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Abstract

This paper defines a category GNet with object set all Petri nets.
A morphism in GNet from a net N to a net N′ gives a precise way of
simulating every evolution of N by an evolution of N′. We exhibit a
morphism from a simple message hanker to one with error-correction,
showing that the more refined message handler can simulate any be-
haviour of its simple counterpart. The existence of such a morphism
proves the correctness of the refinement.

Earlier work [Bro90, BG90, BG] defined a modular theory of ele-
mentary Petri nets based on de Paiva’s Dialectica categorical models
of linear logic. We here modify her construction, defining categories
MNC which model intutionistic linear logic [GL87]. GNet arises nat-
urally from MNSet inheriting the structure which models linear logic.
This more general framework has several advantages over our previ-
ous one. The theory is simplified, we obtain precise results about
morphisms as simulations, relating them to CCS, and we obtain a
natural extension to marked nets.

The linear connectives are modelled in GNet by net combinators.
Being functorial, these combinators opi are such that, if each Nj is re-
fined by a net N′

j , then opi(N0, . . . ,Nm) is refined by opi(N′
0, . . . ,N′

m).
We show that the operation of restriction also has this property, and
thus (in the language of algebraic specification) our notion of refine-
ment composes horizontally with respect to the linear connectives and
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restriction. Furthermore, our notion of refinement composes vertically
because it corresponds to categorical morphisms. These properties of
our notion of refinement are precisely those required to develop an
algebra of nets in which complex nets can be bit from smaller compo-
nents, and refined in a modular and compositional way. We illustrate
our approach with an extended example, analogous to Milner’s Job-
shop example.

1 Introduction

Petri nets [Rei85] are a long established and relatively successful model of
concurrent systems. They admit an appealing operational interpretation, the
“Token Game”, and their simple graphical presentation makes them a con-
venient system with which to describe or specify concurrent systems. This is
evidenced by the successful industrial application of systems such as Jensen’s
Petri Net Tool [Jen90]. Finally, they provide a framework in which to inves-
tigate the issues relating to non-interleaving models of concurrency.

Unfortunately, there are significant difficulties in using Petri nets to de-
scribe and specify concurrent systems, primarily the lack of good notions of
refinement and modularity. By refinement we mean the process of building
an increasingly detailed description of a system by progressively replacing
simple components with more complex ones. Intuitively, a net N′ refines N
if N′ incorporates more design decisions than N: in this case we expect N′ to
be able to simulate every evolution of N, in the sense that every evolution
of N induces a corresponding evolution in N′. Modularity allows us to build
complex systems from simpler component subsystems. These ideas, which
correspond respectively to the notions of vertical and horizontal composition
of refinements in the field of algebraic specification [Wir71, ST88], are essen-
tial to developing an implementable theory of specifications (in the manner
of Z [AS79], Clear [BG80] and V DM [Jon86]). We expect suitable notions
of refinement and modularity to satisfy certain properties. Firstly, we expect
the identity operation to be a refinement. Secondly, if we have a refinement
of a net N0 by N1 and a refinement of the net N1 by N2 then it should be
possible to compose these to obtain a refinement of N0 by N2. Thirdly, we
would like a number of net building operations opi with which to construct
a complex net opi(N0, . . . , Nn) from any component nets N0, . . . , Nn. Fi-
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nally, we want our refinement to compose horizontally with respect to each
of these operations opi [ST88]. That is, if each Nj is refined by a net N′

j then
opi(N0, . . . , Nn) should be refined by opi(N

′
0, . . . , N′

n).

Winskel [Win84] has addressed these issues by defining a category in which
the objects were Petri nets and the morphisms represented partial simula-
tions. There are several advantages to a categorical approach. Using mor-
phisms to represent refinements ensures that we have compositionality of
refinements, and furthermore that the composition of refinements is asso-
ciative. That is, if we have refinements f : N0 → N1, g : N1 → N2 and
h : N2 → N3 then refining N0 to N2 by fg and then refining by h is equiv-
alent to refining N0 to N1 by f and then refining by gh. In addition, any
structure that the category of nets possesses (for example, products and co-
products) yields the constructors on nets we require for a modular approach.
The functoriality of the categorical constructions ensures that refinement
composes horizontally with these constructors. Thus we have a basis for an
algebraic theory of specification using Petri nets.

Further, categories with sufficient structure are endowed with an associated
logic. Thus Cartesian closed categories correspond to simply typed lambda
calculi [LS86], toposes correspond to intuitionistic logic [Fou80, Joh77] and
symmetric monoidal closed categories with certain other structure appear
to correspond to Girard’s Linear Logic [Amb91, See89]. Therefore, if our
category of nets has the appropriate structure, we obtain a logic for reason-
ing about nets and refinement. In addition, expressing models of concur-
rency as categories enables us to explore the relationships between models
by exhibiting functors between the categories. Notably, Winskel and Nielson
[Win84, NW91] have shown that many different models of concurrency can
be related by reflections or coreflections between the associated categories.
Finally, the level of generality offered by a categorical approach often makes
it relatively straightforward to modify the structures under consideration.

We have described a number of advantages of the categorical approach.
However, these pleasant algebraic properties are to no avail if the categorical
structures do not have a meaningful computational interpretation. In partic-
ular, the definition of morphism between nets should accord with the intu-
itive notion of refinement, and the categorical constructions on nets should
correspond to useful net–building operations. The difficulties in defining a
suitable notion of net morphism are demonstrated by the large number of
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categories of nets which has been proposed [Bro90, BG90, BG, DMM89,
MM88a, MOM89, NRT90, Win87, Win88]. Many of these categories arise as
instances or as subcategories of instances of the construction we now present.

In this paper, we define a new category of Petri nets based on de Paiva’s
categorical models of Girard’s linear logic [Gir87]. The morphisms arising
from this abstract approach have an appealing computational interpretation
in terms of simulations. Further, for a wide class of nets, all simulations
are captured by our morphisms. Thus we obtain a compositional notion of
net refinement. Our category is a sound model of linear logic and so has
a rich categorical structure. In particular, it is symmetric monoidal closed
and has finite products and coproducts. These constructions, together with
restriction (net containment) constitute the operations we require to give
a modular theory of nets. Our notion of refinement composes horizontally
with respect to each of these operations. We here apply this theory in a
detailed example along the lines of Milner’s Jobshop [Mil89]. Also, we obtain
a natural extension from unmarked nets to marked nets. This preserves the
categorical structure required for a modular theory of net specification, and
retains the interpretation of morphisms as simulation. Since our category is
a model of linear logic, we can develop a linear proof system for reasoning
about net refinement.

This paper contains three important extensions of our previous work [Bro90,
BG90, BG]. We extend our construction from elementary Petri nets (nets
in which no arc has weight greater than 1) to all Petri nets. We obtain re-
sults giving a precise understanding of the morphisms as simulations which
are closely analogous to simulation in labelled transition systems, and we
give a more detailed analysis of the ideas of simulation and modularity. Our
model encompasses several others. Further, it admits a natural extension to
marked nets which preserves the categorical structure required for a modular
theory of net specification, and retains the interpretation of morphisms as
simulation.

2 Summary of the Paper

In this paper we address the issue of modular specification of concurrent
processes by constructing categories of Petri nets. In Section 3 we review
the definitions and properties of Petri nets. Recall [DP89, DP88] that de
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Paiva constructs a class of categories GC, in which objects are relations in
a category C and the morphisms give a notion of map between relations.
In [Bro90, BG90, BG] we constructed a category of elementary Petri nets
based on GC. In Section 4 we modify the construction of GC to obtain a
class of categories MNC whose objects are generalised relations. In Section
5 we show that the categories MNC, like the categories GC, have sufficient
structure to model Girard’s linear logic [Gir87].

In Section 6 we construct a category GNet of general nets, based on the
category MNSet. In our earlier work we indicated how the morphisms could
be understood as a notion of refinement or simulation. In Section 6 we make
this precise. We show that whenever there is a morphism 〈f, F 〉 from N to
N′ in GNet, if N can evolve under a sequence of events e0, e1, . . . , en then
N′ can evolve under the sequence of events f(e0), f(e1), . . . , f(en). We also
relate this to the notion of simulation in labelled transition systems such as
CCS. Finally, we give a practical example of a morphism which shows how
a simple message handler is simulated by a more sophisticated one.

In Section 7 we characterise GNet as a limit in Cat. As a consequence,
all the structure of MNSet lifts to GNet, which has finite products, finite
coproducts and is symmetric monoidal closed. Thus GNet has sufficient
structure to model intuitionistic linear logic. We study in detail the product
and coproduct of two nets. In particular, we show how to represent both
the synchronous product of two nets and a restricted product which allows
specified asynchronous events. We prove that the behaviour of the product
of two nets is the product of the behaviours of its component nets.

In Section 8 we develop our compositional theory of nets. We first give a
simple condition on restrictions of a product net which ensures that refine-
ment composes horizontally with restriction. We illustrate our theory using
a detailed worked example related to Milner’s Jobshop [Mil89], which builds
a large net in a modular way from smaller component nets. We illustrate
the horizontal composition of our refinement with respect to our construc-
tors in the following way. We refine the “Jobber” component to introduce a
distinction between hard and easy jobs, and show that there is a morphism
from the old jobber to the new one and hence that the new jobber simulates
the old jobber. The naturality of our constructions ensures that there is a
morphism from the the old compound net to the new compound net, and
hence that the new compound net simulates the old one.
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In Section 9, we sketch the application of linear logic proof terms to rea-
soning about net refinements. This is work in progress.

In the main part of this paper, as in [Bro90, BG90, BG], we have considered
nets without initial markings. In Section 10 we show how the results of
Section 6 enable us to extend naturally to a category MNet of marked nets.
There is a forgetful functor U from MNet to GNet which has both left and
right adjoints. Thus U preserves any small lists and colimits that exist in
MNet. We prove that MNet, has finite products and finite coproducts,
describe the product and coproduct of two marked nets and discuss the
monoidal closed structure.

3 Preliminary Definitions for Petri Nets

Petri nets model processes by indicating the changes in local states (condi-
tions) which are induced by the occurrence of events. The causal dependency
between conditions and events is expressed using two multirelations: the pre–
condition relation indicates which conditions must be satisfied before an event
can occur, while the post–condition relation indicates the conditions result-
ing from the occurrence of an event. These two multirelations determine the
dynamic behaviour of a net.

An introduction to Petri nets is given in [Rei85]. In defining Petri nets and
their behaviour we assume standard definitions concerning multirelations and
multisets [Win88].

Definition 3.1 A Petri Net is a 4-tuple 〈E, B, pre, post〉, where E and B
are sets, and pre and post are functions from E × B to N (multirelations).

We shall call elements of E events and elements of B conditions. We shall
call pre and post the pre- and post-condition relations of N respectively. We
write N for the Petri net 〈E, B, pre, post〉, N0 for the net 〈E0, B0, pre0, post0〉
and so on. We write Petri for the class of Petri nets. A net N is elementary
if the images of both pre and post are contained in 2.

With each of the multirelations pre and post : E × B → N, we associate
a function with the same name, from E to multisets over B, defined by the
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formal sums

pre(e) =
∑
b∈B

pre〈e, b〉b and post(e) =
∑
b∈B

post〈e, b〉b.

We call pre(e) the pre-condition set of e, and post(e) the post-condition set
of e. We extend the function pre (and similarly post) to a multiset of events
A : E → N as follows:

pre(A) =
∑
e∈E

A(e)pre(e) for any multiset A over E

Definition 3.2 Let N be a Petri net. A marking of N is a function M : B →
N (a multiset over B). We write Mark(N) for the set of all markings of N. A
marked net is a pair 〈N, M〉, where N is a Petri net and M is a marking of N.

Remark 3.3 Various authors add further conditions to the definition of a
net, or of its markings, to ensure convergence of the relevant formal sums.
It suffices to require that every event of the net has unite pre- and post-
condition set, and that every condition is in the post-condition set of finitely
many events.

There is a graphical representation of Petri nets in which events are rep-
resented by labelled boxes, conditions by labelled circles, and the pre- and
post-condition relations by weighted, directed arcs. We shall omit weights of
value 1.

3.1 The Evolution of Petri Nets

We call the dynamic behaviour of a Petri net its evolution. The evolution
of a net N reflects the causal dependencies of the process which N models,
since the pre- and post-condition relations express causal dependency. Events
which are causally independent may occur concurrently.

Let 〈N, M〉 be a marked Petri net and let A be a multiset over E. We say
〉N, M〈 enables A, written M ↓N A, if for each b ∈ B,

∑
e∈E A(e)pre〉e, b〈≤

M(b). Further, we say that N one-step evolves under A from the marking M
to the marking M ′, written M ❀1 M ′, if

M ′ = (M − pre(A)) + post(A).
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In this case, the events of A are said to occur concurrently, in what we shall
call a transition. The derivability relation of a net N, written ❀, is the
transitive closure of ❀1. We say a net N evolves from a marking M to a
marking M ′ if M ❀ M ′. We sometimes label such an evolution, writing

M
A
❀ M ′.

4 A Category of Multirelations

We now extend the treatment of relations in de Paiva’s dialectica category
GC to multirelations, using a variation of Chu’s construction [Bar79]. Our
construction relates closely to the categories GAMEK [LS91] and DecGC
[DP89].

Lemma 4.1 Let C be a concrete1 category with finite products. Let N
be an object of C, equipped with a partial order ≤. The following data:

• objects are triples 〈E, B, α〉, where E and B are objects of C and
α : E × B → N is a morphism in C,

• a morphism from 〈E, B, α〉 to 〈E ′, B′, α′〉 is a pair 〈f, F 〉 of morphisms
in C such that f : E → E ′, F : B′ → B and

where ≤ is the partial order induced pointwise on C(A, N) by the
partial order ≤ on N , and

• composition is composition in C for each component, thus 〈g, G〉〈f, F 〉 =
〈gf, FG〉,

1It is routine to generalise our construction by defining an order directly on the horn
sets. For our purposes it suffices to consider concrete categories.
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define a category, which we shall denote MNC.

Proof: It is routine to verify that composition is well-defined,
Let 〈f, F 〉 : 〈E, B, α〉 → 〈E ′, B′, α′〉 and 〈g, G〉 : 〈E ′, B′, α′〉 →
〈E ′′, B′′, α′′〉 be morphisms in MNC. Then by definition α′(f ×
1) ≤ α(1 × F ) and α′′(g × 1) ≤ α′(1 ×G), we have α′′(gf × 1) ≤
α(1×FG), and 〈gf, FG〉 is a morphism in MNC from 〈E, B, α〉
to 〈E ′′, B′′, α′′〉. Identities and associativity are inherited from C.
✷

Since C is concrete, we interpret the ordering in the above diagram to mean
that

for each e ∈ E and b′ ∈ B′, α′〈fe, b′) ≥ α(e, Fb′〉.

Our construction is a variant on that of Chu [Bar79], in which the above
diagram commutes. Chu’s construction is applied to any category with a
symmetric monoidal closed structure, and a distinguished object N . We can
extend our construction to a symmetric monoidal category C [DP91] rather
than a category with finite products, and this enables us (see Section 6) to
capture the notion of morphism between elementary Petri nets studied in
[NRT90], and also to consider other mathematically interesting categories
[HDP90].

Remark 4.2 Verity [Ver91] has proved that MNC is enriched over C.

Remark 4.3 It is evident that a categoy is also defined by the data:

• objects are the objects of MNC,

• a morphism from 〈E, B, α〉 to 〈E ′, B′, α′〉 is a pair 〈f, F ′〉 of morphisms
in C such that f : E → E ′, F : B′ → B and
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thus for each e ∈ E and b′ ∈ B′, we have α′〈fe, b′) ≤ α(e, Fb′〉,

• and composition given by composition in C for each component.

We shall denote this category MNC∗.

Proposition 4.4 MNC is isomorphic to MNC∗.

Proof: There is an evident functor ι : MNC → MNC∗ taking
the object 〈E, B, α〉 to the object 〈E, B, αop〉2 and taking the
morphism 〈f, F 〉 to 〈F, f〉.
Thus

It is clear that ι is an isomorphism. ✷

5 MNC as a Model of Linear Logic

If the category C and the object N have appropriate structure, then we can
define interesting structure on MNC. If C is Cartesian closed and has finite
coproducts and 〈N,≤〉 is a closed ordered monoid (that is, a partial order
with a monotonic symmetric monoidal closed structure), then MNC has
finite products, finite coproducts and a symmetric monoidal closed structure.
Note that these conditions are sufficient rather than necessary.

Part of the appeal of the category of elementary Petri nets NSet based
on GC [BG90] lies in the fact that NSet is a sound model of linear logic in
the sense of [DP89]. Given an interpretation of atomic formula as objects of
NSet, we interpret the linear connective ∧ by product, ⊕ by coproduct, ⊗
by the symmetric monoidal structure ⊗, linear implication � by the internal

2where αop〈b, e〉 = α〈e, b〉 for any e ∈ E and b ∈ B
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hom, par by a second symmetric monoidal structure ✷ and linear negation
by the functor (− � ⊥), where ⊥ is the unit of ✷. Then whenever Γ � A
in the fragment of linear logic comprising the structural rules, the rules for
∧,⊕,⊗, � par and ! together with rules for intuitionistic negation, there is
a morphism in NSet from the interpretation of Γ to the interpretation of A.

The category of Petri nets which we introduce in this paper is constructed
from MNSet, where Set is the category of sets and functions, and 〈N,�〉
is the set of natural numbers ordered by . . . 2 � 1 � 0. Since Set is Carte-
sian closed and 〈N,�〉 is a closed ordered monoid (truncated subtraction
being right adjoint to addition), MNSet has all finite products and coprod-
ucts, and is symmetric monoidal closed, affording a sound interpretation of
intuitionistic linear logic.

6 General Nets and Simulation Morphisms

We now give a construction first sketched in [BG90]. We can regard a Petri
net as an object 〈〈E, B, pre〉, 〈E ′, B′, post〉〉 of MNSet × MNSet for which
E = E ′ and B = B′. We can also regard it as an object of MNSet ×
MNSet∗, MvSet∗ × MNSet or MNSet∗× MNSet∗. Thus each of these
four categories gives rise to a category with object set Petri. Accordingly,
we have four related notions of morphism between Petri nets. In Section 7 we
give an elegant characterisation of any of these categories as a limit in Cat,
the category of small categories and functors. This implies that all relevant
structure of MNSet lifts to each of our categories of nets.

In our earlier work we indicated how the morphisms in NSet, a category
with object set the elementary Petri nets, expressed refinement or simula-
tion. We also varied our morphisms, obtaining the categories NSet, NSet∗3,
NSet≤≥ and NSet≥≤ . However, at that time it was unclear which notion of
morphism was most appropriate.

In this paper we make precise the sense in which morphisms correspond
to simulations, as Propositions 6.4 and 6.10 and Theorem 6.6 will demon-
strate. A significant consequence of these results is that their proofs dictate
the choices of the containments which we were previously unable to decide.
Thus we shall work with the category with object set Petri which is a sub-

3called NSetco in [Bro90]
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category of MNSet × MNSet∗, identifying the net 〈E, B, pre, post〉 with
the object 〈〈E, B, pre〉, 〈B, E, postop〉〉. Note that we write ≤ for the usual
ordering on N.

Lemma 6.1 The following data:

• objects are general Petri nets, that is, elements of Petri,

• a morphism from 〈E, B, pre, post〉 to 〈E ′, B′, pre ′, post ′〉 is a pair of
functions 〈f, F 〉 with f : E → E ′ and F : B′ → B such that

that is, for each e ∈ E and each b′ ∈ B′, we have

pre〈e, Fb′〉 ≥ pre ′〈fe, b′〉 and post〈e, Fb′〉 ≤ post ′〈fe, b′〉,

• and composition is function composition in each component

define a category, which we shall denote GNet.

This result is a significant extension of that presented in [Bro90, BG90,
BG], since it allows us to treat general nets rather than the subclass of
elementary nets.

In addition, we can exploit the generality of our framework by replacing
Set by PSet, the category of sets and partial functions, obtaining a category
PNet with object set Petri which is a full subcategory of MNPSet ×
MNPSet∗. As the proof of Theorem 7.3 is independent of the base category
C, it is readily seen that PNet is symmetric monoidal closed and has finite
products and coproducts. The subcategory of PNet in which our inequalities
are replaced by equality, PNet=, has been studied in [NW91], and some
relevant comparisons are made in [Bro90]. The full subcategory of PNet=

with objects the elementary Petri nets is that studied in [NRT90]. Thus our
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framework, starting from linear logic and an abstract approach, encompasses
several existing models.

We now prove the results which determined our choice of morphism in
GNet. We prove them for events and sequences of events: their extension
to multisets of events and sequences of multisets of events is straightforward.
We first make some definitions which enable us to discuss simulation in a
precise way.

Definition 6.2 Let 〈N, M〉 and 〈N ′, M ′〉 be marked Petri nets, and let F be
a function from B′ to B. We say that the pair of markings 〈M, M ′〉 is F -ok
if MF ≤ M ′, that is, if we have

in Set

Definition 6.3 Let 〈f, F 〉 : N → N ′ be a morphism in GNet, and for

i ∈ {0, . . . n + 1} let 〈Mi, M
′
i〉 be F -ok. Suppose that M0

A0
❀1 M1

A1
❀1

M2 . . .
An
❀1 Mn+1 in N.

The direct simulation of this evolution in N′ is M ′
0

fA0
❀ 1 M ′

1

fA0
❀ 1 M ′

2 . . .
fAn
❀ 1

M ′
n+1.

A simulation of the above evolution in N′ is M ′
0

s0
❀1 M ′

1
s1
❀1 M ′

2 . . .
sn
❀1 M ′

n+1,
where for i ∈ {0, . . . , n}, si is a finite sequence of transitions tij such that∑

j tij = fAi.

A weak simulation of the above evolution in N′ is M ′
0

v0
❀1 M ′′

1
v1
❀1 M ′′

2 . . .
vn
❀1

M ′′
n+1, where for i ∈ {0, . . . n + 1}, 〈Mi, M

′′
i 〉 is F -ok and vi is a finite se-

quence of transitions wij such that f−1
∑

j wij = fAi.

Proposition 6.4 Let 〈N, M〉 and 〈N′, M ′〉 be marked Petri nets and let
〈f, F 〉 be a morphism from N to N′ in GNet such that 〈M, M ′〉 is F -ok.
Then for all e ∈ E, M ↓N e implies that M ′ ↓N′

fe.
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Proof: Suppose that M ↓N e, that is ∀b ∈ B. (M(b) ≥ pre〈e, b〉).
In particular, ∀b′ ∈ B′ we have M(Fb′) ≥ pre〈e, Fb′〉.
However, by the definition of 〈f, F 〉,

∀e ∈ E, b′ ∈ B′ we have pre〈e, Fb′〉 ≥ pre ′〈fe, b′〉,
and therefore ∀b′ ∈ B′ we have M(Fb′) ≥ pre〈e, Fb′〉 ≥ pre ′〈fe, b′〉.
Now, by hypothesis, 〈M, M ′〉 is F -ok, that is, ∀b′ ∈ B′. (M ′(b′) ≥
M(Fb′)), hence ∀b′ ∈ B′ we have M ′(b′) ≥ M(Fb′) ≥ pre〈e, Fb′〉 ≥
pre ′〈fe, b′〉, which implies that M ′ ↓N′

fe. ✷

If a pair of markings 〈M, M ′〉 is F -ok, then the net N′ with marking M ′ can
simulate any one-step evolution of the net N with marking M , in the sense
that whenever 〈N, M〉 enables an event e, 〈N′, M ′〉 enables the event fe. We
now show that this holds for any sequence of events in N, so that N′ can
simulate any evolution of N.

Definition 6.5 Let 〈N, M0〉 be a marked Petri net and let e0, e1, . . . , en ∈ E.
We say that 〈N, M0〉 enables the sequence e0, e1, . . . , en, written M0 ↓N

e0, e1, . . . , en, if there is a sequence M0, M1, . . . , Mn+1 of markings of N such
that:

∀i ∈ {0, . . . , n}. (Mi ↓N ei and Mi
ei
❀1 Mi+1).

The following important result shows that F -ok-ness is preserved under evo-
lution. A consequence of this result is that if 〈N, M〉 enables a sequence
of events e0, e1, . . . , en then 〈N′, M ′〉 enables the sequence fe0, fe1, . . . , fen.
Evidently for any marking M of N we can construct a marking M ′ of N′ such
that 〈M, M ′〉 is F -ok, and thus N′ can simulate any behaviour of N.

Theorem 6.6 Let 〈N, M0〉 and 〈N′, M ′
0〉 be marked nets and let 〈f, F 〉 be a

morphism from N to N′ in GNet. If 〈M0, M
′
0〉 is F -ok and M0

e
❀1 M1, then

M ′
0

fe
❀1 M ′

1 and 〈M1, M
′
1〉 is F -ok.

Proof: Suppose that 〈M0, M
′
0〉 is F -ok and M0

e
❀1 M1. Then

M0 ↓N e and therefore, by Proposition 6.4, M ′
0 ↓N′

fe and M ′
0

fe
❀1

M ′
1.

Now M1 = M0 − pre(e) + post(e) and M ′
1 = M ′

0 − pre ′(fe) +
post ′(fe).
That is:

14



∀b ∈ B. (M1(b) = (M0(b) − pre〈e, b〉)4+post〈e, b〉) and
∀b′ ∈ B′. (M ′

1(b
′) = (M ′

0(b
′) − pre ′〈fe, b′〉) + post ′〈fe, b′〉).

Now for each b′ ∈ B′, we have

M ′
1(b

′) = (M ′
0(b

′) − pre ′〈fe, b′〉) + post ′〈fe, b′〉
≥ (M0(Fb′) − pre ′〈fe, b′〉) + post ′〈fe, b′〉 as 〈M0, M

′
0〉 isF−ok

≥ (M0(Fb′) − pre ′〈e, Fb′〉) + post ′〈fe, b′〉 by definition of 〈f, F 〉
≥ (M0(Fb′) − pre ′〈e, Fb′〉) + post〈e, Fb′〉 by definition of 〈f, F 〉
= M1(Fb′).

Thus ∀b′ ∈ B′ we have M ′
1(b

′) ≥ M1(Fb′), and so 〈M1, M
′
1〉 is

F -ok. ✷

Corollary 6.7 Let 〈N, M0〉 and 〈N′, M ′
0〉 be marked Petri nets and let 〈f, F 〉

be a morphism from N to N′ in GNet. If 〈M0, M
′
0〉 is F -ok, then whenever

M0 ↓N e0, e1, . . . , en, we have M ′
0 ↓N′

fe0, fe1, . . . , fen.

Proof: By induction on the length of the sequence. For the
inductive step, observe that if Mi ↓N ei and Mi

ei
❀1 Mi+1 and

〈Mi, M
′
i〉 is F -ok then M ′

i ↓N′
fei (by Proposition 6.4), while

M ′
i

fei
❀1 M ′

i+1 and 〈Mi+1, M
′
i+1〉 is F -ok (by Theorem 6.6). ✷

Thus if 〈N, M〉 enables a sequence of events e0, e1, . . . , en then 〈N′, M ′〉 en-
ables the sequence fe0, fe1, . . . , fen. Evidently for any marking M of N we
can construct a marking M ′ of N′ such that 〈M, M ′〉 is F -ok, and thus N′ can
simulate any behaviour of N. Recall that a weak simulation of an evolution
may include events which are not in the image of f (that is, events which do
not correspond directly to any event in the simulated net) but while it evolves
under such events, F -ok-ness is preserved and so the simulating net N′ never
loses the capacity to proceed with the direct simulation of the evolution of N.
Note that a direct simulation is a simulation, and that a simulation is a weak
simulation. The concept of weak simulation allows us to consider simulations
in which the simulated net N may idle (or stutter) while the simulating net
proceeds with events which do not correspond directly to events of N. In
Section 6.1 we give an example to illustrate these concepts. The following
proposition shows that we can extend the results above from direct simula-
tions to weak simulations. The extension of Proposition 6.8 from events to
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transitions is straightforward.

Proposition 6.8 Let 〈f, F 〉 : N → N′ be a morphism in GNet. Let the
pair 〈M0, M

′
0〉 be F -ok. If M0 ↓N e0, e1, . . . , en then M ′

0 enables any weak
simulation of e0, e1, . . . , en.

Proof: We show that whenever M0
e

❀1 M1, there is a weak

simulation M ′
0

∗
❀1 M ′

a

fe
❀1 M ′

b
∗
❀1 M ′

c, where ∗ stands for any
transition of N′ which is disjoint from f(E), and 〈M1, M

′
c〉 is F -

ok.
If M ′

0
∗
❀1 M ′

a then by definition of weak simulation, 〈M0, M
′
a〉 is

F -ok. By Proposition 6.4, M ′
a enables fe.

If M ′
a

fe
❀1 M ′

b then, by Theorem 6.6, the pair 〈M1, M
′
b〉 is F -ok.

By definition of weak simulation, if M ′
b

∗
❀1 M ′

c then 〈M1, M
′
c〉 is

F -ok.
We can repeat this argument for each of the transitions of the
evolution e0, e1, . . . , en, and the result follows. ✷

Theorem 6.6 showed that whenever we have a morphism from N to N′ in
GNet, N′ can simulate any evolution of N. Ideally, we would like to have a
converse to this result. That is, a result which states that if N′ can simulate
any evolution of N then there is a morphism from N to N′ in GNet, since this
would show that our morphisms exactly capture the independent notion of
simulation. Unfortunately, as the following example shows, we cannot quite
achieve this.

N′ can simulate any evolution of N but there is no morphism from N to
N′ because post(e, Fb) = 2 > 1 = post ′(fe, b) It transpires that the problem
is that the first net has a condition, b, which is both a pre-condition and a
post-condition of some event. If we restrict ourselves to the case where the
first net does not have this property then we do indeed have a converse to
Theorem 6.6.

Definition 6.9 A net is loop free if for all events e, pre(e) ∩ post(e) = ∅.
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Proposition 6.10 Let N be a loop free net, let N′ be any net, let f : E → E ′

and F : B′ → B, and suppose that for all F -ok pairs of markings 〈M, M ′〉,

• M ↓ e implies that M ′ ↓ f(e), and

• if M
e

❀ M1 and M ′ f(e)
❀ M ′

1 then 〈M1, M
′
1〉 is F -ok

then 〈f, F 〉 is a morphism from N to N′ in GNet.

Proof: Let M = pre(e) and M ′ = MF , so 〈M, M ′〉 is clearly
F -ok. Then M ↓N e whence, by assumption, M ′ ↓N′

f(e) and so
for all b′ ∈ B′, pre ′(fe, b′) ≤ M ′(b′) = M(Fb′) = pre(e, Fb′).

Now M
e

❀ post(e) = M1 and M ′ = MF
f(e)
❀ (MF − pre ′(fe)) +

post ′(fe) = M ′
1 and by assumption 〈M1, M

′
1〉 is F -ok. That is,

M1(Fb′) = post(e, Fb′) ≤ (pre(e, Fb′) − pre ′(fe, b′)) + post ′(fe, b′).

If post(e, Fb′) = 0 then post(e, Fb′) ≤ post ′(fe, b′) and we are
done. Otherwise, pre(e, Fb′) = 0 by the assumption that N is
loop free. However, we have shown that pre(e, Fb′) ≥ pre ′(fe, b′)
and so pre ′(fe, b′) = 0 as well whence,

post(e,Fb′)≤(pre(e,Fb′)−pre′(fe,b′))+post ′(fe,b′)=(0−0)+post ′(fe,b′)=post ′(fe,b′).

Thus 〈f, F 〉 is a morphism from N to N′ in GNet. ✷

The results of this section are important because they show that, not only
do the marphisms of GNet have a meaningful computational interpretation,
but also that [between loop-free nets] all simulations are captured by our
morphisms. In other approaches [Win84, MM88b, NRT90], many simulations
are not expressible as morphisms.

6.1 A Practical Example of a Simulation

We shall now exhibit a morphism from an unintelligent message handler
to a more sophisticated message handler which can correct for the loss of
a message in transit. This suffices to show that the message handler with
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error-correction can exhibit the simple behaviour of successively sending and
delivering messages.

The simple message handler, with net N, takes a message (M) and a flag
that the sender is ready (SR), and dispatches the message to the ether via the
event Send. The event Deliver accepts a message from the ether (ME) and
delivers it (DM) to its destination, meanwhile setting the flag to indicate that
the sender is once more ready to send a message. This net does not model
any of the problems associated with a real message handler, a significant
problem being the loss of messages from the ether.

The error-correcting message handler resends a message which has been
lost, and its net, N′, is more complex. The event Send ′ takes a message (M′)
and a flag that the sender is ready (SR′), creates a copy of the message (MC)
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and dispatches the message to the ether (ME′), meanwhile starting a timer
(ST). The handler may Lose the message. Alternatively, the event Deliver ′

may take a message from the ether, delete its copy, deliver it (DM′), set a flag
(CTO) cancelling the timeout signal and set the flag SR′ indicating that the
sender is ready. The event Time is started by ST, and after a certain amount
of time produces a timeout signal (TO). If a timeout signal is produced after
the message has been delivered, CTO is set and the event Cancel forgets the
timeout, resetting the flag CTO. If CTO is not marked when Time times
out, then Cancel cannot occur but Resend becomes enabled. On receiving
the timeout, Resend takes a message copy, recopies it and dispatches it to
the ether, meanwhile restarting the timer.

Thus the message handler N′ can take a message and deliver it. If the
message has not been delivered after a certain amount of time, it will resend
the message. This enables it to correct the error of a message lost in the
ether. It may also result in superfluous copies of a message being sent, since
a timeout may occur when no message has been lost. To handle this error we
would need a still more refined system, such as the alternating bit protocol
[Mil89].

There is a morphism 〈f, F 〉 in GNet from N to N′ given as follows:

f(Send) = Send ′ f(Deliver) = Deliver ′

F (SR′) = SR F (M′) = F (TO) = M
F (ME ′) = F (MC) = F (ST) = ME and F (CTO) = F (DM′) = DM.

It is straightforward to check that the functions f and F defined above sat-
isfy the required conditions, that is, for each event e of N and each condition
b′ of N′, we have

pre〈e, Fb′〉 ≥ pre ′〈fe, b′〉 and post(e, Fb′) ≤ post ′〈fe, b′〉.
The inequality is strict in two cases.

Theorem 6.6 indicates that for any pair 〈M, M ′〉 of F -ok markings, N′ with
marking M ′ can simulate any behaviour of N with marking M . For example,
N can evolve from marking 2M + SR as follows:

2M + SR
Send
❀1M + ME

Deliver
❀1 M + DM + SR

Send
❀1 ME + DM + SR

Deliver
❀1 2DM

+SR.

The direct simulation of this evolution in N′ is
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2M′+ SR′ Send ′
❀1 M′ + ME′ + ST + MC

Deliver ′
❀1 M′ + DM′ + SR′ + ST + CTO

Send ′
❀1 ME′ + DM′ + MC + 2ST + CTO

Deliver ′
❀1 2DM′ + 2ST + 2CTO.

It is easy to check that at each stage in this evolution, the corresponding pair
of markings 〈M, M ′〉 is F -ok. The fact that the final marking of N′ includes
the marking 2ST + 2CO conflicts somewhat with our intuition. Because the
events Time and Cancel are not in the image of f , they do not occur in the
direct simulation. The evolution

2M′ + SR′ Send ′
❀1 M′ +ME′ + ST + MC

Deliver ′
❀1 M′ + DM′ + SR′ + ST + CTO

Time
❀1 M′ + DM′ + SR′ + TO + CTO

Cancel
❀1 M′ + DM + SR′

Send ′
❀1 ME′ + DM′ + MC + ST

Deliver ′
❀1 2DM′ + ST + CTO

Time
❀1 2DM′ + SR′ + TO + COT

Cancel
❀1 2DM′ + SR′

of N′ weakly simulates the evolution

2M + SR
Send
❀1 M + ME

Deliver
❀1 M + DM + SR

Send
❀1 ME + DM + SR

Deliver
❀1 2DM

+SR.

Various other evolutions of N′ also evolve to marking 2DM′ + SR′ while
preserving F -ok-ness throughout.

The fact that there is a morphism in GNet from N to N′ proves that N′

correctly implements the behaviour specified by N. This motivates our choice
of morphism in GNet.

6.2 CCS Simulation

We have described the morphisms in GNet as simulations on the grounds
that a morphism between two nets N and N′ verifies that N′ can simulate any
behaviour of N. In fact, we can also understand our morphisms as simula-
tions analogous to those of labelled transition systems such as CCS [Mil89].
We recall the definition of a strong bisimulation in CCS.

Definition 6.11 Let 〈P ,A〉 be a labelled transition system. A binary re-
lation S ⊆ P ×P is a strong bisimulation if (P, Q) ∈ S implies that, for all
α ∈ A:
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• whenever P
α−→ P ′ then, for some Q′, Q

α−→ Q′ and (P ′, Q′) ∈ S and

• whenever Q
α−→ Q′ then, for some P ′, P

α−→ P ′ and (P ′, Q′) ∈ S.

Similarly, one can define a simulation as follows.

Definition 6.12 Let 〈P ,A〉 be a labelled transition system. A binary re-
lation S ⊆ P × P is a simulation if (P, Q) ∈ S implies that, for all α ∈ A:

• whenever P
α−→ P ′ then, for some Q′, Q

α−→ Q′ and (P ′, Q′) ∈ S.

In fact, we require a slight generalisation of this definition which extends
simulation to a relation between states of different transition systems.

Definition 6.13 Let 〈P ,A〉 and 〈P ′,A′〉 be labelled transition systems and
let f be a function from A to A′. A binary relution S ⊆ P×P ′ is a simulation
relative to f if (P, Q) ∈ S implies that, for all α ∈ A:

• whenever P
α−→ P ′ then, for some Q′ ∈ P ′, Q

fα−→ Q′ and (P ′, Q′) ∈ S.

Now, it is well known that a Petri Net N may be viewed as a transition sys-
tem 〈Mark(N), E〉 with transition relation given by M0

e−→ M1 if M0 ↓N e
and M1 = M0 − pre(e) + post(e). Observe that F -ok is a relation between
Mark(N) and Mark(N′).

Proposition 6.14 Let 〈f, F 〉 be a morphism from a net N to a net N′ in
GNet. Then F -ok is a simulation relative to f between 〈Mark(N), E〉 and
〈Mark(N′), E ′〉.

Proof: Follows immediately from Proposition 6.4 and Theorem
6.6. ✷

Moreover, we can generalise the definition of strong bisimulation in an anal-
ogous way:

Definition 6.15 Let 〈P ,A〉 and 〈P ′,A′〉 be labelled transition systems, let
f be a function from A to A′ and let g be a function from A′ to A. A binary
relation S ⊆ P ×P ′ is a bisimulation relative to (f, g) if (P, Q) ∈ S implies
that, for all α ∈ A, α′ ∈ A′:
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• whenever P
α−→ P ′ then, for some Q′ ∈ P ′, Q

fα−→ Q′ and (P ′, Q′) ∈ S
and

• whenever Q
α′
−→ Q′ then, for some P ′ ∈ P, Q

gα′
−→ Q′ and (P ′, Q′) ∈ S.

Proposition 6.16 Let N and N′ be nets, let 〈f, F 〉 be a morphism from N
to N′ in GNet and let 〈g, G〉 be a morphism from N′ to N in GNet. Then
the relation ∼ ⊆ Mark(N) × Mark(N′) given by:

M ∼ M ′ if 〈M, M ′〉 is F -ok and 〈M ′, M〉 is G-ok

is a bisimulation relative to (f, g).

7 Structure in GNet

The category MNSet, and the isomorphic category MNSet∗ have consider-
able categorical structure. In particular, they have finite products and co-
products and a symmetric monoidal closed structure [DP91]. An important
issue is the extent to which this structure lifts to our category GNet. We now
give an elegant characterisation of GNet as a limit in Cat, which leads to an
easy proof that GNet has finite products, finite coproducts and a symmetric
monoidal structure induced by those in MNSet. The proof closely follows
the proof that NC inherits the structure of GC (see [Bro90, BG90, BG]).

Lemma 7.1 GNet is the pullback in Cat of the forgetful functor U : MNSet
+ Set × Setop along itself (a kernel pair).

Proof: First recall that MNSet is isomorphic to MNSet∗, and
pullbacks are only defined up to isomorphism. Thus the pullback
in Cat of U : MNSet → Set × Setop along U∗: MNSet∗ → Set
× Setop is isomorphic to the pullback:
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where U(〈E, B, α〉) = 〈E, B〉 and U(〈f, F 〉) = 〈f, F 〉. Since Cat
is Cartesian, this pullback is the equaliser of the arrows Uπ0 and
Uπ1 from MNSet × MNSet to Set × Setop. Hence

Ob(X) = {〈A0, A1〉 ∈ Ob(MNSet)×Ob(MNSet) | UA0 = UA1},

and similarly an arrow in X from 〈A0, A1〉 to 〈A′
0, A

′
1〉 is a pair

〈〈f, F 〉, 〈g, G〉〉 with 〈f, F 〉 : A0 → A′
0 in MNSet and 〈g, G〉 :

A1 → A′
1 in MNSet such that U〈f, F 〉 = U〈g, G〉, that is, such

that f = g and F = G.

Thus objects of X are of form 〈〈E, B, α〉, 〈E, B, α′〉〉 and a mor-
phism in X from 〈〈E, B, α0〉, 〈E, B, α1〉〉 to 〈〈E ′, B′, α′

0〉, 〈E ′, B′, α′
1〉〉

is a pair 〈〈f, F 〉, 〈f, F 〉〉 such that 〈f, F 〉 : 〈E, B, α0〉 → 〈E ′, B′, α′
0〉

and 〈f, F 〉 : 〈E, B, α1〉 → 〈E ′, B′, α′
1〉 in MNSet. Evidently, X

is isomorphic to GNet. ✷

Lemma 7.2 U strictly preserves the product, coproduct and symmetric
monoidal closed structure of MNSet.

Proof: Straightforward (compare the corresponding proof in
[Bro90]). ✷

Theorem 7.3 GNet has the products, coproducts and symmetric monoidal
closed structure induced by those in MNSet.

Proof: The category of small categories with assigned finite
products, assigned finite coproducts and strict monoidal closed
structure, with morphisms the functors strictly preserving this
structure, is monadic over Cat. The evident forgetful functor
from it into Cat creates all limits, including kernel pairs. Since
the product, coproduct and symmetric monoidal closed struc-
ture of MNSet are strictly preserved by U (Lemma 7.2), and
since GNet is the kernel pair of U (Lemma 7.1), GNet has the
products, coproducts and symmetric monoidal closed structure
induced by those in MNSet. ✷

This result has two consequences. Firstly, we maintain the connection with
linear logic, since GNet is a sound model of the fragment of linear logic
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comprising the structural rules and the rules for ∧,⊕,⊗ and �. Secondly,
we have obtained several constructors on general Petri nets. If N and N′

are nets, then their product N × N′, their coproduct N + N′, their tensor
product N ⊗ N′ and the implication N � N′ can all be interpreted as nets.
To interpret the evolution of the compound net, we require an appropriate
way of combining the markings of its component nets. In general, several
possibilities exist, and decisions are hard to make using intuition alone. In
Section 10 we resolve this issue using a category of marked nets.

7.1 The Product of two Nets

As we have seen, the product in GNet is induced by that in MNSet. Thus
the product in GNet of nets 〈E0, B0, pre0, post0〉 and 〈E1, B1, pre1, post1〉 is
〈E0 × E1, B0 + B1, pre, post〉, where

pre〈e0, e1〉 =
∑

b0∈B0

pre0〈e0, b0〉(b0, 0) +
∑

b1∈B1

pre1〈e1, b1〉(b1, 1), and

post〈e0, e1〉 =
∑

b0∈B0

post0〈e0, b0〉(b0, 0) +
∑

b1∈B1

post1〈e1, b1〉(b1, 1).

The precise details of the construction are given in Appendix B.

An event in the product net is the synchronisation of two events, one in
each of the component nets: that is, a firing in the product net is the con-
current firing of an event in the first component and an event in the second.
We relate the behaviour of the net N0 × N1 to that of its component nets
neatly via Proposition 7.4, which shows that the behaviour of a product net
is the product of the behaviours of its component nets.

Proposition 7.4 A marking M of N0 × N1 can evolve by a multiset of
events A over E to a marking M ′ if and only if for i = 0 and i = 1, the
marking inop

i M can evolve in Ni by the multiset of events πiA to the mark-
ing inop

i M ′.

Constructing products is essential for modelling parallel compositions. We
give a simple example of the product of two nets. We give a more complex
example of the use of the product in Section 8.

Example 7.5 Consider the two nets N0 and N1 given below:
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The product net N0 ×N1 has event set E = {〈e, e′〉, 〈e, e′′〉} and condition
set B = {(a, 0), (b, 0), (w, 1), (x, 1), (y, 1), (z, 1)}. The pre- and post-condition
relations of N0 × N1 are given by:

pre〈e, e′〉 = 2(a, 0) + 4(w, 1), post〈e, e′〉 = (b, 0) + 3(x, 1) + 2(y, 1),
pre〈e, e′′〉 = 2(a, 0) + (w, 1), and post〈e, e′′〉 = (b, 0) + 2(z, 1).

Thus the product net N0 × N1 is given by:

Remark 7.6 The product of two nets in GNet is their synchronous product
[Win87].

7.2 The coproduct of two nets

The coproduct in GNet is also induced by that in MNSet. Thus the
coproduct in GNet of nets 〈E0, B0, pre0, post0〉 and 〈E1, B1, pre1, post1〉 is
〈E0 + E1, B0 × B1, pre, post〉, where

pre(e0, 0) =
∑

b0∈B0

∑
b1∈B1

pre0〈e0, b0〉〈b0, b1〉 and

post(e0, 0) =
∑

b0∈B0

∑
b1∈B1

post0〈e0, b0〉〈b0, b1〉,

and similarly for (e1, 1). In general the coproduct is not an appealing con-
struct. However, we make considerable use of the special case N + ⊥, where
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⊥ = 〈1, 1, 0, o〉. Thus ⊥ is the net consisting of one event ∗ and one condition
∗, with zero pre- and post-condition relations: it is the unit of ⊗, the sym-
metric monoidal structure induced in GNet by that in MNSet (described
in Appendix A). We shall call the event with empty pre- and post-conditions
the idling event, denoted ∗ or 〈∗, ∗〉 according to context. Now we have

N + ⊥ = 〈E + {∗}, B × {∗}, pre ′, post ′〉, where pre ′(e0, 0) =∑
b∈B

pre(e, b)〈b, ∗〉 ∼= pre(e),

and so on. For brevity, we shall write N⊥ for N + ⊥ and identify E + {∗}
with E ∪ {∗}, and B × {∗} with B.

7.3 Expressing Synchrony and Asynchrony

We have seen that an event 〈e0, e1〉 in the product net N0 × N1 is enabled
whenever the events e0 and e1 in the component nets are both enabled at the
same time. Thus events of the product net correspond to synchronisations
of events in the component nets. Our next example demonstrates how events
may occur asynchronously in a product net.

Definition 7.7
An event 〈e0, e1〉 of the product net N0 × N1 is asynchronous if for either
i = 0 or i = 1,

pre〈e0, e1〉 = in i(pre(ei)) and post〈e0, e1〉 = in i(post(ei)),

where for i = 0, 1 we extend the function in i to multisets over Bi in the
evident way.

Thus an asynchronous event is an event of a product net whose firing con-
cerns only one of the component nets of the product. We shall now illustrate
how asynchronous events arise when we apply our categorical constructions
to nets.

Example 7.8 Let N0 and N1 be the nets:
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The product net (N0 + ⊥) × (N1 + ⊥) is given by:

Observe that pre〈e0, ∗〉 = in0(pre(e) and post〈e0, ∗〉) = in0(post(e)). Thus
〈e0, ∗〉, and similarly 〈∗, e1〉, are asynchronous events in the product net
(N0 + ⊥) × (N1 + ⊥).

The event set of net (N0 + ⊥) × (N1 + ⊥) contains all possible synchroni-
sations of events in N0 and N1, together with an asynchronous event corre-
sponding to each event of either N0 or N1.

8 A Compositional Theory for Petri Nets

The categorical constructs we have defined can be used to give an algebraic
means of building large nets from smaller components in such a way that the
behaviour of the composite net can be expressed in terms of the behaviour
of its components.

An important technique in building complex nets from simpler ones is that
of restriction, by which we restrict a net to a specified subset of its possible
behaviours. For example, if we limit our attention to a subset E ′ of the
events of a net N = 〈E, B, pre, post〉 then the net with this behaviour is
N′ = 〈E, B, pre(ι), post(ι)〉 where ι is the inclusion of E ′ in E, thus in Set:

In particular, we often restrict ourselves to a subset of the events of a prod-
uct net, thus restricting the possible synchronisations of its component nets.
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Thus if the event 〈e0, e1〉 /∈ E ′, the events e0 and e1 of the component nets
may not synchronise. We specify such restrictions using a synchronisation
function.

Definition 8.1
A synchronisation function on a product net N0 × N1 is a function s :
E0 × E1 → {0, 1}.

Definition 8.2 Let s be a synchronisation function on the net N0 × N1.
The restriction of N0 ×N1 by s, written N0 ×N1�s, is the net with event set
E ′ = {〈e0, e1〉 ∈ E0 ×E1 | s〈e0, e1〉 = 1}, condition set B0 + B1 and pre- and
post-condition relations given respectively by the restriction to E ′× (B0 +B1)
of the pre- and post-condition relations of N0 × N1.

Thus the net N0 × N1�s is such that

• e0 and e1 can synchronise if and only if s〈e0, e1〉 = 1 and e0, e1 �= ∗,

• e can occur asynchronously if and only if either s(e, ∗) = 1 or s(∗, e) =
1, and

• the idling event 〈∗, ∗〉 is included if and only if s〈∗, ∗〉 = 1.

Remark 8.3 If ∗ /∈ (E0 ∪E1) then no events can occur asynchronously and
we do not allow idling.

The following proposition gives a simple condition on synchronisation func-
tions which ensures that simulation is preserved by restriction.

Proposition 8.4 Let 〈f, F 〉 be a morphism in GNet from N0×N1 to N′
0×N′

1.
Let s and s′ be synchronisation functions on N0 × N1 and N′

0 × N′
1 respec-

tively. The restriction of 〈f, F 〉 to N0 × N1�s factors through N′
0 × N′

1�s′ if
and only if s ≤ s′f .

Proof: A morphism g making the diagram:
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commute must be of form 〈f ′, F 〉 where f ′ is the restriction of f to
the event set of N0 ×N1�s. The diagram clearly commutes if and
only if whenever 〈e0, e1〉 is an event of N0×N1�s, then f ′〈e0, e1〉 is
an event of N′

0×N′
1�s′ , which is if and only if s′f ′〈e0, e1〉 ≥ s〈e0, e1〉

for each event 〈e0, e1〉 of N′
0×N′

1�s′ , which is if and only if s′f ≥ s.
✷

Thus N′
0 × N′

1�s′ simulates N0 × N1�s if

• N′
0 × N′

1 simulates N0 × N1

• whenever e0 and e1 synchronise in N0 × N1�s then π0f〈e0, e1〉 and
π1f〈e0, e1〉 synchronise in N′

0 × N′
1�s′ and

• whenever πie is asynchronous in N0 × N1�s then πife is asynchronous
in N′

1�s′ .

Note that the presence of the trivial event 〈∗, ∗〉 is not preserved by mor-
phisms in GNet.

Proposition 8.5 Let s be a synchronisation function on N such that N�s

has event set E ′. Let A be a multiset over E ′ and let Â be the multiset over
E such that Â(e) = A(e) for e ∈ E ′ and Â(e) = 0 otherwise. Let C be a
multiset over E, and C the restriction of C to E ′. Then

• if M ❀ M ′ in N�s under A, then M ❀ M ′ in N under Â, and

• if C(e) = 0 for all e ∈ (E \E ′) then whenever M ❀C M ′ in N, we have

M ❀C M ′.

Proof: Straightforward. ✷
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Since every evolution of the restricted net is an evolution of the unrestricted
net, restriction preserves safety properties (such as deadlock avoidance) but
not liveness properties (such as reachability).

We illustrate the use of product, coproduct and restriction using an ex-
tended example related to the Jobshop example of [Mil89]p25. Our intention
is to demonstrate the algebraic nature of our approach, rather than to make
a direct analogy with CCS. We shall also illustrate the interaction of simula-
tion morphisms with net constructors. It is an immediate consequence of the
functoriality of the constructions ×, +,⊗ and � that if for i ∈ {1, . . . , n} the
net N′

i simulates Ni, then op(N′
1, . . . , N′

n) simulates op(N1, . . . , Nn) where op
may be any of ∧,⊕,⊗ and �. The interaction of simulation morphisms with
restriction is given by Proposition 8.4. We shall specify a net representing a
Jobshop by composing several smaller component nets. We first specify the
behaviour of a mallet (M) (drawing the condition M twice):

Thus, if a mallet is “got”, it becomes a busy mallet (BM), and when its use
is ended, it returns to its original state. It is readily proved (if not obvious)
that the number of tokens on the net NM remains constant through out any
behaviour of the net. It is the number of mallets in the jobshop. The speci-
fication of a hammer (H) is similar:

The behaviour of mallets and hammers together, or alone, might be described
by the following net:

This net is (NM + ⊥) × (NH + ⊥), which we shall denote NM⊥ × NH⊥. In
fact, we do not wish to force the synchronised use of mallets and hammers.

30



To do so would imply either that each was used for the same length of time
and never alone, or else that one was unnecessarily barred from use until the
other became free. Similarly, there is no reason to synchronise the getting
of a hammer with ending the use of a mallet. Therefore we shall restrict on
the synchronised events, to give a net representing the asynchronous use of
hammers and mallets.

We achieve this using the synchronisation function s given by

s〈gotM, ∗〉 = s(∗,gotH〉 = s〈endedM,∗〉 = s〈∗,endedH〉 = 1 and
s〈e0, e1〉 = 0 otherwise.

Then the restricted net (NM⊥ × NH⊥)�s is such that

• no two events can synchronise

• every event of NM and NH can occur asynchronously, and

• the trivial event is not included.

The construction (NM⊥ × NH⊥)�s is comparable with the CCS parallel
operator |. In CCS we restrict parallel compositions by requiring certain
actions to occur only in synchronisation with specified complementary actions
from separate processes. Here, we restrict to specified synchronisations of
events from each component process and to specified asynchronous events.

We next specify a jobber (J) in terms of the use of tools:

The jobber gets a tool, becoming busy (BJ). After using the tool, the jobber
resumes ner initial state. The total number of tokens on this net is constant
throughout any behaviour, and is the number of jobbers in our jobshop.

Consider the product net NJ × (NM⊥ × NH⊥�s). It has events:

〈get, gotM, ∗〉 〈get, ∗, gotH〉 〈end, endedM, ∗〉 〈end, ∗, endedH〉
〈get, endedM, ∗〉 〈get, ∗, endedH〉 〈end, gotM, ∗〉 〈end, ∗, gotH〉

We want only the first four of these events, imposing the reasonable require-
ment that a jobber cannot get a tool unless a tool is simultaneously got, and
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cannot end the use of a tool unless the use of a tool is ended. Restricting
to these four events, using the appropriate synchronisation function s’, we
obtain the net:

Which of 〈get, gotM, ∗〉 and 〈get, ∗, gotH〉 occurs may be determined by
the environment, since either H or M may be marked. If both are marked, a
non-deterministic choice is made internally by the system.

We can describe further interaction with the outside world, as Milner does,
by considering how the jobber receives component pieces (P) and outputs
completed jobs (A), by specifying a new jobber thus:

Observe that this net can be thought of as a restriction of the product of NJ
with a net specifying the behaviour of pieces. If we form the product NJ′

⊥ ×
(NM⊥×NH⊥�s) and restrict appropriately (by a synchronisation function we
shall denote t), we obtain a net describing a jobber’s behaviour with respect
to hammers and mallets as before, but including also the interaction between
the jobber and the pieces and completed jobs.

Now consider the following net, which assumes that pieces may constitute
an easy job (EP) or a hard job (HP):
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Now, NJob simulates NJ′, since there is a morphism 〈f, F 〉 in GNet from
NJob to NJ′ given by

f(get) = Eget f(end) = end
F (EP) = F (HP) = P F (J) = J F (BJ) = BJ F (A) = A.

We shall assume that the jobber must use a mallet to assemble the hard
pieces, but that either a hammer or a mallet may be used to assemble the
easy pieces. With this requirement in mind, we restrict the product net
NJob× (NM⊥ ×NH⊥�s) by a synchronisation function we shall denote t′, to
obtain the net with events:

〈Eget, ∗, gotH〉 〈Eget, gotH, ∗〉 〈Hget, gotM, ∗〉 〈end, endedH, ∗〉
〈end, ∗, endedH 〉 〈Ein, ∗, ∗〉 〈Hin, ∗, ∗〉 〈out, ∗, ∗〉

and pre- and post-condition relations given by:

pre〈Eget,∗,gotH〉 = EP+H+J post〈Eget,∗,gotH〉 = BJ+BH pre〈Ein,∗, ∗〉 = ∅
pre〈Eget,gotM,∗〉 = EP+M+J post〈Eget,gotM,∗〉 = BJ+BM post〈Ein,∗, ∗〉 = EP
pre〈Hget,gotM,∗〉 = HP+M+J post〈Hget,gotM,∗〉 = BJ+BM pre〈Hin,∗, ∗〉 = ∅
pre〈end,endedM,∗〉 = BJ+BM post〈end,endedM,∗〉 = M+J+A post〈Hin,∗, ∗〉 = HP
pre〈end,∗,endedH〉 = BJ+BM post〈end,∗,endedH〉 = H+J+A pre〈out,∗, ∗〉 = A

Now we have a morphism 〈f, F 〉×1 in GNet from NJ′× (NM⊥×NH⊥�s) to
NJob × (NM⊥ × NH⊥�s). Further, t and t′ satisfy the conditions of Lemma
8.4, and so 〈f, F 〉 × 1 restricts to a morphism from NJ′ × (NM⊥ ×NH⊥�s)�t

to NJob × (NM⊥ × NH⊥�s)�t′ . Thus we have a simulation of the compound
net NJ′× (NM⊥×NH⊥�s)�t by a compound net which has been extended to
consider easy and hard jobs.

8.1 The exponential of a net

In [DP91] de P aiva modelled the linear modality “of course” by constructing
a comonad ! with the properties that,

!A⊗!B =!(A × B) and !1 = I
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By Theorem 7.3, this comonad lifts to a comonad ! in GNet with the same
properties. It has the following definition.

Definition 8.6 The exponential !N of the net N is the net 〈E, (B∗)E, pre !, post !〉
where B∗ is the free commutative monoid ove B, and if φ : E → B∗ is the
function given by φ(e) =

∑
B mibi then

pre !(e, φ) =
∑
B

mipre(e, bi) and post !(e, φ) =
∑
B

mipost(e, bi).

The net !N has the same event set as N but a considerably larger condition
set. We may understand the net !N as a net in which the conditions have
been “unwound” into all their possible requirements. This may be seen in
the following example.

Example 8.7

The net !N has one event e and countably many conditions, labelled by pairs
(because B has two elements) of integers. The condition 〈n, m〉 appears in
pre(e) with multiplicity n and in post(e) with multiplicity m.

8.2 The symmetric monoidal closed structure of GNet

GNet has a symmetric monoidal closed structure induced by that in MNSet.
The tensor product ⊗ and its right adjoint, linear implication (�), have the
following definitions.

Definition 8.8 The tensor product (N0 ⊗ N1) of two nets is the net 〈E0 ×
E1, B

E1
0 × BE0

1 , pre0 ⊗ pre1, post0 ⊗ post1〉 where,

pre0 ⊗ pre1〈e0, e1, f, g〉 = pre0〈e0, fe1〉 + pre1〈e1, ge0〉

post0 ⊗ post1〈e0, e1, f, g〉 = post0〈e0, fe1〉 + post1〈e1, ge0〉
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Its unit is the net I = 〈{∗}, {∗}, 0, 0〉.

Definition 8.9 The linear implication (N0 � N1) of two nets is the net
〈EE0

1 × BB1
0 , E0 × B1, pre0 � pre1, post0 � post1〉 where,

(pre0 � pre1)〈f, F, e0, b1〉 = pre0〈fe0, b1〉 ! pre1〈e0, F b1〉

(post0 � post1)〈f, F, e0, b1〉 = post0〈fe0, b1〉 ! post1〈e0, F b1〉

and ! is the truncated subtraction described in Appendix A.2.

9 A Proof System for Nets

In Section 8 we made implicit use of a language for nets. In this section,
we shall describe how to extend this to a proof system for nets, based on
Girard’s intuitionistic linear logic [Gir87]. We first define a language N for
nets by the following BNF,

N ::= 0 | 1 | I | Ni | N ⊕ N′ | N ∧ N′ | N ⊗ N′ | N � N′ |!N | N�s

where the Ni and s are chosen from two disjoint collections of constant sym-
bols.
We shall interpet this language in GNet. The interpretation is parametric
in a function τ which assigns an object of GNet, that is a Petri net, to each
of the constant symbols Ni and a synchronisation function to each synchro-
nisation symbol s. Each term of the language N is then interpreted by an
object of GNet in the following way.

• [[Ni]] = τ(Ni) for each constant symbol Ni,

• [[1]] = 1 = 〈{∗}, φ, φ, φ〉,

• [[0]] = 0 = 〈φ, {∗}, φ, φ〉,

• [[I]] = I = 〈{∗}, {∗}, 0, 0〉,

• [[N ∧ N′]] = [[N]] × [[N′]],

• [[N ⊕ N′]] = [[N]] + [[N′]],
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• [[N ⊗ N′]] = [[N]] ⊗ [[N′]],

• [[N � N′]] = [[N]] � [[N′]],

• [[!N]] =![[N]] and

• [[N�s]] = [[N]]�τ(s)

With the exception of restriction, our language contains just the connectives
of intuitionistic linear logic (LIL). Therefore, the evident choice is to use the
following rules of intuitionistic linear logic in order to derive net refinements.

N � N
(Id)

Γ � N N, ∆ � N′

Γ, ∆ � N′ (Cut)
Γ, N, N′ � N′′

Γ, N′, N � N′′ (Ex)

Γ,0 � N
(0 �)

Γ � 1
(� 1)

Γ � N

Γ, I � N
(I �) � I

(� I)

Γ � N ∆ � N′

Γ, ∆ � N ⊗ N′ (� ⊗)
Γ, N, N′ � N′′

Γ, N ⊗ N′ � N′′ (⊗ �)

Γ � N

Γ � N ⊕ N ′ (� ⊕ l)
Γ � N ′

Γ � N ⊕ N′ (⊗ � r)

Γ, N � N′′ Γ, N′ � N′′

Γ, N ⊕ N′ � N′′ (⊗ �)
Γ, N Γ � N′

Γ � N ∧ N′ (� ∧)

Γ, N � N′′

Γ, N ∧ N′ � N′′ (l ∧ �)
Γ, N′ � N′′

Γ, N ∧ N′ � N′′ (r ∧ �)

Γ � N N′ � N′′

Γ, N � N′ � N′′ (��)
Γ, N � N′

Γ � N � N′ (��)
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!N � I ∧ N ∧ (!N⊗!N) (! �)

The following result, which is an immediate consequence of Theorem 7.3,
is our justification for using this as a basis of a proof system for nets.

Proposition 9.1 Let [[ − ]] be an interpretation of N in GNet. If Γ � N
then there is a morphism from [[Γ]] to [[N]].

The existence of a derivation N � N′ implies the existence of a morphism
from [[N]] to [[N′]] in GNet, and hence that N′ simulates N.

We would like to extend our system to deal with restriction by adding a
rule of the form:

N � N′

N�s� N′�s′

together with a suitable side condition on s and s′. Unfortunately, it follows
from Propsition 8.4 that the side condition will depend on the choice of
morphism between N′ and N. The derivability of N � N′ implies only that
there is a morphism from N′ to N.

For this reason, it seems likely that it would be profitable to develop a
proof system based on Girard and Lafont’s term assignment system for in-
tuitionistic linear logic [GL87], in which one derives sequents of the form
x : Γ � t : A. Our rule for restriction would then be of the form:

x : N � t : N′

x : N�s� t : N′�s′

with the side condition that s ≤ s′t.

This appears to be a promising direction for future investigation, and is
currently work in progress.

10 Marked Nets

In this paper, as in [Bro90, BG90, BG], we have defined categories of nets
without an initial marking. Other authors ([Win87], [MM88a]) have con-
structed categories of marked nets. An important consequence of the results
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of Section 6 is that they provide a clear indication as to how to extend our
work to construct a category of marked nets.

Lemma 10.1 The following data:

• objects: marked nets 〈N, M〉,

• morphisms: pairs 〈f, F 〉 such that 〈f, F 〉 is a morphism from N to N′

in GNet and 〈M, M ′〉 is F -ok, and

• composition: as in GNet

define a category, MNet.

Proof: It is clear that if 〈N, M〉 is a marked net then 〈M, M〉
is id -ok and so we have identities. Composition is well-defined
since if 〈M0, M1〉 is F -ok and 〈M1, M2〉 is G-ok then M0F ≤ M1

and M1G ≤ M2 and so M0FG ≤ M2 whence 〈M0, M1〉 is FG-ok.
Associativity is inherited from GNet. ✷

There is an evident forgetful functor U : MNet → GNet mapping a marked
net 〈N, M〉 to N and a morphism 〈f, F 〉 to 〈f, F 〉.

Lemma 10.2 The assignment:

N #−→ 〈N, 0〉 and 〈f, F 〉 #−→ 〈f, F 〉,

where 0 is the constant zero function, defines a full and faithful functor F :
GNet → MNet.

Proof: F is well-defined since 〈0, 0〉 is F -ok for any F . F is
clearly faithful, and is full since every map from 〈N, 0〉 to 〈N′, 0〉
in MNet is a map from N to N′ in GNet. ✷

Proposition 10.3 F is left adjoint to U
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Proof: MNet(FN, 〈N′, M ′〉) = MNet(〈N, 0〉, 〈N′, M ′〉)
= {〈f, F 〉 ∈ GNet(N, N′) | 〈0, M ′〉

is F -ok}
= GNet(N, N′) since 〈0, M ′〉

is F -ok for any F, M ′

= GNet(N,U〈N′, M ′〉).
as required. ✷

If we extend the definition of a marking to a function M : B → N ∪ {ω}
then we can also construct a right adjoint to U .

Lemma 10.4 The assignment:

N #−→ 〈N, ω〉 and 〈f, F 〉 #−→ 〈f, F 〉,

where ω is the constant ω function, defines a full and faithful functor G:
GNet → MNet.

Proof: G is well-defined since 〈ω, ω〉 is F -ok for any F . G is
clearly faithful, and is full since every map from 〈N, ω〉 to 〈N′, ω〉
in MNet is a map from N to N′ in GNet. ✷

Proposition 10.5 G is right adjoint to U .

Proof: MNet(〈N, M〉,GN′) = MNet (〈N, M〉, 〈N, ω〉)
= {〈f, F 〉 ∈ GNet(N, N′) | 〈M, ω〉

is F -ok}
= GNet(N, N′) since 〈M, ω〉

is F -ok for any F, M ′

= GNet(U〈N′, M ′〉, N′).
as required. ✷

Corollary 10.6 GNet is isomorphic to both a full reflective and a full core-
flective subcategory of MNet.

Applying the adjoint functor theorem5 shows that U preserves any (small)

5The solution set condition is trivial since any morphism 〈f, F 〉 : N → UN′ equals
U(〈f, F 〉 : FN → N′).
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limits and colimits that exist in MNet. Thus, limits and colimits in MNet
can differ from those in GNet only in their action on markings. In particu-
lar, we have the following results.

Proposition 10.7 MNet has binary products given by,

〈N0, M0〉 × 〈N1, M1〉 = 〈N0 × N1, M0 ∧ M1〉

where N0×N1 is the product of N0 and N1 in GNet, and M0∧M1 : B0+B1 →
N is given by M0 ∧ M1(in i(b)) = Mi(b).

Proof: Projections in GNet are given by 〈πi, in i〉 : 〈N0 ×N1〉 →
Ni. 〈πi, in i〉 is a morphism from 〈N0, M0〉 × 〈N1, M1〉 to 〈Ni, Mi〉
as (〈M0 ∧ M1〉)in i = Mi ≤ Mi and so 〈M0 ∧ M1, Mi〉 is in i-ok.

Now suppose that there exists 〈fi, Fi〉 : 〈N, M〉 → 〈Ni, Mi〉. Then
there exists a unique map 〈〈f0, f1〉, F0 + F1〉 : N → N0 × N1 in
GNet such that 〈πi, in i〉〈〈f0, f1〉, F0 + F1〉 = 〈fi, Fi〉.
However, the 〈fi, Fi〉 are morphisms in MNet and so each 〈M, Mi〉
is Fi-ok. Therefore, M(F0 + F1)(in i(b)) = MFi(b) ≤ Mi(b) =
(M0 ∧ M1)in i(b) and so 〈M, M0 ∧ M1〉 is (F0 + F1)-ok whence
〈〈f0, f1〉, F0 + F1〉 is a morphism in MNet. This completes the
proof. ✷

Proposition 10.8 MNet has binary coproducts given by,

〈N0, M0〉 + 〈N1, M1〉 = 〈N0 + N1, M0 ⊕ M1〉

where N0 + N1 is the coproduct of N0 and N1 in GNet, and M0 ⊕ M1 :
B0 × B1 → N is given by M0 ⊕ M1〈b0, b1〉 = max{M0(b0), M1(b1)}.

Proof: Injections in GNet are given by 〈in i, πi〉 : Ni → N0 +N1.
〈in i, πi〉 is a morphism from 〈Ni, Mi〉 to 〈N0, M0〉 + 〈N1, M1〉 as
M0⊕M1(〈b0, b1〉) = max{M0(b0), M1(b1)} ≥ Mi(bi) = Miπi(〈b0, b1〉)
and so 〈Mi, M0 ⊕ M1〉 is πi-ok.
Now suppose that there exists 〈fi, Fi〉 : 〈Ni, Mi〉 → 〈N, M〉. Then
there exists a unique map 〈f0 + f1, 〈F0, F1〉〉 : N0 + N1 → N in
GNet such that 〈f0 + f1, 〈F0, F1〉〉〈in i, πi〉 = 〈fi, Fi〉.
However, the 〈fi, Fi〉 are morphisms in MNet and so each 〈Mi, M〉
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is Fi-ok. Therefore, M0 ⊕ M1〈F0, F1〉(b) = M0 ⊕ M1〈F0b, F1b〉 =
max{M0F0b, M1F1b} ≤ M(b) as M(b) is greater than each MiFi(b)
since, each 〈Mi, M〉 is F -ok. Thus 〈f0+f1, 〈F0, F1〉〉 is a morphism
in MNet. This completes the proof. ✷

Proposition 10.9 MNet has initial and terminal objects given by,

0MNet = 〈0GNet, 0〉 and 1MNet = 〈1GNet, ∅〉.

Proof: There exists a unique ∗ from 0 to N in GNet. This is also
a map from 0 to 〈N, M〉 in MNet for any M since M ≥ 0∗ = 0.
There exists a unique ∗ from N to 1 in GNet. This is also a map
from 〈N, M〉 to 1 in MNet for any M since ∅ ≥ M∅ = ∅. ✷

The symmetric monoidal closed structure of GNet does not lift to MNet
as smoothly as we might have hoped. Recall from Section 8 that the net
N0 ⊗ N1 is given by,

〈E0 × E1, B
E1
0 × BE0

1 , pre0 ⊗ pre1, post0 ⊗ post1〉.

Therefore, a marking of the tensor product of marked nets 〈N0, M0〉 and
〈N1, M1〉 is a function M0 ⊗ M1 from BE1

0 × BE0
1 to N. The natural choice

appears to be to define,

M0 ⊗ M1〈f, g〉 = maxE0{M1f(e0)} + maxE1{M0g(e1)}.

This has the appealing property that if M0 ↓ e0 and M1 ↓ e1 then M0 ⊗M1 ↓
〈e0, e1〉. Unfortunately, with this definition of M0 ⊗ M1, it is not possible to
give a definition of M0 � M1 in such a way that −⊗〈N0, M0〉 is left adjoint
to − � 〈N0, M0〉. The difficulty is that a marking of the net N0 � N1 which
is,

〈EE0
1 × BB1

0 , E0 × B1, pre0 � pre1, post0 � post1〉.

is a function M0 � M1 from E0 × B1 to N. For the adjunction we require,

∀b2 ∈ B2. M2(b2) ≥ M0 ⊗ M1〈f, g〉 iff ∀b2 ∈ B2 ∀e1 ∈ E1.
M1 � M2〈e1, b2〉 ≥ M0(f(e1)).
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As g occurs free on the left hand side of this equivalence and does not occur
on the right, the definition of M0 ⊗ M1 can not depend on g. In fact, if we
ignore g and define,

M0 ⊗ M1〈f, g〉 = maxE0{M1f(e0)}.

The we can recover the closed structure by defining,

M0 � M1〈e1, b0〉 = M1(b1)

in which case − ⊗ 〈N, M〉 is left adjoint to − � 〈N, M〉. However, this is
unsatisfactory as it destroys the symmetry of ⊗ and has no natural computa-
tional interpretation. These difficulties have led us to explore other possible
closed structures on GNet and MNet such as those described in [LS91].
This is work in progress.

A Structure in MNSet

A.1 Products and Coproducts in MNSet

The products and coproducts in MNSet are defined in terms of the product
and coproduct in Set (observe that, since products and coproducts in Set
are assigned, they are also assigned in MNSet). It is routine to prove the
following lemmas.

Lemma A.1 The product of two objects 〈E0, B0, α0〉 and 〈E1, B1, α1〉 of
MNSet is 〈E0 × E1, B0 + B1, α0 ∧ α1〉, where the function α0 ∧ α1 from
(E0 × E1) × (B0 + B1) into N is given by

(α0 ∧ α1)〈e0, e1, b〉 =

{
α0〈e0, b0〉 if b = (b0, 0)
α1〈e1, b1〉 if b = (b1, 1).

The projection from 〈E0 × E1, B0 + B1, α0 ∧ α1〉 to 〈Ei, Bi, αi〉 is the mor-
phism 〈πi, in i〉, where πi is the ith projection in Set and in i the ith canonical
injection in Set.

Lemma A.2 The coproduct of two objects 〈E0, B0, α0〉 and 〈E1, B1, α1〉
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of MNSet is 〈E0 + E1, B0 × B1, α0 ⊕ α1〉 where the function α0 ⊕ α1 from
(E0 + E1) × (B0 × B1) into N is given by

(α0 ⊕ α1)〈e, b0, b1〉 =

{
α0〈e0, b0〉 if e = (e0, 0)
α1〈e1, b1〉 if e = (e1, 1).

The injection from 〈Ei, Bi, αi〉 into 〈E0 + E1, B0 × B1, α0 ⊕ α1〉 is the
morphism 〈πi, in i〉.

A.2 A Monoidal Closed Structure on MNSet

Lemma A.3 The functor ⊗ : MNSet × MNSet → MNSet which takes
the pair 〈〈E0, B0, α0〉, 〈E1, B1, α1〉〉 of objects of MNSet to

〈E0 × E1, B
E1
0 × BE0

1 , α0 ⊗ α1〉,

where (α0⊗α1)〈e0, e1, f, g〉 = α0〈e0, fe1〉+α1〈e1, ge0〉, gives rise to a symmet-
ric monoidal structure on MNSet (also denoted ⊗) with unit I = 〈{∗}, {∗}, 0〉.

Lemma A.4 The functor (− ⊗ 〈E0, B0, α0〉) has a right adjoint (− �
〈E0, B0, α0〉) which takes the object 〈E1, B1, α1〉 of MNSet to the object

〈EE0
1 × BB1

0 , E0 × B1, α0 � α1〉,

where (α0 � α1)〈f, F, e0, b1〉 = α1(fe0, b1 ! α0(e0, F b1).

The symbol ! represents truncated subtraction, which coincides with nat-
ural number subtraction unless its first argument is smaller than its second,
in which case it evaluates to 0. This is analogous to a construction used by
Lawvere on the positive reals, see [Law73].

B Products in GNet

Recall, from Section 6, that we identify a Petri net 〈E, B, pre, post〉 with the
object 〈〈E, B, pre〉, 〈B, E, postop〉〉 of MNSet × MNSet∗.

It follows from Theorem 7.3 that the product of two nets 〈E0, B0, pre0, post0〉
and 〈E1, B1, pre1, post1〉 in GNet is given by the product of 〈〈E0, B0, pre0〉,
〈B0, E0, post

op
0 〉〉 and 〈〈E1, B1, pre1〉, 〈B1, E1, post

op
1 〉〉 in MNSet × MNSet∗.
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The product of two objects 〈E0, B0, α0〉 and 〈E1, B1, α1〉 in MNSet is the
object 〈E0 × E1, B0 + B1, α0 ∧ α1〉 where

(α0 ∧ α1)〈e0, e1, b〉 =

{
α0〈e0, b0〉 if b = (b0, 0)
α1〈e1, b1〉 if b = (b1, 1).

The details are contained in [DP91]. Clearly, the product of two objects
〈B0, E0, α0〉 and 〈B1, E1, α1〉 in MNSet∗ can be defined in terms of the prod-
uct in MNSet as,

ι−1(ι(〈B0, E0, α0〉) × ι(〈B1, E1, α1〉)) = ι−1(〈E0, B0, α
op
0 〉 × 〈E1, B1, α

op
1 〉)

= ι−1(〈E0 × E1, B0 + B1, α
op
0 ∧ αop

1 〉)
= 〈B0 + B1, E0 × E1, (α

op
0 ∧ αop

1 )op〉
= 〈B0 + B1, E0 × E1, α0 ∧ α1〉.

Thus the product of 〈〈E0, B0, pre0〉, 〈B0, E0, post
op
0 〉〉 and 〈〈E1, B1, pre1〉,

〈B1,E1,post
op
1 〉〉 in MNSet × MNSet∗ is given by,

〈〈E0, B0, pre0〉, 〈B0, E0, post
op
0 〉〉 × 〈〈E1, B1, pre1〉, 〈B1, E1, post

op
1 〉〉

= 〈〈E0, B0, pre0〉 × 〈E1, B1, pre1〉〉, 〈B0, E0, post
op
0 〉 × 〈B1, E1, post

op
1 〉

= 〈〈E0 × E1, B0 + B1, pre0 ∧ pre1〉〉, 〈B0 + B1, E0 × E1, post
op
0 ∧ postop

1 〉
= 〈〈E0 × E1, B0 + B1, pre0 ∧ pre1〉〉, 〈B0 + B1, E0 × E1, (post0 ∧ post1)

op〉

which we identify with the net 〈E0 ×E1, B0 + B1, pre0 ∧ pre1, post0 ∧ post1〉.
Coproducts and the symmetric monoidal closed structure of MNSet lift

to GNet in an entirely similar fashion.
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