13 research outputs found

    Life cycle monitoring of composite aircraft components with structural health monitoring technologies

    Get PDF
    Life cycle monitoring could considerably improve the economy and sustainability of composite aircraft components. Knowledge about the quality of a component and its structural health allows thorough exploitation of it’s useful life and offers opportunity for optimization. Current life cycle monitoring efforts can be split in two main fields 1) process monitoring and 2) structural health monitoring with little overlap between them. This work aims to propose an integral monitoring approach, enabling entire life monitoring with the same sensor. First, the state of the art of both composite manufacturing as well as structural health monitoring technologies is presented. Piezoelectric sensors have been ruled out for further investigation due their brittleness. Fiber optical sensors and electrical property-based methods are further investigated. Distributed fiber optic sensors have been successfully used in composite manufacturing trials. Two processes were demonstrated: vacuum assisted resin transfer molding and resin infusion under flexible tooling. Due to their flexibility, optical fibers can survive the loads occurring during manufacturing and deliver valuable insights. It is shown for the first time numerically and experimentally, that fiber bed compaction levels and volume fractions can be calculated from the optical frequency shift measured by the optical fiber sensors. The same sensor was used for subsequent structural health monitoring. This proves that the gap between process monitoring and structural health monitoring can be closed with mutual benefits in both areas. The final chapter presents a novel electrical property-based sensing technique. The sensors are highly flexible and manufactured with a robot-based 3D-printing method. They are shown to reliably work as strain sensors and crack detectors. This work presents a thorough investigation of available and novel sensing technologies for process monitoring and structural health monitoring settings. The results obtained could pave the way to more efficient aircraft structures.Open Acces

    Intelligent system to support micro injection process through artificial intelligent techniques and cae model integration

    Get PDF
    Trabajo de investigaciónIn this project a propose of integration of CAE Modeling and artificial intelligence systems to support the process in the production of micro plastic parts is presented. Based on analysis provided by CAE systems, studies will be carried out for diverse parts, to be analyses and throw to artificial intelligent techniques give recommendations of optimal values of plastic micro injection process.1. INTRODUCTION 2. PROBLEM STATEMENT 3. OBJECTIVES 4. CONCEPTUAL FRAMEWORK 5. THEORETICAL FRAMEWORK 6. STATE OF THE ART 7. METHODOLOGY 8. DESCRIPCION OF PROJECT 9. RESULTS 10. VALIDATION OF PROJECT 11. CONCLUSIONS AND FUTURE WORKS 12. REFERENCES 13. ANNEXESMaestríaMagister en Ingeniería y Gestión de la Innovació

    Scientific Advances in STEM: From Professor to Students

    Get PDF
    This book collects the publications of the special Topic Scientific advances in STEM: from Professor to students. The aim is to contribute to the advancement of the Science and Engineering fields and their impact on the industrial sector, which requires a multidisciplinary approach. University generates and transmits knowledge to serve society. Social demands continuously evolve, mainly because of cultural, scientific, and technological development. Researchers must contextualize the subjects they investigate to their application to the local industry and community organizations, frequently using a multidisciplinary point of view, to enhance the progress in a wide variety of fields (aeronautics, automotive, biomedical, electrical and renewable energy, communications, environmental, electronic components, etc.). Most investigations in the fields of science and engineering require the work of multidisciplinary teams, representing a stockpile of research projects in different stages (final year projects, master’s or doctoral studies). In this context, this Topic offers a framework for integrating interdisciplinary research, drawing together experimental and theoretical contributions in a wide variety of fields

    Special Issue of the Manufacturing Engineering Society (MES)

    Get PDF
    This book derives from the Special Issue of the Manufacturing Engineering Society (MES) that was launched as a Special Issue of the journal Materials. The 48 contributions, published in this book, explore the evolution of traditional manufacturing models toward the new requirements of the Manufacturing Industry 4.0 and present cutting-edge advances in the field of Manufacturing Engineering focusing on additive manufacturing and 3D printing, advances and innovations in manufacturing processes, sustainable and green manufacturing, manufacturing systems (machines, equipment and tooling), metrology and quality in manufacturing, Industry 4.0, product lifecycle management (PLM) technologies, and production planning and risks

    Development of elastomeric composite materials for the realization of piezoresistive sensors

    Get PDF
    Piezoresistive materials, able to sense geometrical deformation through variations of the electrical resistance, attracted an increasing interest in the scientific and industrial comparts during the last forty years, which increased significantly with the advent of nanostructured carbon-based conductive materials. These light, highly conductive and easy-to-obtain fillers have broadened the spectrum of materials that had been used up to that time, opening up the possibility of greater development of multifunctional materials. In particular, the carbonaceous fillers, homogeneously dispersed within a polymer matrix, immediately represented a valid alternative to the metals used in the field of piezoresistive systems. In the context of polymer nanocomposites and piezoresistive materials, a significant challenge for the scientific community is represented the by the achievement of an effective percolation pathway, which allows the passage of an electric current at the lowest percentage of filler (percolation threshold), and provides a direct correlation of the external forces in with the electrical resistance variations. Generally, the piezoresistive materials based on the exploitation of the polymer-based composites are designed by homogeneously dispersing the carbonaceous filler in the polymeric matrix. However, it is well known that a simple approach to reduce the content of filler and realize a conductive composite can be obtained by exploiting the concept of segregation of filler in the polymeric matrix. When the filler is not randomly dispersed, but segregated to build up a three-dimensional network, the electrical conductivity can be obtained with a significantly lower content of the carbonaceous filler. Amongst the several techniques for the realization of piezoresistive systems, in the last decade, the Additive Manufacturing (3D printing) technologies have aroused the greatest interest. The 3D printing processes lead to a considerable reduction in costs and times as compared with the traditional technologies of processing of polymers. Furthermore, as regards prototyping, they allow an almost total freedom to create even complex shapes and geometries in an automated and effective way. In particular, Selective Laser Sintering (SLS) is one of the most interesting technology, able to build up easily the segregated filler network, starting from polymeric powder adequately prepared. It is focused on the sintering of polymeric particles by a laser in the classic layer-by-layer mode. Many polymers can be used, from elastomeric to thermosetting, as well as conductive fillers. In this PhD research project, it was investigated the possibility of obtaining piezoresistive materials printed with 3D SLS using thermoplastic polyurethane (TPU) as a polymer matrix and graphene nanoparticles (GE) and multiwalled carbon nanotubes (MWCNTs) as conductive filler. The main objective of the doctoral research was to investigate the potential of SLS to create porous conductive materials with segregated distribution of the conductive filler, by evaluating the effect of different geometries and porosities (from 20% to 80%) and different shape of the conductive filler (i.e. 1D filler and 2D filler). Again, the aim was to evaluate, based on the complete characterization of the materials, what is the effect of the technology used, finding a possible correlation with the printed geometries. Thus, in the first part of the project, porous systems were printed using TPU modified with 1wt% of GE and starting from Diamond (D), Gyroid (G) and Schwarz (S) geometries for the building up of systems with regular porosity. The resulting three-dimensional porous structures show an effective conductive network due to the segregation of the graphene nanoplatelets previously assembled on the TPU powder surface in between the sintered elastomeric particles. The results confirm that GE nanoplatelets improve the thermal stability of the TPU matrix, while also increasing its glass transition temperature. Furthermore, porous structures made from S geometry show higher elastic modulus values in comparison with D and G based structures. After cyclic compression tests, all porous structures show robust negative piezoresistive behavior, regardless of their porosity and geometry, with exceptional sensitivity to deformation. Gauge Factor (GF) values of 12.4 at 8% deformation are obtained for S structures with 40 and 60% porosity, while GF values up to 60 are obtained for deformations lower than 5%. The thermal conductivity of TPU/GE structures significantly decreases with increasing porosity, while the effect of the structure architecture is less relevant. The second part of the project focused on the characterization of 3D printed TPU products with MWCNTs and a mixture of the two fillers, again at 1wt% but with a proportion of 70/30 wt/wt MWCNTs/GE with geometries D and G, in order to investigate a possible synergistic effect of the two conductive fillers. The results showed that the porous structures based on TPU with 1wt% MWCNTs/GE exhibit excellent electrical conductivity and mechanical strength. In particular, all the porous structures show a robust negative piezoresistive behavior, as demonstrated by the GF values that reach values of about -13 at 8% deformation. Moreover, the G20 porous structures (20% porosity) show microwave absorption coefficients ranging from 0.70 to 0.91 in the 12-18 GHz region and close 1 in the THz (300 GHz - 1 THz) frequency region. The results show that the simultaneous presence of MWCNT and GE brings a significant improvement in the specific functional properties of porous structures, which are proposed as potential piezoresistive actuators with relevant electromagnetic interference (EMI) shielding properties

    Translation of Intravascular Optical Ultrasound Imaging

    Get PDF
    ances in the field of intravascular imaging have provided clinicians with power ful tools to aid in the assessment and treatment of vascular pathology. Optical Ultra sound (OpUS) is an emerging modality with the potential to offer significant bene fits over existing commercial technologies such as intravascular ultrasound (IVUS) or optical coherence tomography (OCT). With this paradigm ultrasound (US) is generated using pulsed or modulated light and received by a miniaturised fibre-optic hydrophone (FOH). The US generation is facilitated through the use of engineered optically-absorbing nanocomposite materials. To date pre-clinical benchtop stud ies of OpUS have shown significant promise however further study is needed to facilitate clinical translation. The overall aim of this PhD was to develop a pathway to clinical translation of OpUS, enabled by the development of a catheter-based device capable of high resolution vascular tissue imaging during an in-vivo setting. A forward-viewing OpUS imaging probe was developed using a 400 µm mul timode optical fibre, dip-coated in a multi-walled carbon nanotube-PDMS com posite, paired with a FOH comprising a 125 µm single mode fibre tipped with a Fabry-Perot cavity. With this high US pressures were generated (21.5 MPa at the transducer surface) and broad corresponding bandwidths were achieved (−6 dB of 39.8MHz). Using this probe, OpUS imaging was performed of an ex-vivo human coronary artery. The results demonstrated excellent correspondence, in the detec tion of calcification and lipid infiltration, with IVUS, OCT and histological analysis. A side-viewing OpUS imaging probe, employing a reflective 45 °angle at the dis tal fibre surface, was used to demonstrate rotational B-mode imaging of a vascular structure for the first time. This provided high-resolution imaging (54 µm axial resolution) with deep depth penetration (>10.5 mm). Finally the clinical utility of this technology was demonstrated during an in-vivo endovascular procedure. An OpUS imaging probe, incorporated into an interventional device, allowed guidance of in-situ fenestration of an endograft during a complex abdominal aortic aneurysm repair. Through this work the potential clinical utility of OpUS, to assess pathology and guide vascular intervention, has been demonstrated. These results pave the way for translation of this technology and a first in man study

    Methodological-technological framework for construction 4.0

    Get PDF
    The construction industry has traditionally been characterised by the high diversity of its agents and processes, high resistance to change and low incorporation of technology compared to manufacturing industries. However, the construction sector is experiencing now a strong renovation process in methodology and tools due to the incorporation of the Building Information Modelling, Lean Construction and Integrated Project Delivery. Meanwhile, in production systems, “Industry 4.0” is a new paradigm that proposes automation, monitoring, sensorisation, robotisation, and digitalisation to improve production and distribution processes. In this context, some authors have proposed the concept of “Construction 4.0” as the counterpart of Industry 4.0 for the construction sector, although the methodological-technological implications are not clear. This research shows a methodological-technological framework adapted to the Architecture, Engineering, Construction, and Operations industry. This papers includes a detailed proposal for a reference frameworks and related technologies that could impact on this sector, responding to its complexities and specific challenges, such as the unique spaces for each work, which are difficult to standardise, arbitrary cost overruns and a productivity far below the average for other industries, increasing competitiveness and globalisation, as opposed to its traditionally local deployment, and an increasing demand to reduce the carbon footprint for all its activities

    Design and development of robust hands for humanoid robots

    Get PDF
    Design and development of robust hands for humanoid robot

    A Framework for Industry 4.0

    Get PDF
    The potential of the Industry 4.0 will allow the national industry to develop all kinds of procedures, especially in terms of competitive differentiation. The prospects and motivations behind Industry 4.0 are related to the management that is essentially geared towards industrial internet, to the integrated analysis and use of data, to the digitalization of products and services, to new disruptive business models and to the cooperation within the value chain. It is through the integration of Cyber-Physical Systems (CPS), into the maintenance process that it is possible to carry out a continuous monitoring of industrial machines, as well as to apply advanced techniques for predictive and proactive maintenance. The present work is based on the MANTIS project, aiming to construct a specific platform for the proactive maintenance of industrial machines, targeting particularly the case of GreenBender ADIRA Steel Sheet. In other words, the aim is to reduce maintenance costs, increase the efficiency of the process and consequently the profit. Essentially, the MANTIS project is a multinational research project, where the CISTER Research Unit plays a key role, particularly in providing the communications infrastructure for one MANTIS Pilot. The methodology is based on a follow-up study, which is jointly carried with the client, as well as within the scope of the implementation of the ADIRA Pilot. The macro phases that are followed in the present work are: 1) detailed analysis of the business needs; 2) preparation of the architecture specification; 3) implementation/development; 4) tests and validation; 5) support; 6) stabilization; 7) corrective and evolutionary maintenance; and 8) final project analysis and corrective measures to be applied in future projects. The expected results of the development of such project are related to the integration of the industrial maintenance process, to the continuous monitoring of the machines and to the application of advanced techniques of preventive and proactive maintenance of industrial machines, particularly based on techniques and good practices of the Software Engineering area and on the integration of Cyber-Physical Systems.O potencial desenvolvido pela Indústria 4.0 dotará a indústria nacional de capacidades para desenvolver todo o tipo de procedimentos, especialmente a nível da diferenciação competitiva. As perspetivas e as motivações por detrás da Indústria 4.0 estão relacionadas com uma gestão essencialmente direcionada para a internet industrial, com uma análise integrada e utilização de dados, com a digitalização de produtos e de serviços, com novos modelos disruptivos de negócio e com uma cooperação horizontal no âmbito da cadeia de valor. É através da integração dos sistemas ciber-físicos no processo de manutenção que é possível proceder a um monitoramento contínuo das máquinas, tal como à aplicação de técnicas avançadas para a manutenção preditiva e pró-ativa das mesmas. O presente trabalho é baseado no projeto MANTIS, objetivando, portanto, a construção de uma plataforma específica para a manutenção pró-ativa das máquinas industriais, neste caso em concreto das prensas, que serão as máquinas industriais analisadas ao longo do presente trabalho. Dito de um outro modo, objetiva-se, através de uma plataforma em específico, reduzir todos os custos da sua manutenção, aumentando, portanto, os lucros industriais advindos da produção. Resumidamente, o projeto MANTIS consiste num projeto de investigação multinacional, onde a Unidade de Investigação CISTER desenvolve um papel fundamental, particularmente no fornecimento da infraestrutura de comunicação no Piloto MANTIS. A metodologia adotada é baseada num estudo de acompanhamento, realizado em conjunto com o cliente, e no âmbito da implementação do Piloto da ADIRA. As macro fases que são compreendidas por esta metodologia, e as quais serão seguidas, são: 1) análise detalhada das necessidades de negócio; 2) preparação da especificação da arquitetura; 3) implementação/desenvolvimento; 4) testes e validação; 5) suporte; 6) estabilização; 7) manutenção corretiva e evolutiva; e 8) análise final do projeto e medidas corretivas a aplicar em projetos futuros. Os resultados esperados com o desenvolvimento do projeto estão relacionados com a integração do processo de manutenção industrial, a monitorização contínua das máquinas e a aplicação de técnicas avançadas de manutenção preventiva e pós-ativa das máquinas, especialmente com base em técnicas e boas práticas da área de Engenharia de Software

    Beyond Rapid Prototyping: automation of robotic 3D printing for construction

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Informática, Departamento de Ingeniería del Software e Inteligencia Artificial, leída el 18-04-2017La fabricación aditiva se desarrolló por vez primera hace más de 20 años. A pesar de este hecho,se ha mantenido encapsulada y aislada como una técnica de prototipado rápido hasta su eclosión y su crecimiento exponencial subsiguiente, experimentado en los últimos 10 años. Como consecuencia, la fabricación aditiva se considera una de las tecnologías más disruptivas del siglo, capaz de dar forma al futuro de la fabricación.Las técnicas de prototipado rápido ya han llegado al público en general, permitiendo la emergencia de nuevos modelos de fabricación y distribución a muchos niveles. No obstante, muchas aplicaciones profesionales de la impresión en 3D están aún por explorar. La tesis se centra en la impresión 3D para la construcción, que se encuentra estancada en una etapa temprana de desarrollo, especialmente en lo relativo a materiales y productos finales de gran tamaño. Algunos esfuerzos se han llevado a cabo en esta dirección,con vistas a aumentar la capacidad de la tecnología en cuestiones de tamaño, velocidad, o variedad demateriales. En la presente investigación se analizan los tres ámbitos, dentro de un marco sistémico y que sirve como base para el desarrollo de aplicaciones de fabricación aditiva con fines industriales, basados en el empleo de robots de seis ejes. Por lo tanto, es posible superar las limitaciones actuales de la tecnología de impresión 3D en términos de sus aplicaciones en la industria de la arquitectura, ingeniería y la construcción (AEC), lo que representa la versatilidad de la herramienta, materiales, calidad de acabado, y las cuestiones ambientales que dicha tecnología implica...Additive Manufacturing was first developed more than 20 years ago. Despite this fact, it hasremained encapsulated as a Rapid Prototyping technique until its eruption and subsequent exponentialgrowth, which it has experienced in the last 10 years, being considered, as a consequence, one of the mostdisruptive technologies to shape the future of fabrication.Rapid prototyping techniques have already reached the general public, causing new fabricationand distribution models to arise at many levels. Nonetheless, many professional applications of 3D printingstay unexplored. The thesis focuses on 3D printing for construction, which is stagnated at an early stage ofdevelopment, especially regarding materials and oversized final products. Some efforts have been carriedout in this direction, aiming at increasing size, speed, or materials. The current research discusses all three,within a globally interrelated systemic framework that serves as basis for the development of industrial,robot-based Additive Manufacturing applications. Thus, it is possible to overcome the current limitationsof 3D printing technology in terms of its applications in the AEC industries, accounting for tool versatility,materials, finish quality, and environmental issues...Depto. de Ingeniería de Software e Inteligencia Artificial (ISIA)Fac. de InformáticaTRUEunpu
    corecore