the Framework 

We can adapt the construction of NC in various ways, while retaining many of 

its properties. In this chapter we give several examples of modifications to the 

construction. Our aim is to define categories related to NC which are also sound 

models of linear logic. The generality of the framework given by the dialectica 

categories allows us to view as instances of the same fundamental construction a 

number of categories, some of which are new and some of which have been studied 

before. 

6.1 A Different Base Category C 

The construction of NC is parametric in C, and so different models arise when 

we consider a different base category C. 

For example, consider the category PSet, whose objects are pointed sets and 

whose morphisms are strict functions under functional composition, or the cat-

egory Re!, whose objects are sets and whose morphisms are relations on sets, 

composed in the usual way. Taking PSet or Rel as our base category C gives rise 

to morphisms in NC whose first components are respectively partial functions or 

relations. 

Recent work of Nielsen, Rozenberg and Thiagarajan [NRT90] uses a category 

of Petri nets in which morphisms from N to N' are pairs (q, 0) where 77 is a partial 

100 
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function from S to 8' and 0 is the inverse of a partial function from B to 13'. 

The objects of their category are elementary nets (which they call elementary net 

systems). It can readily be shown that this category is a subcategory of NPSet. 

In fact, their category is precisely the category NPSeC, which we shall define in 

Section 6.3. 

Unfortunately, neither PSet nor Rel is cartesian closed, and so NPSet and 

NRel do not have all the structure we desire. Some at least of the structure 

required to model linear logic is found in NPSet, and investigation of this will be 

an interesting area for future work. 

Another approach is to consider the category Shv(X) of sheaves on a topo-

logical space X [Joh77]. Since Shy is a topos, NShv is a sound model of linear 

logic. It is possible that using such a base category we could build a category with 

objects representing behaviours of Petri nets. 
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6.2 Modifying the Notion of Refinement 

We can define different categories with Petri nets as objects by modifying our 

definition of morphism. 

We now define a category GC" by analogy with GC: 

• objects of GC" are precisely the objects of GC, 

• a morphism in GC" from (S ? B) to (5' 1 	B') is a pair (f, F) of 

maps in C such that there exists a morphism It making the triangle in the 

diagram: 

.-SxB 
_J 	 idxF 

fxid 

.S'xB' 
a' 

commute, 

• and composition is componentwise. 

Notation 6.2.1 

We depict a morphism in GC" from (S E 	 B) to.(S' E 	 B') thus: 

5i 	I 	B 

fl 	t 

	

IF 
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Remark 6.2.2 A morphism in GC" only differs from a morphism in GC in the 

direction of the inclusion It, which is reflected in the use of fl as opposed to Jj. in 

the diagram of Notation 6.2.1. 

Proposition 6.2.3 GC "  is isomorphic to GC° 

Proof: Consider the assignment t given as follows: 

	

a 	 &op 

8) and 

t:(f,F) F—* (F,f). 

We shall show that t is an isomorphism of categories. 

Because we are introducing contravariance at two points, checking that 

i. is a functor is a little delicate. i. evidently maps identities to identities. 

To see that t respects composition, observe that the composition in 

GC" of the morphisms (f, F) from (S i B) to (C 1 B') 

and (g, G) from (8' i 1 	B') to (C' E 

a 	
B") is the morphism 

(gf,FG): (S i 7 	B) 	(C' a 	B"). Thus 

c (f, F) 
; 

t(g,G) = (F, f) ; (G, g) = (FG,gf) = t(gf,FG), 

and t is a functor. It is evidently bijective on objects, and we now 

show that it is bijective on morphisms. 

We shall :how 
 that (F, f) is a morphism in GC" from (C 1 8') 

to (8 i 	8) if and only if (f, F) is a morphism in GC from 

(B'' I 	C)to(B E a°I 	8). 

Let (f ,F)beamorphism in  GC' from (C ' 	B')to(E 	8). 

Then from the definition of a morphism in GC", there exists a It 
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making the triangle in the following diagram 

'SxB' 

	

J 	 idxF 

[fxid 

a' 

commute in C. Reflecting in a line in the page, perpendicular to Ic, we 

see that Ic makes the triangle in the following diagram: 

	

X l > 	-Ex13' 	-E'xl3' 

	

J 	 fxid 

idxF 

X> 
a 

commute in C. 

Let a: R '—* X x Y be a monic in C. Then there is a monic a°1': R° c. 

	

Y x X induced by a in the evident way, and R° 	R in C. Hence the 

map k°  corresponding to Ic in the diagram above makes the triangle 
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in the following diagram: 

y'°P 	 y°P 

XIOP 	

I 
'13'xE 

_] 	 idxf 

Fxid 

XOP 	 -BxE 
a op  

commute. 

The above diagram commutes in C if and only if there is a morphism 

(F, f) in GC" from (B' 	I 	C) to (B i 	E). 
(cx')OP 	 Op 

Thus (F, f) is a morphism in GC'* from (B' 	I 	C) to (B E I 	S) 

if and only if (f, F) is a morphism in CC°" from (8' 	B') to 

(E 	? 	B). 

Hence t is an isomorphism of categories. 

We now show that whenever CC is a sound model of classical linear logic, both 

GC' and GC" are sound models of classical linear logic. This requires a simple 

lemma: 

Lemma 6.2.4 Let CC be a sound model of classical linear logic. Let A and B 

be objects of CC. There is a morphism in CC from A'tIB' to (A® B)'. Further, 

there is a morphism in CC from (A® B) .1.  to A 1 
1W 

Further, there are morphisms in CC from A' 0 B' to (AB)' and from (AB)' 

nfl 

Proof: Since CC is a sound model of classical linear logic, it suffices 

to show that A'B' and (A®B)' are inter—derivable in classical linear 

logic, and secondly that A' ® B' and (AB)' are inter—derivable in 

classical linear logic. We here give only one of the derivations: the 

others are similar. 
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(Id) 	 Id)  ( 

' H B' A' H A' 	 BL 	
(L) 

	

A'IB' H A', B' 	
(varL) (negR) 	 (negR.) 

A",B",A'B' H AHA 11 	 BHB 1 ' 

(®R) 

A,B HA' 1  ®B" 
	

A" ®B",A'IB' F- 	
(Cut) 

A,B,A'B' H 	
(®L) 

(A(D B), A'B' H 
(varR) 

A'tB' H (A® B) 1  

01 

Proposition 6.2.5 If CC is a sound model of classical linear logic, then GC"  

is a sound model of classical linear logic. 

Proof: We have a sound interpretation of classical linear logic in CC 

given by the function I - I from formulae of linear logic to objects of 

CC. 

We now show that the function - from formulae of linear logic to 

objects of GC" given by 

IFII = IF' 

gives a sound interpretation of classical linear logic in GC". Thus we 

show that whenever the sequent I' H Ls is provable in classical linear 

logic, there is a morphism in GC" from 11111 to  hAIl. 

Suppose CO3 	, G, H 	, Dm  is a sequent of classical linear logic. 

Then there isamorphism in GC from IGO®" .®G Th I to 	Dm  1. 
Further, we can derive the sequent Dt,. . . , D H Ce', 	, C' in classi- 

cal linear logic by repeated application of the rules (varL) and (varR). 
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Since GO is a sound model of classical linear logic, there is a mor-

phism in GO from lDt ® 0 D to IGt $GI. Hence there is a 

morphism in GC' from IGt .$GI to ID 0 ... (2) D' I 

Lemma 6.2.4 suffices to show that there is a morphism in GO from 

• . 	to (Go  0 -0 G)1I, and also that there is a morphism 

in GO from I(D01j D.) 1  to IDt  0 .0 D1 1. 

Thus we have the following composite morphism in GC": 

1I — IG$" GI — ID -L O. ..0D11 — ( D0 •• •Dm) 1 1.(G0o 0G)  

Thus whenever the sequent G0 , . , G, H D0 , 	 , D,, is provable in 

classical linear logic, there is a morphism in GC" from G00. • 0 G, II 
to ID0 • . . IIDPJI. 

Hence GC' is a sound model of classical linear logic. 	 0 

Corollary 6.2.6 If GO is a sound model of classical linear logic, then GC" is a 

sound model of classical linear logic. 

Remark 6.2.7 The proof of Proposition 6.2.5 depends on the fact that since GO 

is a sound model of classical linear logic, GO is a *_autonomous  category with the 

functor * given by (-)£ [deP89a]. 

Remark 6.2.8 

GSet, GSet op  and GSet Co  are all sound models of classical linear logic. 

Proposition 6.2.9 GO x GOCO  is a sound model of linear logic. 

Proof: The category of small categories with assigned finite products 

and assigned finite coproducts, with two symmetric monoidal closed 

structures, one of which is closed, having as morphisms functors which 

preserve all this structure strictly, is monadic over Cat. Hence the 

product in Cat of any two small categories with such extra structure, 

coherently acquires that extra structure uniquely. 
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Let C be a locally cartesian closed category with disjoint stable co-

products. Let IAIGc  denote the interpretation of a linear logic formula 

A in the category CC, which is a sound model linear logic. 

We know that whenever F ILL.  A, there is a morphism (f, F) in CC 

from IFIGc  to  IAIGC,  and also a morphism (F, f) in GC" from FIGCC0 

to AGCCO. 

Since all the relevant structure of CC and CCt°  lifts to GC x 

we see that whenever F F— LL. A, there is a morphism ((f, F), (F, f)) in 

CC x GC" from IFIGc x ccco to IAIGC X GCCO. 	 0 

The category GC" was obtained by reversing the direction of the inclusion 

Ic in the definition of a morphism in GC. Recall that objects of NC are pairs of 

subobjects a0  and a 1  of objects S x B in C. 

If we reverse the inclusion Ic for the subobject a0  and leave it unchanged for 

the subobject a 1 , we obtain a category which we shall denote NC. The object 

	

i 	c 
set of NC C  5 is the same as the object set of NC. Morphisms n NC 5 are pairs of 

maps (1 F) in C such that 

	

0 	 1 

	

a 	 a 
5- 	I 	B 	 54 	I 	B 

fl 	ft 	IF 	and 	f.1). 

	

I 	B' 	 S' 	I 	B'. 
I 0 	 "1 

(a) 	 (a) 

a 	 a' 
C Thus a morphism in NC5 from (5 c 	B) to (S ' 	1 BI i ) s a pair (f, F) such 

	

- 	 a° 	 (a')° 
that (f,F) is both a morphism in GSet from (S 	B) to (C 	I 	B'), and 

a morphism in GSet" from (S c i 	B) to (5' 	B'). 

Composition is again componentwise. It is readily seen that NC is a category. 

We can also define a category by reversing the inclusion Ic for the subobject 

al and leaving it unchanged for the subobject a. We shall denote this category 
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NC. It has the same object set as NC, while its morphisms are pairs (f, F) of 

morphisms in C such that 

0 

fJ 	IF 
a 

and 

I 	13' 
10 (a)  

1 a 

f 	IF 

(a) 

The category obtained by reversing the inclusion on both the pre- and post- 

conditions we shall call NC". It has the same object set as NC, while its mor- 

p].iisms are pairs (f, F) of morphisms in C such that 

0 a 

and 

131 

(a)  

1 a 

_JF  
S. 

'1 (a) 

Proposition 6.2.10 Let C be a category with finite limits and disjoint, stable, 

finite coproducts. NC has finite products and coproducts given as in GC  GC " . 

Proof: We identify each object (S M 13) of NCc with the object 

((S 	B), (B t17 	of CC x GC". Then NCC is evidently 

a full subcategory of CC x GC". 

Inspection of the evident diagram shows that the product in NC C5 is 

the same as that in CC x CCCo 
 

The terminal object 1 = ((1 	0),(0 	1)) of CC x GC"  is 

an object of NC, and (since NC is a full subcategory 0fGCXGCCO) 

is the terminal object of NCg. 



Chapter 6. Exploiting the Generality of the Framework 	 110 

Thus the product in NC of the nets N o  = (E0 ,50 ,a0 ,ai ) and 

N 1  = (E1,81,$0,j31) is the net 

No  x N1  = 	x 81,  L30  + 131 , ceo A /3, (01 

We can show in a similar way that the coproduct in NC coincides 

with the coproduct in GC x GC", and so the coproduct of nets N o  

and N 1  in NC is 

No  + N1  = ( E + 81, 80 x B 1 , °o e flu, (a, A(31) ° '). 

Hence NC has finite products and coproducts, and they are given as 

in GC x GCCO . 	 0 

Remark 6.2.11 We expect that the symmetric monoidal closed structure of 

GC x GC' restricts to the subcategories NC 	and NC, in which case NC 

and'NC 2  would be sound models of linear logic. 

Remark 6.2.12 We do not as yet have any way of constructing either NCg or 

NC as a limit in Cat. This greatly increases the difficulty of studying their 

properties (as the above proposition and remark illustrate), and underlines the 

value of Theorem 5.1.1, which expresses NC as a kernel pair in Cat. 

Remark 6.2.13 The isomorphism t: GC —* GC` induces an isomorphism 1 from 

NC 9  to NC, given by 

(a1)° 	 (aO)OP 	 a1 

I 	5),(5 	I 	E)))=((5 	I 	9), (E i I 	B)) and 

1(f, F) = (F,f) 

Hence NC 2  also has finite products and coproducts whenever C satisfies the con-

ditions of Proposition 6.2.10, and they are given as in GC` x GC. 
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6.2.1 Interpreting the Morphisms in NSet, NSet and Met"  

As before, we identify a Petri net N = (E,5,pre,post) with the object 

((E 1 	B), (B 	E)) of NSetc by putting a 0  = pre and a 1  = post". 

Let (f,F) be a morphism in NSetc  from N = (E,B,pre,post) to 

N' = (&',13',pre',post'). Then for each rnultiset A over S we have 

F'(pre(A)) Cm  pre'(f A) and F(post(A)) 2m post' (f A). 

Again, it is reasonable to interpret the morphisms between nets in NSet as 

expressing refinement. 

To see why we might want to modify our notion of refinement map, consider 

the following two nets: 
a 

N' = 

A little consideration shows that there is no morphism from N = (E,B, pre, post) 

to N' = (C,B',pre',post') in NSet. 

If we consider the pair of functions f: S -* 5' and F: 5' -* S given by 

f(e) = e', F(x) = a and F(y) = F(z) = 

then we observe that 

1 	 -1 F- (pre(e)) = F ({a}) = {x} = pre(fe) and 

F'(post(e)) = F'({b}) = {y, z} 2  post(fe). 

Thus (f, F) is a morphism of nets in the category NSet. Notice that there is a 

morphism between N and N' in Winskel's category Net, given by 

1 if (c, c') = (a, x) 

= e' and 0(c, c') = J 1 if (c, c') = (b, y ) 

0 otherwise. 
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Also, there is a morphism from N to N' in each of the categories discussed by 

Meseguer and Montanari which has nets as objects. Most existing concepts of 

refinement or specification would give rise to a map either from N to N' or from 

N' to N. This suggests that the category NSet may prove more appropriate to 

the study of Petri nets than NSet. Here, however, we shall concentrate on the 

properties of NSet. 

Let (f, F) be a morphism in NSetg  from N = ( E, 13, pre, post) to 

N' = (E',B',pre',post'). The pre—conditions of an event fe in the image net 

N' must include the pre—conditions of e, relative to F, while the post—conditions 

of f  are contained in the post—conditions of e, relative to F. Hence we summarise 

morphisms in NSet as showing how "more gives less". In this sense the process 

of going from an event e in N to event f  in N' is analogous to weakening in Hoare 

logic [Apt8l]. 

We express the notion of refinement given in Definition 4.4.8 by the slogan 

"more gives more". This notion, and its converse, "less gives less" (which describes 

morphisms in NSet' o ) are found in the literature of algebraic specification, where 

the latter construction corresponds to a reduct, see [EKMP82] and [EhrSl]. 

For each of the categories NSet, NSet and NSetCO,  we have an analogue 

of Proposition 4.4.10. 

Proposition 6.2.14 Let N = ( E,B, pre, post) and N' = ( E', B', pre', post') be safe 

nets, and let f be function from S to 5' and F a function from B' to B. Whenever 

a marking M0  can evolve in N by a multiset of events A to a marking M1 , then 

there exist markings S  and S of N' such that So  can evolve by the multiset of 

events f(A) to S. Further, 

1. if (f, F) is a morphism in NSet, then F 1 (M0 ) ç 
 So  and S ç 

In particular, N' can evolve under the multiset of events fA from the marking 

F(M0 ) to a marking 82, where S2 c F(M1). 

2. If (f, F) is a morphism in NSet, then 80 ç F 1(M0 ) and F(M1 ) 9 S. 
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3. 11 (f, F) is a morphism in NSetCO ,  then S0  ç F'(M0 ) and S C F'(M1 ). 

In particular, N' can evolve under the multiset of events fA from the marking 

F(M0 ) t9 a marking S2, where S2 ç F'(M1 ). 

Proof: We define So  and S, as follows: 

So  = F(Mo)+pre(fA) - F'(pre(A)) and 

= F(M) +posi(jA) - F 1  (post (A)). 

The result then follows immediately from the definition of morphisms 

in each of the categories in question. 	 0 

Remark 6.2.15 As was mentioned after Proposition 4.4.10, it should be possible 

to extend the above proposition to the case where N and N' are any elementary 

nets. 

6.3 The Category NC =  

Each of the categories NC, NC, NC and NC" has a subcategory NC 

obtained by requiring that both inclusions k be identities. Observe that NC= has 

the same object set as any of NC, NC, NC and NC". A morphism in NC =  

from (S H B) to (5' 	B') is a pair of functions f: S 	5' and F: B' 	B 

such that for all e E 8, 

-1 0 	 I 0 
F (a ( e))=(a) (fe) and  

We have as yet no easy characterisation of NC =  as a limit in Cat, in the manner 

of Theorem 5.1.1, and so the proof that NC =  is a sound model of linear logic 

is extremely tedious. We are required to prove that, for a suitable choice of 

base category C, NC =  has finite products and coproducts, a symmetric monoidal 

closed structure ®, and a monoidal structure 0 . This we do by showing that all 

the relevant structure of NC restricts to NC. NC =  and NC have the same 
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terminal and initial objects. Since NC =  has the same object set as NC, we can 

again define the negation of an object A of NC to be the object [A, I]. We now 

prove an instructive lemma to which we shall appeal frequently. 

Lemma 6.3.1 Every isomorphism in NC is a morphism in NC 

Proof: In the proof of Proposition 4.4.13, we saw that whenever (f, F) 

is an isomorphism in NC, the inclusion k in the diagram 

10,  
.ExB' 	.Ex5 

J 	 idxF 

[Ixid 

•E'xB' 
a' 

is the identity morphism. 	 EM 

Remark 6.3.2 A map (f,F) is an isomorphism in NC if and only if it is an 

isomorphism in NC 

Proposition 6.3.3 The symmetric monoidal structures ® and $ of NC restrict 

to symmetric monoidal structures 0  and $ in NC =  

The units of 0 and $ are the same in the two categories. 

Proof- 

(NC, ®, I, a, A, a) is a symmetric monoidal category. NC has the 

same object set as NC, and so it is evident that 0 restricts to a functor 

NC x NC -* NC, and I is an object of NC = . By Lemma 6.3.1, 

the isomorphisms A and a in NC are isomorphisms in NC = . 

Thus the coherence conditions satisfied by 	A. and 	in NC are 

also satisfied in NC, and (NC, 0,1, a, A, a) is a symmetric monoidal 

category. 	 0 
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Proposition 6.3.4 

The symmetric monoidal closed structure of NC restricts to NC= 

Proof: A lengthy diagram chase exactly following de Paiva's proof 

that the internal horn in CC is adjoint to the rnonoidal structure, 0. 

Fol 

Proposition 6.3.5 1 is terminal in NC, and 0 initial. 

Proof: We write l g  for the unique map from S into 1, and O s  for the 

unique map from 0 into B. 

The unique map in NC from an object (S 	B) of NC=  into 1 is 

(1,O), and the following diagram commutes: 

Y1  —J 
OA ice 

0> 	.SxO 	•SX  I-J 	I 	idx0 5  

1 5 xid 

0> 	-  ixO. 

Thus (1 6 ,08 ) is a morphism in NC =  

A similar argument shows that the unique rnorphism (O s , 1 5 ) in NC 

from 0 to (S c fl B) is a morphism in NC. 	 LI 

We now prove three useful lemmata about the interaction between pullbacks and 

coproducts in a category C which has disjoint, stable, finite coproducts and finite 

limits. 

Lemma 6.3.6 Let C be a locally cartesian closed category with disjoint, stable, 

finite coproducts, and for i = 0, 1 let a i  be monornorphisms as in the diagram. 
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Then for i = 0, 1, the following diagram: 

"ti 
A i  > 

lao + a 1  

Si> 
Zn1 

is a pullback diagram in C. 

Proof: We pull back a 0  +a1  along the injections in0  and in1  to obtain 

Co  and C1  respectively. Since A0  makes square (1) commute, C 0  is a 

subobject of A0  + A 1 , being the pullback of a monomorphism, and it 

follows that square (2) is a pullback square thus: 

A 0 > 	'C 

 1 	(1) [m o  

A 0 	-A 0 +A1  

t in0  

 in 1  

0T 	-C1 

To see that square (3) is a pullback square, observe that the following 

diagram commutes: 

	

Ao a0 
	 in0

Bo 	B0  B1  

	

1-1 (4) 	I 	(5) 	f 

	

 .0 	'B1 . 

Since a0  is a monomorphism, square (4) is a pullback. The fact that 

square (5) pulls back to 0 follows from the definition of disjoint co-

products. It follows that square (3) is a pullback. 
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Applying a similar argument for A 1 , we obtain the diagrams: 

A0 	-A 0  

 

Co  

 

T 
0 	-A 1  

0 
i 	

-A0 
I— 

L 	(3) 

Cl 

H 
(2) 	

[ 
I  

A 0 	-A 1 . 

By stability of coproducts, for i = 0, 1 we have C1  (A 1  + 0) and hence 

C1—A1. 	 o 

Lemma 6.3.7 Let C be a category with stable, disjoint finite coproducts and 

finite limits. For i = 0,1 let the following two diagrams be pullbacks in C: 

A 'C1  

V 
A B1 . 

91 

Then the following is a pullback in C: 

A+Aç 

10+ 11 

•B+J3. 
90 + 91 

Proof: Let P be the pullback of 10 + f along  90 + flu, thus: 

P 	-00 +Ci  
-J 

10+ f1 

-B 0 +BI . 

90 +91 
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Then by stability of coproducts, P P0  + F1 , where the F are given 

by pullbacks as follows: 

P. 	- ci  
___ 

[m i  

P 	-00 +C1 . 

Thus we have the following two diagrams: 

P0  Cos. 

J
-I 

ino   Jino  

P C0 +C1  and 
-J 

 f0+f1 

A 0  +A1  
90+91 

A' 	 s.00  0 
-J 

 

A0  
—j 

in0  

A 0  +A 1 	-B 0 +BI . 

90+91 

Since (1), (2), (3) and (4) are all pullbacks (using Lemma 6.3.6 for 

(4)), both rectangles are pullbacks. 

Hence P0  A'0 , and since we can show similarly that P1  A, we have 

PA+A 
	

Iii 

Notation 6.3.8 In the following lemma and proposition we shall overload the no-

tation [-,-]. Thus if for i = 0, 1, g: A 1  -* B, then the morphism 

[g0 , g 1 ]: A 0  + A1  -* B is the universal arrow of the coproduct diagram for A 0  + A1 . 

This need not be confused with the notation for the internal hom, which is applied 

to objects as opposed to morphisms. 

Lemma 6.3.9 Let C be a category with stable, disjoint, finite coproducts and 

finite limits. Let the following two diagrams be pullbacks in C for i = 0, 1: 

A 

Y I g  
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Then the following is a pullback in C: 

A,+A 1 ' 	- C 
_J 

 I 
_______  

A 0 + A1 	-B. 
190 ,  911 

Proof: Let P be the pullback of [flo,gi] thus: 

	

P 	 -c 

If 
A 0 +A1 	-B. 

[go , gi J 

By stability of coproducts we have P P0  + F1 , where the F, are given 

by pullbacks as follows: 

 ~ p 

iJ  
A 	•A 0 +A1 . 

Thus we have the following two diagrams: 

P0 	•'P 	PC 

	

(1) 	(2) 	f 
240 .  -A 0 +A1 	-B 

	

Zn 0 	[go ,gi } 

and 

A' -c 

F: .I ' 
Since (1), (2) and (3) are each pullbacks, it follows that P0 	A'0 . 

Similarly, P1  A and we have F A'0  + Ac. 	 U 
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Notation 6.3.10 Throughout the proof of the next proposition we shall draw one 

diagram V in C and write cv, &o  and a1  as appropriate, to stand for the pair of 

diagrams (Do , Di ) in C where V 1  is the diagram V with a t , a and a substituted 

for a, a0  and a1  respectively. 

Proposition 6.3.11 NC=  has finite products given as in NC. 

Proof: Throughout this proof, we shall for convenience suppress the 

evident structural isomorphisms. 

By Proposition 6.3.5, NC =  has terminal object as in NC. Thus it suf-

fices to show that NC =  has binary products given as in NC. Specifi-

cally, we must show that for objects N o  and N1  of NC, the projection 

(7r1 , in 1 ): No  x N 1  -* Ni  is a morphism in NC. Moreover, we must show 

that given an object N = ( S fl B) of NC, whenever we have mor-

phisms (f1 ,F):N , Ni  in NC=  for i = 0, 1, then the universal arrow 

((J fl ), [F0 , F1 ]) from N to No  + N1  in NC is a morphism in NC. 

By Lemma 6.3.6, the following diagram 

A 0 x51  
in0  

	

yJ 	 I(% cx0 xid[ xid)+(idxai ) 

	

60 x80 x51 	 -(60 x80 x51 )+(50 x51 x81 ) 
in0  

is a pullback diagram in C. 

It is evident that the pullback of a0  along the projection 7ro , from 

So  x S o  x 5 to S x B O  is likewise a0  >< id. We regard the projection 

701  as the product 7r0  x id from E0  x El  x 130 , and thus have an identity 
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morphism making the triangle of the following diagram: 

	

A 0 x5 1 	- ( A 0 x51 )+(E0 xA 1 ) 
_J in0  

/ 
0x 

	

A 0  x8 1  >—& x B o  x 	• (Eo x 5 0 x &) + Vo x  El  x  81) 

J 	 idxin 0  

it0 >< id 

A 0 > 
a0  

commute. 

Thus the projection (it1j, in0 ) from No  x N 1  to No  is a morphism of 

NC. 

A similar argument shows that the projection (7r1 , in 1 ) from No  x N1  
to N 1  is a morphism of NC. 

The following proof that ((f, f1), [F3 , F1 ]) is the required universal 

arrow from N to N o  + N 1  is tedious and routine. 

Since 

((f0, f1,) x id);(ir 1  x id) = fi  and (id x in 1 ); (id >< [F0 , F1 ]) = 

and for i = 0, 1 (j,  F) is a morphism of NC, the identity morphism 
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on A i  makes the triangles in the following pair of diagrams in C: 

A. 
 

A> 	 •Ex(130 +81 ) 
idxin 1 	 idx[F0 ,F1 ] 

(f, f) x id 	Diagram 1 

1 7r i  x id 

A 1 > 	- E,x31 . 

UI 

commute. 

It follows immediately that the following pairs of diagrams: 

A'0> 	
0 

—J 

1(fo,f1) >< id 

A0x61> 	. .60 x80 xç 1  
&o x id 

and 

1 

J 
(f0, f) x id 

So x A 1 > 	- E0 x61 x5 1 . 
id x a 

I 
ExB 
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are pullbacks, and by Lemma 6.3.7, we have the following pullback in 

C: 

A+A ç > 
-J 

(A 0  x .f 1 ) + ( E0  x A 1 ) 

(2) 

(aO  x id) + (a1  x id) 

_.g x (B+B) 

(fe, f) x id 

(S0  x E) x ( 8  + )• 

Further, the square: 

y -J 

(3) 	a 

(5x130)+(SxL? 1 ) 	- ExB. 
id  [F0 , F1 ] 

is a pullback, by Diagram 1 and Lemma 6.3.9. 

Thus squares (2) and (3) both pull back to A'0  + A'1 , and hence the 

universal arrow ((f0, f l ) [FO , F1 ]) of the product in NC is a morphism 

of NC. 	 0 

Proposition 6.3.12 NC has coproducts given as in NC. 

Proof: The isomorphism t: GC" to GC' (see proof of Proposi-

tion 6.2.3) given by 

¶ 	13)i—*(13 	I 	8) and 

t: (1 F) i- (F, 1) 

restricts to an isomorphism, which we shall also call t, from (NC1 CO  

to (NC) ° . It is evident that (NC1 CO  NCt Thus, since NC =  

has all finite products, given as in CC x CC', it follows that 

(NC) °" has all finite coproducts, given as in CC x CC', and so 

(NC)co has all finite coproducts, given as in CC x GC', and so 

NC has all finite coproducts, given as in CC x GC", and so NC =  

has all finite coproducts, given as in NC. 	 0 
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Proposition 6.3.13 If we define negation in NC to be the functor 
(_)1 = 

[-, I]Nc=, then for any object A of NC there is a map from A to A 11 . 

Proof: There is a morphism in NC from A to A 11  given by the 

transpose across the adjunction NC(A ® A 1 , .L) NC(A, [A 1 , I]) of 

the evaluation from A 0 Al to I. 

The above propositions together prove the following: 

Theorem 6.3.14 NC =  is a sound model of linear logic. 

6.3.1 The Category NSet =  of Elementary Nets 

Objects of Met are precisely elementary Petri nets. A morphism in NSet 
a' 

from (S 	8) to (5' 	B') is a pair of functions f: S 	5' and F: B' -. 13 

such that for any multiset A over 5, 

F 1 (pre(A)) = pre'(f A) and F 1 (post(A)) = post'(f A). 

The category NSeC resembles Winskel's category SafeNet and the various 

categories of Meseguer and Montanari more closely than the categories Met, 

Met , NSet
D  E and NSetC  3 in that it has equality where morphisms in these 

other categories require only containments. It is precisely this, however, which 

makes it less flexible. Winskel's morphisms, as is shown in his Theorem 4.2.1, 

insist that the part of the refined net chosen to simulate a net N be intimately 

related to N. A precise comparison of Winskel's categories with ours is given in 

Section 6.5.1. 

Ultimately perhaps, the category NSeC will prove more useful in the study of 

Petri nets than the other categories disussed in this thesis. It remains interesting, 

however, that we can weaken the requirements on morphisms as in the categories 

Met, NSetCO,  NSet 2  and NSet, and retain considerable categorical structure. 

This is an advantage of our unifying aim to define categories of Petri nets which 

are sound models of linear logic. 
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6.4 The Kleisli Category NCT 

We next define a monad T on NC and consider the Kleisli category NC T. We 

can also consider T as a monad on NC= , NC C5, NC D 
 , NCcc  and form the Kleisli 

category for T on these categories. The monad T corresponds to lifting in the first 

component of a morphism or object in NC. Thus a morphism in NC T  from N to 

N' consists (up to isomorphism) of a partial function f from S to 5', and a function 

F from B' to B. This allows us to consider morphisms which are essentially the 

same as the morphisms of Winskel's category SafeNet, as we discuss in detail in 

Sections 6.5 and 6.5.1. 

6.4.1 Definitions 

Definition 6.4.1 A monad on a category C is a tuple (T, q, 1L) consisting of an 

cndofunctor T on C, a natural transformation vj from Idc  to T and a natural 

transformation p from T 2  to T such that the diagrams 

T3A 
TPA 

 

/LTA[ 	 I ILA 

T 2  A 	-TA 
PA 

and 

TA 
T77A T 2TA 

 TA 

\zd P /
A 

id 

TA 

commute. 

It is well known [ML71] that any adjunction F -1 C: V -* C with unit ij and 

counit c gives rise to a monad (CF, q, CeF) on C, and also that any monad arises 
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from an adjunction. This adjunction is not in general unique, and there are two 

standard constructions, the Eilenberg-Moore construction [ML71] and the Kleisli 

construction [ML71] which given any monad construct an adjunction defining that 

monad. In this section we are concerned with the Kleisli construction. 

Definition 6.4.2 Let C be a category and let (T, ??,,a) be a monad on C. 

The Kleisli category for T, which we denote CT, is given as follows: 

• objects of CT are objects of C, 

a morphism from A to B in CT is a morphism from A to TB in C, and 

• the composition of morphisms f: A -* B and g: B -p C in CT  is the morphism 

f(Tg)p in C. 

The primary result relating a category with a monad to its Kleisli category is: 

Proposition 6.4.3 Let C be a category and let (T,q,p) be a monad on C. 

There exists FT  -I  GT:CT - C such that the monad T arises from the adjunc-

tion FT  -I GT. 

6.4.2 A Kleisli Category on NC 

In this section we define on NC a monad T, which we shall call "lifting". We 

shall show that T is also a monad on NC, NC, NC and NC0 . We form 

the Kleisli categories for T on NC, NC, NC and NC, and consider the 

categories NSetT , (NSet) T , (NSet)T, (NSet)T and (NS etco) T , which have 

the set of elementary Petri nets as object set. Finally, we show that if (f, F) is 

a morphism from N to N' in (NSet) T , then (f, F) is a morphism in Winskel's 

category SafeNet from N with marking 0 to N' with marking 0, where 0 is the 

empty initial marking. 

The definition of the monad requires several routine lemmata, which we now 

prove. 



Chapter 6. Exploiting the Generality of the Framework 	 127 

Lemma 6.4.4 The assignment T(—) = — + I defines an endofunctor T on NC. 

Proof: Immediate. 	 Ii 

Notation 6.4.5 Let N be an object of NC, and let (1' F) be a morphism in NC. 

We shall write N1  for T(N) and (f, F) for T(f,F). 

We shall write C 1  fore + 1, and c3  for the canonical isomorphism in C from 13 x 1 

to B. 

Let N= (C,B,a 0  ,a1 ) be a net. 

	

N 1  is the net (S1 ,B x 1,(a ° ) 1 ,(a1 ) 1 ), where the subobjects (at) 	of 

(C1 ) x (13 x 1) are given for i = 0,1 by 

(e, 0) (a') (b,*) if and only if e a' b, 

and (*, 1) (a')1  (b,*) never. 

Let (f, F) be a map in NC from N to N'. Let f1 :51  —*E, and 

F1 : B x 1 —* B' x 1 be the morphisms in C given by 

f1 (e,O)=f(e) 	for all e€E, f1 (*,1)=* and 

= F(b') for all b' E B. 

Then (f,F) 1  = (fj ,Fjj. 

Corollary 6.4.6 Let fl/C be any of the categories NC, NC, NC or NC "  

The restriction of T to fl/C is an endofunctor of NC. 

Proof: It is readily verified that whenever (f,F) is a morphism in 

fl/C, so too is (f,F) 1 . The result follows. 	 C 

Notation 6.4.7 

We shall write T for the restriction of T to any of the categories NC. 
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Lemma 6.4.8 

Let N be an object of NC. Then the assignment N F-* 	N -* N1  where 

IN = (in 0 , Cs) defines a natural transformation from IdNc = to T. 

Proof: To see that 77N  is a morphism in NC observe that triangle in 

the following the diagram: 

A' 	 •A 

_ _p 
A'> 	.Sx(b'xl) 	. ExB 

idxc8  

t in0  x id 

A1 > 	- 61 x(Bxl) 
a1  x id 

commutes in C. 

Naturality of q is readily verified. 	 El 

Corollary 6.4.9 Let J'JC be any of the categories NC, NC or NC. Then lj  is 

a natural transformation from IdArc  to T. 

Proof: Immediate, since any of the categories I's/C has the same object 

set as NC = , and any morphism in NC=  is a morphism in each of the 

categories AIC. 	 0 

Definition 6.4.10 Let S be an object of C. We define a morphism f1 5  in C from 

to E_L  as follows: 

fl( (e, 0), 0 ) = (e,0), fl( (*, 1),0 ) = (*, 1) and fl( (*, 1)) = (*, 1). 

Lemma 6.4.11 

Let N be an object of NC. The assignment N F-* IAN: N11  —p N1  where 

12N = ( Re, c5 ), defines a natural transformation from IdNc = to T. 
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Proof: To see that AN  is a morphism in NC =  observe that the dia-

gram: 

A> 
J 

fle  >< id 

A 1 > 	.&1 x(Bxl) 
a1  

commutes in C. 

id x (c5  x 1)_1 

-A 11  

Jaii  

X (13 x 1 x 1) 

 

Naturality of i  is readily verified. 

  

0 

Corollary 6.4.12 Let NC be any of the categories NC, NCg, NC 2  or NC" 

Then p is a natural transformation from Id Vc  to T. 

Proposition 6.4.13 The tuple (T,q,It) is a monad on NC= 

Proof: We have shown that T is an endofunctor on NC=, that q is 

a natural transformation from IdNc = to T, and that ju is a natural 

transformation from IdNc = to T. It remains to check that the three 

diagrams of Definition 6.4.1 commute in NC. This is routine. 0 

Corollary 6.4.14 Let NC be any of the categories NC, NC, NC or NC" 

Then the tuple (T,q,it) is a monad on NC. 

6.4.3 Kleisli Categories with objects the Elementary Nets 

Let NSet be any of the categories NSet, NSeC, NSet, NSet or NSetCO.  The 

Kleisli category for T on 1%/Set is given as follows: 

• objects of ArSetT  are objects of NSet, that is, elementary Petri nets, 
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• a morphism from N to N' in J'iISetT is a morphism in AlSet from N to N, 

and 

• the composition of morphisms (f, F): N -* N' and (g, C): N' -+ N" in J\ISetT  

is given by the composition: 

(f,F)  
N 	- TN' 

T(g ,G) T
2 N" 	- TN" 

_____
. 

Thus, making the usual identification of a partial function from S to C with 

a total function from S to S, we can use the Kleisli categories A(Set T  to define 

morphisms between elementary Petri nets with the map on events a partial func-

tion. 

In particular, a morphism from N to N' in NSet is a pair (f, F) of maps in Set 

with f:1 - C and F: B' x 1 - 13 such that, where f  is defined, we have 

F'(pre(c)) = (pre'(fe)) and F 1 (post(e)) = post'(fe). 

Let M be an initial marking of the net N, and M' an initial marking of the net 

N'. Then if (f, F) in NSet satisfies the condition 

F 1 (M) = 

(f, F) is a morphism in SafeNet. In particular, the condition is satisfied when 

lvi = M'= 0, and so every morphism (f, F) from N to Win NSet is a morphism 

from (&,B, pre, post, 0) to (8', 13', pre', post', 0) in SafeNet. 

6.5 Comparison of the NC categories with SafeNet 

Suppose (71, ,6) is a morphism from N to N' in SafeNet. Winskel's condition on 

morphisms is strict in the sense that for any condition b of N, the multiset j3(b) 

must play exactly the same role in N' as b plays in N, apart from its use by events 

not in the image of q. 

Winskel obtains flexibility in his morphisms in three ways. The map q  on 

events is partial, leading to an interpretation of morphisms as indicating a partial 
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simulation of N by N'. Secondly, 77 need not be injective, so that one event in N' 

may be used to simulate two events in the N. Finally, q need not be surjective, and 

in fact N' may include events totally unrelated to any events or conditions in N. 

This last property is perhaps not essential to a concept of refinement. Morphisms 

in NSet have a similar property, but insist that no extraneous conditions be intro-

duced in the refined net. Morphisms in Met also have the second property listed 

above, and we saw in Section 6.4.3 how morphisms in NSetT  allow morphisms 

where the map on the event sets is a partial function. 

It is useful to have the option of additional flexibility available in NSet, where 

a net which refines a net N is not required to mirror the behaviour of N to the 

extent of equality. At present, however, it is difficult to see which of NSet, Met", 

NSet, NSet and NSet is the most useful category. I hope that further 

thought and more examples will lead to an understanding of the best occasions 

to use each category. Further, the category NPSet has been studied (under 

a different name) in [ER90], [Roz87] and [Thi87], where behavioural tools for 

studying the non—sequential behaviour of elementary net systems are set out. We 

may gain insight here from the structure of NPSet. Unfortunately, the work of 

Ehrenfeucht, Nielsen, Rozenberg and Thiagarajan has come to my attention only 

recently, and I cannot give herein a careful consideration of its relationship with 

the dialectica categories of nets. 

6.5.1 Comparing NSeC with SafeNet 

The most significant difference between Winskel's category SafeNet and Met is 

that the objects of SafeNet are marked safe nets, whereas objects of Met are 

elementary nets. The marking of a Petri net N can be regarded as an environment 

for N. In this part of this thesis we consider nets independent of their environments, 

and treat the behaviours of a net in a given environment as additional categorical 

structure. A first attempt at modelling behaviours in the dialectica categories 

of nets is given in [BC90]. At this point we merely observe that the objects of 

SafeNet may be regarded as objects of NSet if we forget their initial markings. 
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We do not have a forgetful functor from SafeNet to NSet, because SafeNet has 

morphisms which do not correspond to any morphisms of NSet. 

The morphisms of SafeNet differ from those of NSet in three ways. Let 

Nm = (E,13, pre, post, M) and N' = (9',8',pre',post',M') be safe nets which are 

marked elementary nets. Then N = (E,13,pre,post) and N' = (S',13',pre',post') 

are objects of NSet. Let (f, F) be a morphism from N to N' in NSet, and let 

(i,$) be a morphism from N. to N in SafeNet. From the definitions of the 

morphisms we have 

• q: S - C is a partial function while f:E -* C is a total function, 

• 3 is an arbitrary multirelation from B to 5', whereas F 1 , regarded as a 

multirelation from B to 5', arises as the inverse of a function, and 

• for every multiset A over 5, we have the conditions 

pre(qA) = ,13(pre(A)) 	while F''(pre(f A)) ç pre(A), and 

post (77A) = fi(posi(A)) while F 1 (po.st(f A)) c post(A). 

Let (77, ,3): N -* N be a morphism in SafeNet. If 0 is the inverse of a function, 

then (q, 0_1 ) is a morphism from N to N' -  in NSetT . If in addition 77 is total (so 

that(q, /9) is a morphism in SafeNet 3 ) then (77,0 -1 ) is a morphism in NSet =  

from N to N'. 

Conversely, if (1 F): N -+ N' is a morphism in NSet= and F-1  (M) = M', then 

(f,F) is a morphism from N m  to N in both SafeNet and SafeNet 3 . 

We expect that work now in progress on dialectica categories with object set 

Petri (see C ftdh.) will, show that Winskel's category Net relates to our 

categories of general nets in ways similar to those described above. 
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Introduction to Part III 

When Girard introduced linear logic [0ir86], he suggested that it may be a natural 

logic for reasoning about concurrent systems. Recent results of Asperti [Asp87], 

Brown [Bro89b] and Gunter and Gehlot [0089] have shown that evolution in Petri 

nets corresponds to linear proof, and in fact that the simple tensorial fragment 

of linear logic suffices to describe Petri nets. Attempts to understand the other 

connectives of linear logic in terms of nets have also been made, in particular 

in [Bro89b] [B090], [BC] and [M0M89]. 

In this Part, we construct a quantale from a Petri net, and prove it to be 

a sound model for linear logic. This allows us to give a meaning to all of the 

connectives of linear logic in terms of nets. From our interpretation of linear logic 

in this net-quantale, we develop a specification language for Petri nets which uses 

linear entailment to reason about the behaviour of nets. Thus we use linear logic 

to manipulate Petri nets, and Petri nets to model linear logic. 

Quantales were introduced by Mulvey [Mul86], and have been studied by 

Abramsky and Vickers [AV88], Niefield and Rosenthal [NR88] and Yetter [Yet], 

among others. Yetter [Yet] showed that quantales are models of linear logic. Fur-

ther work has been done by Engberg and Winskel [EW89]. They use a Petri net 

to construct a different quantale from ours. We show that their quantale can be 

more elegantly constructed by use of our more general approach. 
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Chapter 7 

Quantales of Behaviours of a Net 

7.1 Introduction 

Section 2 of this chapter gives a general construction of a quantale from a net, 

which can be used to construct the quantale of [EW89], as we show. Section 

3 uses the quantale to consider properties of nets with respect to a particular 

form of behaviour, which we shall call traps. Section 4 interprets linear logic in 

a net—quantale, and shows how to specify properties of a net using linear logic. 

Section 5 discusses the interpretation of linear negation, and uses it to specify 

safety properties of a net. Section 6 describes the equivalence on nets induced 

by their generating the same net—quantale. Section 7 constructs a finite quantale 

from a net. This quantale also gives a sound semantics for, linear logic. 

7.2 Constructing a Quantale from a Net 

It has been shown [AV88], [Yet] that quantales model linear intuitionistic logic 

just as complete Heyting algebras model intuitionistic logic. 

Definition 7.2.1 

A commutative quantale is a 4—tuple (Q,:5, 0,1) such that 

135 
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• (Q, <) is a complete semi—lattice, 

• (Q, ®,I) is a commutative monoid with unit I, and 

• for any indexing set J and any A,B 1  € Q, A® V B = V(A0B) 
j€J 	jEJ 

Remark 7.2.2 

Henceforth, we shall write 'quantale' to mean 'commutative quantale'. 

Warning: In some literature, there appear definitions of quantales which differ 

from ours in two respects: some authors do not require (Q, 0,1) to be commutative; 

others require (Q, 0,1) to be idempotent. In the latter respect, we follow Abramsky 

and Vickers [AV88], Niefield and Rosenthal [NR88] and Yetter [Yet]. 

Remark 7.2.3 

A quantale is a complete, co—complete symmetric monoidal closed category. 

Definition 7.2.4 A homomorphism between quantales Q and  Q' is a function 

f: Q -* Q' which preserves V, land 0. 

Remark 7.2.5 Quantales and quantale homomorphisms, together with the evi-

dent composition, define a category, which we shall call Quant. 

Definition 7.2.6 Let Q be a quantale. A closure operator on Q is a function 

j Q -* Q such that 

• a < b => j(a) ç j(b) (j is order—preserving), 

• a <j(a), (j is increasing), and 

• j(j(a)) = i(a) (j is idempotent). 

Definition 7.2.7 A co—closure operator on a quantale Q is a function j Q -i  Q 

which is decreasing, order—preserving and idempotent. 
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Definition 7.2.8 Let j : Q -* Q be a closure operator on Q. Then j is a quantic 

nucleus on Q if 

for all a, b e Q, j(a) 0  j(b) < j(a 0 b). 

Remark 7.2.9 We have I <j(I), since j is increasing. 

Definition 7.2.10 Let j Q -* Q be a co—closure operator on Q. Then j is a 

quantic conucleus on Q if 

for all a, bE Q, j(a) Oj(b) !~ j(a 0 b) and 

I<j(l). 

Remark 7.2.11 Since a conucleusj is decreasing, we havej(I) = Ifor any quan-

tic conucleus j. 

Remark 7.2.12 Quantic nuclei and conuclei are monoidal functors. 

Theorem 7.2.13 [Niefield and Rosenthal] Let j Q -* Q be a quantic nu-

cleus. The image of j is a quantale with monoid operation given by a®b = j(aob). 

Further, j : Q -. j(Q) is a quantale homomorphism. 

Definition 7.2.14 Let (Q, :5 , 0,1) be a quantale. Let Q' be a subset of Q which 

contains the unit I and is closed under  and V. Then (Q', , 0,1) is a subquantale 

Of Q. 

Theorem 7.2.15 [Niefield and Rosenthal] Let j Q -* Q be a quantic conu-

cleus. The image of j is a subquantale of Q. 

7.2.1 A Quantale of Markings of a Petri Net 

Recall that the pre— and post—condition relations of a Petri net N induce a relation 

on markings, the derivability relation, such that for markings in and in' of N, 

in ' < in if N can evolve from marking in to marking in'. 
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We now construct a quantale q(N) which has as elements sets of markings of 

a net N. This quantale does not represent the behaviour of the net N in any way. 

Later we shall define a quantale QN,  which is a quotient of q(N) and which does 

represent the behaviour of the net N. 

We extend multiset addition to sets of markings in the evident way. Thus if P 

and Q are subsets of Mark(N), 

P + Q = {p + q I p e P and q E Q.} 

Lemma 7.2.16 Let N = (B,B, pre, post) be a Petri net. Let 0 be the constant 

zero marking given by 0(b) = 0 for all b € B. Let P(Mark(N)) be the powerset of 

the markings of N. Then (P(Mark(N)), +, 0) is a commutative monoid. 

Proof: Immediate. 	 EN 

Lemma 7.2.17 Let N = (E,B,pre,po.st) be a Petri net. Let Q = P(Mark(N)) 

and let + be addition of sets of markings. Then the assignment 

is a function, which we shall call q, from Petri to Iquanti. 

Proof: Routine. 	 ri 

Remark 7.2.18 The top element 1 of (Q, ) is the set of all markings of the net 

N, and the bottom element 0 of (Q, ) is the empty set 0. 

From the quantale q(N), we now construct a new quantale QN  whose lattice 

structure is determined precisely by the derivability relation of the net N. QN  is 

the image of q(N) under an appropriate quantic nucleus I. Once we have shown 

that j is a quantic nucleus on q(N), it follows from Theorem 7.2.13 that I q(N) 

is a quantale. This approach is more elegant than proving QN  to be a quantale 
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directly, and using different nuclei we can construct different quantales from q(N). 

For example, we show in Section 7.2.27 that the quantale of [EW89] arises in this 

way. QN  is the quantale of primary interest to us. 

In Section 7.7 we shall show that restricting the set of initial markings in certain 

ways leads to smaller, more tractable quantales. 

It follows from the linearity of evolution of Petri nets that 

Lemma 7.2.19 If in1, "4, in2  and ri4 are markings of a net such that m, 

and "4 ~ "4 then (in1  + n4) :5 (in2 +"4). 

We extend the derivability relation < to sets of markings as follows: 

Definition 7.2.20 Let A and B be sets of markings of a given net N. Then B < A 

if for any be B, we can find an a C A such that (b < a). 

Definition 7.2.21 Let N be a Petri net. Forwards closure under evolution, writ- 

ten j, is an endofunction on Q, defined as follows. Given any subset A of Mark(N), 

= (inc Mark(N) I Ba € A.(rn < a)}. 

Remark 7.2.22 

• TA is the downwards closure of the set A with respect to the ordering . 

• For any sets of markings A and B, if A ç B then A < B. 

• If A and B are downwards closed under , then A < B if and only if A c B. 

Proposition 7.2.23 

Let N be a Petri net. Then I: q(N) -* q(N) is a quantic nucleus. 

Proof: I is evidently increasing and idempotent. Further, for any sets 

A and B of markings of N, A < B = A <I B (since t is increasing) 

, TA <jB (since TB is downwards closed) 
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Thus J. preserves order, and is a closure operator. It remains to show 

that for any A,BçQ, JJA)+t(B) 

This follows essentially from Lemma 7.2.19, since 

I(A)+ [(B) = f  I Ba € A.(m < a)} + fm I Bb € B.(rn < b)} 

c {x I 3m E (A + B)-(p < m)} 

=1 (A + B) 

Using Remark 7.2.22, we have I(A)+  j(B)  :~ i(A+B). 	 0 

Corollary 7.2.24 Applying Theorem 7.2.13, we see that the image of q(N) under 

I is a quantale, in which 

• elements are subsets of Mark(N) closed under evolution, 

• the ordering is subset inclusion, ç, 

the monoid operation 0 is given by A® B =j.  (A + B), and 

• the unit of 	is J{Ø}. 

Remark 7.2.25 Cominutativity of  follows from the commutativity of +. 

Notation 7.2.26 

We denote the quantale I q(N) by QN,  and we call QN  the net—quantale of N. 

In general, we shall use QN  to refer both to the quantale representing the net N, 

and to its underlying set. 

QN expresses the derivability relation of the Petri net N in lattice form. We can 

use QN  to examine the behaviour of N without reference to specific events. Certain 

aspects of behaviour become more apparent when the net is viewed in this way. 

An example is given in Section 7.3. 
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7.2.2 Backwards closed sets of markings 

Definition 7.2.27 Let N be a Petri net. We define an endofunction I on the 

powerset of Mark(N) as follows. Given any element A of the powerset of Mark(N), 

IA = {m € Mark(N) I Ela € A.(a < rn)} 

It is routine to verify that I is a quantic nucleus on q(N). The quantale Iq(N) is 

the quantale discussed in [EW89], whose objects are sets closed under backward 

evolution of the net. The objects of this quantale indicate what resources are 

needed for the net to evolve to a given marking. 

Remark 7.2.28 Let N be a Petri net. There is an alternative presentation of the 

quantales q(N), QN  and Iq(N), following Abramsky and Vickers [A V90]. Thus 

• q(N) is the free commutative quantale over the set B of conditions of N, 

• QN is the commutative quantale with generators B, subject to the relations 

post(e)< pre(e) for each event e of N, thus 

QN = Comm.Qu <a(a € B) I post(e) pre(e) (e € C) > and 

• I q(N) is the commutative quantale with generators B, subject to the relations 

pre(e) < post(e) for each event e of N, that is, 

Iq(N) = Cornm.Qu <a(a € B) I pre(e) :S post(c) (e € C) > 
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7.3 Traps 

In this section we consider a simple instance of structure in a net—quantale QN 

which elegantly expresses a behavioural feature of N which we shall call traps. 

Consider the atoms of the lattice (QN, C): that is, those elements A of the lattice 

for which X<A=.(X=±orXA). 

Definition 7.3.1 Let N be a Petri net. A trap for N is a finite subset 7 of 

Mark(N) such that whenever in € 7 and in'  < in, it follows that in' E T. 

Thus traps are finite elements of QN.  We shall usually be interested in very small 

traps, to study which we introduce the concept of basic trap, defined below. Traps 

allow us to study certain safety properties of a net N, since a trap identifies a set 

of markings which is stable under all future evolution of the net. Conversely, there 

may be traps which we wish to avoid, for instance infinite cycles. In that case, 

identifying the trap will enable us to refine the net in such a way that it no longer 

has this loop. 

We now characterise traps succinctly using some elementary definitions from graph 

theory (see [Bo179]). The definition of directed graph we repeat here for conve-

nience. 

Definition 7.3.2 A directed graph is a 4—tuple (V, E, Source, Target) where V 

and E are disjoint sets, and Source and Target are functions from E to V. 

Definition 7.3.3 A subgraph of a directed graph (1/, E, Source, Target) is a di-

rected graph (V', P2', Source', Target') such that V ç V, P2' C P2, and Source' and 

Target' are respectively the restriction of Source and Target to P2'. 

Let C = ( 1/, P2, Source, Target) be a directed graph and let V C V. The subgraph 

of G on vertices V is the maximal subgraph of G with vertex set V. 
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Definition 7.3.4 

Let G = (V,E, Source, Target) be a directed graph, and let v0 ,v, e V. 

A directed path in G from v 0  to v 1  is a subgraph P = (V', E', Source, Target) 

of G with finite vertex set V = {v 0 ,"v} and edge set E = {e 1 ,e2 ,.. .e} such 

that 

• for i E {1,.. . n}, Source(e 1 ) = v 1 _ 1  and 

• for i € {1,. . . n}, Target(e 1 ) = v1 . 

Definition 7.3.5 A directed graph C = (1/, E, Source, Target) is totally con-

nected if for every v,w e V, there is a directed path in C from v to w. 

Definition 7.3.6 A component of a directed graph G is a maximal, totally con-

nected subgraph of C. 

Definition 7.3.7 Let N = (E,13,pre,post) be a Petri net, and let E = NE, the set 

of multisets over E. The transition graph of N, written 7(N), is the directed graph 

(Mark(N),E, (-), (-)), where  (-) and  (-) are the extensions of the functions 

pre and post respectively to multisets over S. 

Definition 7.3.8 A basic trap Tr of a Petri net N is a subset of Mark(N) such 

that the subgraph of 7(N) on vertices Tr is totally connected. 

Remark 7.3.9 Any trap is a finite union of finite basic traps. 

Definition 7.3.10 A cycle in a net N is a sequence C = 	m of at least two 

distinct markings of N such that in0  in1 	m, = rn0 . 

Remark 7.3.11 A cycle in N is a directed path in 7(N) for which v 0  = v,. 

Example 7.3.12 Let C = 	m, be a cycle in N. The subgraph of 7(N) on 

vertices {m 0 ,•• . m,} is a component of 7(N). Thus {m 0 ,. . . , m,} is a finite basic 

trap. 
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Example 7.3.13 Let in be a marking from which a net N cannot evolve (so that 

the net N deadlocks if it reaches marking in). There is no directed path in 7(N) 

from in to any other vertex, and so the subgraph of 7(N) on vertices {in} is a 

component of 7(N). Thus {zn} is a finite basic trap. 

Proposition 7.3.14 Let N be a Petri net. A subset A of Mark(N) is a lattice 

atom of QN  if the subgraph of 7(N) on vertices A is a component of 7(N). 

Proof: An atom is a downwards closed set of markings which has no 

non-trivial downwards closed subset. 

Thus if M = {rn 0,..-m}, we have M =jm 1  for each i =O,"n. 

Hence the subgraph of 7(N) on vertices 1W is totally connected. That 

this subgraph is a maximal totally connected subgraph follows from 

the fact that 1W is downwards closed. 

Thus the subgraph of 7(N) on vertices 1W is a component of 7(N). 

C 

Corollary 7.3.15 The lattice atoms of QN  with finitely many elements are pre-

cisely the finite basic traps of N. 

If all the lattice atoms of QN  are finite, then all basic traps of N are finite. The 

necessary conditions for this to be the case are not immediately apparent. We 

define a loop in a net N to be a finite sequence of events 6o 6j, 	c, in N such 

that pre(eo ) fl post(e) 	0. A sufficient condition for a net to have only finite 

basic traps is that it has no events with empty pre- or post-conditions, and no 

loops. 

Example 7.3.16 Consider the marked net N with two events shown below: 

a 
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The net N cycles between the two markings c and a+b. Therefore the set {a+b, c} 

is an atom in (QN, C), and {a + b, c} is a basic trap for N. The atom {a} is a 

marking at deadlock. The atom {a + b, c} is a cycle. 

For convenience, we shall say that when a net has evolved to an element of a 

trap, it has reached that trap. 

In general, examining the atoms of a net—quantale QN  enables us to make 

statements about the possible behaviour of the net N. For instance, if we let A 

range over the set of all atoms of the lattice, then for any marking m of N, we can 

show that 

A if 3m' E A.(m' < in) 
j{m}AA= 

otherwise. 

This allows us to establish algebraically whether N can reach a particular trap A 

from in. Further, 

p if p is the only basic trap 

A{A It (ml A A 54 

	
j 	which N can reach from in 

if N can reach more than one 

basic trap from m 

and 

VIA I j{m} A A 	= U{p I p a basic trap which N can reach from m} 

Thus we can establish algebraically whether a marked net N has one basic trap, 

or several. 
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7.4 Interpreting Linear Logic in a Net—Quantale 

Let N be a Petri net. We can interpret the linear logic connectives , A, 0, —o , () 1 

and !, and also the constants 1, ..L, I and 0 in QN. 

We shall assume that tokens at a condition interpret the atomic propositions 

of the linear calculus. Our interpretation is then parametric in the interpretation 

of these atomic propositions. We shall write MA  for the marking which consists of 

a single token at the condition A. Formulae of linear logic are denoted by sets of 

markings of N as follows: 

• IAII = {m I  m MA) for an atomic proposition A 

• 111 = { m I in a possible marking of the net N} = 

• ROI = O =OQ N  

• 11 1 11 =j{ø} 

• 	 =1 {a+bIaeA and b€ [BI} 

• AAB= JAI flB11 

• 

• A —oB] =UflC] I I C ®A] cftBI} 

With any interpretation of the linear logic constant I as an element of QN,  we 

can now interpret A 1  in the quantale in the usual intuitionistic way by putting 

A 1 11 =A—o1Jl =U{I[C1I I I[C®A] c.L]}. 

This interpretation is exactly analogous to the interpretation of intuitionistic 

logic using Heyting algebras, in that we interpret linear entailment by the ordering 
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C on the net-quantale of N, we interpret 1 and 0 by the top and bottom elements 

of the lattice respectively, and implication (-a) as 

A -oB\J{CICØA<B}. 

In particular, we have the usual adjunction 

C®A<B ifandonlyif  C<A -oB 

which we expect, since linear 0 is here playing the role of the intuitionistic and. 

We define semantic entailment in the quantale by 

A 1 0 ... 0Ah=A  if and only if ftA 1 0 ... ®A,jcAJ. 

The motivation for this interpretation is that a marking in is denoted by its 

consequences, or in other words, by the set of all resources we could gain from the 

resource in. Thus anything gained by having an element of I A 0 B I must be a 

possible gain when we have some a E TA and some b € j[B]J at the same time. 

Also, any consequence of having some resource which came from a 

non-deterministic choice between A and B must be either a consequence of hay-

ing some element of A or of having some element of B. Accordingly, we interpret 

A B as the union of consequences of A and consequences of B. 

Similarly, whenever we have a consequence x of A A B, we can make a de-

terrthned choice of A and we know that x will be a consequence of A. Similarly, 

we know that if we choose B, x must be a consequence of our choice. We must 

therefore insist that x be a consequence of both A and B, and so we interpret 

A A B by the intersection of consequences of A and B. 

Our interpretation of A -a B expresses the property of implication that no 

consequence of A -.o B can give any more gain when taken in conjunction ((D) 

with some consequence a of A than could be gained from an appropriate bin ftBlJ. 

The interpretations of I, 1 and 0 follow simply from their required behaviour 

as constants of the logic. We can gain nothing more from the set of all possible 
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markings than what was already possible, and this explains the choice of interpre-

tation for 1. Also, if we have an element of j{O, we can deduce even impossible 

markings—as there can be no such element, 0 is interpreted by the empty set. As 

we expect, jjIj is the set of resources which can be gained from nothing. 

Remark 7.4.1 In [EW89], Winskel and Engberg show that the interpretation of 

"of course" A should be 

= U{C E QN I C is a postfixed point of fA}, 

where f : QN - QN is the function given by 

xi.-*IAJAI A(xøx). 

This follows a suggestion of Girard in [GL87]. 

We abbreviate I = A by frr  A. 

Proposition 7.4.2 

Aif and only ifVJeJAI  

A = B if and only if RAI c JB1j if and only if HA-a B, and 

in -a in'  if and only if N can evolve from marking in '  to marking in. 

Proof: Immediate from the definitions. 	 II 

Theorem 7.4.3 The quantale QN  with the above interpretation is sound with 

respect to the single-conclusion sequent calculus for linear logic without the rules 

for 0, i.e. 

FE A =F = A. 

Proof: By case analysis. 

For example, the proof of soundness with respect to the (Cut) rule 

FE-A z,AE-B 
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is as follows: 

By hypothesis, F j=  A and a., A j=  B. Hence 

IF] cJAI and JAI ® JAI c[B]. 

Hence JAI &JrJ c ftB j, and we have F,A HB. 

Thus our interpretation is sound with respect to the (Cut) rule. 	0 

This semantics allows us to make assertions about the behaviour of the net N 

whose behaviour has been encoded in the quantale. For example, 

• 	m asserts that marking in can evolve to the empty marking, 0, 

• H (A 0 B) —o C asserts that from a marking of condition C, the net N can 

evolve to the marking A + B, and 

• H (nz 1  A nz 2 ) —o in asserts that the marking m can evolve to marking m 1  

and also to marking in2. 

7.5 Linear Negation 

In this section, we suggest a choice for the interpretation of the logical constant 

L, and show how it can be used to make further assertions about the behaviour of 

a net. In general, we use negation to assert things which a net cannot do, rather 

than things which it can do. 

Definition 7.5.1 Let N be aPetri net and MF  a subset of Mark(N). Define 

I = {m e Mark(N) I ,&n' E MF.(in' < m)}. 

Remark 7.5.2 1 is evidently downwards closed, and hence an element of QN. 

Now 

= f  € Mark(N) I Va € JAI ,Thn' € MF.(rn' < (in + a))} 
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Thus, the denotation of A 1  is the set of all markings which, when added to any 

marking in the denotation of A, can never evolve to a marking in M. We think 

of Mp' as a set of "forbidden markings", since we are concerned with proving that 

they cannot be reached. 

In particular, = A 1  if and only if for all a E EA], there is no rn' E MF such 

that (in' < a). This in turn is true if and only if jIA] fl MF  = 0. Thus whenever 

= A 1 , the net N can never evolve from any marking a E ft A  to a marking in 

MF. 

This enables us to make negative assertions about a net's behaviour, and hence 

to specify safety properties of a net. Thus it is possible to assert that there is no 

marking reachable from A in which a particular multiset is marked. 

Example 7.5.3 If we put 

kF  = {bTh € Mark(N) I it a positive integer} 

then = A 1  asserts that there is no marking reachable from A in which the condition 

b is marked in any non-zero multiplicity. 

7.6 Equivalences on Nets 

We have seen that every net N generates a quantale QN.  In this section, we 

consider the circumstances in which two nets generate the same net-quantale. 

Notation 7.6.1 We shall write I=N  A to mean that A is valid in the quantale QN, 

in the sense of Section 7.4. 

Definition 7.6.2 Let No  = (E0 ,80 ,pre0 ,posto) and N 1  = (E1 j31 ,prej ,post 1 ) be 

Petri nets such that Bo = B. Then the nets No  and N 1  are equivalent, written 

No  N1  if for all propositions A, 

No A if and only if 1N1  A. 
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Proposition 7.6.3 Let N and N' be Petri nets. 

• If No  and N 1  have the same derivability relation, then No r'  N1. 

• If No  - N1  then QN0 = QN,. 

Proof: If No  and N 1  have the same derivability relation then the 

relations N.  and I=NI  are equal and the result follows by definition of 

We have seen that N  (m -o in') if and only if the net N can evolve 

from a marking in'  to a marking in. If B' = B, the underlying sets of 

the net-quantales QN0  and  QN1  are equal. Further, if N o  N1 , then 

the nets No  and N 1  have the same derivability relation. Hence No  and 

N 1  generate the same net-quantale. U 

Definition 7.6.4 

An identity event is an event e of a net such that pre(e) = post(e). 

Definition 7.6.5 	 An 

event s is a short cut if whenever the net N can evolve under s from marking in 

to marking in ' , there exists some sequence of events o; s j ; ; s, 'which is disjoint 

from s, under which N can evolve from the marking in .to the marking in'. 

Since the derivability relation < is reflexive and transitive, Proposition 7.6.3 shows 

that two nets N o  and N 1  are equivalent if they differ only in the presence or absence 

of identity events and short-cuts. 

From a computational point of view, identity events are not distinguished be-

cause we are not interested .in specifying actions which do not alter the net's state 

or environment. Also, failing to distinguish between a net with short-cuts and an 

otherwise identical net with all short-cuts removed only affects issues of compu-

tational complexity, which do not concern us here. 

Remark 7.6.6 The quantale QN  does not establish the order in which the events 

of a cycle in N occur, as is illustrated by Example 7.6.9 below. 
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7.6.1 Examples of Equivalent Nets 

Example 7.6.7 Augmenting with identity events: 

Example 7.6.8 Augmenting with short-cuts: 

Example 7.6.9 Cycles: 

C C 

In view of the discussion above, we see that a net-quantale determines its cor-

responding net up to the equivalence defined above. In particular, we have the 

following result: 

Proposition 7.6.10 

Let N and N' be nets without cycles or short-cuts. If QN = QN' then N = N'. 
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7.7 Restrictions on the top element of a net—quantale 

The top element of the quantale QN  constructed from the net N = (C,13, pre, post) 

above is very large. Specifically, if JBI = a and N is 0—bounded, then the set 1 of 

possible markings of the net is of cardinality Thus 1 may be finite (if a and 

0 are both finite), countable (if a is finite and /3 countable) or uncountable (if a is 

countable and /3 > 2). 

In this section, we define a quantale with a smaller top element. Such a smaller 

quantale corresponds to a net's behaviour on a subset P of markings, where ele-

ments of P are called "permitted markings". 

There are various ways in which the notion of permitted marking may be 

chosen. Some possibilities to consider are the restriction of markings to those 

which have: 

a no more than it tokens on any one condition at once, 

• no more than it tokens on a particular condition at once, 

• no more than na  tokens on condition A, nb on condition B, and so on, 

• no more than it tokens shared between some specified set of conditions, 

• no more than it tokens altogether, 

• no fewer than it tokens on any condition, 

• or no fewer than n tokens in the marking altogether. 

It turns out that all except the last two of these notions of permitted marking are 

suitable for constructing quantales. 

In [Bro89a] a slightly different presentation was given of the following construc-

tion. The approach here applies a general theorem about quantales. 
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Definition 7.7.1 A notion of permitted marking on a net N is a subset P of 

Mark(N) which contains the constant zero marking 0. We say a marking of N is 

permitted if it is an element of P. 

The first five classes of markings suggested at the start of this section contain 

0, and hence are notions of permitted marking. Thus one notion of permitted 

marking is the set of markings which have no more than k tokens on a condition 

at any time, for some integer k (this notion gives rise to quantales corresponding 

to the k—bounded nets). An example is the set of markings of a safe net (see 

[11685]), which have no more than one token on a condition at any time. 

Definition 7.7.2 Let N = (E,B,pre,post) be a net and let P be a notion of 

permitted marking for N. A marking in of N has a one—step permitted evolution 

to marking in '  , written m' in, if in and in'  are both permitted, and in'  < in. 

Definition 7.7.3 There exists a permitted derivation of in 1  from in2 if for i E 

{ 
1, ...n}, there exist permitted markings p i  such that in1 = Pi <—1 , P P2 	<lp P, = in2. 

Notation 7.7.4 

We write in1 :~p  in2 if there exists a permitted derivation of in1 from in2. 

As in section 7.2.1, we extend the definition of <p to sets of markings, and 

define the operation jI'  of closure under permitted evolution. 

Lemma 7.7.5 Let QN  be the net—quantale of a net N, and let P be a notion of 

permitted marking on N. Then j( — ) = (-) fl P is a quantic conucleus on QN. 

Proof: It is evident that j is a co—closure operator on QN. 

Further, 
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= {rn E P I Ba E ABb € B.((a + b) EP and m < (a + b))} 

c {m E P 13a E (AnP)Bb€ (BflP).a+b) € P and (m <(a+ b)))) 

=(AflP)®(BflP) 

Also, I C (In P) since P was defined to contain I. 	 0 

Corollary 7.7.6 Let QN  be the net-quantale of a net N, and let P be a notion 

of permitted marking on N. Let j(-) = (_) fl P. Applying Theorem 7.2.15, we 

see that the image of QN  under j is a subquantale of QN,  in which 

• elements are subsets of P closed under evolution of N, 

the ordering is subset inclusion, ç, 

the monoid operation 0  is given by A O j  B = (A® B) fl P, and 

• the unit of (D j  is I. 

Notation 7.7.7 Let N be a net and let P be a notion of permitted marking on N 

We have a conucleus on QN  defined by j(-) = (_) fl P. 

We shall write Op for the monoid operation of the sub-quantale j(Qr) of QN - 

We extend the operation .j.'  to sets of sets of markings in the evident way, writing 

1 2(P) for the set of all subsets of P which are closed under permitted forwards 

evolution. 

We shall denote the sub-quantale j(QN)  of QN  by Q. Thus 

QP = ( j'° P(P), ç, op, t PO 
 

Q P  is the quantale corresponding to the permitted evolutions of the net N from 

permitted initial markings. 

Remark 7.7.8 Whenever P has finitely many downwards closed subsets, the Un-

derlying set of Q has finitely many elements. 
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Example 7.7.9 Let N be a net which is safe when marked with any of the mark-

ings in a set S containing the constant zero marking 0. Then is the net-

quantale representing the behaviour of N on markings S. 

Definition 7.7.10 Let N be a net and let P be a notion of permitted marking on 

N. An irrelevant event is an event e of N which is not enabled in any evolution of 

N from a marking in P. 

A net N is irrelevance—free if it has no irrelevant events 

Remark 7.7.11 A net—quantale Qdoes not indicate the presence in N of irrel-

evant events in any way. If the net No  with notion of permitted marking P0  and 

the net N 1  with notion of permitted marking P 1  differ from one another only in 

the presence or absence of irrelevant events, then =Q'. 

Proposition 7.7.12 Let P be a notion of permitted marking on a net N. The 

quantale Q allows a sound interpretation of linear logic in the manner of Sec-

tion 7.4. 

Proof: As in Section 7.4. 

7.7.1 Arbitrary Sets of Initial Markings 

In this section, we show how to construct a quantale which represents the be-

haviour of net N on an arbitrary set S o  of initial markings. The natural object to 

take as the top element of such a quantale is j.  S0 . We wish to take I. So  to be our 

notion of permitted marking for N. A notion of permitted marking must contain 

the constant zero marking 0, and so the smallest notion of permitted marking 

containing the set So  is the set P0 , given by 

Po  =1 (So u{0}). 

Taking P0  as our notion of permitted marking, we can construct in the manner 

of Section 7.7 the net—quantale Q' which corresponds to the behaviour of the net 

net N on the set of markings Se,. 
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Remark 7.7.13 Let N be a net and let S0 , S be subsets ofMark(N) with S o  ç S. 

If for i = 0,1 we define P1  =1 (Si  U{ø}), then since P0  ç P1  there is a conucleus j 

P1 	 P0 	P1 	 Po 
on QN given by j(—) = (-) fl F0 , and QN = (QN )• Thus QN  is a subquantale 

Of Q. 



Part IV 

Evolution as Linear Proof 
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Introduction to Part IV 

In Part IV, we establish a connection between Petri nets and certain formulae of 

linear logic, which was first presented in [Bro89b] .IA corresponding connection 

between Petri nets and theories of the tensorial fragment of linear logic was ex-

plored in [Asp87}, [0G89], and [M0M89]. One of the drawbacks of this approach 

is the lack of a definitive concept of linear theory and especially of the composition 

of linear theories. Formulae are preferred here to theories with the aim of better 

exploring problems of compositionality. It is hoped that extensions of the ideas 

set out here may lead to a better understanding of refinement, implementation of 

specifications, and composition of nets. Our slogan for this part, which epitomises 

the connection between Petri nets and linear logic, is 

"Reachability in Petri nets corresponds to linear provability." 

It is a triviality that the tensorial fragment of linear logic corresponds to evo-

lution of Petri nets. We could have described this correspondence with less ma-

chinery than we use here: if we restrict the relation S of Definition 8.4.7 to clauses 

(I) and (VI) and use a more restricted fragment of linear logic, we recapture the 

simple approach. The aim of this work, however, is to achieve a deeper under-

standing of applications of the major part of linear logic to Petri net description. 

An attempt has been made by Marti—Oliet and Meseguer [MOM89] to interpret 

connectives other than 0  in the context of Petri nets. There, the intended mean-

ings of these connectives are illustrated without definition or investigation of their 

applications. For a fuller understanding of these connectives, we should consider 

the proof theory of linear logic, which is indeed where many of its beauties lie. In 

Section 9.3.3 we consider these issues in greater depth. 
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The approach of Gunter and Gehiot in [G090] has more profitable applica-

tion to net theory in that it makes use of a result of proof theory to maximise 

the parallelism in a net's evolution. This is a genuine benefit of the translation 

of a problem to a different area, and illustrates our purpose in pursuing such a 

translation. 



Chapter 8 

Expressing Nets as Canonical Formulae 

8.1 Chapter Summary 

In this chapter, we work with the set F of linear logic formulae involving connec-

tives 0, A, –o and!. We are concerned particularly with a subset Can of F whose 

elements we show to be in bijection with the isomorphism classes of MPetri. 

We generate an equivalence =S on F using the reduction relation -* g  

Intuitively, F —es  C if the formulae F and C represent the same net, and C is 

shorter than F. We show that S is Church–Rosser and strongly normalising, and 

deduce that every formula in F has a unique normal form with respect to -3 . 

Every formula in Can is in S–normal form. 

8.2 The Formula Representing a Net 

We shall first consider translating the Petri net of Example 8.2.1 into a formula of 

linear logic, and then generalise the process to any net. 

Example 8.2.1 Our example of a net is taken from [MM88a]: 

161 
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Let us regard a token in condition a as being a resource of type A. By con-

vention we shall label conditions by small italic letters "a" and the corresponding 

resources by the corresponding italic capitals "A". Then the net shows that we 

need one item of type A, and two of type B for a firing of e to occur. Such a 

combination of resources is represented by the linear logic formula 

!flr: 

We shall abbreviate this to A 0 2B. The net tells us that these resources can be 

used to produce 3 tokens of type D (that is, 3 tokens at condition d), and 2 tokens 

of type F. We could write this as the following formula of linear logic 

(Ao2B)—o(3D02F) 

But this would represent the possibility of just one firing of e, whereas in fact we 

can fire e as often as we like, provided that each time the pre-conditions for c are 

satisfied. To express the persistence of the ability to fire e, we shall translate the 

net 

by the formula 

l((AO2B)—o(3D®2F)). 

For ease of reading we omit the brackets around A 0  2B and write the above 

instead as 

!(A(32B—o3DO2F). 

In the same way, the other half of the Petri net of Example 8.2.1 can be expressed 

by 

!(B®3C —o Fo4G). 

These two formulae express the fact that firings of e and e' can occur whenever 

their pre-conditions are satisfied. In a similar way, we can represent the initial 
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marking by the formula 

Thus we can describe the entire net of Example 8.2.1, both its possible events and 

its initial marking, by the formula 

urn 

8.3 Representing Arbitrary Nets as Formulae 

We now define the set F of linear logic formulae which will be of primary interest 

to us in this chapter. 

Definition 8.3.1 The set F comprises the equivalence classes under permutation 

of those formulae in Lin which are words over the following alphabet: 

parentheses "(" and 
11)", 

 

atoms 

the constant I, 

binary operators 0, A, —o, and 

a unary operator!. 

Example 8.2.1 illustrated a way in which we can associate a formula of linear 

logic with a Petri net. Following this approach, we now define a function form 

from MPetri to F. 

Definition 8.3.2 A canonical formula is a formula F e F of the form 

jEJ 	 keK 
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where J and K are (possibly empty) finite indexing sets, M, M, M and Mk are 

multisets over.At(F) such that for each j, M is non-empty, and  has no repeated 

factors of the form !(X —o Y). 

Definition 8.3.3 

Can is the set of equivalence classes of canonical formulae under permutation. 

Convention 8.3.4 We have assumed that the set of linear atoms is countably 

infinite. We shall also assume the existence of a specified injective function r_,, 

from any countable set B to the set of linear atoms. We require that for any two 

sets B o  and B  with non—empty intersection, the specified functions'—' S'  and '-'B  ' 

associated with L30  and Si  respectively are equal on Bo  fl S.  To avoid cumbersome 

notation, we shall always write B for the atom W, where 6 € B (similarly r1 = J3 

and so on). 

The requirement that any element 6 in our universe of sets has a unique name rjp 

is necessary to ensure that Definition 9.3.1 be well—defined. 

Remark 8.3.5 Let N € MPetri. The function ri  from 13 to the linear atoms 

determines uniquely a canonical name for each event in C, since an event of a net 

in MPetri is determined uniquely by its pre— and post—condition sets. 

Lemma 8.3.6 Let a be a finite multiset over a countable set B. The assignment 

Multi:a i-*®a(b)rbl 
b€13 

extends r_1  linearly to an injective function from finite multisets over countable 

sets to the set of formulae of F which are tensor sums of atoms. 

Proof: Evident. 

Notation 8.3.7 Since Multi is an injection, in accordance with Convention 8.3.4 

we shall often identify a multiset M = Ena 1  with the formula Multi(M) = 
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Lemma 8.3.8 Let N be a Petri net. If S = then we define 

F = Multi(Mo ). 

Otherwise, S = 10u S, 91 = { e e S I pre(e) = ø}, and we define 

F —  Multi(Mo)®®  !(Multi(pre(e)) —0 Multi(post(e)))®® !(Multi(post(e). 

	

C€Eo 	 eECj 

The assignment 

(S,13, pre, post, MO ) '—+ F 

defines a function, which we shall call form, from MPetri to Can. 

	

Proof: Evident. 	 . 

Definition 8.3.9 Let N and N' be Petri nets. Then N is isomorphic to N' if and 

only if there exist bijections f: S — 5' and F: B —f B' such that for each e E 5, 

pre'(fe) = F(pre(e)), post'(fe) = F(post(e)) and F(M)=M', 

where F is extended linearly to multisets over B. 

Remark 8.3.10 Observe that this extends the notion of net isomorphism in the 

categories NSet, NSet, NSet and NSet of Part II of this thesis. 

Lemma 8.3.11 

The function form is surjective. Further, if form(N)= form(N') then N is isomor-

phic to N. 

Proof: We show that any F E Can is in the image of form, Further, 

we show that F determines up to net isomorphism a net N such that 

form(N) = F. 

Let F E Can. Then F has the form 

jEJ 	 k€K 

where M, M, M and Mk are multisets over .,4t(F), the M are non-

empty, and F has no repeated factors of the form !(X —o Y). 
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For each factor !(M5  -o M5) of F, the event label e of the 

event with pre-condition set M and post-condition set M' 

is uniquely determined, as we observed in Remark 8.3.5. Let 

EO  = { e I j E J}. 

For each factor !(Mk) of F, the event label 6k  of the event 

with empty pre-condition set and post-condition set Mk is 

uniquely determined. Let 9 1  = { ek I k e K}. 

The event set S of N is So u 

The condition set 13 of N is .,4t(F) 

Put pre(e) = M and post(e3 ) = M5 for j E J and 

pre(ek) = 0 and post(ek) = Mk for k € K. 

This determines the pre- and post-condition relations of N. 

The initial marking M of N is the multiset M. 

The tuple (6,B, pre, post, M) is a Petri net N such that form(N) = F. 

F determines N up to the labelling of events and the assignment r_1  of 

names to atoms. Hence F determines N up to net isomorphism. 	D 

Notation 8.3.12 

We put FN = form(N) and call FM the canonical formula representing N. 

If F is a canonical formula, then we write NF for the specified element of the 

equivalence class of the net N generated by F in the proof of Lemma 8.3.11. We 

call NF the net represented by F. 

Proposition 8.3.13 Two canonical formulae are isomorphic in the sense of Def-

inition 3.4.10 precisely when the nets which they represent are isomorphic in the 

sense of Definition 8.3.9. 

Proof: Follows routinely from the definitions. 	 El 
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Remark 8.3.14 The set of canonical formulae forms a hierarchy in the following 

way (where the a 4  are atoms, and for finite indexing sets I and J, iVf 4 , M, and 

M are tensor sums of atoms, the M, being non-empty): 

Can ::= ai I ®a I Ø!(M1 ) lØ(M —o M) I ®!(M4) oØ(M —o M,) 
1€! 	i€I 	j€J 	 iEI 	jEJ 

IM®Ø!(M)e®(M  -oM. 
iEI 	jEJ 

In terms of nets, this hierarchy amounts to 

conditions I markings I events with empty pre—conditions 

events with non-empty pre—conditions I nets I marked nets 

Thus approaching the theory of Petri nets from the point of view of their analogy 

with linear logic formulae suggests that we can regard nets and markings as exam-

pies of objects of the same nature. It is then feasible to consider nets as markings, 

that is, as resources which can be changed by the evolution of a controlling net. 

8.4 A Reduction Relation S on F 

We now define an equivalence =S on formulae in 1. 

The development of this section follows [Bar85]. 

Definition 8.4.1 Let F be a formula in F. We define a function II - from F 

to N inductively as follows: 

• IIaII = 1 for atoms a, 

• 11 1 11 = 1, 

• II(f 0 f')Il = If II + IIf'lI + 1, 

• Il(f A  f')II = IlfIl + IIf'II + 1, 
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• MU -o f')M = HIll +11111+1 and 

• lI!IM = lIfM + 1. 

We call IIFU the length of F. 

Remark 8.4.2 

IIFII is the number of symbols in F which are not parentheses. 

Definition 8.4.3 A binary relation R on F is compatible with the set of opera-

tors {®, A, -o, !} if for all M, N, M', N' € F, 

(M, M') ER (N, N') ER 
(o one of 0, A, and -o) and 

((Mo N), (M' oN')) E R 

(M, M') ER 

(!M,!M') ER 

Definition 8.4.4 A reduction relation on F is a binary relation on F which is 

reflexive, transitive and compatible with the operators {®, A, -0, 

Definition 8.4.5 Let R be a binary relation on F. Then R induces three binary 

relations on F. These are 

one step R-reduction, 

3)R R-reduction and 

defined inductively as follows: 

*1l is the compatible closure of R, that is, 

(M,N)ER 	M —*M' 
and 

M—* R N' 

M *R M' N RN' 

(Mo N) 	R (M' a N') 
(0 one of (9, A, and -o)). 
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is the reflexive, transitive closure of _*R, that is, 

M—*N 	M—*RN 

M'RN' 	M*M and 
	

M*L 

=R is the equivalence relation generated by -+, that is, 

M—+* R N 	M=N 	
and 	

M=RN N=RL 

M=N ' 	N=RM 	 M=RL 

Lemma 8.4.6 Let R be a binary relation on F. Then -** is compatible with 

the operators 0, A, —o and 

Proof: 	*R is compatible with the operators by definition. 

That -+ is also compatible follows from the compatibility of 

by structural induction. 	 C 

We are here interested in one particular relation S on F. As we shall see in 

Section 9.4, S is chosen such that whenever M —s e  N, then M and N are linear 

logic formulae representing the same Petri net, and IINM < IIMH. 

Definition 8.4.7 S is a binary relation on F consisting of pairs 

Form (I) 	( !(Af) 0 !(kf) , !(Af) ), 

Form (II) ( !(M) 0 (itt A I) , !(M) ), 

Form (111) ( !(M—oN)®!((((M—oN)AI)®M)--eN) , 

Form (IV) 	( !(( MAI) —0 1) , I), 

Form (V) 	(MAM M) 

Form (VI) (MOI , M) 

Form (VII) (I —cM , M) 

Form (VIII) ( !(M) 0!((M AT —o At) , !(M) 



Chapter 8. Expressing Nets as Canonical Formulae 	 170 

Form (IX) 	( !(I) , I 

for all M, N € F, and no other pairs. 

Notation 8.4.8 Henceforth we shall omit the subscript or prefix S. Thus we write 

and -** for —* s  and -;+S respectively, understanding that the intended 

relation is the relation S of Definition 8.4.7. 

The intuition behind our definition of S is that formulae, like Petri nets, represent 

various means of transforming resources. For most of the forms of Definition 8.4.7, 

it is evident that the two formulae convey the same information about the trans-

formation of resources. For example, in the case of Form (V), a deterministic 

choice between M and M transforms resources in exactly the same way as M. 

Proposition 8.4.12 shows that such an interpretation can be given to any of the 

elements of S. 

Notation 8.4.9 Let X,X',F E Lin. Let X be an occurrence of a subformula in 

F. We write F[X'/X} for the formula obtained from F by substituting X' for X 

in F. Notice that we only substitute for one occurrence of the subforrnula. 

Lemma 8.4. 10 If (F, Q) € S then P + Q in L. 

Proof: If (P, Q) is of Form (I), we derive P F- Q as follows: 

(Id) 

!S* McM 	
(Cont) 

-. 

We derive Q F P as follows: 

(Id) 

(Weak) (Q L) 
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If (F, Q) is of Form (II) we derive P I- Q as follows: 

(Id) 
	

(IL) 

!(M) I-  !(M) 
	

IF (ØR) 

!(M), I F- !(M) 	
(A L2), (®L) 

!(M)&(MAI)F!(M) 

We derive Q F P as follows: 

(Id) 

ME-M 
(Der) 

!(M) I- M 

!(M) I- (M A I) 

(IR) 

I-! 
(Weak) 

!(M) F- I 
(AR) 

(OR) 

(Cont) 

(Id) 

!(M) F- (M) 

!(M),!(M) 1-!(M) 0  (MA I) 

!(M)I-!(M)®(MAI) 

If (F, Q) is of Form (III), we derive F F- Q by weakening. 

We derive Q F P as follows: 

(Imp) 

(M —oN)ØMFN 	
(ALl) 

((M—oN)AI)ØNFN 

F-!((((M—oN)AI)®M)—oN) 

I-!((((M—oN)AI)ØM)—oN) 

Id 

N) F !(M —o N) 
(®R) 

!(M_oN)F!(M—oN)Ø!((((M—oN)AI)ØM)—oN) 

If (P, Q) is of Form (IV), we derive F F Q by weakening. 

We derive Q F P as follows: 
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Il-I 

MAIFI 

F (M A I) --0 1 

F !((M A I) —o 1) 

Id 

(A L2) 

(—o R) 

(!R) 	 (IL) 

IF- 
- (®R) 

I I- !((M Al) —o I) 

If (P, Q) is of Form (V), the derivations are immediate, using the rules 

(A Li), (AR) and (Id). 

If (P, Q) is of Form (VI) the derivations are immediate, using the rules 

(IL), (IR), (®L) and (®R). 

If (F, Q) is of Form (VII), we derive F F- Q using the rule (—oL), and 

Q I- F using the rule (—oL). 

If (F, Q) is of Form (VIII), we derive P F Q using weakening, and 

Q F F as follows: 

(Id) 

MFM 
(A L2) 

M A I F M 
(—o R) 

(Id) 
	F (MA I —o M) 

(Derel) 

!(M) F !(M) 
	

M) 
(®R) 

!(M)F!(M)Ø!(MAI —o M) 

If (F, Q) is of Form (IX), the derivations follow from weakening and 

dereliction. This completes the proof. 	 U 

Lemma 8.4.11 If X, F € Lin, with X < F and X -+ X' then F HF- F[X'/X]. 
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Proof: 

We assume the result holds for formulae shorter than F, and proceed 

by structural induction on F. 

The base case is proved in Lemma 8.4.10. 

As an example of the inductive step, if it is the case that F = M -o N 

and X <M, then under the assumption that M[X'/X] I- M, we derive 

F I- F[M'/M] as follows: 

(Id) 

M{X'/X]E-M 	NE- N 
(-oL) 

(M -o N) 0 M[X'/X] I- N 
(-OR) 

M -o N F M[X'/X] -o N 

Similarly, the assumption of M F- M[X'/X] allows us to derive 

F[M'/M] F- F. 

The other cases are similar. 	 0 

Corollary 8.4.12 If F -** G then F HF- C in £. 

tMld, reLe.xiv, 
Proof: Since I- is transitiveAit suffices to prove the result for 

Lemma 8.4.11 shows that it is sufficient that if (F, Q) € 5, then 

P HE- Q. This was shown in Lemma 8.4.10. 	 0 

Remark 8.4.13 We shall define S-equivalent formulae to represent the same net. 

As we shall show in Section 9.6.2, linear logic proof corresponds precisely to Petri 

net evolution. Thus the result of Corollary 8.4.12 is fundamental to our approach. 

8.4.1 S is Strongly Normalising 

Definition 8.4.14 

If M 34R N then we say M Il-reduces to N or N is an R-reduct of M. 
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If M *R N then we say M R-reduces to N in one step. 

If M =R  N we say M is B-9 1UiYfltST to N. 

Definition 8.4.15 

Let B be a relation on F. Then 

. an R-redex is a formula M such that (M, N) E B. Then N is the contractum 

of 

a formula M is in B-normal form if no subformula of M is an R-redex, and 

• a formula M has B-normal form N if N is in B-normal form and M =R  N 

We call the process of going from an R-redex to its contractum contraction. 

Remark 8.4.16 Every canonical formula is in S-normal form, since it contains 

no redexes. 

Remark 8.4.17 Two formulae which are inter-derivable in £ may have different 

normal forms. For example, for any formula X of F which is in S-normal form, 

the formulae 

!(A-oB) and !(A-oB)®!((XAI)®A)--oB) 

are interderivable in A and both are in S-normal form. 

Thus =s  is a finer equivalence than -lF- 

Definition 8.4.18 

1. Let Es and Es' be 8-redexes, and let F be a formula in F such that Es < F and 

Es' < F. An occurrence of Es and an occurrence of Es' overlap if 

• the occurrence of Es is not a subformula of the occurrence of Es', 

• the occurrence of Es' is not a subformula of the occurrence of Es, and 
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• the occurrences of A and A' do not appear in the form A® A'. 

2. Further, we say an occurrence of A and an occurrence of A' overlap at G if 

the occurrence of A and the occurrence of A' overlap, and G is a subformula 

of  such that GIA and  GIA'. 

Example 8.4.19 

Let F=!(X-oY)Ø!(X--oY)®(ZAZ)®((X-OY)AI). 

Let A = 	-o Y) ® 	-c Y) and let A'= 	-o Y) ® ((X -o Y) A I). 

Then A and A' overlap at !(X -c Y), whichever occurrences of the redexes we 

consider. 

The redex (Z A Z) does not overlap with any other redex occurrence in F. Notice 

that, even if we replace Z by !(X -o Y), the redex (!(X -o Y) A !(X -o Y)) does 

not overlap with any other redex occurrence in F. 

Recall that we are identifying a formula with its equivalence class under permu-

tation, by convention 3.4.12. If we do not do so, then we must interpret P -#* Q 

as meaning that Q is obtained from P by a finite (possibly empty) series of con-

tractions and transpositions. 

Lemma 8.4.20 Let M be a formula in R-normal form. Then 

• there exists no N such that M 	N, and 

• if M -**r N then M is a permutation of N. 

Proof: Immediate. 	 9 

Definition 8.4.21 

1. Let A be a subformula of a formula M. If A is an R-redex with contractum 

A' and N is the formula obtained by replacing a single occurrence of A in M 

by A', then we shall write 

M 	N. 
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2. A reduction path is a finite or infinite sequence 

O' =  Al0 -I?  M1  -4 M2 R 

Convention 8.4.22 

. a, 'r range over reduction paths. 

• The reduction path of Definition 8.4.21.2 starts with M0 . If there is a last term 

M in a then a ends with M. In this case we say that a is a reduction path 

from M0  to M. 

• The labels A, A 1  ... may be left out in denoting a reduction path. 

• We shall write a: M0  -* M1  -* ... to indicate that a is the path M0  -4p 

M1 —*-... 

• If a is a reduction path, then 	is its length, that is, the number of 	R 

steps in it. Note that 11o, 11 may be infinite. 

Example 8.4.23 

Let A and F be formulae in F. Let A be an S-redex with contracturn A', and let 

M be the formula (A A F) 0 I. Then 

Ai  M -LAAF, and M--(A'AF)0I 

Remark 8.4.24 We cannot always recover A from the M and N in M
A  N. 

For example, 

x®I®I4XoI and X®IØIEX®L 

Definition 8.4.25 Let M be a formula in F and R a binary relation on F. 

• M Il-strongly normalises if every Il-reduction starting with Al has finite length. 

• Il is strongly normalising if every M € F Il-strongly normalises. 
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Proposition 8.4.26 8 is strongly normalising. 

Proof: Let M be a formula in F. We proceed by induction on MMIL 

If IIMtl = 1 then M is a either an atom or a constant, and so is not a 

redex. Hence the maximum possible length of a reduction path starting 

with M is 0, and M strongly normalises. 

Suppose every formula N with JIN11 < n strongly normalises. By 

the definition of 8, for every L E F such that M -p 	we have 

IIL1I < IIMU. By the inductive hypothesis, L strongly normalises. 

Hence M strongly normalises. 

Fol 

8.4.2 S is Church—Rosser 

Definition 8.4.27 

. Let Jibe a binary relation on F. Then 1? satisfies the diamond property if 

for any M E F, whenever (M, M I ) E 1? and (M, M2 ) € 11, then there exists a 

formula L E F such that (MI , L) E R and (M2 , L) E R. 

• A binary relation B on F is Church—Rosser if -*j satisfies the diamond 

property. 

Definition 8.4.28 

• Let B be a binary relation on F. Then B satisfies the weak diamond property 

if for any M E F, whenever (M, M 1 ) € B and (M, M2 ) € B, there exists a 

formula L E F such that (MI , L) € R* and (M 2 , L) € K, where .11*  is the 

reflexive, transitive closure of B. 

• A binary relation B on F is weakly Church—Rosser if 	satisfies the weak 

diamond property. 

Theorem 8.4.29 8 is weakly Church—Rosser. 
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Proof: 

We show that for all M E F, 

(M__*N 0  and M_* N I ) 	 L.(No -4L and N i L) 

We consider the possible pairs of contractions which could have pro- 

duced No  and N1 . We suppose M ±3 No  and M t N 1 , and that 

There are three possible situations: 

A O  and a. 1  occur in the form a0 ® a 1 , 
A O  and a. 1  overlap, or 

we have a.0  :5 A , or a. 1  < a.o. 

If we are in the first situation, the two contractions are independent of 

one another and we have 

a 1  
M 

AO 	, > 
i0 

No  

If we are in the second situation, neither redex can be of Form (IV), 

(V) or (VII), as none of these can overlap with another redex. For 

most other pairs or reductions, the overlap makes little difference and 

as before, we have 
a 1  

M 

AO I 	
1 > 

 1A 

0 
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There are certain pairs of redexes which interact in a slightly more 

complex way whenever the formula M of one redex is an instance of 

the constant I. This can only occur if one redex is of Form (II) and 

one of Form (III), or one of Form (I) and one of Form (IX), or one of 

Form (VIII) and one of Form (IX). For instance if A O  = !(I) 0!(I) and 

= !(I) ® !((I A I) ® I —o I), then the redexes are of Forms (II) and 

(III) respectively, and overlap at I, It is readily seen that both A 0  and 

Ai reduce by a finite contraction path to I, and thus we have 

M A' No  -& I and M -A' N1  -~ I. 

We put L = M[I/A 0 ]. 

In the third situation, we can assume without loss of generality that 

A1  < A0 . A0  cannot be of Form (IX). 

If A. is of Form (I) or (V), then we have 

A1 	A1  
M 

	

Aol 	
A0[A/A1] 

	

No 	 >L. 
A 1  

The above diagram also describes the situation where A 0  is of Form 

(II) and A 1  is of any Form other than (IX). In this last case, A o  = 

	

!(I Al —o I), and it can be shown that A 0 	I and A0 [I/!(I)} 	I. 

We put L = M[I/A 0 ]. 

If A0  is of Form (IV), then we have 

A1  
M 

AO1/ 

No 
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If AO  is of Form (VI) or (VII), then we have 

M 

	

AO I 	- jAo [;/Ai ] 

	

No 	 L. 
A 1  

If A O  is of Form (III) or Form (VIII) then in all cases but two we have 

A 1 	AJ 	______ 
N' M 	>N1 	- 1 	>I%J1 

No 	 >L. 

In the case where A = !(I -o M)&!(((I -o M)AI)ØI) -o M), the any 

one-step reduction of A O  can be extended to a reduction path from A, 

to !(M), and we put L = M[!(M)/zX 0 ]. 

In the case where &, =!(I) 0!(l Al -a I), then we put L = M[I/LX 0]. 

The result follows. 

I 

We now mention a result of Newman [New42]. 

Proposition 8.4.30 Let B be a binary relation on F. If B is strongly normalising 

and weakly Church-Rosser, then R is Church-Rosser. 

Corollary 8.4.31 S is Church-Rosser. 

Corollary 8.4.32 Every formula in F has a unique normal form, and so is equiv-

alent to at most one canonical formula. 



Chapter 9 

Reachability and Provability 

9.1 Introduction 

We have shown that the canonical formulae Can correspond precisely to the 

marked Petri nets MPetri. We shall use this correspondence to give a semantics 

to canonical formulae in terms of marked Petri nets, and show that this seman-

tics is sound and complete with respect to the fragment C o of linear logic. We 

can extend the semantics to the set of formulae in F which are S—equivalent to 

canonical formulae, and it remains sound and complete. We consider extending 

the semantics to a larger subset of F, and show that, while the interpretation of 

linear implication in terms of nets is problematic, we can give a semantics to A 

which is complete and sound where defined. We show further that if FN and FN , 

are canonical formulae interpreted by the nets N and N' respectively, and FN F FN , 

in £, there is a canonical proof of FN F FN, in LO  in which applications of the 

(Cut) rule always reflect a causal dependency in the net N. 

9.2 A Preorder on Nets 

Definition 9.2.1 Let No  and N 1  be marked Petri nets. We write No  D N if 

. there exists a subset i of E  such that for each element e of e;, pre(e) = 0, the 

marking post(e) is reachable in No  from the empty marking, and further, 

S1  cE0 uS, 

181 
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• Si = B \ {b €1% I b 	M1  & ,& € E1 .(b € pre(e) +post(e))} and 

• the marking M0  can evolve in No  to the marking M 1  of N1 . 

That is, N o  N1  if there exists some marking M reachable by No  such that N 1  

is a subnet of an augmentation of the net N o  with marking M by certain events 

with empty pre-conditions. 

We extend the ordering to sets of nets in the following way, 

Definition 9.2.2 If J'4 and Al; are sets of Petri nets, then we write A 0  Al; if 

for every N 1  EAT1 , there exists N o  € Al; such that No  D N 1 . 

Remark 9.2.3 	is not anti-symmetric, and thus not a partial order. Consider 

the net N consisting of one event, with pre-condition a and post--condition b. Let 

No  be N with marking a, and let N 1  be N with marking b. Then No  :J N 1  and 

N 1  : N0 , but it is not the case that No  = N 1 . 

9.2.1 Examples of the Preorder J 

We give here some examples of nets related by , and the canonical formulae 

representing them. We also show how Theorem 9.6.2 applies to these examples. 

Theorem 9.6.2 shows that markings reachable by a net N correspond to formulae 

provable in the fragment of linear logic 4 from the canonical formula representing 

N. 

Example 9.2.4 



Chapter 9. Reachability and Provability 
	 183 

FN 0 =2AQBØ!(2AØB-03CØ2D) and 

FN 1  =3CO2D0!(2AØB-c3CØ2D) 

In this case, No  N1 . 

N 1  is obtained from N o  by a single firing of the event c. 

Notice that we can prove that 

yjoflfl:ernffflqsI1rNtwJsIoflati:fl!floPJlJ] 

The proof that FN , can be derived from FN, in L o  proceeds as follows 

(putting E for (2A ® B —o 3C 0 2A)) 

(Imp) _________ (Identity) 

2AoBo(EAI)F - 3CO2D 	!E HE (OR) 

2A0Bo!E0(EAI)F - 3CO2D0!E 	
(Der) 

2A0B0EI-3C®2D0!E 

Example 9.2.5 

  

a 	 b 



Chapter 9. Reachability and Provability 	 184 

Es I 

FN'  =3CO2D0!((2AØB)-o(3CO2D)) 

We have N o  N1 . 

Again, we show how FN, can be derived from FN. in C o (as before, putting E for 

(2AØB-o3C02D)): 

(Imp) 

2A0B0(EAI)I - 3CO2D 	
(Weak) 	(Identity) 

2A0BØ!(B-oF)0(EA1)I - 3C02D 	 !Et-!E (&J?) 

2AØBØ(EAI)Ø!EØ!(B --- oF)F - 3CO2D0!(B -oF)Ø!E 
(Der) 

2A0BØ!EØ!(B-oF)I - 3CO2D0!E 

Here, N 1  is obtained from N o  by a firing of e, followed by the removal of the event 

e'. 

Example 9.2.6 

 

a 	 b 

 

a 	 b 

X  2 1 

c 
Of 

N0 = P4 1 = 

1JoY1flffl=.waflPLfl:fl!NWJDJiusI 
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We have N o  N1 . 

Again, it is easy to show that FN , can be derived from FN, in £. In this case, N 1  

is obtained from N o  by a firing of event e', followed by the removal of e'. In this 

case, the condition f is not removed, because it is marked. 

Example 9.2.7 

No = 
	

a 	N1 =(S a 

Here, FN0  = !( A) and FN , = nA. Again, No  N1  and FN , F- 1  FN,. 

9.3 Composing Nets 

We have expressed nets as formulae of linear logic, and hope to give a meaning 

in terms of nets of those connectives of linear logic which apply to such formulae. 

Where No  and N1  are marked nets, we shall give a meaning to the formulae 

FN0  0 FN1 , FN0  A FN 1  and !(FN,), thus defining the composite nets N O ON,, NO  AN, 

and !(N 0 ). We also consider what meaning, if any, can be given to other connectives 

of linear logic when they are applied to nets. 

9.3.1 The Action of  on Nets 

Definition 9.3.1 Let NF be a net represented by the formula F, and NG  the net 

represented by G. Then the composite net N = NF 0 NG is given as follows: 

• 

• 

• pre = preF U preG, 

Post = P0SIF U POSiG and 
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• M=MF -I- MG. 

Lemma 9.3.2 Let NF be a net represented by the formula F, and N0  the net 

represented by G. The composite net NF 0 N0  is the net represented by the 

formula F® G. Thus 

NF 0N0  = NFØG. 

Proof: Immediate from the definition. 	 Fol 

Thus N0  ® NH is the net formed by identifying those conditions and events which 

are common to the two nets NF and N0 . This may introduce conflicts not present 

in either N 0  or NF- 

Thus NFeG  is the quotient of two nets as defined in [Win87]. 

Example 9.3.3 If N 0  and NH are as shown below, 

a 	b 

NHZ 
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then the net N Q®fl  is as follows: 

NQØH. 

In the case where both the event sets and the condition sets of the two nets 

NG and  NH  are disjoint, the tensor product of NG  and NH is their disjoint union. 

Lemma 9.3.4 Let G and H be formulae in F. If NG D NH  then NFeG 2 NFe,t, 

for all Petri nets NF. 

Proof: By definition, 

NFeG = (F U 6G'3F  U BG,preF UpreG,postF UPOStG,MF + M0 ). 

Also, since N : NH, we have 

SBG=BH\{bEBHb m MH & 

'e E (5G \ EH)-(bE m  pre(e) + post(e))}, and 

. MG  can evolve in NG  to M11 . 

Now 8F®G = F U 8G 2 EF U Ejj =  EFOH- 

Also, 

SFOH =  8F U BJJ 

= I3FUBG\(b € 8G lb V. MFØ)Y & ,& € EH.(b E. prc(e)+po.st(e))} 

= 8FØG \{b E 13G lb gm MFØH & & € 8H 	m pre(e) + post (e))} 

= 5FeG\{6 € BG  I b g,, MFØH & fle € tF®H 	m pre(e)+post(e))} 

= SFØG\{b € '3FØG I b g MF®H & 

,Be € EF®H.(b Em  pre(e) + post(e))}. 

Finally, since MG  evolves in NQ  to MH , Mp' + MG evolves in NGeH  to 

MF+MH. 	 0 
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Corollary 9.3.5 If NG  ; NH and NA N B  then NGØA NHØB. 

9.3.2 The Action of A on Nets 

As usual, we understand A A B to indicate the determined choice of one of A and 

B. There is the same difficulty in a graphical Petri net representation of such 

a formula as Girard found in developing a system of proof nets for the additive 

connectives (see [Gir86]). We must consider A A B to be some entity (analogous 

to a proof box) which can be either A or B as required, but not both. 

The concept that the determined choice between two elements of MPetri be 

a net is a simple extension of the usual definition of a Petri net. 

Definition 9.3.6 No  A N 1  is the determined choice between No  and N 1 . 

The concept of determined choice is fundamental to linear logic, and its interpre-

tation is as basic as the interpretation of intuitionistic conjunction by the "and" 

of natural language. 

Notation 9.3.7 We write A 1  for the set defined inductively by 

Al ::= P I No  AN 1 , 

where P € MPetri. 

We extend the definition of to H as follows: 

Definition 9.3.8 

(i) For i=O,1,N0 AN 1 N 1 , and 

(ii)IfNN 1  for i=O,1 then NNo AN 1 . 

Lemma 9.3.9 If N o  and N 1  are nets, then 

= FNO A FN, 
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Proof: Immediate from the definition of N o  AN 1 . 

ME 

To see how the connective A is used in describing nets, consider the case where a 

net N can evolve to two different nets, N o  and N1 . Then we can meaningfully state 

that N can evolve to the extended net N o  AN1 . In this way we can code up in our 

description of the evolution of a net as little or as much as we wish of the history 

of the choices to be made by the net in reaching a given state of evolution. For 

instance, in the above example, if we say that N evolves to N 0 , we are assuming 

that the choice of N o  has been made and N has therefore lost the ability to evolve 

to N1 . If we say that N has evolved to N o  AN 1 , then we are not explicitly stating 

which choices have been made in the evolution of N, and have the option of making 

the choice at some later stage in our description of the development of the net. 

9.3.3 The Issue of Choice 

The usual interpretation of the additive linear connectives is as different aspects 

of choice. Thus A A B represents the determined choice between two resources 

A and B, since we must choose which of A and B we use when A A B is the 

premise of a sequent, only one of the possibilities corresponding to a proof. Simi-

larly, A e B represents an undetermined choice between A and B, in that, when 

used as the premise of a sequent, both possibilities correspond to a proof. The 

terms "determined" and "undetermined" are here preferred to "deterministic" 

and "non-deterministic", as these adjectives have defined meanings in the theory 

of concurrency. Their careless use can cause confusion. In [M0M89], the sugges-

tion is made that whenever in the context of a net the marking M0  A M1  can be 

proved, then the environment (or some idealised observer) can make an "external 

choice" and require that the net reach a particular preferred state. Usually, in the 

study of Petri nets, we understand that no observer can influence the course of 

events, and a conflict is resolved by the net itself. If this resolution of conflict is 

to constitute external choice, we need a conceptual and definitional extension of 

net theory. 
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Example 9.3.10 

Consider the following example: 

N= 

C 

In the notation of [M0M89], we have N = A I- B A C : that is, given the causal 

dependencies of N, the marking A can evolve to either marking B or C. There 

is no possibility of external choice here, however: no observer outside the net can 

demand that it evolve to B or to C. In fact, the net makes an internal choice, 

evolving to either B or C. 

Apart from this obvious objection to the use of the term - "external choice" 

in this context, it is certainly meaningless to discuss what is external or internal 

without a paradigm for the internal (which I suggest should be the behaviour 

of the net itself) and the external (for which I suggest the environment or an 

observer). Marti—Oliët and Meseguer do not offer such a paradigm, nor any way 

of distinguishing external from internal data. We now suggest a means of achieving 

this in our model. Further details are required to establish a full theory: we merely 

outline a possible approach. 

Definition 9.3.11 The internal data of a net N are its events and initial marking. 

Definition 9.3.12 The external data of a net N are properties of its environment. 

The definition of external data presupposes a concept of environment that goes 

beyond the usual one of marking. 

Definition 9.3.13 An internal choice between events of a net is a conflict whose 

resolution is independent of the net's environment. 
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An external choice between events is a conflict whose resolution is influenced 

by the net's environment. 

Remark 9.3.14 An external choice can only occur in a non—empty environment. 

We have expressed the internal data of a net as a canonical formula. We 

can express the external data as admissible axioms of a linear theory. We can 

then prove in the theory properties of the net's behaviour in a given external 

environment. Our purpose is to use sequents as specifications of a net's behaviour. 

Thus if we require a net N to be able to reach a marking B from a marking A, we 

require that the sequent EN, A F- B be derivable in £. If we can derive EN, A F B, 

then we say that N satisfies the specification EN, A F- B. If we can derive EN, A F B 

by use of an additional axiom, for example A F B, then we say that N satisfies 

the specification EN,  A F B in the presence of external data to the effect that the 

environment of N can use A to produce B. 

Consider the net N of Example 9.3.10. In an empty environment it can make 

an internal choice between the events e0  and e 1 . Consider an environment in which 

the marking c is impossible. We can express the fact that c is impossible by the 

axiom F C1 . The external data force the net to make the choice of e0  rather than 

e 1 , and this is an external choice. 

It is precisely because we have expressed nets as formulae that this distinction 

between the internal and the external is so easy to express. It is not possible to 

make the distinction if we represent the nets themselves as theories. 

Our example relates closely to issues of choice and hiding in CCS. In [Mi189], 

Milner considers the processes: 

a.E + b.F and r.a.E + r.b.F 

The first represents external choice between the summands, and the second in-

ternal choice. This is made clear if we restrict each of the processes on b. The 

first, an external choice, cannot deadlock, as the first summand must be chosen. 

The second will deadlock if the second r action is chosen internally. This notion 



Chapter 9. Reachability and Provability 	 192 

of internal and external choice corresponds to our example. In an empty environ-

ment, the net N chooses internally between 6o  and e1 . In the environment where 

we restrict on C, the net is forced externally to choose e. 

As a second example, consider the following sequents derivable in C o : 

(A(DB),!(A -o C),!(B -a C)I- C 

(AAB),!(A-oC)I-C 

(AAB),!(B -o C)I- C 

(A(DB),!(A-oC)I/C 

These derivations indicate that, in the empty environment, a marking of the de- 

termined choice between A and B suffices to produce C if we have only one event 

available. The undetermined choice between A and B does not suffice to produce 

C if we are restricted to one event. If the environment is such that D produces an 

undetermined choice between A and B, which we express by the axiom D E A A B, 

then we can derive the sequent: 

—o C)I- C. 

If, however, the external data are such that our theory has the added axiom 

D F A e B , and none other, then we cannot derive the above sequent. 

The axiom D I- A e B represents an environment in which an external choice 

has been made. We suggest that this is an appropriate use for the operator ED .  

Marti-Oliet and Meseguer illustrate the use of using the sequent N H A F 

B ED $1000. Their suggested interpretation of this sequent is that in the net N, 

the token A is sufficient to produce the token B, or a thousand dollars. This 

specification would be met by a process which always chose the first summand. 

While an accurate description of the meaning of ED, this example is not a convincing 

case for the application of e in specifications. Nor is the process satisfying the 

specification "non-deterministic" fairly. Again, their intended interpretation of 

the term "internal" is not stated. 
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The specification N = A F B e $1000 indicates our reasons for omitting the 

connective ED from the conclusions of a sequent. We now consider the role of e in 

the premises of a sequent. If the external data consists of the axiom X Y F C, 

then in order to derive a sequent of the form 

FN,XeYI -  z, 

we must derive both FN,X F Z and FN,Y F- Z. Thus our specification represents 

two sub—specifications: as a connective among the premises of a sequent, $ is a 

useful abbreviation. Further, if we can derive both FNS F X and FN, F Y, we can 

derive FN , F C, thus eliminating the connective e. 

The connective ® might also occur on both sides of a sequent, thus: 

FN, XeY F F,XeY. 

In this case, the premises are under—specified, in that we do not know which of X 

and Y will be used. The conclusion is also under—specified, and the choice remains 

to be resolved by a more detailed specification, or by an elimination. 

We have shown that e is applicable to specifications using external data. How-

ever, its use in describing internal data is primarily as an abbreviation. Since we 

are concerned in the rest of Part IV with internal data only, we shall not give an 

interpretation of e as a combinator of Petri nets. 

9.4 Nets and Equivalent formulae 

Our intention is that S—equivalent formulae represent the same net. Corollary 8.4.12 

shows that 

if F=G and FF, F' then GF, F' 

Thus S—equivalent formulae convey the same information -  about the transforma-

tion of resources. We now give an example of a nets and several equivalent formulae 

representing it. 

Consider the following example: 
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Example 9.4.1 

N= 

The canonical formula representing N is FN = !(A 0 2B —o 370 2f)' . However, 

each of the formulae 

• !(A®2B—o3CQ2D)O((AQ2B—O3CO2D)AI)and 

• ((AO2B—o3CO2D)AI)O !(A(D2B—o3CO2D) 

conveys the same information as FN about the transformation of resources, and 

so may be considered to represent the net N. Notice that all three non—canonical 

formulae are 8—equivalent to FN. 

9.4.1 The Interpretation of !(A) 

Example 9.4.2 An important example of S—equivalent formulae which represent 

the same net arises when we consider the following net N: 

The canonical formula representing the net N is form(N) = !(nA). A different 

formula representing the same transformation of resources is !(I —o mA). 

Again, we have !(I —o mA) 	s !(mA). 

A net of this kind might represent, for example, a stream of integers which can 

supply as many integers as a process requires, or a resource allocator which can 

make the resources it controls available an arbitrary number of times. 
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Lemma 9.4.3 If NqF) N0  then NI(F) N!(a). 

Proof: 

If N0  is unmarked then !(G) = C and the result follows immediately. 

If N0  has non-empty marking M then N! (o)  has an event e EG  such 

that pre(e) = 0 and post(c) = M. Further, the net N!(F) can evolve to 

M from the empty marking. Putting e; = { e} we have 

E?(G) c EL  6!(F), and 

81 = 

while both N! (Q)  and N! ( p)  are unmarked. 

By definition, we have NqF) N!(Q). 	 0 

Remark 9.4.4 Consider a canonical formula F. Then 

F=MØØ.M —o M)ØØ!(Mj. 
jEJ 	 kEK 

Since ! is idempotent, we have 

	

!(F) =S  !(M) ® 0 	—o M4) 0  ® !(Mk), 

	

JEJ 	 kEK 

and so !(F) is also canonical. 

Thus the nets representing canonical formulae F and !F have identical transitions, 

while all places of NIF  are considered to have a potentially inexhaustible supply of 

tokens. We can regard this as indicating that the behaviour of N!p  should be the 

limiting behaviour of NF with respect to the piling up of resources. Notice that 

the accumulation of resources can only generate tokens in a certain proportion. 

For example, if M(a) = 1 and M(b) = 3, then every generation of a token at a 

must be accompanied by the generation of 3 tokens at Li. 
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9.5 A Semantics for Canonical Formulae 

The function form gives rise to a semantics for canonical formulae which expresses 

each formula as an isomorphism class of nets. Thus we define a function ft - Jj 

from Can to MPetri as follows: 

• ftA] = 	 for A a linear atom, 

• II]] = 

• ft M]]  (, .At(M 0), 0 , 0, M0 ), for M a tensor product of linear atoms, 

• ft!(M)] = ({e},.,4i(M), pre, post, ø), where the pre- and post-condition re-

lations are given by pre(e) = 0 and post(e) = M, 

• j[!(M0  -o M1 )]j = ({e},At(M 0  -o M1 ),pre,post,0) where the pre- and 

post-condition relations are given by pre(e) = M0  and post(e) = M1 . 

• IC0 ® C1 ] = ftC0]I ® 1 C1 ]], where Co , C1  and C0 ® C1  are all canonical. 

We can easily extend this semantics to the larger class of formulae in F which 

have canonical S-normal forms, thus: 

if F=SFN and FNECan, then ftF]j =ftFN]]  =N. 

Notation 9.5.1 If F is a formula with canonical S-normal form FN, then we 

shall write NF to stand for [F]], and call N the net represented by F. 

Corollary 8.4.32 ensures that ft - ]] remains well-defined with this extension. 

This, however, does not greatly increase our understanding of the use of linear logic 

as a language for specifying Petri nets. In Section 9.3.3 we mentioned reasons for 

omitting an interpretation of the connective ED. An interpretation of the formulae 

of F would therefore achieve our objectives of a fuller understanding of linear logic 

formulae as Petri nets. However, there are difficulties in giving a semantics to all 

of F, and we here merely comment on the semantics of formulae which do not 

have a canonical normal form. 
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9.5.1 The Semantics of Linear Implication 

Our major problem lies in giving a semantics to linear implication between Petri 

nets. In the restricted case where the implication is between markings, a possible 

semantics for M0  -o M1  is the following: 

ftn(M0  -o M1 )] = ( e}, {c} U .At(M 0  -o M1 ),pre,post,rzc), 

where C is an atom disjoint from At(M0  -o M) and the pre- and post-condition 

relations are given by pre(e) = c + M0  and post(e) = M1 . This would give, for 

example: 

ftri(A -oB)I 

NO 

Such an interpretation accords with the intuitive meaning of n(Mo  -o M1 ). How-

ever, the net ({c},{c}U.4t(M o  -o M1 ),pre,post,rzc) is the semantics of the canon-

ical formula nC &!(C ® M0  -o M1 ). We could add a clause to the definition of S 

making these two formulae S-equivalent. Notice, however, that the two formulae 

are not interderivable, although we can prove that 

nCO!(COM0 -oM1 )Hn(Mo --oMi ). 

Notice also that the formula !(M0  -o M1 ) 0 n(M0  -o M1 ) has normal form 

-o M1 ). Thus we have two different nets interpreting equivalent formulae. 

We can overcome this by defining an equivalence on nets under which 

ft!(M0  -o M1 ) ® n(M0  -o M1 )] and ft!(M0  -o M1 )J] are equivalent. Because 

we ensured that S-equivalent formulae convey the same information about the 

transformation of resources, such an equivalence on nets is a natural one. 

Thus we would need to extend our reduction system and introduce an equiva-

lence on nets in order to give a suitable interpretation to the formula n(Mo  -o M1 ). 

Although rather technical, this appears to be a promising approach. In order to 
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interpret formulae of the form !(M0  —o M) —o 	—o M 1') as a net, we would 

have to extend our concept of net considerably, since the natural interpretation is 

that of an event whose pre—conditions are a net and whose post—conditions are a 

net. This extension appears to be straightforward. 

9.5.2 The Semantics ofFAG 

In order to interpret the operator A on formulae in addition to the operators 0, 

—o and !, we use the powerset P(MPetri) rather than MPetri itself. 

Definition 9.5.2 The set Can,, is the set of equivalence classes under permuta-

tion of the formulae C defined inductively by 

C ::= Can I Co  AC 1 . 

We can modify our semantics so that a set of Petri nets corresponds to each 

formula of Can,,, by giving a function I - JI' from Can, to P(MPetri). 

Lemma 9.5.3 The assignment - Jj' given as follows: 

{ftFfl 	ifFECan 

ftF0 ]JuftF1 J if F=F0 AF1 , 

defines a function from Can, to jV. 

Proof: Evident. 	 I. 

Remark 9.5.4 This approach, which uses sets to give a semantics to a choice of 

behaviours, seems related to Plotkin's powerdomain construction [Plo 76], and fur-

ther consideration should be given in further work to this aspect of our semantics. 

Sections 9.5.1 and 9.5.2 suggest that, with considerably more work, we could 

develop a sound semantics for the formulae of F as (sets of) Petri nets. As we have 

seen, it is relatively straightforward to extend the interpretation of the tensor frag-

ment of linear logic, and interpret also the operators A and ! as net constructors. 

The interpretation of linear implication remains unresolved. 
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9.6 Reachable markings as Provable Formulae 

The partial function I - ]J from I to MPetri gives a semantics for certain 

formulae of I in terms of Petri nets. We now show that this semantics is complete 

with respect to the fragment C o  of linear logic, and also that, where defined, it is 

sound. Thus we show that: 

if NQ N' then FN F FN,, (completeness) and 

if FF F' and [- 1] is defined on both F and F', 

then 	Ffl 	ftF'. (partial soundness) 

Remark 9.6.1 When proving completeness we use only rules for which our se-

mantics is sound, and hence the completeness is non-trivial. 

In Section 9.6.4, we show further that f - ' gives a complete and partially sound 

semantics for the larger fragment of linear logic L. 

9.6.1 Soundness and Completeness for C o  

Theorem 9.6.2 

If N and N' are both Petri nets in MPetri and N D N' then FN I- FN, is 

provable in C o . 

If N is a Petri net, FN F G is provable in 4, and C =S FN?, then N N'. 

Proof: Proof of (1) is straightforward. 

If N N' then by considering the definition of we see that there is 

a chain of nets N=N 0 JN1  D .JN=N' such that each net is 

related to the net above it in the chain in one of the following ways: 
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N+i  is obtained from N i  by allowing the occurrence of exactly 

one of the of events N 1  whose preconditions are all marked 

N1+1  is obtained from N 1  by removing exactly one of the events 

of N1  

N11  is obtained from N i  by replacing exactly one of the events 

of Ni  which has empty pre-condition set by an integer number of 

copies of its post-condition set. 

Case (i). To show that FN , I- 	we need only show that for any 

F, we have 

F,!(A-ciB)®AI-F,!(A--oB)®B, 

the proof of which is as follows: 

(Id) ________ (Id) 

Al- A 	BE- B 
(-o L) 
	

(Id) 

Ae(A -oB)FB 	 F®!(A-oB))-I'®!(A-oB) (®R) 

F®!(A-oB)Ø(A-oB)ØAI-F®!(A-oB)®B 	
(Derel) 

Fe!(A-oB)®!(A.-cB)®AFF®!(A-oB)ØB 	
(Cont) 

nJp2c.aflla tflflw:lfl!' 

Case (ii). To show that FN , F 	we need only show that for any F, 

F, ! (A -o B) I- F. 

This is a simple consequence of the rule (Weak). 

Case (iii). To show that FN , F 	we need only show that for any 

F, 

F,!M I- F,nM. 
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This is a simple consequence of the rule (Derel). 

We now have that, for each i, FN F- 

Applying the (Cut) rule (ii - 1) times, we deduce that FN, I- FN,  and 

hence that FN  I- FN?. 

Proof of (2) is by induction on the vertical depth of the derivation of 

FI -G. 

Base Case. There are two possibilities, corresponding to the two ax-

ioms. 

If this is an instance of the Identity axiom F H F there is nothing to 

prove. 

If it is an instance of (IL) or (IR), then since we interpret I by the 

empty net (, 0, 0, ), the result is immediate. 

Inductive Step. 

• Suppose the last rule used in the derivation was (Cut). The 

derivation ends: 

F1 1-G F2 ,GI-B 

F1,F2I-B 	
(Cut) 

In this case F = F1 0  F2 . By the inductive hypothesis, 

NF, ; NG  and NF2 ØG NB. 

By Lemma 9.3.4, 

NF1ØF2  D  NG ® NF2  = NF20G NB. 

Hence NF1®F2  N2 , as required. 
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• Suppose that last rule used was (Exch). 

r, A, B, A I- C 
F,B,A, A F 

Since F® B® A® A represents a net, F® A® B ® A represents 

the same net, that is, 

Nr®aØAea = Nr®AØBeA. 

By the inductive hypothesis, Nr®A®B®A 	Nc, and so 

NreB®A®A N, as required. 

• Suppose that last rule used was (®R). 

FE-A L1+B 
F, FA®B ®  

By the inductive hypothesis, N : NA and NA : N11 . 

By Corollary 9.3.5, 

Nroa  

• Tithe last rule used was (®L), then there is nothing to prove. 

• The last rule used cannot have been (—o L): 

FE-A &BFC 

&F,A —o B F- C' 

since the formula E ® F ® A —o B is not in canonical form. 

• Suppose the last rule used was (Weak): 

F E-  B 
F, ! A F 

By the inductive hypothesis, N 	N11 , and by Lemma 9.3.4, 

NFØIA Ni ', whence the required result. 

• Suppose the last rule used was (Cont). 

F,!A,!A F B 

F, !A F-  B 
(Cont) 

By definition, F &!A 0 !A represents the same net as F ® M. 

Thus we have NF ® !A = Nr®IAØIA J N11. 
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• Suppose the last rule used was (Der). 

r, (A A 1), !A F- B(Der) 
F, !A I- B 

As in the case of (Cont), this case follows immediately from the 

definition of equivalent formulae. 

• Suppose the last rule used was (!R). 

!(F) I- G 
(!R) 

!(F)I-!(G) 

The result follows immediately from Lemma 9.4.3. 

This completes our proof of Theorem 9.6.2. 	 0 

9.6.2 Soundness and Completeness for £ 

We now show that the partial function 1 - j' from F to P(MPetri) gives rise 

to a semantics for L which is complete and partially sound. Since j - J' is 

defined on Can, and Can C CanA , this is a significant extension of the result of 

Theorem 9.6.2. 

We extend !, 0 and A to sets of nets pointwise. Thus if X. and A 1  are sets of 

nets, we have 

M 0.N1  = { N0  0 N1  I Ni  € Ari for i = O,1}, 

AA.A/={N0 ANi IN1€JV.fori=0,1},and 

!(.A/)= {N 0  IN0 €V0 }. 

Notation 9.6.3 Let A 1  be a finite element of P(MPetri). We write FAr for the 

formula A{N I N E .A1}, and call FAr  the formula representing the set of nets M. 

Theorem 9.6.4 
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If H and H' are both elements of 7'(MPetri) and Al : Al' then for each 

N' e H' there exists N e H such that EN F 1  FN is provable in L. 

If H E P(MPetri), Fg F G is provable in £, and C =S F1, then H H'. 

Proof: (1) is an immediate corollary of Theorem 9.6.2. 

The proof of (2) is a straightforward extension of the proof of Theo-

rem 9.6.2(2), for each rule of C o . 

We now show soundness of the semantics ft - ' with respect to the 

rules for A. 

. Suppose the last rule used was (AR): 

FE-A EsFB 
F, F AAB 

By the inductive hypothesis, ftI']l ' 	ftAlj' and  ftFI' 

By Definition 9.3.8,I1I'1' :i [AAB]]'. 

. Suppose the last rule used was (ALl): 

F,A F- C 

F,AAB F- C 

By the inductive hypothesis, fl' 0 Al' ftC]j'. 

By Lemma 9.3.4 and Definition 9.3.8, ft FO(AAB) ' J ft FoAJ]' ] 

1 C ] I  ,  as required. 

In the case where the last rule used was (AL2), the argument is similar. 

LN 
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9.7 Canonical Derivations 

In this section, we consider only single nets, rather than sets of nets, and work 

with the fragment L o  rather than L. There may be many different ways in 

which a sequent F I- G can be proved. If FN and FNS are the canonical formulae 

representing the nets N and N', and N :i N', then we can distinguish a certain 

class of derivations of FN F- FN,  which reflect exactly the nature of the containment 

NN'. 

From the definition of , we know that there is a sequence of operations by 

which N can be transformed into N', each operation being one of the following: 

the occurrence of a firing of N 

the removal of a event of N. 

It is clear that we can order these operations so that all those of the second 

type follow all those of the first. We then obtain a sequence of nets, as in the proof 

of Theorem 9.6.2(1), 

No  N, ." N,,= N', 

where there exists a k between 0 and it such that for 0 < i < k, N1+,  is obtained 

from N i  by doing a firing of Ni , and for k < i < it, N11  is obtained from N i  by 

removing one of the events of N i . 

We build a derivation of FN F- FN , from the bottom up in the following way 

(1) For each of the k firings used in the evolution of the chain of nets, we apply 

the appropriate instance of the rule (Der). For convenience, we subscript the 

labels of rules to indicate which application of the rule is intended. Observe 

that in the case where an event has empty pre-conditions, we merely make 

a copy of a multiset. 

'Compare the normal form for natural deduction proofs 
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(Der) 1  

-o Mk) Ø((Mk -o Mk ) AI)®  ... Ø!(Mi  -OM)F-  FN 
(Der) k  

I'Ø!(Mk-o Mk ) ® ... ®!(Ml --oMDFFN ,. 

Here we have FN. =F3!(M1  0M)Ø ... Ø!(M k -0M'J 

(2) For each of the k firings used in the evolution of the chain of nets, we apply 

the appropriate instances of the (Imp) and (Id) rules. 

(Id) 

Mk I- Mk 
	 I' F- FN 	

(Imp)k 

(Id 1 ) 
	

(Imp) 2  

M1 F-MI 	 I"Ø((Mk -o ML ) Afl® ... MIF-FN ,. 	
(Imp) 1  

I"® ((Mk -o Mk ) AJ)Ø ... M 1  -oMf)AJ)®M 1  HEN 

Here, the formula 

F'Ø((Mk_o Mk) AI)®  .. . ((Mj_oM)AI)®Mlstands for 

Now, since N 1  is obtained from N i  simply by allowing a firing to take place, 

we know that, for i = 1 t Ic, 

FN.®MI=FNUI ®M:. 

It follows that 
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From the proof in (2) we see that 

Fl ® Mk  ... øMj =PØMl ø Mk, "®M, 

and since by construction of F' we have FN, = F' 0 M1 , we see that F1 = FN k . 

(3) Next, for each of the (it - k) events removed in the evolution of the nets, we 

apply the appropriate instance of the rule (Weak): 

F" F F 	
(Weak) fl _k 

F" ® !(Wfl _k —o W' k ) I- F 	
(Weak) fl _k _ l  

(Weak) 1  

F" 0 !(W 1  —o W') 0 * .• !( W_k —o  W, k ) I- F 

Here we have FN , = F" 0 !(W1  —o Wi') 0 ... !(W_k —o W' k ). 

Also, by construction, for i = 1 to it - 

FNk+ . ® !( T'V —o W') = 

Hence F" =FN, and the canonical derivation of FN. F FN can be completed 

with an instance of the (Identity) axiom. 

Notation 9.7.1 We calla proof in the form described above a canonical derivation 

of FN F  FNS. 

Remark 9.7.2 For any two canonical formulae FN and FN , where N D N', such 

a derivation is unique up to the the number of repetitions of cycles of markings in 

the evolution of the net N, and up to the order in which firings are done or events 

removed (although of course in some cases there will be some firings which can 

only occur after a number of other firings has taken place). 
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Schematically, a canonical derivation has the form shown below 

(where G=UM2_oM)Afl® . ((Mk -0 M,9Afl) 

(Id) 

FN I-  F 

F-  
(Id) 	

FN 

MkI- Mk 	 FN, FFNfl  

(Weak) 

(Weak) 

(Id) 
(Imp) and (Id) 

M1} - M1 	G® FN, FFN.  

(Der) 

((M1 —o M) Al) ® FN, I- F 
(Der) 

FN, I- FN 

9.7.1 	Example of a Canonical Derivation 

(Id) 

F® (A —o 2)020 D i-re !(A -02)0 B® D 
(Id)  (Weak) 

c i-C 	 F® (A —o B) 0 (C —o D) 0 R®D i-  F® (A —0 2)020 D 
(Id) (Imp) 

A F A 	F ®I(A —o B)e!(C - D)Ø((C —0 D) A1)® RØC I-F e!(A —0 2)020 D 
(Imp) 

F Ø(A -02)0 ((A —o B) A 1)0 !(C —o 2) 0((C —o D) A 1)0 A® c i -re (A -.2)0202 
(Der) 

F® (A —o B) 0((A .-0 B) A 1)® !(C —o D) 0 A® C I-F® (A —o B) ®2O D 
(Der) 

F® (A -.R)0 !(C .. D) 0 A® Cl-F® (A—oE) 0 B® D 

There is a very important feature of such a canonical derivation. The only way in 

which (—o L) is used in a canonical derivation (implicitly in the use of (Imp)) is 

to use up a copy of a firing which has been generated by an instance of the (Der) 

rule. Thus no false dependencies can be introduced into a formula in a canonical 
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proof: any subformula of the form 

((&M —o ØM k ) 

jEj 	kEK 

must correspond to a event present in the net N with which we started, and so the 

(Imp) rule reflects a genuine causal dependency inherent in the net, rather than 

(as might be the case with a proof of some other form) a dependency introduced 

as a result of applications of the Cut rule. Compare the results of [0089], where 

proofs can be limited to a certain form of (Cut) which reflects causal dependency 

in the nets being modelled. 

9.7.2 Canonical derivations and Evolution 

Theorem 9.7.3 If FN 	G then *12(4 exists OL yjefr N' swch 1-hat 

C =s FN,, and 

FN F- FN, and the derivation is canonical. 

Proof: (i) follows from Theorem 9.6.2 

For (ii), notice that since C has normal form FN, for some N', and by 

Theorem 9.6.2, N N', the discussion of Section 9.7 implies that there 

is a canonical derivation of FN , I- FN, in 4. 	I 	

0 

9.7.3 A Remark about Categories 

A canonical derivation between two formulae in Can is unique up to cycles of 

markings and the order of application within each of the three sets of rules cor-

responding to firings, to making copies of firings, and to removal of events. We 

shall consider canonical derivations to be equivalent if they differ only in the order 

of rule application and the presence of cycles. Up to this equivalence, there is at 

most one canonical derivation between any two canonical formulae. There is a 

canonical derivation of any canonical formula from itself by application of the rule 
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(Id). Theorem 9.7.3 suffices to show that whenever we have canonical derivations 

A F B and B F- C, there exists a canonical derivation A F C. Thus we can regard 

Can under equivalent canonical derivations as a preorder, and hence as a category. 

We shall denote this category Can. 

Furthermore, we can regard the preorder (MPetri, ) as a category. We shall 

denote this category MPetri. Theorem 9.7.3 shows that the categories Can and 

MPetri are isomorphic. This isomorphism expresses the fact that the category 

MPetri is a sound and complete model of canonical linear logic formulae under 

equivalent canonical derivation. If we consider categories with object set those 

formulae which are S—equivalent to canonical formulae or to formulae of form 

A C for a finite indexing set J and canonical formulae C, we can define categories 
jEJ 
of formulae representing which are equivalent to the category MPetri. This allows 

us to consider larger classes of formulae and of derivations. 
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Conclusion 

This thesis explores three ways in which linear logic may be used to define a 

specification language for Petri nets, by giving precise correspondences, at different 

levels between linear logic and Petri nets 

In Part II, we define a collection of categories whose objects are Petri nets and 

whose morphisms are refinement maps. These categories are based on de Paiva's 

dialectica category GC, and like GC are sound models of linear logic. The rich 

structure of our categories gives rise to both new and existing constructions on 

Petri nets. Thus we can interpret the linear connectives A, 0, —o,  ffi and 

as constructors on nets, and these constructors have interesting computational 

meanings. Restriction is readily handled in our framework, and this, together 

with the net constructors ® and A, allows us to represent any binary, commu-

tative, associative parallel composition of nets by a simple construction in the 

category. Several existing categories arise as special cases of our construction, and 

the unifying framework of the dialectica categories allows us to reason about these 

different categories by considering a single category. One of the aims of a categor-

ical approach to processes is to give a compositional treatment which, combined 

with categorical logic, gives rise to proof systems and specification languages for 

parallel processes. In addition, functors between different categories of model can 

be used to relate the various models of concurrency. 

While Part II considers the specification of net structure, Parts III and IV apply 

linear logic to net behaviour. In Part III, we show that the possible evolutions of a 

net give rise to a quantale. Since quantales are algebraic models of linear logic, we 

obtain a sound model of linear logic based on the dynamic behaviour of a net. We 

can then use linear logic to specify dynamic properties of a net, including safety and 

liveness properties. Linear implication expresses the possibility of an evolution, 

and thus acts as a modal operator. We show further that such restrictions on nets 

as being safe, or bounded, arise naturally as the subquantales induced by various 

conuclei. 
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In Part IV, we show that certain formulae of linear logic correspond precisely 

to finite, marked Petri nets. This allows us to give a semantics in terms of nets 

for a considerable fragment of linear logic. This semantics is complete, and sound 

where it is defined. We show that evolution in nets corresponds precisely to linear 

proof, and hence we can apply the proof theory of linear logic to the study of 

net behaviour. For any property of nets which can be expressed as a formula F 

in the calculus C O , we establish that a net N satisfies the property by giving a 

derivation of F from the formula representing N. Because formulae correspond 

precisely to nets, we can combine nets using any of the operators with which we 

usually compose formulae. Thus we have a rich language for describing nets, as 

in Part II. The results of Part IV allow us to reason about both structural and 

behavioural properties of nets. 

Further Work 

We now indicate some of the directions in which the work of this thesis could be 

extended. 

Extending the Results of Part II 

The principal area for further work arising from the material of Part 11 lies in 

the extension of the theory to cover arbitrary nets, rather than restricting our 

attention to the elementary nets, as we do here. Work in progress with de Paiva 

will address this issue. We here outline the approach which will be taken (see 

also [B090]). 

We can regard a relation on sets S and B as a function from S x B into 2, and 

a multi-relation as a function from S x B into N. Thus we can represent a Petri 

net N = (&,B, pre, post) by a pair of functions S x B -* N. We build a category 

whose objects are Petri nets as follows: 

• objects are nets, denoted 9 x B fl N, 
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a

0  
a morphism from C  B 	N toe' x B' 	N is a pair of functions (1 F) 

where f: S -* 6' and F: B' - B such that 

SxB' lxF 'SxB 

ixil 	
ira 

S'xB'-]l 	-N 

• where the symbol > represents an ordering on functions from S x B' to N, 

given pointwise, and 

• composition is pointwise. 

We can generalise de Paiva's constructions to this category, obtaining a sound 

model of linear logic. 

A second important area for research is that of behaviours. Ideally, the oper-

ations 0, A and so on which we have defined on nets should extend to categorical 

structure in a category of behaviours of nets. Theorem 5.3.1 indicates that this is 

straightforward in the case of the product of two nets. However, in the case of the 

coproduct of two nets the situation is more complex, and the direction to take is 

not clear. A preliminary approach to this issue is given in [BG90]. Further work 

should take into account the related results of Nielsen, Rozenberg and Thiagarajan 

in [ER90], [NRT90] and [Thi87]. 

Extending the Results of Part III 

The natural extension to the semantics we give in Part III to linear logic using 

a net—quantale is to increase the expressiveness of our language. This involves 

adding fixed point operators and second order quantification. A soundness proof 

for such an extended calculus would enable us to make and prove moi. interesting 

assertions about nets. 
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Work in progress with Tofts will consider quantales generated by CCS pro-

cesses. 

Extending the Results of Part IV 

There are two important extensions to the results of Part IV. Firstly, it is natural 

that the use of formulae to represent nets should lead to a notion of refinement 

on nets, since a formula may be considered either as an atomic condition in the 

net, or, if it has a suitable structure, may represent a whole subnet. For example, 

suppose G = A®B®!(A®B —a C). Then if C is a factor of some FN, we can either 

regard C as simply a condition of N, or we can substitute A® B® !(A ® B —o C) 

for C in FM to obtain FN ,, where N' is in some sense a refinement of N, since 

the place C has been expanded into an event with a marking. The notion of 

refinement obtained by following this approach is closely related to that discussed 

in [NRT90]. In general, it is hoped that some of the ease with which we can 

manipulate formulae of linear logic may be transferred to Petri nets, giving us a 

slightly different approach to the issue of compositionality. 

Secondly, as in the case of Part III, it would be useful to explore the use of 

second order quantifiers. When a given formula witnesses an existentially quanti-

fied formula, the corresponding net should implement the process specified by the 

quantified formula. 
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