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ABSTRACT 

 

At present, the need to produce micro plastic parts has increased considerably due 

to the progress that technological devices have made and the desire to make them 

smaller and with a greater number of features. Although the production of these 

parts has advanced widely, manufacturing methods and techniques are still very 

complex, which means longer production times and consumption of raw materials, 

generating great possibilities of failures in the final product.  

 

In this project a propose of integration of CAE Modeling and artificial intelligence 

systems to support the process in the production of micro plastic parts is presented. 

Based on analysis provided by CAE systems, studies will be carried out for a large 

number of diverse parts, searching a first look at the behavior of the injection plastic 

process. Making use of image processing systems a primary database will be 

created, with shape parameters and variables such as temperature, injection time, 

closing pressure, shear rate and number of deformations on the different parts.  

 

With neural networks and the database created, intelligent system will be trained for 

the recognition of variables that are handled and thus identify the optimal form and 

injection parameters that affect the quality of the part. Fuzzy logic will be control 

ranges of variables that affect the parts in order to give recommendations that 

intervene in the manufacturing process, and be able to obtain results with a smaller 

amount of deformations.  

 

Through the generation of recommendations, the manufacture of plastic parts from 

optimal values can be carried out. Artificial vision is used to analyzes the failures 

presented on the manufactory process, in order to execute a new data interaction 

on neural network and fuzzy logic system, in such a way that a new analysis and 

new cycle of injection can carry out. With each new injection cycle the system is 

trained, analyzing the presented deformations to reach a point where the 

recommendations help to produce a part without failures and industrial quality. 

Through the tests, an injection cycle reduction of approximately 39% was achieved, 

which means a lower consumption of material and production times, giving better 

system efficiency over conventional processes. This process is proposed for a large 

number of micro-parts, searching that the system can give recommendations to 

almost any type of geometric shape.  

 

Keywords: Micro-parts, Microfabrication, CAE systems, Expert Systems, Shape 

Variables, Process Variables, Fuzzy Logic, Neural Network. 
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1. INTRODUCTION 

In the search for knowledge and technological progress, the humanity wants to 
optimize processes and machinery in a way to make more accessible and suitable 
for the general public. In today's society, marked by the use of technology in every 
aspect of daily life [1], people must think of objects that are easy to manipulate and 
that fulfill broad tasks, meaning that these are small objects capable of carrying out 
various actions and improving life aspects. 
 
Thanks to the information age [2] is possible to perform various actions with just one 
hand movement. The instruments used to perform different actions in new 
technological devices must have high precision and operating capacity. The micro-
parts, being such small and highly precise components, allow all the activities of 
devices in an effective way, but for make all this possible, the manufacturing process 
has to be very complex. 
 
Taking into account the need for production of millimeter and micrometric parts, 

different manufacturing techniques based on material molding, extraction and 

injection have arisen [14], but many of these are based on the experience of the 

operator, who must be an expert in the control of process parameters that affect 

geometric and material variables [15]: in addition, if such methods are to be applied 

in the manufacture of millimeter and/or micrometric scale parts, precision in variable 

manipulation must be high, which in turn increases production times, as well as 

materials.  

 
In the micro-manufacture [3] of plastic parts are involved several operating 
variables, these affect many subroutines that must be made to obtain the desired 
part, from the design of molds, the machining techniques (that must be highly 
precise) and the microinjection (that must be constantly controlled). To make all 
processes involved possible is necessary to invest too much time in tests and 
manufacturing controls. Taking into account the importance of micro-parts today and 
the complexity of their manufacture, uses intelligent systems is the best way to 
facilitate production processes and thus reduce time and loss of material, making 
use of the technologies such as process automation and expert systems. 
 
The total controls of the operators on the production processes must be intervened 
by expert systems, these must have the ability to control and identify faults and 
irregularities that may occur during the manufacturing process [4]. The control of 
variables such as temperature, application pressure, flow of material, among others, 
search to reduce the possibility of defects such as deformations and reflows on the 
material. Defects, in many cases, make necessary external interventions on the 
parts, making that these losing quality and competitiveness in the market. The 
dependence of the operators must be considerably reduced, especially in the micro-
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manufacturing processes. When an operator handling such precise measurements 
is so difficult to control the involve parameters, which results on inferiority and 
inability of micro parts to comply with the necessary standards and functions. Fuzzy 
logic systems allow managing qualitative functions in parts, based on process rules 
compliance [5].  Process rules are already established by operators and operating 
manuals, so [6] fuzzy machines would serve as a support system for operators and 
process control [7], to reducing defects in the injection molding process [8]. 
 

Fuzzy Logic is a multivalued logic that allows representing mathematically 

uncertainty and vagueness, providing formal tools for treatment, this attempts to 

model the ambiguity of belonging with which a variable is perceived, where an 

element does not belong entirely to absolute truth. Fuzzy logic is based on fuzzy 

sets, in the same way that classical set theory is the basis for Boolean logic. With 

fuzzy sets, logical statements of the yes-then type are made, defining these with 

Fuzzy Logic. Fuzzy sets are defined by an added membership function, defined as 

a real number between 0 and 1. The concept of a fuzzy set or subset is associated 

with a certain linguistic value, defined by a word or linguistic label where this is the 

name of the set or subset [13]. 

 

Like other expert system, neural networks are more complex systems based on 

interactions and training [9], which can synthesize large numbers of parameters 

from different learning techniques and predict the real behavior of the system, 

achieving values close to system operation. Neural networks are more used by the 

Ability to learn to perform tasks based on training or initial experience (Adaptive 

Learning), also by the capacity of creating his own organization or representation of 

the information, it receives through a learning stage (Self-organization). A special 

quality of Neural networks is a fault tolerance where, though partial destruction of a 

network leads to a degradation of its structure, some network capabilities can be 

retained, even suffering great damage [10]. In a complex system, neural networks 

can operate in real-time. Machines and systems with special hardware and software 

are designed and manufactured to obtain the capacity to performed neural 

computations in parallel [11]. Whit the facility of insertion into existing technology, 

specialized chips can be obtained for neural networks that improve their ability in 

certain tasks, facilitating modular integration into existing systems [12]. 

 

A system that allows the integration of simulator analyses, gives control of options 

on the parameters to obtains better results in the real manufacturing phase, 

analyses the critical variables such as filling time, material temperature, mold 

temperature is necessary [16]. This kind of systems must be developed to analyses 

the variables that interview in the process like ejection temperature, maximum 
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injection pressure, geometric characteristics, manufacturing time, inlet flow, closing 

force, holding pressure, injection volume, pressure maintenance time, mold pre-

cooling time and cooling time of the part [17]. Plastic injection processes simulators 

allow obtaining an overview of the behavior that occurs during manufacturing 

processes [18]. These facilitating the controls on the parameters involved in the 

production of parts [19]. 

 

Applying technique of expert systems in microinjection processes, makes possible 

to carry out a complete analysis of the parameters that affect the system, these 

establishing the appropriate behavior to obtain a part without defects. Expert 

systems, aside from serving as support to process optimization, give real and 

indicated values for the desired part, granting more control tools to the operator, and 

therefore decreasing the load and the dependence that is generated. 

 

The use of simulators in plastic injection processes allows to obtain an overview of 

the behavior that can occur during the manufacturing processes, facilitating the 

controls on the parameters that intervene in the micro-fabrication of parts. A system 

should be considered that allows to integrate the analyzes obtained in the 

simulations to give control options on the parameters and obtain better results in the 

actual manufacturing phase, analyzing variables such as temperature, pressure, 

geometry, vertices, manufacturing time, flow of input, closing force, among other 

variables that intervene in the final results.   

 

This project seeks the integration of CAE Modeling and artificial intelligence systems 
to support the process in the production of micro plastic parts from the design and 
development of software, which allows to give control recommendations both in the 
form and in the process variables that affect the manufacture of the micro-parts. It 
is proposed to collect the data that feed the system through the analysis of the 
results that the CAE simulation studies provide, in order to create a primary 
database with the expert systems can perform interactions and promote 
recommendations on the variables that affect the process. Each new injection cycle 
generates new variables of form and process that feed the system, with the aim of 
generating a more complex learning and thus obtain better results in a fewer number 
of cycles. The software is intended to be functional for a wide variety of geometries, 
so that it can be used for almost any type of micro-part.  
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2. PROBLEM STATEMENT 

The micro-parts refer to all the components of a micrometric scale and that are 

currently required in multiple technological environments such as bioengineering, 

micro-electronics, automotive, biomedicine, among others [3]. Being such complex 

components, require a large number of manufacturing parameters to meet the 

quality standards into compliance with their work. These parameters are related to 

mold variables, material variables, shape variables and process variables. 

Although the manufacturing processes of various parts of plastic have been studied 

for many years, the great diversity of geometries and materials that can be used in 

processes often hinder the results, increasing materials and production times. In the 

elaboration of the micro-parts, involved processes usually become difficult since to 

the need of a greater precision in the dimensions, these require systems of control, 

quality and accuracy, and in many occasions, it is necessary to print more than once 

the part that is desired obtain. 

In the current injection processes, the operator is who has the decision on 

manufacturing parameters [6], which makes the manufacture of plastic parts is 

completely empirical, in addition, the operators must be expert staff with specific 

skills, which generates him a high control over the quality standards with the part 

will work. 

In the development of parts with micrometric characteristics, the manufacturing 

processes require unconventional designs that allow the systems to maintain the 

mechanical characteristics and at the same time have an industrial quality index. In 

order to produce these parts is necessary to invest a lot of time in geometric mold 

designs and in the adjustment of the control parameters, on many occasions these 

production and design times can be from weeks or months until reaching an optimal 

design and control [4]. 

Thanks to the latest technological advances in the various branches of artificial 

intelligence, expert systems techniques, 3D printing, among others, the ability to 

optimize the processes of control and manipulation of parameters has been 

demonstrated. In the manufacture of micro plastic parts, the use of these 

technologies helps to optimize processes giving better results in the production of 

high quality parts. 

In the phases that involve micro-manufacturing processes, pre-processing phases 

are taken into account, such as the geometric design, the design of the mold, the 

manufacture of this, among others. The manufacture of the mold in the elaboration 
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of the micro-part of plastic is key to obtain results that can be competitive in the 

market [5]. Consideration should be given to materials that are capable of 

withstanding high temperatures and the pressure applied so that the plastic part 

obtains the desired characteristics and can fulfill its function. 

From the above, two questions are generated that allow to frame and direct the 

research. 

 Which variables of the manufacturing process of micro-parts of plastics 

should be controlled and taken into account to design an intelligent system? 

 

 Which artificial intelligence technologies and expert systems are the most 

suitable to use in each of the phases of production of micro plastic parts in 

order to support the productivity of the process? 
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3. OBJECTIVES 

 

3.1 GENERAL OBJECTIVE 

 

Design a system that integrates CAE models and analysis with artificial intelligence 

techniques, in order to support the micro-manufacturing processes of plastics parts. 

 

3.2 SPECIFIC OBJECTIVES 

 

 Design models of micro plastic parts with different geometric characteristic that 
allow to generalize of analysis and definition of geometric parameter 
requirements. 

 Analyze the influence of geometry, material and machine variables in the 
formation of micro plastic parts using CAE model systems.  

 Identify the variables that affect the formation of the micro plastic parts through 
rapid prototyping tests of different parts. 

 Design an artificial intelligence system throw the identification of injection defects 
on micro-plastics parts give recommendations of optimal values parameters. 

 Integrate CAE model systems with the Artificial Intelligent System developed in 
order to reduce and validated the injection cycles required to produce a good 
quality injection part. 
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4. CONCEPTUAL FRAMEWORK 

The development and progress that humanity has undergone in recent decades has 
been influenced by the search for digitalization and miniaturization of the 
components of daily life, in order to improve the quality of life of human beings [2]. 
This progress has been greatly influenced by the evolution of 
microelectromechanical systems (SMEM).  
 
The SMEM are microelectromechanical systems able to carry out different tasks, 
these works thanks to the interaction between the micro-electro-mechanical parts. 
Mechanical and electro-mechanical elements of different physical dimensions that 
can vary from a micrometer (one millionth of a meter) to one millimeter (one 
thousandth of a meter) [3].  
 
Over the years, several techniques have been created to manufacture micro-parts 
from simple processes such as micro-mechanized to some more complex such as 
ultrasound molding. Next, what processes that have originated and what each of 
them consists of will be specified [27]. 

4.1 SMEM MANUFACTURING PROCESSES 

4.1.1 Micro-machining in volume. Technique   by   which    structures   inside   a  
substrate are produced by selective and anisotropic attacks [24]. This process 
consists in the application of material on engravings, generally on the underside of 
the substrate, in mechanical structures in order to create a part of free contact. The 
material can be applied in materials such as glass, gallium arsenide and silicon. This 
type of micro-machining requires a large amount of material for both the injection 
and the mold as it practically crosses almost the entire mold wafer. For this process 
anisotropic or isotropic attacks of volume of almost all the depth of the substrate are 
carried out [28]. 
 

Figure 1. Schematic of the volume micro-machining process. 

  
Source: https://www.researchgate.net/figure/Typical-steps-in-a-surface-
micromachining-process-a-substrate-preparationtypically-a_fig5_221912642 
  

https://www.researchgate.net/figure/Typical-steps-in-a-surface-micromachining-process-a-substrate-preparationtypically-a_fig5_221912642
https://www.researchgate.net/figure/Typical-steps-in-a-surface-micromachining-process-a-substrate-preparationtypically-a_fig5_221912642
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With the development of technologies of engravings by reactive ions has been 
possible to implement dry attacks, which allows to control the attack speed, the 
depth and the verticality of the same [25].   

 

4.1.2 Micro-machining surface. The surface micro-machining  is   based   on   the  

construction of the structure through of layer-on-layer deposition on the starting 
substrate. Each of the masks defines the shape of the structural layer, the first layer 
is defined as sacrificial layer since it will be removed later, and on this initiates the 
structural layer that will give shape to the micro-structure. The structure pattern is 
defined on this layer. Finally, the sacrificial layer is removed and the structure is 
released [28]. 
 

Figure 2. Schematic of the surface micro-machining process. 

 

Source:www.tdx.cat/bitstream/handle/10803/5347/mvg1de3.pdf?sequence=1&isal
lowed=y 

 

https://www.tdx.cat/bitstream/handle/10803/5347/mvg1de3.pdf?sequence=1&isAllowed=y
https://www.tdx.cat/bitstream/handle/10803/5347/mvg1de3.pdf?sequence=1&isAllowed=y
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4.1.3 LIGA and Micro-molding. LIGA      (Lithographic        Galvanic        process, 

Electrodeposition and Molding), lithography is defined as the technique used to 
engrave a pattern on a solid surface. The most common case used is the application 
of X-ray lithography on a conductive substrate coated with PMMA (highly 
transparent thermoplastic polymer). Once the engraving is done, the filling of the 
engraving with metal (Aluminum) is applied by electrodeposition in order to obtain a 
mold that will serve to make a ceramic sintering or a plastic replica [28]. Other 
lithography techniques vary depending on the resolution and the desired 
wavelength. (See Table 1). 
  
Table 1. Achievable resolution of different lithographic techniques. 

Technical characteristics Resolution Wavelengtha 

Mercury lamp Line G 400 nm 436 nm 

Line I 300 nm 365 nm 

Laser KrF 180 nm 248 nm 

ArF 100 nm 193 nm 

F2 70 nm 157 nm 

Lithography of Immersion 35 nm 193 nm 

Extreme Ultra Violet 45 nm 13 nm 

Source: Clealand-03, ITRS-04. 
 
4.1.4 Laser beam machining (LBM).  The   use   of  laser  technology   in   micro 
fabrication processes allows intermediate precision in addition to offering tools in 
the processes of cutting, welding, drilling and marking. The biggest advantage that 
it offers over other types of micro-manufacturing is the reduction of the areas 
affected by heat and therefore the reduction on the mechanical loads applied to the 
structure [28]. This type of micro-part manufacturing is usually applied in materials 
such as metals, ceramics, glasses and polymers. Normally these require very short 
wavelengths as they seek greater precision, for this, the lasers that are currently 
used are of the excimer type that offers a micrometer precision or solid state lasers 
multiplied in frequency that are limited to an accuracy of tenths of micrometers. 
 
4.1.5 Micro-EDM (Micro EDM). The   electro-erosion   process   consists   in    the  
generation of an electric arc between an electrode and a part that through of a 
dielectric removes material until the shape of the electrode is reproduced. In this 
process it is necessary to use conductive materials so that the formation of the 
electric arc can be established, which causes the detachment of the excess material 
from the part. The biggest difficulty in this process is its speed, since it is a relatively 
slow process that is used in the formation of non-conventional geometries of hard 
and brittle metals [28]. The most used electro-erosion methods are: 
 

 Penetration EDM. 

 Wire EDM. 

 Drilling EDM (or rectification EDM). 
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In the last 45 years, different methods have been developed, although the most 
used are still electro-erosion by penetration and wire EDM. 
 
4.1.6 Electron beam machining. In this process, a beam of focused  electrons  is  

used at high speed that melts and eliminates the excess material to give shape to 
the desired part. The process starts in a vacuum chamber when a tungsten filament 
produces a beam with 3000 watts that is directed to the part to be machined, with 
the help of electromagnetic fields and coils which allow to focus and melt the 
material in a controlled manner. It is mainly used to create surface variations on the 
micro-part. The electron beam comprises a diameter between 10 mm and 200 mm, 
and a high energy intensity that allows crossing large thicknesses of material (up to 
65 mm approximately) [28]. This process is highly used due to the manufacturing 
speed, the energy efficiency it provides when using the light beam and the high 
quality indexes on the part, although it is limited by the size of the vacuum chamber, 
so the dimensions of the part will depend directly on the size of the camera, besides 
that it is not possible to produce large volumes of parts. 
 
Figure 3. Process of electron beam machining 

 
Source: https://basicmechanicalengineering.com/electron-beam-machining-ebm-
principles/ 
 
4.1.7 Machining by ultrasound. Ultrasonic impact grinding consists of the use of  
vibrations on the machining tool, which when vibrating at a low amplitude (25 to 100 
microns) and at a high frequency (15 to 30 kHz) removes material to a specific 
shape. The tool penetrates the part in an abrasive medium under controlled 
conditions, allowing operations such as cuts of small holes, slots or intricate patterns 
[28]. This method to generate a very fragile rupture is mainly used in materials such 
as glass, ceramics, silicon or graphite. 
 

https://basicmechanicalengineering.com/electron-beam-machining-ebm-principles/
https://basicmechanicalengineering.com/electron-beam-machining-ebm-principles/
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4.1.8 Microinjection. The  injection  process  starts  from  the  entry of the material  

into pellets into a hopper that takes the material to a cylinder with a screw in which 
heat is supplied to it to transform its solid state into a visco-ceramic state that allows 
it to flow into the mold through of the injection pressure, in which the material 
solidifies and takes the shape of the mold. 
 
In this process more than 200 variables intervene that normally must be changed 
according to the quality of the parts produced (injection defects more than 30 
completely qualitative), through an expert operator who by his experience defines 
which process parameter should change and in what intensity, change that makes 
at the foot of the machine [28]. This phase of the process, in which the machine has 
to be tuned for each of the micro-parts, can last for days, weeks and even months, 
until finally it is possible to obtain micro-parts with the necessary quality and 
precision. Taking into account that this phase must be repeated each time a part is 
changed in each machine, and that the results of the same geometry are different 
on different occasions, the complexity of the process is very high and the productivity 
is low. 
 
Knowing the great diversity of existing processes and the complexity of each of 
these, the need to use intelligent systems that can solve a multivariable system in a 
short time and that reduce the dependence of the process on an expert operator 
becomes more evident. 
 

4.2 INTELLIGENT SYSTEMS 

Intelligent systems refer to a set of tools and applications that combine 
characteristics and behavior similar to that of human or animal intelligence and with 
which it is able to collect, extract and order information collected from different 
sources for the sole purpose of creating intelligent media and artificial for various 
uses. These are usually used for support and decision making. 
 
 
 
For a system to be considered intelligent, it must have several functionalities among 
them [16]: 
 
4.2.1 Intelligence. In  artificial  intelligence, intelligence is assigned to the ability to  
achieve the objectives in decision making through the perception and flexibility of 
development in their environment. Normally the term intelligence is applied to a 
machine when it is capable of imitating the cognitive functions that human beings 
associate with mental processing such as learning or solving problems. Intelligence 
can also be defined as the ability of a system to interpret the data of the surrounding 
environment, in order to learn from these data and achieve tasks and objectives 
through the flexible adaptation of what has been learned [29]. 
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4.2.2 Systematization. The systematization refers to the ability to form  a  system,  

so is the specific organization of various elements that are part of something. Each 
of the parts of the system have a relationship with each other, which are governed 
by a set of rules, methods or data, which in turn is a form of classification. When 
systematization is attributed to a system, it refers to the ability to be part of a 
universe, with a limited extent, which forms a correlation between other parts of the 
system that can be more or less strong among themselves. 
 
4.2.3 Objective. An objective is the end to which it is desired to arrive, for a system  

the fulfillment of the objective is the one that drives the system, and from which it 
leaves for the taking of decisions. Normally there are many levels of objectives with 
which the system works, must focus on compliance with these from the analysis of 
their environment and the collection of data that allow you to make decisions that 
approximate the ideal behavior. Since there are main objectives and sub-objectives 
the system usually seeks to fulfill mainly the objectives that have more weight and 
allow to develop the main objective.  
 
4.2.4 Sensory capacity. The system's   senses  are  the  parts   that   can   identify  
environmental variables (sensors). The system starts from the received signals in 
order to learn and interact with the environment in the process of making decisions, 
normally these signals are identified as electrical impulses that come from the 
capture of ultrasound signals, humidity, speed, temperature, light radiation, contact 
or sound that are in the middle of the system [29]. 
 
 
4.2.5 Conceptualization. All   thinking   starts   from  a  concept,  so  the  ability to  
interrelate each of the concepts in order to obtain a meaning between them implies 
the development of different levels of abstraction. This is one of the most complex 
processes that a system can have since the storage of different variables that define 
the concept as such require a large storage and processing capacity, in addition to 
having many subsystems that allow to interrelate each one of the variables to give 
an end and a sense to what is being worked on. 
     
4.2.6 Rules of action. The rules of action are attributed more to the fuzzy logic. It  
is the interpretation of the memory itself to the data collected previously and with 
which a learning process has been developed, to a situation that starts from the 
analysis of the environment and the fulfillment of the objective is a decision and 
therefore an action that generates a consequence with which the system can learn 
for a future decision making (feedback). 
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4.2.7 Memory. Memory,   as   already   mentioned,   is  the  storage   of  variables,  

concepts, and rules of action that instruct the system, this includes the experience 
of the system that allows it to improve in decision making. It is necessary for some 
occasions to apply the filters of classification of experiences since on many 
occasions the system can give negative results and it can not classify them properly, 
the reason why it must have the correct control over this [29]. 
 
4.2.8 Learning. Learning can be considered as the most important capacity of the  
system since it is from this that it can make decisions. All the information received 
from the environment, the rules of action, the fixation of abstract concepts and the 
interrelation between these are part of the learning of this, and it is for all those that 
the system can make the best decision for the best development of the objectives 
[29]. 
 

4.3 ARTIFICIAL INTELLIGENCE TECHNIQUES 

Artificial intelligence techniques refer to the learning, reasoning and prediction 
processes that systems use to perform a task. These techniques may depend on 
pre-programmed parameters, learning systems, reasoning according to pre-
established values or cases, data interaction processes in order to arrive at an 
established model, among others. On many occasions, these methods work 
together to arrive at a meaningful prediction that is related to the problem and the 
environment in which it is found. 
 
4.3.1 Machine learning. Machine learning  is   system  processes   that   use   self- 
learning techniques to arrive at constructed knowledge. The self-learning process is 
achieved through programming processes in which deduction tasks are performed 
based on the interaction and relationship of cases or predefined values. Machine 
learning is widely used by various systems to perform prediction and control tasks 
(banking systems, traffic control) [30]. 
 
4.3.2 Fuzzy logic. Fuzzy logic refers to the process of analysis through compliance  

with rules, in which it is these that lead to a rational value. Fuzzy logic manages 
linguistic values close to those of the human being (more than, very, very), based 
on predefined values that allow the generation of value ranges and standardization 
to arrive at a term that fits the initial parameters, and which somehow fulfill a 
proximity value. Fuzzy logic is widely used to carry out adjustment processes, in 
which the approximation to a value allows giving a more accepted answer [31]. 
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4.3.3 Expert systems. Expert   systems   refer   to    systems   that   specialize   in  

developing a specific area. Through programming, database, environment reading 
and predictive development, expert systems can develop specific tasks, giving 
correct answers on problems that are generated in their field of application. Expert 
systems are used in specialized processes, where a repetition of tasks and analysis 
of these are necessary [32]. 
 
4.3.4 Data mining. Data mining is the  process  of  extracting  information  from  a  
large database. Data mining seeks to establish sets and patterns of behavior among 
a large amount of data and established values, through the interaction and 
relationship of values and sets that allow reaching a behavioral model and 
generating responses. This technique is widely used for classification processes, 
where a large amount of data must be classified and related to lead to a response 
[33]. 
 
4.3.5 Bayesian networks. Bayesian  Networks  are  an   analysis   process   that,  
through of the data relation (graph), seeks to infer an influence of value and arrive 
at a certain value. Bayesian networks are used as methods of influencing 
relationships, where the values are related to each other to determine a set of 
interrelations that complements and has a meaning. Bayesian networks seek to 
establish patterns of behavior that manage to define a model of behavior and 
generate new values that are attributed to new knowledge [34]. 
 
4.3.6 Neuronal Networks. Neural networks are a set of learning  techniques  that  
seek to establish relationships between a large amount of data to generate new 
knowledge. Neural networks seek to establish behavior similar to neurons in the 
human brain, where the transport and interaction of information from neurons allows 
a new result to be generated; In neural networks, a data interaction between nodes 
known as neurons is established, the interaction between nodes can generate new 
values and sets that are interrelated. Through the interrelation of data, new 
information is generated that is adjusted to the determined values. Neural networks 
are one of the most complex systems used in artificial intelligence since allows you 
to generate relationships and values from various data without a pre-established 
relationship [35]. 
 
4.3.7 Reactive systems. Reactive systems are those that  perform  tasks  in  real- 
time through analysis of the environment. The reactive systems are used as analysis 
systems, which through of sensors can study the environment in which they are 
found to generate an adequate response. Reactive systems process and react 
through various programming systems in which these are related depending on the 
information acquired [36]. 
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4.3.8 Rule-based systems.  Rules-based   systems   are   analysis  processes  to  

generate a result by complying with pre-established rules. These systems adjust to 
the environment through the acquisition of information, which, when related to 
already programmed parameters, adjust to compliance with an established rule that 
leads to compliance with an action. Rule-based systems are used in controlled 
environments to fulfill repetitive tasks that do not contradict their own programming 
[37]. 
 
4.3.9 Case-based reasoning. Case-based reasoning  is  a  process  in  which,  by  

analyzing past experiences, a task can be carried out. This process is based on the 
analysis of past information; By which this performs analyzes of similar experiences 
that allow analyzing how to generate a new result. Case-based reasoning is very 
similar to the learning system used by human beings, in which through experiences 
they analyze similar situations to make a decision [38]. 
 
4.3.10 Semantic networks. Semantic    networks    are    part    of    computational  
linguistics, which through programming, seeks to emulate linguistic reasoning. This 
type of network seeks to relate definitions and concepts so that new knowledge can 
be generated. Systems based on semantic networks are very close to the language 
used by humans, so these are so used as relationship systems to search and 
generate new information [39]. 
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5. THEORETICAL FRAMEWORK 

The development of the plastic micro-part begins with the use and application of the 
SMEM, from these was that the investigation and the manufacture of micrometric 
components began, capable of carrying out different activities. 
 

5.1 HISTORY AND APPLICATION OF SMEM 

The first record of production of a micro-part is given to the manufacture of the first 
contact point transistor [20] in the Bell laboratories. The transistor made with 
germanium average about half an inch thick and with this opened the possibility of 
construction of electrical parts with increasingly smaller semiconductor materials. 
Thanks to this development the piezo resistive effect of semiconductor materials 
was discovered in 1954 [21], such as silicon and germanium, which further impelled 
the development of SMEM since they allowed much better measurement that air or 
water pressure metals sensors. 
 
Since 1954 the development of smaller components had not been exploited, the 
need to create micrometric transistors was left out, and it was not until 1958 when 
the first integrated circuit was created [22] that saw the need to create smaller 
components. During the 1960s and 1970s, various micrometric-scale electrical 
components were developed, including silicon transistors, the resonant gate 
transistor (RGT) developed by Westinghouse that functioned as a frequency filter 
for integrated circuits, micro-machining sensors of pressure with a silicon diaphragm 
developed by Kurt Peterson of the IBM research laboratories, these sensors could 
measure much better than other pressure sensors thanks to the thin membrane 
which allowed greater deformation.   
 
In 1979 Hewlett-Packard was awarded the design of a printing alternative known as 
Thermal Inkjet Technology (TIJ), which consists of heating the ink and making it flow 
through micro-nozzles of high density that allowed a higher resolution in printing. In 
1986 an atomic force microscope (AFM) was developed by IBM scientists, this 
device allowed to detect forces of the order piconewtons (pN) through a probe 
coupled to a lever of about 200 micrometers (μm), which could trace the topography 
of a nanometric sample, this invention was fundamental in the investigation of 
nanometric parts. Throughout the 1980s, great advances were made in SMEM 
technology, where the first electrostatic rotary motor [23] and the development of 
comb structures that move laterally to the surface (1989) stand out.  
     
Starting in 1993, micro-manufacturing techniques are being promoted with the 
creation of a foundry by the North Carolina Microelectronics Center (MCNC) with 
the aim of creating more accessible and profitable systems and parts for a wide 
variety of products users. The production of accelerometers by Analog Devices was 
increasing which increases the availability and use of airbags in automobiles. 
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In medicine, great advances have also been made by SMEM with the creation of 
fully functional artificial organs, the use of microinjectors and micro-cameras that 
allow diagnosis of blood flow channels, the use of sensors that they allow to take 
control of cardiac states, among many others.  
 
There are many types of SMEM that have been classified according to their 
application and use [3], they are generally divided into: 
 
5.1.1 Classification of SMEM: 

 

 Sensors: Electronic and mechanical devices used to measure from chemical, 
mechanical, thermal, optical and inertial variations. They usually transmit 
these values as electrical signals. 

 Actuators: Devices that comply with the objective of generating a stimulus to 
other components, usually this stimulus can be mechanical, electrostatic or 
thermal. 

 RF SMEM: Devices specially designed for the transmission of radio 
frequency signals, generally include antennas, switches and capacitors. 

 Micro-Opto-Electro-Mechanical Systems (MOEMS): Optical function devices 
that allow to reflect, amplify direct or filter light spectra, are mainly used as 
reflectors or optical switches. 

 SMEM for micro-fluids: Devices designed to handle small volumes of fluids, 
in general these are classified as micro-pumps and micro-valves. 

 Bio-SMEM: Devices designed to interact specifically with biological samples. 
They are designed to interact with proteins, biological cells and medical 
reagents. They are normally used to supply medicines or perform medical 
tests. 

 
Figure 4. Forecast SMEM market by sensor type 

 
Source: Yole Developpement 
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The SMEM are involved in the development of many of the current technologies, 
not only medical, so their manufacturing process can vary. In the last decades, 
different types of manufacturing have been created such as Micro-Molding, 3D 
Printing, Laser Machining, Micro-Electro erosion, among others. 
 

5.2 DEVELOPMENT AND IMPLEMENTATION OF SMEM TECHNOLOGIES 

Research in micro-manufacturing of plastics has had a great development in recent 
years thanks to the progress and use that has been given to 3D printers from the 
integration of SLS systems and the creation of mass parts [40]. Although this 
technology exists since 1983 when the American physicist Chuck Hull creates the 
first part printed in 3D and creates stereolithographic and later in 1984 patented a 
method that allowed to obtain solid objects through of fine printing capable of 
hardening polymers with ultraviolet light [26], it was until 1987 when the first SLA 
type machine, developed by the company 3D Systems (3D Systems, Hull, Chuck 
1987), was made that the relevance of this New process has in the methods of 
manufacturing parts. 
 
Since the 90's have been investigating the utilities that these new processes can 
have in different branches of science, as an example you can take the creation of a 
fully functional 3D kidney with the ability to filter blood and produce dilute urine in an 
animal (wake forest institute for regenerative medicine, 2002), this process can be 
considered as one of the first fabrications of micro plastic parts, from there the 
search for applications of the manufacture of plastic parts by printing 3D has no end 
[41]. 
 
Into the last decade, different techniques have emerged for the manufacture of 
micro-parts that revolutionize the industry as it is known [42]. In 2016, the 
Technological Center of Catalonia manages to manufacture micro plastic parts by a 
method of molding using ultra sound that allows to create parts with a lot of precision 
(Eurecat, 2016), according to Xavier López Luján (Corporate and General Director 
of Operations of Eurecat.) "Sonorus 1G allows to mold with maximum precision 
micro-parts of plastic, some of them with geometries until now impossible to 
manufacture, improving, in addition, the energetic efficiency of the process very 
significantly and reducing the consumption of material" (López Luján, EARTO 
Innovation Awards 2016). 
 
In the academic field, different injection positioning methods have been developed 
to optimally control and obtain results. One of these is based on the Bresenham 
algorithm, which allows controlling the movement between two points of the XY 
plane which guarantees trajectory tracking and error minimization [43]. At Kansas 
State University, a quality control system for the 3D printing process has been 
developed, through of a camera the part is evaluated during the printing process at 
various control points through of a computerized processing software. images and 
SVM (support-vector machines) allows to verify the quality of the part in real time 
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which not only helps to eliminate the waste of material and time, but also avoids the 
need to reprint the whole part. 
 
The control processes for the manufacture of micro-parts are diverse, from the 
complete control of an expert operator [4], to autonomous systems verified by 
positioning algorithms and fed by data capture sensors. Many of these processes 
can be controlled by artificial intelligence techniques and expert systems based on 
fuzzy logic (FL), these are software capable of making decisions from a knowledge 
base and making inferences similar to human ones, some such as systems experts 
based on case reasoning, fuzzy logic or neural networks [9]. These are a very useful 
tool to handle a large number of qualitative parts functions, without requiring a 
training phase. There are many applications for fuzzy machine controllers [7] or to 
reduce defects in the injection molding process [8]. They are also applied to correctly 
determine different injection parameters, such as the length of the flow [17], which 
has a great influence on the final quality of the injected part. 
 
Some recent works use the Taguchi method to optimize injection molding 
parameters to reduce shrinkage [44]. Others use a gray diffuse system to design 
the optimal process for injection molded parts with a thin-shell feature [45]. Despite 
the success of such developments in the establishment of process parameters for 
specific cases, there is still a problem in how to use and adapt them in the case of 
injecting different parts, especially if it is the precision that must be had for the 
manufacture of micro-parts. In the last years, the industrial robotics has burst with 
force in applications of processes of manufacture that for a time were restricted to 
the cartesians machines, allowing the automation of processes like the milling and 
the polished. However, to obtain high dimensional and surface quality parts, special 
robots are required whose availability is limited due to their high cost [46]. 
 
The automation of processes of polishing of molds through of robots presents as 
difficulty that the robotic manipulator must carry out the process maintaining a 
constant force during the operation [6], which demands the realization of a trajectory 
of the robot with force control. This type of control is not immediately feasible in 
conventional commercial robots. Force control can be done in two ways, through 
passive control and active control [47]. In the passive control a mechanical system 
ensures that the abrasive tool remains in contact with the surface being worked by 
an elastic element. In these systems, the robot performs a pre-programmed and 
fixed trajectory and it is necessary to perform several tests until the operation begins 
to give the expected results, which involves a high cost in time of system 
preparation. The result is a not very flexible manufacturing system, in which any 
variation in the characteristics of the mold to be processed, will require taking 
measures to avoid a system failure, which does not have the intelligence to adapt 
to the new working condition. On the other hand, in active systems, sensors are 
used to measure the force and control the trajectory of the robot. Smart robotic 
polishing (with trajectory control by force) has been applied in various finishing 
operations of mechanical parts. Nagata [48] presented a system of robotized 
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polishing of molds for the manufacture of plastic bottles that considers a final 
sanding tool that integrates a biaxial load cell to measure the polishing forces. The 
system is capable of positioning with an accuracy of one tenth of a millimeter. 
Current trends in industrial robotics demand efficient, flexible, and robust robots that 
possess a certain level of autonomy [49]. In this sense, industrial robotics has 
evolved towards robots with sensorization and security capabilities, which allow 
them to perform tasks that previously only a human being could perform. However, 
in spite of the great advances in robotics, it is necessary to emphasize that in order 
to make a robot autonomous and intelligent, it is always necessary to develop the 
knowledge that will later be implemented in the robot's control system.  
 
In applications the micro-parts, mainly the SMEM [3] (microelectromechanical 
systems), have had great importance in the technological development, inertia 
sensors, gyroscopes, radio frequency systems, pressure sensors, are just some of 
the technologies that have had a great advance thanks to the manufacturing 
processes of micro-parts. The massive development of digital technologies has 
been greatly benefited by the possibility of creating increasingly smaller parts, the 
processors currently used have micrometric and even some nanometric 
characteristics, which makes them powerful electromechanical components. 
Another sample of SMEM that have had a significant development is in the 
electronic part, many sensors, actuators and controllers are now on a micrometric 
scale which allows to include more components in the devices, giving them greater 
capacity to perform different actions. 
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6. STATE OF THE ART 

For the documentation of this work, searches for articles related to research-related 
topics such as: 
 

 Micro injection by molding. 

 plastic injection molding process. 

 expert systems applied. 

 CAE models applied. 
 
A range of research was maintained for the last 10 years (2010 - 2020), where 
articles focused entirely on the microinjection processes of plastics were sought, in 
addition to the techniques and processes that may be involved to optimize the 
process. 
 
The articles were classified according to the topics of interest of the project and 
focused on: 
 

 Studies on the control of parameters in the plastic injection processes. 

 Analysis studies of the microinjection process of plastics. 

 Studies on the use of simulation tools applied to the microinjection processes 
of plastics. 

 Studies of artificial intelligence systems applied to the microinjection 
processes of plastics. 

 
Through experimentation has been determined that in every injection process, one 
of the main parts is the determination of the conditions of the control parameters 
that intervene in the process (pressure, mold temperature and ejection 
temperature). The research focused on flow behavior tests has been carried out to 
obtain the basic parameters of the material used (Polymers) and to make predictions 
of the flow behavior that the injection channels must have to fill the mold cavities 
completely [50]. In many injection processes, control techniques have been 
developed in order to allow taking data on the behavior of the tools.  
 
Data such as the speed of the piston with respect to the injection time, the pressure 
exerted on the injection polymers, the filling time of the mold cavity and the position 
of the closing tools are one of the most used [51]. Various systems have been 
developed in order to improve the efficiency of the injection molding processes. 
Studies that have focused on the optimized design of molds with different 
characteristics such as cool the positions with thicker walls, have improved the 
temperature control process and the reduction of plastic defects [52].  
 
The use of statistical methods to analyze the critical processes involved in injection 
molding has been one of the most studied branches, providing analysis of influence 
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on applied controls, and the critical variables that are most involved with machine 
parameters [53]. Other processes involve online monitoring systems, which allow 
the processes to be analyzed and studied by various sensors that are transmitted 
to online networks that analyze and study production cycles, reporting and taking 
action on process control [54]. In conjunction with online processing techniques, the 
optimization of the injection processes has been developed, generating new 
optimization processes such as the use of digital image processing that allows 
generating relationships between variables and control parameters to arrive at an 
optimization model with system feedback [55].  
 
The focus on the control of a single parameter such as temperature has generated 
various studies, in which they focus on the analysis and study of the influence of a 
single variable that alters the process in various ways and that can generate 
changes in the final results [56]. 
 
The study of the behavior of the polymers that are used in the injection processes 
(mainly in the microinjection) has a big impact on the final results. The investigation 
of polymeric materials generates new variations that must be taken into account 
during the manufacture of polymeric parts, in the same way, new techniques are 
generated that allow obtaining variable results on the behavior of the final parts [57].   
 
The analysis of the quality of the components generated by the plastic injection 
processes plays a very important role when talking about process optimization. The 
optimization investigations look for an intermediate point between quality and 
production, so that the parts manufactured in the injection processes maintain 
quality indices that allow them to be functional in industrial processes, through the 
analysis of process behavior models [58].  
 
The analysis of the physical and mechanical properties of the plastic materials used 
in the injection processes are critical to define the quality of the parts generated. 
The use of techniques such as fused deposition modeling allows to study 
characteristics of materials such as viscosity, density, and water absorption, which 
facilitate the selection of materials for each design [59]. 
 
The investigation of behavioral models focused on the process of microinjection of 
plastics has increased considerably in recent years. Like the microinjection of 
plastics be a critical process has been studied in different ways, looking for a model 
that allows improving the controls that are applied to the parameters involved in the 
process. The study of the injection processes in real time allows obtaining data that 
facilitates the understanding of the development of the process, and the generation 
of control techniques on them [60].  
 
Analytical models such as the prediction of filling for micrometric parts have been 
developed in order to estimate suitable processing parameters for different product 
geometries [61]. Different investigations that focus on evaluating the most 
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characteristic parameters involved in molding microinjection have been developed. 
It takes an evaluation approach to obtain algorithms and methodologies used in 
different models to improve industrial manufacturing processes, taking into account 
the problems and strengths that methodologies can have [62]. The investigation of 
the plastic properties that the materials have at the time of being injected is critical. 
Many investigations have focused on the analysis of the properties of materials and 
the parameters in the micro injection processes, classifying and giving values that 
allow to standardize controls on the variables and materials involved [63]. 
 
The deepening of research and experimentation in order to optimize microinjection 
processes has increased with the development of new methodologies and 
techniques. The design of experiments focused on the rapid manufacture of micro 
components has been studied in different fields. In the sought to design micro 
components that maintain quality and reliability restrictions have been decided to 
reduce the variety of changes in process parameters during operation, highlighting 
six parameters that influence the surface quality, flow length and the aspect ratio 
that are determined by statistical analysis for specific materials [64].  
 
The use of statistical control analysis techniques such as the Taguchi method is also 
widely used for the behavior analysis of the parameters of the microinjection 
process. Most of the studies focus on the control of parameters such as barrel 
temperature, mold temperature, holding pressure and injection speed. Through the 
analysis of matrices obtained by experimentation and the study of data by the 
aforementioned techniques has been possible to understand the characteristics of 
the process parameters in terms of their main effects, interactions and sensitivity to 
noise and to adjust them for their optimal performance [65]. 
 
The analysis of the flow behavior in the microinjection process has been key to 
determine the models that are inherent in the process. In different investigations, 
the Phan-Thien-Tanner model (PTT) has been used to represent the rheological 
behavior of viscoelastic fluids, in combination with models of sliding limits and 
mathematical equations of pressure variation and fusion flow. Many of the models 
and their combinations have been taken to system codes to be solved by finite 
element techniques, allowing to predict the behavior of temperature, pressure and 
filling time in real processes [66].  
 
The manufacture of molds in the microinjection processes is a critical part of the 
process since the final results depend on these. Due to this, studies focused on the 
analysis of the manufacturing of molds have been critical to improving the 
processes, such as the analysis of roughness and wettability that the polymers have 
when in contact with the wall of the molds and that affect the production and quality 
of the part injected [67]. Some studies have used chemical processes that allow 
improving efficiency in mold design processes. The use of blowing agents together 
with the molds allows to improve the release processes by creating separating 
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layers between the polymers and the mold walls, reducing the presence of defects 
and imperfection in the final parts [68]. 
 
One of the biggest problems of using models applied with finite element techniques 
is the approach it has. Many of the computer systems developed to perform 
simulations are focused on conventional injection processes. When a simulating 
microinjection process is developed, the results are not the reality that can be 
presented in a real process, simulators do not have the ability to analyze the flow 
channels of micrometric scale that the systems have in real life and the result are 
very variables.  
 
In recent years, analysis techniques focused on microinjection processes have been 
developed through meshing recommendations, the variation of ambient conditions 
and controls on the intervening control parameters that allow a more realistic 
approximation of the behavior of the process of microinjection [69]. Other methods 
applied to improve the precision of simulators in microinjection processes are focus 
on the analysis of the effect of pressure on viscosity and the effect of cavity 
deformation during molding. these methods are carried out on defined polymers to 
which the parameters of rheology and compression are known [70]. 
 
In the search for the optimization of the processes of plastic microinjection, 
simulators have been used in conjunction with data analysis to obtain an approach 
to the real behavior of the processes, in many cases, the manufacturing processes 
have been taken to the study of a specific element for which a whole system of study 
and behavior analysis is carried out [71]. The use of simulators in the injection 
processes has allowed to deepen in the analysis and study of the parameters that 
are involved in the processes, managing to improve the understanding and precision 
of the manufacturing methods, achieving better quality results [72].  
 
Simulators uses to verify the filling process during the microinjection molding 
process has been studied in different ways. In recent articles, a multi-scale method 
is proposed where the conventional method with macro-scale factors is analyzed 
against the micro-scale method where takes slip and surface tension into account 
to investigate the filling of the micro cavity. Studies demonstrated that the use of this 
multiscale method allows obtaining very real simulation values compared to a real 
process [73]. 
 
The uses of CAE simulation systems are the most widely used in the analysis of 
microinjection processes, due to the multiple tools they use, which allows obtaining 
a first look at the behavior of the process through the variation of the control 
parameters. Various studies have used CAE tools for the analysis of the process, 
such as the study of the gate location in asymmetric multi-cavity injection molds, 
where training data were managed using CAE simulation tools to be analyzed by 
matrix study processes, resulting in optimization of gate location [74].  
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Through CAE analyzes, the development of new methods for selecting optimal 
values for the injection process has been investigated. The establishment of 3D data 
tables of the plastic parts in UG allows studying the optimal values of injection 
pressure, injection time, mold temperature, melting temperature, location of the gate 
and guide. In the same way, the investigation allows the optimization of the design 
of molds improving the quality of the molds, as well as reducing the cycle of 
development of the molds [75]. 
 
During the last years, the increase of intelligent systems capable of making 
decisions has had a greater use and development in different processes. Various 
investigations have focused on studying how the application of artificial intelligence 
systems can benefit the control of parameters that influence injection processes, 
highlighting the benefits that can be obtained from using these systems [76].  
 
The design of molds has been one of the most studied aspects for the application 
of artificial intelligence techniques. The study of the mold surfaces has been 
analyzed by image processing techniques based on the evaluation of images 
generated by laser light applied on the surface, in order to determine the polishing 
surface [77]. Another aspect studied in the processes of microinjection of plastics 
has been the gate location in an injection mold. Applying finite element analysis 
focused on simulation and using artificial intelligence techniques such as neural 
networks and genetic algorithms, optimal location values have been obtained, thus 
minimizing the welding indexes in the mold joining lines, reducing failures in the final 
product and optimizing the manufacturing process [78].  
 
The use of neural networks and genetic algorithms has been used in the same way 
in the optimization of the Replication of Injection Molding Light Guide Plates, based 
on a neural network model that, together with a system of genetic algorithms, seeks 
an optimal model. The systems propose an evolutionary network that focuses on 
temperature control by frequency induction is proposed to improve the replication of 
the micro-characteristics of the molds [79]. 
 
The use of artificial intelligence techniques to control the parameters of 
microinjection has been studied in-depth due to the facilities that show in the 
management of industrial processes. The use of diffuse systems has been explored 
to verify and control various variables that are involved in the processes. One study 
has focused on monitoring and validating the injection rate control to maintain a 
uniform melt-front velocity during the fill phase compared to the sliding mode and 
set point control. As a result, a correct follow-up was performed with a minimum 
error rate [80].  
 
Processes based on fuzzy logic have been studied to serve as support systems in 
the manufacturing processes of micro plastic parts, making adjustments to the 
control parameters, giving operators more adjusted values to the design 
requirements [81]. 



 

 

 35 

 
The field of neural networks has been extensively explored in injection molding 
processes. Various studies have been carried out in order to characterize behavioral 
models of injection systems, identifying the most relevant parameters of the 
processes through the collection, division and processing of available data. The 
selection of appropriate model inputs, the network architectures together with the 
network parameters are selected to identify the training algorithms, the learning 
schemes and the training modes in order to validate the explored models to identify 
the actual behavior and the optimal values [82].  
 
Learning systems based in neural network and machine learning have been 
developed in order to give optimal values for machine parameters, without the need 
to undergo a process of experimentation or simulation, generating a reduction in 
manufacturing and production times [83]. In the same way, systems based on neural 
networks have been used in analysis of design and construction of molds, studying 
the dynamic behavior of the surface temperature of the cavities of the molds, thus 
generating valuable data that allows improving design efficiency and optimization of 
processes [84]. 
 
Genetic algorithm systems have been developed in order to delve into the analysis 
of highly variable and non-linear behavior of the polymer injection molding process. 
Various multivariable systems based on genetic algorithms allow obtaining models 
of system behavior, achieving optimal values to reduce defect rates and improving 
dimensional precision and mechanical resistance [85]. The combination of intelligent 
systems with statistical methods and techniques is widely used in efficiency and 
optimization processes. The use of mode-pursuing sampling (MPS) with genetic 
algorithms allows to study the injection processes without the need to resort to a 
high computational consumption, such as CAE systems, improving the analysis 
processes and reducing the consumption of resources, both computational and 
physical [86].  
 
Other studies use back propagation methods together with processes that involve 
genetic algorithms to carry out studies of the control variables involved in the 
injection processes, in order to arrive the optimization and the improvement of the 
processes [87]. Some studies have carried out the combination of system processes 
involving neural networks and genetic algorithms, along with chemical processes 
such as the use of microcellular foaming injection, focusing them on practical 
applications such as the production of vehicle parts with own characteristic of the 
process [88]. 
 
 
 
 
 
 



 

 

 36 

7. METHODOLOGY 

The proposed research is an exploratory search framed in the experimental 
development with a factorial design. The variables of processes and quality 
parameters of the studied micro plastic parts are correlated, in order to feed the 
subsystems of each methodological stage to follow. 
 

7.1 HYPOTHESIS 

A system that integrates artificial intelligence technologies with CAE simulation in 
order to determine the geometric and process variables involved in the manufacture 
of micro plastic parts, improving the efficiency of the process. 
 

7.2 METHODOLOGICAL STAGES 

According to the objectives of this project, the methodology to be used will be 
conceived, integrating the CAE design systems and artificial intelligence 
technologies for the control of the process variables, in order to determine optimal 
variables producing any type of generic micro-part with high indexes of quality and 
productivity. 
 
For the fulfillment of the objectives of the project, the following fields of action and 
methodological stages are proposed: 
 

1. Design and geometric analysis of the micro-parts: In this field the geometric 
analysis will be carried out through CAD modeling, which will provide the 
main geometric variables that affect the quality of the part. This phase 
includes the analysis of the variations that affect the geometric shape, 
material complications and imperfections.     
 

2. Analysis of processes by simulation CAE: Simulations of the injection 
process will be made in order to analyses material behavior when carrying 
out the process. Different variations will be made on the process variables, 
to analyses the relationships between injection parameters and to predict the 
quality characteristic of injection part resulted of combination of parameters.   

 
3. Database creation: Based on the geometric and process analyzes provided 

by the CAD and CAE simulators, a database will be established where all the 
results and variations obtained will be recorded. The database must be 
constituted by all the records that have been generated from the studies 
carried out, in order to find a behavior that suits the desired indexes. 

 
4. Design of predictive systems based on artificial intelligence: This stage seeks 

to integrate all the results obtained and stored in the database with an artificial 
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intelligence expert system, which is able to determine the most appropriate 
variables to obtain micro-parts with high quality indexes. 

 
5. Validation and implementation: Once the desired results have been obtained 

and the necessary studies have been carried out, the recommendations 
generated by the program to validate the correct functioning of the system 
are put into practice. It is intended that each new test performed serve as 
information to maximize the database and bring the network to a more real 
behavior. 

 
This methodology emphasized that the design is an iterative process, therefore, a 
possible return to previous stages of the process can happen but without falling into 
an error, rather an improvement of the process. 
 

7.3 MATERIALS 

In addition to the use of software design, simulation and programming, it is intended 
to perform real tests with thermoplastic test materials, such as Polypropylene (PP) 
and Acrylonitrile Butadiene Styrene (ABS).  
 

7.4 EXCLUSION CRITERIA 

The range of measures that will be studied in this project, ranging from a range of 
milli parts (2 cm maximum) with details of microns in high ranges, (although it will 
seek to reach as little as possible) that will be delimited by the capabilities that Mold 
manufacturing is achieved for parts with micro characteristics. 
 

7.5 INSTRUMENTS AND EQUIPMENT 

In the different stages previously presented, the following equipment and 
instruments will be used, which are available in the laboratories of the university: 
 

 Computers: Smart software will be made on the computers of network 
researchers. 

 Microinjection machine and sensory related to the process: The validation 
tests of the microinjection system will be carried out in the microinjection 
machine. 

 Makerbot 3D printers: the prototyping will be done in the Cube 3D Printer 
from “Universidad Catolica de Colombia”. 
 

7.6 INNOVATIVE CHARACTER OF THE PROJECT 

Although the use of expert systems in control projects has been one of the most 
explored and analyzed topics in recent years, no real intention has been seen to 
apply these in real systems, especially in countries like Colombia. Taking this into 
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account, the system proposed will integrate two models of analysis and prediction 
for the control and generation of variables, which will be able to predict the control 
of geometric characteristics of material on foot of machine. This is a point innovative 
to injection industry. 
 
Working with plastic parts with micrometric characteristics that are part of a large 
system is too complex, in addition to the production and consumption of material to 
obtain quality parts, so that a system that is capable of giving quality 
recommendations on the parameters of injection and that guarantees the reduction 
of cycles of processes, presents a great advantage over the classic processes, 
especially those that are completely dependent on the operators, where high failure 
rates and variations on the desired results can be presented. Additionally, this 
system will be able to learn with each injection cycle, being this capacity another 
innovative characteristic of this project. 
 
Taking into consideration that today's society is driven by the use of technology, 
creating programs and systems that help optimize the manufacturing processes of 
the components that drive technological devices is very useful and important, as 
these helps to optimize and reduce costs on the manufacture of the components, 
which helps reduce production times and loss of material. 
 

7.7 POTENTIAL APPLICATION OF RESULTS 

 Competitive advantage of the proposal with respect to other existing ones: 
 

o Since the current manufacturing processes are based on the experience 
of the operator, the use of an intelligent system that can predict the 
behavior of a material and give recommendations that optimize the 
manufacture of plastic parts reducing use of material and production times 
is a great advantage competitive, that can go hand to hand with the 
operator without affecting the work position of this and also serving as 
support. 
 

 Potential markets (national and international): 
 

o The use of micro plastic parts is fundamental for the proper functioning of 
technological devices in today's society, so a system that optimizes 
manufacturing processes and helps reduce production costs is highly 
appreciated, and if it is exploited correctly can generate large revenues in 
the thermoplastic manufacturing industry. 
 

7.8 ENVIRONMENTAL IMPACT 

The production processes of plastic parts that use injection molding techniques are 
highly polluting methods, since, starting from the model of injection molding and 
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material, these need high temperatures that are generated from the thermoresistive 
effect and a high power consumption for feeding the plungers material depression. 
With the application of a system that improves the efficiency of the process, the 
reduction of the process cycles is proposed, which significantly reduces the energy 
and thermal consumption for the feeding of the injection machines. 
 
With the decrease in consumption, the emissions of polluting gases that are 
generated directly and indirectly in the process are also reduced, reducing pollution 
levels that affect the environment. 
 
The efficiency in the production bet to him to reduce the consumption of raw material 
for the injection, that when concentrating in plastic materials (ABS, PP, PI, PO) are 
in their majority materials of high durability, that are not degradable in the 
environment and that they generate a more lasting environmental impact.  
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8. DESCRIPCION OF PROJECT 

Intelligence system that integrating CAE simulation with expert system technologies 
allows determining the process parameters and geometric variables involved in the 
manufacture of plastic parts with micrometric characteristics. The improvement of 
the efficiency in the process, reducing the injection cycles required to obtain a part 
of optimal quality conditions. Time reductions, and process material reductions are 
the result of the apply computational intelligence systems. 
 
Several stages of analysis and experimentation were developed, establishing the 
most important input variables to be taken into account by the system as well as 
defining the most relevant injection parameter processes to use them as output 
variables of the system and their relationships with quality control of parts that 
require injection processes. 
 

8.1 DESIGN MODELS OF MICRO PLASTIC PARTS 

An artificial intelligence system that had a wide range of geometric recognition been 
necessary to support the micro-manufacturing process. To give at the system the 
ability to process several geometric variations was decided to design a wide variety 
of micrometric scale parts that could be used in the production of plastic micro-parts. 
Through the Solidworks® software, CAD model designs were made with geometric 
variations that had a generic behavior (basic geometric shapes), in order to design 
parts for industrial use. 30 different designs of parts were made which were 
subjected to 6 geometric variations to analyze their behavior before different studies 
of mechanical stresses. The parts were classified from the generated studies in the 
parts of the design that best suited for industrial use (see table 2.). All variations of 
parts would be studied in the injection process and take them to the manufacturing 
process. 
 
Figure 5. Generic design part (flat face). 

 
 
 
 
 
 
 
 
 
 
 
 
 
Source: Author, Solidworks® software. 
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Table 2. Stress analysis on parts with geometric variations. 

   

   

   

Source: Author, Solidworks® software. 
 

8.2 CAE MODEL ANALYSIS OF INJECTION SYSTEM BEHAVIOR 

Using the CAE simulation tools provided by the Solidworks® software, different tests 
were performed to determine how the variation over the injection control variables 
affected the final result of micro-parts. Based on the initial conditions given by the 
software, variations were made on parameters such as injection point, material, 
filling time, material temperature, mold temperature, injection pressure and cooling 
time. Near 10 types of variations were taken into account by each one of the 
parameters studied, taking record of each of these and analyzing the final result of 
the parts against the variation taken (see table 3.). 
 
Table 3. Registered variations injection parameters. 

Tmold 
(°C) 

Tmat 
(°C) 

Vol inj 
(mm3) 

Pinj 
(Mpa) 

Tcool 
(sec) 

Tinj 
(sec) 

36 210 33,5 65 14 16 
40 210 35,8 60 6 3 
30 219 31.9 86 30 3 
36 210 36 61 6 3 

37,2 210 35 60 15 6,6 
35 210 35,2 58 16.6 17 
30     230 31.9 103 29 17 
40 210 35 59 6 17 
32 220 33 76 16 10 

Source: Author 
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The displacement of material that was generated in the final parts (deformation) was 
taken as a measure of comparison for the warm analysis of the parts. Each one of 
the variations that was presented against the variations of the control parameters 
determining were recorder, identifying in which cases there was a lower deformation 
and against which variations these cases occurred. All these records were stored in 
tables for further processing (see table 4.). 
 
Table 4. Registered displacement over variations of injection parameters. 

Displacement 
(X) 
mm 

Displacement 
(Y) 
mm 

Displacement 
(Z) 
mm 

Displacement 
(Total) 

mm 

0,0342 0,0315 0,0379 0,0259 

0,1482 0,0272 0,0282 0,075 

0,0825 0,2648 0,2612 0,1357 

0,0552 0,1953 0,1832 0,1008 

0,1491 0,1484 0,1994 0,1265 

0,0825 0,2648 0,2612 0,1357 

0,3021 0,2966 0,0755 0,1531 

0,0821 0,1513 0,1508 0,1009 

0,0274 0,0112 0,0118 0,0156 

Source: Author 
 
Solidworks® Software allows to generate graphical analysis of the behavior of the 
material in the injection time process simulator; It generated graphs such as 
temperature, pressure and time during the injection process. All graphics generated 
by the software were taken into account and stored in a database through behavior 
analysis (see table 5.). Behavior graphs were generated on the variables obtained 
and the corresponding graphs were generated from the data provided by the 
software. 
 
Table 5. Analysis graphics control parameters. 

Filling time Filling pressure 
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Filling shear Filling temperature 

  
Source: Author, Solidworks® software. 
 
Figure 6. Maximum inlet pressure. 

 
Source: Author, Solidworks® software. 
 
Figure 7. Input flow.  

 

 
Source: Author, Solidworks® software. 
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Figure 8. Closing force. 

 

Source: Author, Solidworks® software. 
 

8.3 DATABASE CREATION BETWEEN CAE MODELS AND INTELLIGENT 
SYSTEMS. 

A large amount of data was generated by all simulations developed, this makes 
necessary to create a program capable of storing and interpreting all stored data 
and graphics that occurred during the simulations. Matlab® software was selected 
to take into account that the vast majority of the data generated is graphic and this 
software provides a graphical analysis toolbox that facilitates the interpretation and 
recognition of data provided by all the generated graphics. 
 
A data storage software was designed based on the reading and interpretation of 
the graphs and the data generated. 
 
Figure 9. Data reading and interpretation system. 

 
Source: Author, Matlab® software. 
 
The designed system allows the storage of data from the reading and interpretation 
of the graphs and the generated data. Grayscale images were used by a recognition 
system based on the binarization of layers. Values between 0 and 1 were managed 
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to search that the positioning of the data was facilitated and could later be taken to 
real value. 
 
Code of values identification: 
 

Images load: 
IM1=getimage(handles.axes4); 
IM2=getimage(handles.axes5); 
IM3=getimage(handles.axes6); 
Images Processing: 
IMt1 = imcrop(IM1,[45 118 54 18]); 
IMt2 = imcrop(IM1,[42 669 53 18]); 
It1 = rgb2gray(IMt1); 
It2 = rgb2gray(IMt2); 
Bt1 = imresize (It1, [19*20 55*20]); 
Bt2 = imresize (It2, [19*20 54*20]); 
Bf1 = locallapfilt(Bt1, 0.3, 0.4); 
Bf2 = locallapfilt(Bt2, 0.1, 0.1); 
Bfn1=imsharpen(Bf1); 
Bfn2=imsharpen(Bf2); 
Tt1=graythresh(Bfn1); 
Tt2=graythresh(Bfn2); 
Bfnf1=im2bw(Bfn1,Tt1); 
Bfnf2=im2bw(Bfn2,Tt2); 
OCR application: 
ocrResults1=ocr(Bfnf1); 
ocrResults2=ocr(Bfnf2); 
recognizedText1=ocrResults1.Text 
recognizedText2=ocrResults2.Text 
Xt1 = sum(str2num(recognizedText1)); 
Xt2 = sum(str2num(recognizedText2)); 
set(handles.edit4,'string',num2str(Xt1)); 
set(handles.edit5,'string',num2str(Xt2)); 
IMp1 = imcrop(IM2,[45 118 54 18]); 
IMp2 = imcrop(IM2,[42 669 53 18]); 
Ip1 = rgb2gray(IMp1); 
Ip2 = rgb2gray(IMp2); 
Bp1 = imresize (Ip1, [19*20 55*20]); 
Bp2 = imresize (Ip2, [19*20 54*20]); 
Bpf1 = locallapfilt(Bp1, 0.3, 0.4); 
Bpf2 = locallapfilt(Bp2, 0.3, 0.4); 
Bpfn1=imsharpen(Bpf1); 
Bpfn2=imsharpen(Bpf2); 
Data recognition: 
recognizedTextp1=ocrResultsp1.Text; 
recognizedTextp2=ocrResultsp2.Text; 
Data sampling: 
Xp1 = sum(str2num(recognizedTextp1)) 
Xp2 = sum(str2num(recognizedTextp2)) 
set(handles.edit6,'string',num2str(Xp1)); 
set(handles.edit7,'string',num2str(Xp2)); 
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Figure 10. Characterization and data recognition system. 

  
Source: Author, Matlab® software. 
 
With the recognition system completed, the data was finally stored in tables that 
can be interpreted and used by subsequent systems. 
 
Table 6. Data storage table. 

Material ABS ABS ABS ABS PP PP 

Volume (mm3) 0,24 0,50 0,31 0,05 0,28 0,28 

Mass (gr) 0,27 0,55 0,34 0,05 0,25 0,25 

X (mm) 14,00 20,00 9,96 4,73 20,00 20,00 

Y (mm) 6,10 6,00 5,00 5,00 3,00 3,00 

Z (mm) 14,00 20,00 9,96 4,50 5,00 5,00 

Filling time (sec) 0,41 0,45 1,01 0,26 0,62 0,62 

Material Temperature 
(°C) 230,00 230,00 230,00 230,00 230,00 230,00 

Mold Temperature (°C) 50,00 50,00 50,00 50,00 30,00 30,00 

Ejection Temperature 
(°C) 90,00 90,00 90,00 90,00 95,00 95,00 

Injection Pressure (Mpa) 100,00 100,00 100,00 100,00 98,00 1,30 

Closing Force X (N) 0,02 0,17 0,03 0,04 0,00 0,00 

Closing Force Y (N) 0,03 0,13 0,03 0,01 0,00 0,00 

Closing Force Z (N) 0,01 0,16 0,02 0,04 0,00 0,00 

Pressure Time (sec) 1,93 1,97 3,02 1,51 17,00 17,00 

Cooling Time (sec) 9,41 7,45 24,01 4,76 44,00 44,00 

Displacement X (mm) 0,12 0,19 0,10 0,03 0,01 0,01 

Displacement Y (mm) 0,12 0,16 0,10 0,03 0,01 0,01 

Displacement Z (mm) 0,08 0,07 0,06 0,04 0,01 0,01 

Total Displacement 
(mm) 0,07 0,10 0,05 0,03 0,01 0,01 

Source: Author. 
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8.4 PREDICTIVE SYSTEM BASED ON NEURAL NETWORKS 

Due to a large amount of data collected, an intelligent system based on neural 
networks was the better option to design. This system must predict the behavior of 
the control variables of an injection system, determining the better variables to parts 
with micrometric characteristics that have different geometric shapes. A relationship 
between the variables and the resulting parts from nonlinear regression determined 
by the data obtained during the simulations was necessary. A geometric recognition 
system must be designed for different parts where the dimensions of the geometric 
figures could be established and the necessary calculations made in the injection 
process. In the absence of an established mathematical model, a way of relating the 
intervened variables during the process with the final parts should be sought. 
 
8.4.1 Geometric recognition system. 
 
Three different forms of capture were designed for the geometric recognition 
system. For the first form, a system capable of recognizing the geometric 
dimensions of the parts were designed by analyzing pixels from an established 
distance, for this, a capture environment was designed using an "HP Webcam 1300" 
camera using an array of pixels identified using image processing, the calculated 
distance between the depth of the stage, the position of the part and the distance of 
the camera determining the size of the object studied. A stepper motor is used to 
rotate the part and analyze each of the corresponding faces determining the height, 
width, and depth of this. 
 
Figure 11. Micro-part identification environment. 

 
Source: Author. 
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Code of size dimension identification: 
 

Camera recognition: 
cam = webcam('HP Webcam 1300'); 
cam.Resolution = '640x480'; 
comando=4; 
Image processing 
Imatrix = [];  
for k = 1:12 
    preview(cam) 
    pause(1) 
    Im=snapshot(cam); 
    Ins = imcrop(Im,[260.97619047619 326.690476190476 105.714285714286 
83.8095238095238]); 
    Int = rgb2gray(Ins); 
    BInsf1 = locallapfilt(Int, 0.3, 0.4); 
    BInsnf1=imsharpen(BInsf1); 
    TTin1=graythresh(BInsnf1); 
    Binsnf1=im2bw(BInsnf1,TTin1); 
    BW2 = bwareaopen(Binsnf1,50); 
    images{k} = BW2; 
    Imatrix = cat(3, Imatrix, images{k}); 
    fwrite(s,comando,'uint8'); 
    pause(1) 
    closePreview(cam) 
end 
figure 
imshow3D(Imatrix) 
Analysis of dimensions 
for n=1:12 
BW2 = images{n}; 
[f,c]=size(BW2); 
for i = 1:f 
if sum(BW2(i,:))<=0 
BW2(i,:)=1; 
elseif sum(BW2(i,:))>=1 
BW2(i,:)=BW2(i,:); 
end 
end 
for i = 1:f 
    for j = 1:c 
        if BW2(i,j)==0 
        fiv=i; 
        civ=j; 
        break 
    end 
    end 
end 
Ins2 = imcrop(Ins,[c1iv f1fv c1fv-c1iv f1iv]); 
[Alt(n),Anc(n)]=size(Ins2); 
end 
Data conversion: 
Y=max(Alt)*0.1918; 
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X=max(Anc)*0.1918; 
Z=min(Anc)*0.1918; 
set(handles.edit1,'string',num2str(X)); 
set(handles.edit2,'string',num2str(Y)); 
set(handles.edit3,'string',num2str(Z)); 
axes(handles.axes1); 
imshow(images{1}) 
d = imdistline; 
 

Figure 12. Dimension recognition system. 

  
Source: Author, Matlab® software. 
 
For the second geometric recognition mode, an STL file reading system was 
designed, this mode is able to recognize the dimensions of all faces of the loaded 
object and determining the dimensions of each of these by the recognition of the 
matrix values that each one of these possesses. 

 
Code of STL object face dimension recognition: 

 
set(handles.popupmenu2,'visible','on') 
set(handles.edit6,'visible','off') 
Path=get(handles.edit4,'String');  
FileName=get(handles.edit5,'String'); 
[F,V,N] = stlread([Path FileName]); 
vm=max(V); 
set(handles.edit1,'string',num2str(vm(1))); 
set(handles.edit2,'string',num2str(vm(2))); 
set(handles.edit3,'string',num2str(vm(3))); 
set(handles.pushbutton5,'visible','on') 
 

The system loads the dimensions in the X, Y and Z planes of the studied object in 
the reading system. Through the definition of the material, the system is able to 
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recognize the volume and weight from the analysis of the dimensions and density 
of the previously defined material. 
 
Figure 13. STL file sizing system. 

  
Source: Author, Matlab® software. 
 
For the third recognition system, code for reading files and character recognition 
was developed, this allows load the data generated by the Solidworks® software to 
recognize the dimensions, material, volume and area variables in the neural network 
system proceeds to work. 
 
Figure 14. Data reading and recognition system. 

 
Source: Author, Matlab® software. 
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Solidworks® data reading and recognition code: 
 

Loading data file: 
[Predeterminado Pathtxt]=uigetfile({'*.html'},'Predeterminado_word'); 
filetext = fileread([Pathtxt Predeterminado]); 
Search characters: 
idnm = strfind(filetext,'Nombre de material =  '); 
idnmp=idnm(1)+22; 
filetext(idnmp); 
c=1; 
n=1; 
Nombre_de_material(1)=filetext(idnmp); 
while c<=2 
n=n+1; 
if(filetext(idnmp+n)=='<') 
c=3; 
else 
Nombre_de_material(n)=filetext(idnmp+(n-1)); 
end 
end 
Data recognition: 
Nombre_de_material(n)=filetext(idnmp+(n-1)); 
deleteMe = isspace(Nombre_de_material); 
Nombre_de_material(deleteMe) = []; 
set(handles.edit6,'string',num2str(Nombre_de_material)); 
c=1; 
n=1; 
X(1)=filetext(idxp); 
while c<=2 
n=n+1; 
if(filetext(idxp+n)=='(') 
c=3; 
else 
X(n)=filetext(idxp+(n-1)); 
end 
end 
deleteMe = isspace(X); 
X(deleteMe) = []; 
set(handles.edit1,'string',num2str(X)); 
idy = strfind(filetext,'Y:'); 
idyp=idy+4; 
c=1; 
n=1; 
Y(1)=filetext(idyp); 
while c<=2 
n=n+1; 
if(filetext(idyp+n)=='(') 
c=3; 
else 
Y(n)=filetext(idyp+(n-1)); 
end 
end 
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deleteMe = isspace(Y); 
Y(deleteMe) = []; 
set(handles.edit2,'string',num2str(Y)); 
idz = strfind(filetext,'Z:'); 
idzp=idz+4; 
c=1; 
n=1; 
Z(1)=filetext(idzp); 
while c<=2 
if(filetext(idzp+n)=='(') 
c=3; 
else 
Z(n)=filetext(idzp+(n-1)); 
end 
end 
deleteMe = isspace(Z); 
Z(deleteMe) = []; 
set(handles.edit3,'string',num2str(Z)); 
set(handles.pushbutton5,'visible','on') 

 

Each of the geometric recognition systems created works in such a way that it is 
capable of studying the desired objects and analyzing the variables corresponding 
to the input of the neural network system without generating additional steps or 
inconveniences when loading the network. 
 
8.4.2 Neural Network Design. 
 
Once a stable system capable of recognizing the different parts with their 
dimensions was obtained, the design of the neural network began. To analyze the 
behavioral functions that the neural networks handle was necessary to study the 
behavior of each one and analyze was better for the desired system in function to 
develop oriented learning. 
 
Lineal Function: 

𝑓(𝑥) =

{
 
 

 
 −1 𝑥 < −

1

𝑎

𝑎 ∗ 𝑥 −
1

𝑎
< 𝑥 <

1

𝑎

1
1

𝑎
< 𝑥 }

 
 

 
 

 

Sigmoid function: 

𝑓(𝑥) =
1

1 + 𝑒−𝑔𝑥

.

 

Hyperbolic Tangent Function: 

𝑓(𝑥) =
𝑒𝑔𝑥 − 𝑒−𝑔𝑥

𝑒𝑔𝑥 + 𝑒−𝑔𝑥

.
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To start the neuronal network training, a multilayer network behavior capable of 
processing the large number of variables handled was sought. As input to the 
system, the parameters obtained during the simulations in Solidworks® were 
established. As output were sought control parameters that adjusted to the 
dimensions of the parts studied and with a zero deformation tendency. 
 
The fact that a mathematical model of the desired system is not established, a model 
that facilitates analyzing the behavior between the control variables of the injection 
process and the presence of deformations in injected parts was necessary.  A 
network focused on non-linear regression learning was defined, this is capable to 
search the behavior between the input and output variables to give an approximation 
to a behavior function that is established for each part. 
 
To analyze the behavior of the network, different tests were carried out. this allowed 
the network to focus on a deformation trend that reached zero. As a result, a network 
behavior with a tendency to zero was obtained, where the behavior of the tests with 
respect to their validation can be observed. 
 
Figure 15. Network training, testing and validation zero error trend. 

 
Source: Author, Matlab® software. 
 
The behavior of the regression function was validated so the objective values were 
adapted at the conduct of the functions established by the network. A trend of values 
that were adapted to the established parameters was observed in order to give the 
desired results. 
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Figure 16. Output validation to behavior function. 

 
Source: Author, Matlab® software. 
 
The behavior trend of the system was sought, approximately 138 interactions were 
needed for each part in order to train the network and obtain an approximate 
behavior of zero, finally, the desired results were obtained with an approximate error 
of 0.1008. 
 
Figure 17. System behavior. 

 
Source: Author, Matlab® software. 
 
Finally, a neural network composed of 10 internal and one output layer was 
designed, handling 148 rows of data, made up of 20 control parameter values each 
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one. As output, a single row of data corresponding to the values necessary for the 
injection process was given. 
 
Figure 18. Neural network designed. 

  
Source: Author, Matlab® software. 
 
Neuronal network design code: 
 

Declaration variables and layers interaction neural network:  
hiddenLayerSize = 10; 
net = fitnet(hiddenLayerSize); 
net.divideParam.trainRatio = 70/100; 
net.divideParam.valRatio = 15/100; 
net.divideParam.testRatio = 15/100; 
[net,tr] = train(net,inputs,targets); 
outputs = net(inputs); 
errors = gsubtract(outputs,targets); 
performance = perform(net,targets,outputs); 
tInd = tr.testInd; 
tstOutputs = net(inputs(:, tInd)); 
tstPerform = perform(net, targets(tInd), tstOutputs); 
view(net) 
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8.4.3 Neural network results. 
 
To publicize the results generated by the network, a PDF file is created by the 
analysis of the part studied together with the injection parameters recommended. 
The report is created using a tool provided by Matlab® software, that allows 
organizing all the data obtained together with the studies carried out so that it is 
easy for operators to understand. 
 
Figure 19. Results report. 

 
Source: Author, Matlab® software, PDF Reader. 

 

8.5 RAPID PROTOTYPING TESTS FOR DEFECT DETECTION 

For the identification of defects in the injection processes, rapid prototyping tests 
was decided to carry out to identify the defects that may occur. 6 different parts were 
taken in STL (Standard Triangle Language) format, these were taken to 3d print 
format for analysis (see table 7.).  
 
Table 7. Rapid prototyping printing parts. 

   

   
Source: Author, Print 3D. 
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For the analysis of the parts, surface defects were studied and simulated in the rapid 
prototyping process. As defects were taken those that appear as geometric 
deformations on a given part, these defects were classified as: 
 

 Sink marks.   Material collapse 

 Flash.    Displacement of joint material 

 Vacuum venting.  Air accumulations in layers of material 

 Burns.    Temperature Marks on the material 

 Incomplete parts.  Lack of material to complete the parts   
 

To carry out the corresponding tests, the cube pro 3d printer was used. To analyze 
the defects that can appear, three base parts were taken to which they applied 
variations seeking to affect their final geometric shapes. The results parts were 
classified according to the presented defect (see table 8.).   
 
Figure 20. Cube pro 3d printer. 

 
Source: Author, Universidad Católica De Colombia Laboratory. 
 
Table 8. Defects in printing parts. 

 
 
Base part 

 

 
  

 
 
Sink marks 
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Flash 

 

   
 
 
Vacuum venting 

 

 

  
 
 
Burns 

 

 

  
 
 
Incomplete parts 

 

 
  

Source: Author. 
 
With the classification of defects, an artificial vision system capable of recognizing 
the failures studied is proposed, in such a way as to give the indexes of deformation 
and nonconformity.  The indexes are used to proceed with the classification of parts 
and the management of the database. 
 
8.5.1 Artificial vision for recognition of defects. 
 
Starting from the vision system used for the recognition of dimensions, recognition 
algorithms were created for the detection of defects. Parts of a millimeter and 
micrometric dimensions are handling, with micrometric characteristics, thinking in 
this, a high-resolution camera capable of detecting the defects that appear on the 
part were necessary to implement. A Logitech HD Pro webcam 1080p was used for 
the resolution it manages, capable of capturing and detecting all the characteristics 
of the parts used.  
 
A geometric recognition system was designed taking from a database of binary 
images. It makes a comparison between the captured images and the base images. 
Using the results of the comparison, the geometrical differences between one image 
and another are analyzed by region props, pixels with defects are analyzed and 
classified according to size and shape. Analyze the RGB layers of the images that 
were implemented to detect chromatic differences that can be considered as burns 
on the parts. Finally, the affected areas were analyzed and a percentage was 
obtained to indicate the index of involvement of the resulting part. 
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Table 9. Recognition and characterization of defects by artificial vision. 

Flash and Vacuum venting recognition: 

 The system performs detection of objects identifying those where there are 
variations in shape. Identify the most critical parts of the part and from area 
analysis determine which can be classified as Vacuum venting and Flash. 

 ⬛ Interest areas. 

 ⬛ Flaw detection. 

 ⬛ Vacuum venting. 

 ⬛ Flash. 

 
Burn recognition: 

 Through the analysis of RGB capable, layer by layer is studied, identifying 
the chromatic variations that appear on the material, the affected area is 
identified and the indices of affectation are obtained. 

 ⬛ Area recognition. 

 
incomplete part recognition: 

 By segmentation of areas and edge search, the geometric shape of the 
studied part is identified, a comparison is made with the base of existing 
figures and incomplete areas are determined. 

 ⬛ Area comparison. 

 ⬛ Affected area.  

 
Source: Author.  
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Recognition code for artificial vision: 
 
Camera recognition: 
cam = webcam('Logitech® HD Pro webcam 1080p'); 
cam.Resolution = '1280x720'; 
preview(cam) 
Im=snapshot(cam); 
Image processing: 
B = imguidedfilter(Im); 
Int = rgb2gray(B); 
imad = imadjust(Int); 
sharpCoeff = [0 0 0;0 1 0;0 0 0]-fspecial('laplacian',0.9); 
imgSharp = imfilter(imad,sharpCoeff,'symmetric'); 
I2 = imfill(imgSharp); 
BW2 = edge(I2,'sobel'); 
difabs1 = bwareaopen(BW2, 15); 
closePreview(cam) 
difabs1 = imcrop(difabs1,[522 289 220 220]); 
imgj= imcrop(Im,[522 289 220 220]); 
img= difabs1; 
imshow(imgj) 
[L Ne]=bwlabel(difabs1); 
propied= regionprops(L); 
Recognition interest areas: 
hold on 
for n=1:size(propied,1)    
rectangle('Position',propied(n).BoundingBox,'EdgeColor','g','LineWidth',2) 
end 
pause (3) 
s=find([propied.Area]<40); 
for n=1:size(s,2) 
rectangle('Position',propied(s(n)).BoundingBox,'EdgeColor','r','LineWidth',2) 
end 
pause (2) 
for n=1:size(s,2) 
    d=round(propied(s(n)).BoundingBox); 
    difabs1(d(2):d(2)+d(4),d(1):d(1)+d(3))=0; 
end 
C = imfuse(img,difabs1,'falsecolor','Scaling','joint','ColorChannels',[1 2 0]);  
im_g =(C(:,:,2)) ; 
[f c]=size(im_g); 
for i=1:f 
for j=1:c 
    mat(i,j)=C(i,j)-im_g(i,j); 
end 
end 
 

8.6 DEFECT ANALYSIS FUZZY LOGIC SYSTEM   

Due to the fact that the possible flaws of defects that may appear on the micro-parts 
depend, not only on the control parameters, also on external factors such as 
temperature, humidity, material quality, among others. To reduce these external 
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factors is necessary to use an intelligent accompaniment system that classifies and 
identifies the faults present for each new injection cycle and helps operators reduce 
possible defects that may occur. A system based on fuzzy logic was proposed for 
the analysis of qualitative values to be performed on the detected defects. 
 
8.6.1 Mathematical model detection for defects. 
 
From the analyses carried out by simulation and detection of defects was identified 
that the variations on the control parameters can affect the result of the micro-parts. 
Each of the possible defects that can appear in the injected micro-parts has a direct 
relationship on the control parameters, so it was necessary to identify a 
mathematical model that approximates the actual behavior of the relationships 
between "defect-variable". 
 
Applied polynomial regression, the behavior that occurred between the presence of 
defects and the variation between injection parameters was studied. Main defects 
were analyzed to finding an approximate model of the behavior that occurred 
between the changes of variations. As a result, the models were obtained. 
 

 
Vacuum venting function by: 

 

 Injection pressure:  y =  0.0064 ∗ 𝑥2 + 0.0101 ∗ 𝑥 − 0.0165 

 Material temperature: y = − 0.0035 ∗ 𝑥2 + 0.0845 ∗ 𝑥 − 0.0810 

 Melt temperature:  y =  0.0021 ∗ 𝑥2 + 0.0399 ∗ 𝑥 − 0.0420 

 Fill time:   y = − 0.0064 ∗ 𝑥2 + 0.1485 ∗ 𝑥 − 0.1421 

 Injection volume:  y = − 0.0073 ∗ 𝑥2 + 0.1492 ∗ 𝑥 − 0.1419 
 

Burns function by: 
 

 Injection pressure:  y = − 0.0070 ∗ 𝑥2 + 0.1334 ∗ 𝑥 − 0.1264 

 Material temperature: y = − 0.0025 ∗ 𝑥2 + 0.0735 ∗ 𝑥 − 0.0710 

 Melt temperature:  y = − 0.0071 ∗ 𝑥2 + 0.1394 ∗ 𝑥 − 0.1323 

 Fill time:   y = − 0.0033 ∗ 𝑥2 + 0.1280 ∗ 𝑥 − 0.1247 

 Injection volume:  y = − 0.0043 ∗ 𝑥2 + 0.0954 ∗ 𝑥 − 0.0911 
 

Incomplete parts function by: 
 

 Injection pressure:           y =  0.0047 ∗ 𝑥3 − 0.1036 ∗ 𝑥2 + 0.7608 ∗ 𝑥 − 0.9482 

 Material temperature:        y = − 0.0074 ∗ 𝑥2 + 0.1672 ∗ 𝑥 − 0.1598  

 Melt temperature:           y = − 0.0131 ∗ 𝑥2 + 0.2049 ∗ 𝑥 − 0.1918 

 Fill time:   y = − 0.0019 ∗ 𝑥2 + 0.1095 ∗ 𝑥 

 Injection volume:  y =  0.0072 ∗ 𝑥2 + 0.0272 ∗ 𝑥 − 0.0344 
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Flash function by:  
 

 Injection pressure:  y = − 0.0071 ∗ 𝑥2 + 0.1578 ∗ 𝑥 − 0.1507 

 Material temperature: y =  0.0021 ∗ 𝑥2 + 0.0399 ∗ 𝑥 − 0.0420 

 Melt temperature:  y = − 0.0014 ∗ 𝑥2 + 0.1061 ∗ 𝑥 − 0.1047 

 Fill time:   y =  0.0150 ∗ 𝑥2 − 0.0924 ∗ 𝑥 − 0.1422 

 Injection volume:  y = − 0.0067 ∗ 𝑥2 + 0.1471 ∗ 𝑥 − 0.1404 
 

Sink marks function by:  
 

 Injection pressure:         y = − 0.0102 ∗ 𝑥2 + 0.1578 ∗ 𝑥 − 0.1507 

 Material temperature:     y = − 0.0069 ∗ x3 + 0.1386 ∗ x2 − 0.7664 ∗ x − 1.2896 

 Melt temperature:         y =  0.0027 ∗ x2 + 0.0610 ∗ x − 0.0637 

 Fill time:            y =  0.0018 ∗ x2 − 0.0806 ∗ x − 0.0824 

 Injection volume:         y = − 0.0073 ∗ x2 + 0.1492 ∗ x − 0.1429 
 
8.6.2 fuzzy logic functions call. 
 
Matlab® software offers a completely virtual environment focused on fuzzy logic. 
Function blocks were created from the models obtained for the behavior between 
"variable-defect", by each function block was necessary to create a different 
interface where the control parameters were analyzed with the defects according to 
their behavioral function. Fuzzy logic is governed by compliance with conditional 
type rules. Matlab® software needs to declare the rules with which the system will 
perform the functional analysis for each variable. Five different environments with 
their respective behavior were obtained. 
 
Figure 21. Fuzzy logic virtual environment. 

 
Source: Author, Matlab® software. 
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Table 10. Behavior functions injection pressure. 

Incomplete Part: 
 
𝐲 =  𝟎. 𝟎𝟎𝟒𝟕 ∗ 𝒙𝟑 − 𝟎. 𝟏𝟎𝟑𝟔 ∗ 𝒙𝟐 + 𝟎.𝟕𝟔𝟎𝟖 ∗ 𝒙

− 𝟎. 𝟗𝟒𝟖𝟐 
  
Flash: 
 

𝐲 = − 𝟎. 𝟎𝟎𝟕𝟏 ∗ 𝒙𝟐 + 𝟎.𝟏𝟓𝟕𝟖 ∗ 𝒙 − 𝟎. 𝟏𝟓𝟎𝟕 
 

 
Sink marks: 
 
𝐲 = − 𝟎. 𝟎𝟏𝟎𝟐 ∗ 𝒙𝟐 + 𝟎.𝟏𝟓𝟕𝟖 ∗ 𝒙 − 𝟎. 𝟏𝟓𝟎𝟕 

 

 
Burn: 
 
𝐲 = − 𝟎. 𝟎𝟎𝟕𝟎 ∗ 𝒙𝟐 + 𝟎.𝟏𝟑𝟑𝟒 ∗ 𝒙 − 𝟎. 𝟏𝟐𝟔𝟒 

 

 
Vacuum venting: 
 

𝐲 =  𝟎. 𝟎𝟎𝟔𝟒 ∗ 𝒙𝟐 + 𝟎. 𝟎𝟏𝟎𝟏 ∗ 𝒙 − 𝟎. 𝟎𝟏𝟔𝟓 
 

 
Source: Author, Matlab® software. 
 
Table 11. Behavior functions material temperature. 
Incomplete Part: 
 
𝐲 = − 𝟎. 𝟎𝟎𝟕𝟒 ∗ 𝒙𝟐 + 𝟎.𝟏𝟔𝟕𝟐 ∗ 𝒙 − 𝟎. 𝟏𝟓𝟗𝟖 

 
Flash: 
 

𝐲 =  𝟎. 𝟎𝟎𝟐𝟏 ∗ 𝒙𝟐 + 𝟎. 𝟎𝟑𝟗𝟗 ∗ 𝒙 − 𝟎. 𝟎𝟒𝟐𝟎 

 

 
Sink marks: 
 
𝐲 = − 𝟎. 𝟎𝟎𝟔𝟗 ∗ 𝐱𝟑 + 𝟎.𝟏𝟑𝟖𝟔 ∗ 𝐱𝟐 − 𝟎.𝟕𝟔𝟔𝟒 ∗ 𝐱

− 𝟏. 𝟐𝟖𝟗𝟔 
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Burn: 
 
𝐲 = − 𝟎. 𝟎𝟎𝟐𝟓 ∗ 𝒙𝟐 + 𝟎.𝟎𝟕𝟑𝟓 ∗ 𝒙 − 𝟎. 𝟎𝟕𝟏𝟎 

 
 

Vacuum venting: 
 
𝐲 = − 𝟎. 𝟎𝟎𝟑𝟓 ∗ 𝒙𝟐 + 𝟎.𝟎𝟖𝟒𝟓 ∗ 𝒙 − 𝟎. 𝟎𝟖𝟏𝟎 

 

 
Source: Author, Matlab® software. 
 
Table 12. Behavior functions melt temperature. 
Incomplete Part: 
 
𝐲 = − 𝟎. 𝟎𝟏𝟑𝟏 ∗ 𝒙𝟐 + 𝟎.𝟐𝟎𝟒𝟗 ∗ 𝒙 − 𝟎. 𝟏𝟗𝟏𝟖 

 
 

Flash: 
 

𝐲 = − 𝟎. 𝟎𝟎𝟏𝟒 ∗ 𝒙𝟐 + 𝟎.𝟏𝟎𝟔𝟏 ∗ 𝒙 − 𝟎. 𝟏𝟎𝟒𝟕 
 

 
Sink marks: 
 

𝐲 =  𝟎. 𝟎𝟎𝟐𝟕 ∗ 𝐱𝟐 + 𝟎.𝟎𝟔𝟏𝟎 ∗ 𝐱 − 𝟎. 𝟎𝟔𝟑𝟕 
 

 
Burn: 
 
𝐲 = − 𝟎. 𝟎𝟎𝟕𝟏 ∗ 𝒙𝟐 + 𝟎.𝟏𝟑𝟗𝟒 ∗ 𝒙 − 𝟎. 𝟏𝟑𝟐𝟑 

 

 
Vacuum venting: 
 

𝐲 =  𝟎. 𝟎𝟎𝟐𝟏 ∗ 𝒙𝟐 + 𝟎. 𝟎𝟑𝟗𝟗 ∗ 𝒙 − 𝟎. 𝟎𝟒𝟐𝟎 
 

 
Source: Author, Matlab® software. 
 
Table 13. Behavior functions fill time. 

Incomplete Part: 
 

𝐲 = − 𝟎. 𝟎𝟎𝟏𝟗 ∗ 𝒙𝟐 + 𝟎.𝟏𝟎𝟗𝟓 ∗ 𝒙 
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Flash: 
 

𝐲 =  𝟎. 𝟎𝟏𝟓𝟎 ∗ 𝒙𝟐 − 𝟎. 𝟎𝟗𝟐𝟒 ∗ 𝒙 − 𝟎. 𝟏𝟒𝟐𝟐 
 

 
Sink marks: 
 

𝐲 =  𝟎. 𝟎𝟎𝟏𝟖 ∗ 𝐱𝟐 − 𝟎.𝟎𝟖𝟎𝟔 ∗ 𝐱 − 𝟎. 𝟎𝟖𝟐𝟒 
 

 
Burn: 
 
𝐲 = − 𝟎. 𝟎𝟎𝟑𝟑 ∗ 𝒙𝟐 + 𝟎.𝟏𝟐𝟖𝟎 ∗ 𝒙 − 𝟎. 𝟏𝟐𝟒𝟕 

 

 
Vacuum venting: 
 
𝐲 = − 𝟎. 𝟎𝟎𝟔𝟒 ∗ 𝒙𝟐 + 𝟎.𝟏𝟒𝟖𝟓 ∗ 𝒙 − 𝟎. 𝟏𝟒𝟐𝟏 

 
 

Source: Author, Matlab® software. 
 
Table 14. Behavior functions Injection volume. 

Incomplete Part: 
 

𝐲 =  𝟎. 𝟎𝟎𝟕𝟐 ∗ 𝒙𝟐 + 𝟎. 𝟎𝟐𝟕𝟐 ∗ 𝒙 − 𝟎. 𝟎𝟑𝟒𝟒 
 

 
Flash: 
 

𝐲 = − 𝟎. 𝟎𝟎𝟔𝟕 ∗ 𝒙𝟐 + 𝟎.𝟏𝟒𝟕𝟏 ∗ 𝒙 − 𝟎. 𝟏𝟒𝟎𝟒 
 

 
Sink marks: 
 
𝐲 = − 𝟎. 𝟎𝟎𝟕𝟑 ∗ 𝐱𝟐 + 𝟎.𝟏𝟒𝟗𝟐 ∗ 𝐱 − 𝟎. 𝟏𝟒𝟐𝟗 

 
 

Burn: 
 
𝐲 = − 𝟎. 𝟎𝟎𝟒𝟑 ∗ 𝒙𝟐 + 𝟎.𝟎𝟗𝟓𝟒 ∗ 𝒙 − 𝟎. 𝟎𝟗𝟏𝟏 

 
 

Vacuum venting: 
 
𝐲 = − 𝟎. 𝟎𝟎𝟕𝟑 ∗ 𝒙𝟐 + 𝟎.𝟏𝟒𝟗𝟐 ∗ 𝒙 − 𝟎. 𝟏𝟒𝟏𝟗 

 
 

Source: Author, Matlab® software. 
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8.6.3 Fuzzy logic system interface. 
 
In order to create a user-friendly and easy-to-use system, an interface for the use 
of a qualitative micro-parts rating was designed. Using the Matlab® software, a 
loading window was created where the latest control parameters loaded into the 
system were recognized. A qualitative system was designed that allows the 
incidence rates of micro-parts to be analyzed without having to resort to numerical 
values. 
 
Figure 22. Fuzzy logic interface. 

 
Source: Author, Matlab® software. 
 
The indices of defects in micro-parts were rated by: 
 

 Total. 

 Very high. 

 High. 

 Medium high. 

 Slight high. 

 Medium. 

 Medium low. 

 Low. 

 Very low. 

 Nothing. 
 
According to the operator's criteria, the deformation index is indicated in the 
interface, this used the polynomial functions of the behavior of the variables. New 
values are obtained in order to reduce the failures that may occur in the micro-parts. 
An artificial vision analysis option was also created based on the defect recognition 
code. 
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Figure 23. Fuzzy logic interface control.

 
Source: Author, Matlab® software. 
 
Code called fuzzy logic functions: 

 
Called variables 
global pieza_incompleta 
global rebabas 
global rechupes 
global marcas_quemaduras 
global burbujas 
Temperatura_molde = readfis('Temperatura_molde'); 
Temperatura_material = readfis('Temperatura_material'); 
Tiempo_de_inyeccion= readfis('Tiempo_de_inyeccion'); 
volumen_de_inyeccion= readfis('volumen_inyeccion'); 
Presion_de_inyeccion= readfis('Presion_de_inyeccion'); 
Temperatura_molde =  
Injection Variables call: 
setfis(Temperatura_molde,'output',1,'range',[Temp_mold-50 Temp_mold+50]); 
Temperatura_molde = setfis(Temperatura_molde,'output',1,'mf',1,'params',[-1000 
Temp_mold-50 Temp_mold]); 
Temperatura_molde = setfis(Temperatura_molde,'output',1,'mf',2,'params',[Temp_mold 
Temp_mold+50 1000]);  
Temperatura_material = setfis(Temperatura_material,'output',1,'range',[Temp_mat-115 
Temp_mat+115]); 
Temperatura_material = setfis(Temperatura_material,'output',1,'mf',1,'params',[-1000 
Temp_mat-115 Temp_mat]); 
Temperatura_material = setfis(Temperatura_material,'output',1,'mf',2,'params',[Temp_mat 
Temp_mat+115 1000]); 
Tiempo_de_inyeccion = setfis(Tiempo_de_inyeccion,'output',1,'range',[Tim_iny-15 
Tim_iny+15]); 
Tiempo_de_inyeccion = setfis(Tiempo_de_inyeccion,'output',1,'mf',1,'params',[-1000 
Tim_iny-15 Tim_iny]); 
Tiempo_de_inyeccion = setfis(Tiempo_de_inyeccion,'output',1,'mf',2,'params',[Tim_iny 
Tim_iny+15 1000]); 
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volumen_de_inyeccion = setfis(volumen_de_inyeccion,'output',1,'range',[Vol_iny-22.5 
Vol_iny+22.5]); 
volumen_de_inyeccion = setfis(volumen_de_inyeccion,'output',1,'mf',1,'params',[-1000 
Vol_iny-22.5 Vol_iny]); 
volumen_de_inyeccion = setfis(volumen_de_inyeccion,'output',1,'mf',2,'params',[Vol_iny 
Vol_iny+22.5 1000]); 
Presion_de_inyeccion = setfis(Presion_de_inyeccion,'output',1,'range',[Pres_iny-65 
Pres_iny+65]); 
Presion_de_inyeccion = setfis(Presion_de_inyeccion,'output',1,'mf',1,'params',[-1000 
Pres_iny-65 Pres_iny]); 
Presion_de_inyeccion = setfis(Presion_de_inyeccion,'output',1,'mf',2,'params',[Pres_iny 
Pres_iny+65 1000]); 
Outputs of new variables: 
output_Temperatura_molde = evalfis([pieza_incompleta rebabas rechupes 
marcas_quemaduras burbujas],Temperatura_molde); 
output_Temperatura_material = evalfis([pieza_incompleta rebabas rechupes 
marcas_quemaduras burbujas],Temperatura_material); 
output_Tiempo_de_inyeccion = evalfis([pieza_incompleta rebabas rechupes 
marcas_quemaduras burbujas],Tiempo_de_inyeccion); 
output_volumen_de_inyeccion = evalfis([pieza_incompleta rebabas rechupes 
marcas_quemaduras burbujas],volumen_de_inyeccion); 
output_Presion_de_inyeccion = evalfis([pieza_incompleta rebabas rechupes 
marcas_quemaduras burbujas],Presion_de_inyeccion); 

 
Finally, all the data generated by each injection cycle are used to feed the database 
and adjust it to each injection machinery and process. 
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9. RESULTS 

Intelligent systems applied to a process that has been carried out for years through 
learning and the experience acquired is a complicated task, when having to create 
systems capable of making decisions as an operator with a long history would do, 
which has allowed him to acquire instincts for handling the machinery and the 
resulting parts.  
 
The decision to start from the design of parts with micrometric characteristics allows 
studying the behavior that occurs during the injection processes. With the analysis 
of how the shape of the parts can affect the final designs were recognized the 
geometric patterns that most affect the manufacture of plastic micro-parts and that 
can generate problems, both in the design of molds and in the process of injection 
of the material. 
 
When handling parts of a millimeter and micrometric dimensions, as a result, the 
management of basic geometries show that allows better results in the injection 
processes. The general classification of the geometric patterns was given by: 
 
Figure 24. Characterization of injection type figures. 

 
Source: Author, design models of micro plastic parts with different geometric 
characteristic. 

 

 2D flow features: Parts of basic geometric designs that have a single face 
given by the type of mold and the injection mode (left.). 

 3D flow features: Parts of three-dimensional geometric shapes that have two 
or more faces that are formed by the mold, the injection cavities and the 
injection mode (right.). 

 
With the classification of the parts by shape and type of injection was possible to 
obtain the geometric parameter requirements that affect the final shape and that can 
generate deformations. Finally, the geometric parameter requirements were 
classified according to the type of figure, taking into account as many parameters 
as: 

 Length 
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 Width 

 Depth 

 Inclination angle 

 Thickness  

 Diameter  
 

The parameters involved in a part directly affect the design of the mold and the 
injection conditions, that must be taken into account when carrying out the 
manufacturing process. 
 
Figure 25. Geometric parameter requirements. 
  
 
 
  
  
 
Source: Author. 
 
The use of CAE modeling systems gives a broad understanding of the plastic micro-
parts manufacturing process. Many tools allow simulating the process of injection of 
plastics, which allows studying the parameters that are involved in the manufacture. 
The parameters that are directly related to the manufacturing process were taken 
into account, these were classified as: 
 

Process parameters: 

 Filling time. 

 Material temperature. 

 Mold temperature. 

 Maximum injection pressure. 

 Limit closing force. 
 
Closing parameters: 

 Pressure holding time. 

 Refrigeration time. 
 
Mold parameters: 

 Injection point. 

 Vents. 

 Injection channels. 
 
Material parameters: 

 Polymer. 

 Mold material. 
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The influence that each type of parameter has on the manufacture of plastic parts 
was analyzed through tests carried out by CAE systems (see table 15.). The process 
parameters were taken as a priority as they were the ones that had the greatest 
influence on the final results. 
 
Table 15. Influence of injection parameters on the formation of plastic parts. 

Process 
parameters: 

Closing 
parameters: 

Mold 
parameters: 

Material 
parameters: 

37.4% 14.2% 28.8% 19.6% 

Source: Author, influence analysis by CAE modeling systems. 
 
With the detection of the parameters that most influences have in the injection 
processes, the way forward was to identify the most common defects that occur in 
the manufacture of plastic parts. The use of rapid prototyping tools allows simulate 
the types of deformations that can occur in the manufacturing process of plastic 
parts. 3D printing handles materials with similar composition as a plastic injection 
system would, making it good for studying the negative effects that can occur once 
the final part is obtained. The types of materials used were classified, giving priority 
to those for industrial use: 
 

 ABS. 

 PP. 

 Nylon. 
 
The classification of defects was given by the graphic analysis of the resulting parts. 
The study focused on parts injected with ABS for polymeric characteristics, 
mechanical characteristics and industrial use that it has. The deformations were 
classified into groups defined by the geometric failures that the plastic parts may 
present and in the operating impact (see table 16.). 
 
Table 16. Performance deformation and impact classification. 

Type of deformation. Definition. Impact rate. 

Sink marks. Material collapse. Low. 

Flash. Displacement of joint 
material. 

Medium. 

Vacuum venting. Air accumulations in 
layers of material. 

Low. 

Burns. Temperature Marks on 
the material. 

Medium. 

Incomplete parts. Lack of material to 
complete the parts. 

High. 

Source: Author. 
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Through of the qualification of defects, the variables that directly affect the formation 
of micro plastic parts were related to rapid prototyping parameters. The parameters 
that are directly involved in the injection process were analyzed, studying and 
classifying the variables involved in these (see table 17). 
 
Table 17. Classification of parameters according to control variables. 

Temperature Time Pressure 

Injection molding Injection molding Injection molding 

Material temperature. Filling time. Maximum injection pressure. 

Mold temperature.  Limit closing force. 
Rapid prototyping Rapid prototyping Rapid prototyping 

Extruder temperature. Print time. Extrusion pressure. 

Hot bed temperature.  Bonding base. 

Source: Author. 
 
From the relationship of variables, the level of defect was studied according to the 
variation of the control parameters, generating an index of relationship between the 
appearance of defects and the variation of parameters (see table 18). 
 
Table 18. Influence level control parameters on plastic parts deformation. 

  
Material 
Temperature 

Mold 
Temperature 

Filling 
Time 

Maximum 
Injection 
Pressure 

Limit 
Closing 
Force 

Sink 
marks. 

60 % 40 % 20 % 80 % 60 % 

Flash. 40 % 60 % 80 % 80 % 100 % 

Vacuum 
venting. 

80 % 60 % 40 % 60 % 60 % 

Burns. 100 % 80 % 40 % 60 % 20 % 

Incomplete 
parts. 

60 % 40 % 100 % 80 % 60 % 

Source: Author. 
 
The indices of affectation were determined according to the variation generated on 
the machine parameters, identifying the relationship levels that are immersed in 
each parameter according to the type of variable. As a result, the correlation 
between the control parameters and the plastic defects that arise in the injection 
process of plastic micro-parts was obtained. 
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Figure 26. Relationship parameters on plastic parts deformation. 

 
Source: Author. 
 
Through the identification of defects and their relationship with injection parameters, 
an analysis system based on artificial intelligence techniques was designed. Using 
polynomial regression, a mathematical approach was obtained to the behavior of 
each of the defects studied with the variation of the control parameters (see table 
19.). 
 
Table 19. Mathematical model relation defects-injection parameters. 

 Injection 
Pressure 

Material 
Temperature 

Melt 
Temperature 

Fill time Injection 
Volume 

Vacuum 
venting 

y
=  0.0064 ∗ 𝑥2

+ 0.0101 ∗ 𝑥
− 0.0165 

y
= − 0.0035 ∗ 𝑥2

+ 0.0845 ∗ 𝑥
− 0.0810 

y
=  0.0021 ∗ 𝑥2

+ 0.0399 ∗ 𝑥
− 0.0420 

y
= − 0.0064
∗ 𝑥2 + 0.1485
∗ 𝑥 − 0.1421 

y
= − 0.0073
∗ 𝑥2 + 0.1492
∗ 𝑥 − 0.1419 

Burns y
= − 0.0070
∗ 𝑥2 + 0.1334
∗ 𝑥 − 0.1264 

y
= − 0.0025 ∗ 𝑥2

+ 0.0735 ∗ 𝑥
− 0.0710 

y
= − 0.0071 ∗ 𝑥2

+ 0.1394 ∗ 𝑥
− 0.1323 

y
= − 0.0033
∗ 𝑥2 + 0.1280
∗ 𝑥 − 0.1247 

y
= − 0.0043
∗ 𝑥2 + 0.0954
∗ 𝑥 − 0.0911 

Incomplete 
parts 

y
=  0.0047 ∗ 𝑥3

− 0.1036 ∗ 𝑥2

+ 0.7608 ∗ 𝑥
− 0.9482 

y = − 0.0074 ∗
𝑥2 + 0.1672 ∗ 𝑥 −
0.1598  

y
= − 0.0131 ∗ 𝑥2

+ 0.2049 ∗ 𝑥
− 0.1918 

y
= − 0.0019
∗ 𝑥2 + 0.1095
∗ 𝑥 
 

y
=  0.0072
∗ 𝑥2 + 0.0272
∗ 𝑥 − 0.0344 

Flash y
= − 0.0071
∗ 𝑥2 + 0.1578
∗ 𝑥 − 0.1507 

y
=  0.0021 ∗ 𝑥2

+ 0.0399 ∗ 𝑥
− 0.0420 

y
= − 0.0014 ∗ 𝑥2

+ 0.1061 ∗ 𝑥
− 0.1047 

y
=  0.0150
∗ 𝑥2 − 0.0924
∗ 𝑥 − 0.1422 

y
= − 0.0067
∗ 𝑥2 + 0.1471
∗ 𝑥 − 0.1404 

Sink 
marks 

y
= − 0.0102
∗ 𝑥2 + 0.1578
∗ 𝑥 − 0.1507 

 

y
= − 0.0069 ∗ x3

+ 0.1386 ∗ x2

− 0.7664 ∗ x
− 1.2896 

y
=  0.0027 ∗ x2

+ 0.0610 ∗ x
− 0.0637 

y
=  0.0027
∗ x2 + 0.0610
∗ x − 0.0637 

y
= − 0.0073
∗ x2 + 0.1492
∗ x − 0.1429 

Source: Author. 
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An intelligent system based on fuzzy logic was designed for the ability to take 
different mathematical models focused on a single variable. For each one of the 
defects, the mathematical models obtained were taken to work with an inference 
engine, capable of giving analysis results taking into account each of the behaviors 
of the variables based on a single defect. The fuzzy logic systems allow the study 
of how the corresponding variations should be made according to the index of 
nonconformity against the defect that occurs in the parts. 
 
Figure 27. Fuzzy logical inference engine. 

                                                                                                    
Source: Author, Matlab® software. 
 
Through artificial vision systems, a defect-recognition code was designed, this is 
capable to read and interpret the defects presented in the parts resulting from the 
microinjection process. Each one of the identified analyzes gives a failure index that 
enters into a fuzzy logic inference engine as an analysis variable to give new 
injection variables in order to reduce the defects presented. 
 
Figure 28. Artificial vision defect recognition system. 
    
 
 
 
 
 
 
 
Source: Author, Matlab® software. 
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Figure 29. Generation of injection variables based on fuzzy logic. 

                                                                      
Loaded injection variables    indicator index of defects    New injection   

  variables generated 
  by the inference eng. 

Source: Author, Matlab® software. 
 
The integration of CAE modeling systems with artificial intelligence systems was 
developed through a data recognition model loaded from CAD design and CAE 
simulation software. To read and load data, a file reading system capable of creating 
a database generated by all the simulations and a neural network-based analysis 
system capable of interpreting all the data were designed. 
 
The data reading and loading system are capable of interpreting the files generated 
by the CAE modeling software by loading, analyzing, studying and storing all the 
parameters that identify the designed part. The system can study and save all the 
simulation processes that the part designed was subjected (stress tests and 
injection simulation). 
 
For the reading and interpretation of the stored data, a system based on neural 
networks was designed. The system can carry out learning interactions to interpret 
each of the generated data, looking for behavioral patterns based on non-linear 
regression learning. With the interpretation of the data, the system can give a first 
option for the parameters of the microinjection plastics process. 
 
Figure 30. CAE modeled integration and analysis system. 

             
Source: Author, Matlab® software. 
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Finally, all the systems were integrated. The analysis and control model for the 
parameters of the plastic micro-parts injection process were established. 
 
Figure 31. Intelligent system to support micro injection process through artificial 
intelligent techniques and CAE model integration. 

 

 

  
 

 
 
 
 
      
 
 
 
  
 
 
 
 
Source: Author.  
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As part of the development and research carried out in this project, two 
presentations and two articles were presented at the International Congress of 

Innovation and Trends in Engineering "CONIITI" V version and at the Ibero-American 

Congress of Mechanical Engineering "CIBIM" XIV version; Where the articles 

Integration of CAE modeling and artificial intelligence systems to support 
manufacturing of plastic micro-parts and Intelligent System Design for The 
Micro-manufacturing of Plastics Parts were published and exposed. 
 
Integration of CAE modeling and artificial intelligence systems to support 
manufacturing of plastic micro-parts [96]. 
 
“Abstract— Micrometer-scale parts requirements demand an improvement of the 
development of the micro-manufacturing industry. This fact is due to current 
technological advances which require small parts with more complex geometrical 
characteristics, micro-parts with more precise dimensional characteristics, micro-
parts with better quality aspect and micro-parts with improved quality operating 
characteristics. Therefore, the manufacturing processes to obtain high quality 
microinjection parts is increasingly complicated, requiring much more time (a greater 
number of cycles) and knowledge from the expert operator, which makes the 
process unprofitable, as well as highly dependent of the operator and increasing the 
final costs of microinjection parts for the user. This paper presents the development 
of an artificial intelligence system based on the integration of CAE modeling, with 
fuzzy logic techniques and neural networks techniques to support the operator of 
the injection machine on the selection of optimal machine process parameters to 
produce good quality micro-parts in fewer process cycles. Tests performed with this 
intelligent integration system development have demonstrated 30% improvement in 
the efficiency of injection processes”. 

Intelligent System Design for The Micromanufacturing of Plastics Parts [97]. 
 

“Abstract— The design of plastic parts with characteristics ranging from micrometer 
to millimeter has become one of the most important needs of today's society, which 
is constantly seeking to design smaller technological components with a large 
number of features that allow it to fulfill various tasks, but despite its high demand, 
the component manufacturing processes are very complex and the probability of 
failure is very high because the processes are subject to the control of an expert 
operator. This article provides evidence of the development of software that 
integrates CAE modeling systems with artificial intelligence systems in order to 
optimize plastic injection processes to obtain plastic parts in fewer injection cycles, 
reducing failures and optimizing thus materials, costs and times”. 
 
[96] Rojas, A., Chaves, M. L., Bolivar, H., & Vizan, A. (2019). Integration of CAE Modeling and Artificial Intelligence 

Systems to Support Manufacturing of Plastic Microparts. 2019 Congreso Internacional de Innovacion y Tendencias 

En Ingenieria, CONIITI 2019 - Conference Proceedings.  

 
[97] Rojas, A., Chaves, M., & Vizan, A. (2019). INTELLIGENT SYSTEM DESIGN FOR THE MICROMANUFACTURING 

OF PLASTICS PARTS. Congreso Iberoamericano de Ingenieria Mecanica, CIBIM CIBEM 2019. (pp. 96 – 103).  
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10. VALIDATION OF PROJECT 

 
For the validation of the project, injection tests were performed using the operation 
of the computer assistance program against injection tests performed by operators. 
For the tests, 15 parts of micrometric characteristics were used as a basis, with 
which the verification procedure for detecting defects could be carried out, either by 
analysis of the operators or by using the artificial vision system. 
 
Analysis tables were made for the tests. These make possible to keep a count of 
the injection cycles, the injection parameter values and the indices of nonconformity 
that may occur with respect to defects. (see table 20.). 
 
Table 20. Cycle and defect counter 

Source: Author. 

With the adjustment of data and the selection of the parts, the injection tests were 

carried. With the test, the comparison of results with the use of the system and 

without the use of it was made. 

Result tests for three sample parts: 

Micro plastic part 1:  

Figure 32. Micro injected plastic part 1.   

 

 

Source: Author. 

 

Cycle No
Injection 

pressure

Material 

temperatur

Mold 

temperatur
Filling time

Injection 

volume
Bubbles Burns

Incomplete 

part
Burrs Sucks
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Injection cycle tests using the expert system are shown below: 

Table 21. Cycle and defect counter Micro plastic part 1 (using the system-ABS).

 
Source: Author. 

Injection cycle tests without the expert system are shown below: 

Table 22. Cycle and defect counter Micro plastic part 1 (without the system-ABS).

 
Source: Author. 

 

Micro plastic part 2: 

Figure 33. Micro injected plastic part 2. 

 

 

Source: Author. 

 

 

Cycle No
Injection 

pressure

Material 

temperature

Mold 

temperature
Filling time

Injection 

volume
Bubbles Burns

Incomplete 

part
Burrs Sucks

1 111  219  32.1  13  15.3   2 2 

2 111 225  35  23  15   3 1 

3 111  230  32 20  18   2 1

4 115 235 30 18 12  2 5 

5 111 230 30  17 10 

Cycle No
Injection 

pressure

Material 

temperature

Mold 

temperature
Filling time

Injection 

volume
Bubbles Burns

Incomplete 

part
Burrs Sucks

1 111  219  32.1  13  15.3   2 2 

2 111 225  35  23  15   3 1 

3 112 228 40 26 15 3 2 2 4

4 114 230 38 22 20 4 1 3 3

5 110 230  32 20  18   2 1

6 111 235 30 18 12  2 2

7 111 230 31 15 8 1

8 111 230 30  17 10 



 

 

 80 

Injection cycle tests using the expert system are shown below: 

Table 23. Cycle and defect counter Micro plastic part 2 (using the system-ABS).

Source: Author. 

Injection cycle tests without the expert system are shown below: 

Table 24. Cycle and defect counter Micro plastic part 2 (without the system-ABS).

Source: Author. 

 

Micro plastic part 3: 

Figure 34. Micro injected plastic part 3. 

 

Source: Author. 

Injection cycle tests using the expert system are shown below: 

Table 25. Cycle and defect counter Micro plastic part 3 (using the system-ABS).

 
Source: Author. 

Cycle No
Injection 

pressure

Material 

temperature

Mold 

temperature
Filling time

Injection 

volume
Bubbles Burns

Incomplete 

part
Burrs Sucks

1  100.3  218.55  32.26  1.38  35.26  2   2  4 

2  105 218  32  10  35  2   1 3  1 

3 111  215  30  15  32  1  1 1 

4  111 210 30  17  32.5 

Cycle No
Injection 

pressure

Material 

temperature

Mold 

temperature
Filling time

Injection 

volume
Bubbles Burns

Incomplete 

part
Burrs Sucks

1  100.3  218.55  32.26  1.38  35.26  2   2  4 

2  105 218  32  10  35  2   1 3  1 

3 110 220 28 20 32  1  1 2 2

4 111  215  30  15  33 1 1 1

5 110 212 32 16 32  2 1

6 111 210 30  17  32.5 

Cycle No
Injection 

pressure

Material 

temperature

Mold 

temperature
Filling time

Injection 

volume
Bubbles Burns

Incomplete 

part
Burrs Sucks

1  99  220  32  0.96  35.74   2  4 3 

2  99  215  32  4.7  25.4   1  2  2 

3 98 210  32  10  19  1 

4  98  210 30  10 17 
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Injection cycle tests without the expert system are shown below: 

Table 26. Cycle and defect counter Micro plastic part 3 (without the system-ABS).

Source: Author. 

The complete tables of results for the injection process of the fifteen test parts are 

shown in the annexes. 

Through the injection tests, a comparison between the use of the system and the 

tests carried out by operators was made for each of the parts, studying the 

deformation indexes that emerged with respect to each injection cycle. For each one 

of the parts was determined that the reduction of deformations is more linear and 

controlled with the use of the analysis system than without the use of it. Using the 

system was also found that is possible to reduce the number of injection cycles 

necessary to produce a quality part. The results of the analysis of purchases are 

shown below. 

Figure 35. Comparison of injection cycles parts one, two and three. 

 

  

 

 

 

 

 

  

 

Source: Author. 

Cycle No
Injection 

pressure

Material 

temperature

Mold 

temperature
Filling time

Injection 

volume
Bubbles Burns

Incomplete 

part
Burrs Sucks

1  99  220  32  0.96  35.74   2  4 3 

2 99 200 26 20 30 5 3

3 110 217 34 3 20 2 2 3 2

4 105 215 32 4 25 2 1 3 2

5 99  215  32  4.7  25  1  2  2 

6 98 210  32  10  19  1 

7 98  210 30  10 17 
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With the use of the system is demonstrated how the deformation indexes are 

reduced in a more linear way, which allows to better control in deformation reduction 

and thus reduce the injection cycles necessary for an optimal part. 

Figure 36. Deformation index behavior. 

 
Source: Author. 

 

Table 27. Cycle and defect counter Micro plastic part (ABS). 

Injected 
parts 

Percentage 
deformation 

rates 
operator 
control. 

Injection 
cycles 

required 
operator 
control. 

Percentage 
deformation 

indices 
control 

assisted by 
the system. 

Injection 
cycles 

required 
control 

assisted 
by the 

system. 

1 9,50% 8 7,20% 5 

2 9,00% 6 9,00% 4 

3 11,43% 7 7,50% 4 

4 10,86% 7 6,00% 5 

5 10,00% 8 14,00% 3 

6 10,00% 6 3,50% 4 

7 10,00% 9 4,40% 5 

8 9,14% 7 5,00% 6 

9 10,00% 5 6,00% 4 

10 10,86% 7 5,60% 5 

11 9,56% 9 7,60% 5 

12 11,75% 8 8,50% 4 

13 10,67% 6 9,33% 3 

14 11,14% 7 8,00% 4 

15 10,75% 8 9,00% 4 
Source: Author. 
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Table 28. Cycle and defect counter Micro plastic part (PP). 

Injected 
parts 

Percentage 
deformation 

rates 
operator 
control. 

Injection 
cycles 

required 

Percentage 
deformation 

indices 
control 

assisted by 
the system. 

Injection 
cycles 

required 

1 9,00% 5 15,20% 4 

2 18,00% 4 13,50% 2 

3 10,00% 5 13,33% 3 

4 10,00% 4 15,20% 3 

5 10,50% 5 11,43% 4 

6 4,67% 5 10,00% 3 

7 11,00% 6 11,25% 2 

8 10,00% 5 10,67% 3 

9 6,00% 4 10,00% 4 

10 14,00% 5 19,00% 2 

11 12,67% 6 14,33% 3 

12 11,33% 5 13,43% 3 

13 7,00% 4 12,80% 4 

14 16,00% 5 15,60% 2 

15 12,00% 6 21,50% 3 
Source: Author. 

For the injected parts was determined that the average of injection cycles necessary 

to obtain a quality part using the system are four cycles approximately, in 

comparison with the necessary cycles performed by an operator that are seven 

cycles approximately. Below is the analysis of results and the calculation of 

percentage improvement that occurs with the use of the system.  

Improvement of the cycles necessary in the injection process: 

𝑂𝑝𝑆𝐸𝑛𝐴𝐵𝑆 = 100%−

1
𝑛𝑠
∑ 𝑋𝑣𝑠 ∗ 100%𝑛𝑠
𝑖=1

1
𝑛𝑜
∑ 𝑋𝑣𝑜𝑛𝑜
𝑖=1

= 100 −
4.33 ∗ 100

7.2
= 39.81% 

𝑂𝑝𝑆𝐸𝑛𝑃𝑃 = 100%−

1
𝑛𝑠
∑ 𝑋𝑣𝑠 ∗ 100%𝑛𝑠
𝑖=1

1
𝑛𝑜
∑ 𝑋𝑣𝑜𝑛𝑜
𝑖=1

= 100 −
3 ∗ 100

4.93
= 39.14% 
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Reduction of the deformation indexes that occur for each cycle of injection: 

𝑂𝑝𝑆𝐸𝑖𝐴𝐵𝑆 = 100%−

1
𝑛𝑠
∑ 𝑋𝑖𝑠 ∗ 100%𝑛𝑠
𝑖=1

1
𝑛𝑜
∑ 𝑋𝑖𝑜𝑛𝑜
𝑖=1

= 100 −
7.38 ∗ 100

10.31
= 28.46% 

𝑂𝑝𝑆𝐸𝑖𝑃𝑃 = 100%−

1
𝑛𝑠
∑ 𝑋𝑖𝑠 ∗ 100%𝑛𝑠
𝑖=1

1
𝑛𝑜
∑ 𝑋𝑖𝑜𝑛𝑜
𝑖=1

= 100 −
10.81 ∗ 100

15.08
= 28.31% 

The values handled were obtained by statistical analysis in Table 27 and Table 28. 

With the tests carried out is determined that by making the system an improvement 

of 39.81% to ABS and 39.14% to PP of the cycles necessary in the injection process 

is seen, in addition to a reduction of 28.46%to ABS and 28.31% to PP of the 

deformation indexes that occur for each cycle of injection in order to obtain a part of 

optimum quality.  

The results and analysis shown in this document demonstrate the development, 

implementation and operation of the Intelligent System to Support Micro 

Injection Process Through Artificial Intelligent Techniques and CAE Model 

Integration. 

Figure 37. Micro plastic part (dimensional sample in 1 cm.).  

 
Source: Author. 
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Figure 38. Micro parts injected using the designed support system. 

 
Source: Author. 
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11. CONCLUSIONS AND FUTURE WORKS 

 

CAE designs were made of thirty different parts with micrometric characteristics 

which were subjected to six geometric variations each one. With the designs made, 

the geometric requirements were classified in length, width, depth, inclination angle, 

Diameter and thickness depending or type or part. The geometric parameter 

requirements were generalized determining the optimal design characteristics to 

produce standard parts. 

Geometric variables influence the quality of the parts by being directly related to the 

design of the molds, with a 28.8% of influence in the final result of the parts involves. 

The geometric requirements were determined and established, searching for 

designs of standard geometric shapes that were possible to manufacture in the 

design of the molds. 

Behavioral studies were carried out for different plastic materials, finding an 

influence of 19.6% in the result of fabrication of the final part The tests were carried 

out on materials that use injection molding manufacturing, focusing on the use of 

ABS and polypropylene due to their industrial and mechanical characteristics. ABS 

was determined like primary material to its compression properties that allow obtain 

better results in the final quality of the parts. 

An index of influence of 37.4% of the machine variables on the quality of the final 

part was determined. Filling time, Material temperature, Mold temperature. 

Maximum injection pressure and Injection Volume were established as main 

parameters, focusing the analyzes and studies on the control of the variables 

involved in these. 

With rapid prototyping tests. material deformation analyzes were carried out, 

identifying the types of defects classified in Flash, Sink marks, Vacuum venting, 

burns and incomplete parts. The use of rapid prototyping systems allowed analyzing 

the geometries of the designed parts, studying how the defects occurs affects the 

results and the operation of the resulting parts. 

The use of artificial vision allowed the identification of areas of interest, in order to 

recognize geometries through of depth analysis and the conversion of pixels into 

dimensions. These systems also served as support in the detection of defects, 

recognizing the affected areas, determining error rates and levels of nonconformity.  
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For the graphic analysis of micro-plastic parts through of artificial vision, a very high-

resolution camera with the ability to capture all the details in an image is necessary. 

When handling millimeter and micrometer parts, these have very low-dimensional 

geometries that are difficult to see, so also to study and analyses. In this way, a 

high-resolution camera capable of capturing in pixels each of the details present in 

a part was implemented. 

Neural network systems allowed to standardize all the studies carried out, making 

interactions between data in order to obtain a relationship between them, looking 

for the optimal values that fit the designed parts. Through the interaction of data and 

the use of the database, a wide range system was achieved, capable of giving 

optimum values to diverse parts with different geometric characteristics. 

The neural network systems used in industrial processes such as the microinjection 

of plastics allow to analyze, standardize and determine the behavior of the systems 

from the study and learning of the different sub-processes involved. The 

management of diverse and extensive databases obtained by the storage of 

variables, facilitates the learning of neural network systems, achieving an intelligent 

system with experience and intuition capable of approaching the knowledge and 

instinct of an expert operator. 

Through Polynomial regression method, the relationships between the control 

variables and the presence of defects were determined. The use of the database 

and the interaction between variables and defects, allow studying the behavior that 

occurred with the variation of the control variables, establishing by polynomial 

regression as mathematical model that give a 'relationship between each type of 

defect with the parameters of machine. 

The use of fuzzy logic systems allowed to establish inference engines, facilitating 

the rectification of the variables generated by the neural networks in each injection 

cycle. Using inference engines powered by mathematical models determined by 

polynomial regression was possible to correct defects generated by external 

parameters that cannot be determined by neural networks, but which also affect the 

final results in the quality of the designed parts. 

The integration of CAE modeling systems with intelligent systems allows improving 

the efficiency of the production process of micro plastic parts by injection molding. 

The use of the system determined a 39.81% improvement in the number of 

production cycles required with ABS and 39.14% improvement in the number of 

production cycles required with PP, compared to a traditional manufacturing 

process, where intelligent systems are not used. 
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With the reduction in the injection cycles necessary to produce a quality part, partial 

elimination of time and material uses is evidenced, eliminating the waste material 

required to achieve an optimal part. This reduction contributed to the decrease in 

the environmental impact.     

The use of the intelligent systems allows a controlled behavior on the variations 

necessary to obtain a quality part, giving a reduction in the presence of defects of 

28.46% with ABS and 28.31% to PP in the injection cycles, thus giving more linear 

control over the variables and the presence of defects. 

The uses of the Intelligent system to support the microinjection process through 

artificial intelligent techniques and CAE model integration allows reduces the loss of 

materials and time in the micro-injection manufacture process; This makes possible 

better profitability in the efficiency of the process, giving bigger feasibility of micro-

parts manufacture in the national industry. 

The use of the intelligent system designed as a support software in the 

microinjection process is an innovative method that opens the possibilities of 

expansion and application in the national industry. The use of intelligent systems 

allows improving the efficiency of processes, reducing production times and material 

consumption, without the need to resort to highly experienced operators, which 

facilitates control over machinery and creates new opportunities for operators with 

little experience or in the formation process. 

As a result of the work carried out, three scientific articles were developed together 

with two presentations at engineering conferences. The development of the article 

"INTEGRATION OF CAE MODELING AND ARTIFICIAL INTELLIGENCE 

SYSTEMS TO SUPPORT MANUFACTURING OF PLASTIC MICRO-PARTS" was 

published and presented at the international congress of innovation and trends in 

engineering "CONIITI", V version, in the year 2019; The development of the article 

"INTELLIGENT SYSTEM DESIGN FOR THE MICROFABRICATION OF 

PLASTICS" was published and presented at the Ibero-American Congress of 

Mechanical Engineering "CIBIM" XIV version, in the year 2019. Finally, the article 

"COMPUTATIONAL INTELLIGENCE SYSTEM APPLIED AT PLASTIC 

MICROPARTS MANUFACTURING PROCESS " was presented to the International 

Journal of Grid and Utility Computing which has been accepted to revision process. 

As future works, the possibility of deepening the development of more complex 

systems focused on different parameters involved in injection processes, such as 

mold design, other material test, non-conventional geometries studies. The 

implementation of intelligent systems as support for industrial processes has a wide 
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field of application, which opens different possibilities to deepen the development of 

Intelligent systems, deepening applications such as the use of artificial vision 

systems, big data management, predictive control systems, among many others. 
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13. ANNEXES 

Annex 1. Tests carried out with CAE systems. 
 
Thirty micro parts designed. 
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Database of geometric variations and injection parameters of diverse micro parts 
provided by CAE analysis. 
 

Material Volume Mass X Y Z 
Filling 
time 

Material 
temperature 

Mold 
temperature 

Ejection 
temperature Pressure 

ABS 0,24 0,27 14 6,1 14 0,41 230 50 90 100 

ABS 0,5 0,55 20 6 20 0,45 230 50 90 100 

ABS 0,31 0,34 
9,9

6 5 
9,9

6 1,01 230 50 90 100 

ABS 0,05 0,05 

4,7

3 5 4,5 0,26 230 50 90 100 

ABS 0,07 0,08 20 3 3 1,03 230 50 90 100 

ABS 1,84 2,03 7 20 20 3,29 230 50 90 100 

ABS 0,72 0,8 5 

19,

94 20 0,54 230 50 90 100 

ABS 1,32 1,45 20 20 20 2,19 230 50 90 100 

ABS 1,84 2,03 7 20 20 3,29 230 50 90 100 

ABS 1,62 1,78 24 5 24 2,58 230 50 90 100 

ABS 1,48 1,63 20 20 20 0,22 230 50 90 100 

ABS 4,22 4,65 32 
22,
25 18 8,86 230 50 90 100 

ABS 0,78 0,86 2 20 20 1,49 230 50 90 100 

ABS 0,01 0,01 1 1,4 10 0,1 230 50 90 100 

ABS 0 0 3 1,4 1,4 0,09 230 50 90 100 

ABS 0,05 0,05 
7,5

6 2 
20,
02 0,26 230 50 90 100 

ABS 0,18 0,2 
9,9

2 
9,7

7 5 0,74 230 50 90 100 

ABS 0,17 0,19 20 2 5 0,71 230 50 90 100 

ABS 0,01 0,01 1 20 
4,3

8 0,12 230 50 90 100 

ABS 0,26 0,28 8 8 8 1,63 230 50 90 100 

ABS 1,4 1,55 40 10 40 0,49 230 50 90 100 

ABS 0,84 0,93 24 10 24 0,69 230 50 90 100 

ABS 0,92 1,01 10 15 20 3,91 230 50 90 100 

PP 0,28 0,25 20 3 5 0,62 230 30 95 111 

PP 0,28 0,25 20 3 5 0,62 150 20 95 5 

PP 0,28 0,25 20 3 5 0,62 230 20 95 5 

PP 0,28 0,25 20 3 5 0,62 230 20 95 5 

PP 0,28 0,25 20 3 5 0,62 230 50 95 98 

PP 0,28 0,25 20 3 5 0,62 230 20 95 98 

PP 0,28 0,25 20 3 5 0,62 230 30 95 98 

PP 0,28 0,25 20 3 5 0,62 230 30 95 1,3 

PP 0,28 0,25 20 3 5 0,68 230 50 90 5 

PP 0,04 0,04 6 2 6 0,42 230 50 95 100 

PP 0,04 0,04 6 2 6 0,54 150 20 80 5 

PP 0,04 0,04 6 2 6 0,54 230 20 95 5 
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PP 0,04 0,04 6 2 6 0,54 230 20 95 128 

PP 0,04 0,04 6 2 6 0,54 243 20 95 98 

PP 0,04 0,04 6 2 6 0,54 230 20 95 111 

PP 0,04 0,04 6 2 6 0,54 230 20 95 128 

PP 0,05 0,04 6 3 6 0,35 230 50 95 100 

PP 0,5 0,45 20 6 20 0,45 230 50 95 100 

PP 0,05 0,04 

4,7

3 5 4,5 0,26 230 50 95 100 

PP 0,31 0,28 

9,9

6 5 

9,9

6 1,02 230 50 95 100 

PP 0,07 0,07 20 3 3 1,05 230 50 95 100 

PP 1,32 1,21 20 20 20 2,15 230 50 95 100 

PP 0,72 0,66 5 
19,
94 20 0,54 230 50 95 100 

PP 1,3 1,19 20 24 20 0,58 230 50 95 100 

PP 1,84 1,69 7 20 20 3,43 230 50 95 100 

PP 4,22 3,87 32 
22,
25 18 9 230 50 95 100 

PP 0,24 0,27 14 6,1 14 0,41 230 50 90 100 

PP 0,5 0,55 20 6 20 0,45 230 50 90 100 

PP 0,31 0,34 

9,9

6 5 

9,9

6 1,01 230 50 90 100 

PP 0,05 0,05 

4,7

3 5 4,5 0,26 230 50 90 100 

PP 0,07 0,08 20 3 3 1,03 230 50 90 100 

PP 1,84 2,03 7 20 20 3,29 230 50 90 100 

PP 0,72 0,8 5 
19,
94 20 0,54 230 50 90 100 

PP 1,32 1,45 20 20 20 2,19 230 50 90 100 

PP 1,84 2,03 7 20 20 3,29 230 50 90 100 

ABS 0,24 0,27 14 6,1 14 0,41 230 50 90 100 

ABS 0,5 0,55 20 6 20 0,45 230 50 90 100 

ABS 0,31 0,34 
9,9

6 5 
9,9

6 1,01 230 50 90 100 

ABS 0,05 0,05 

4,7

3 5 4,5 0,26 230 50 90 100 

ABS 0,07 0,08 20 3 3 1,03 230 50 90 100 

ABS 1,84 2,03 7 20 20 3,29 230 50 90 100 

ABS 0,72 0,8 5 
19,
94 20 0,54 230 50 90 100 

ABS 1,32 1,45 20 20 20 2,19 230 50 90 100 

ABS 1,84 2,03 7 20 20 3,29 230 50 90 100 

ABS 1,62 1,78 24 5 24 2,58 230 50 90 100 

ABS 1,48 1,63 20 20 20 0,22 230 50 90 100 

ABS 4,22 4,65 32 
22,
25 18 8,86 230 50 90 100 

ABS 0,78 0,86 2 20 20 1,49 230 50 90 100 

ABS 0,01 0,01 1 1,4 10 0,1 230 50 90 100 

ABS 0 0 3 1,4 1,4 0,09 230 50 90 100 
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ABS 0,05 0,05 

7,5

6 2 

20,

02 0,26 230 50 90 100 

ABS 0,18 0,2 

9,9

2 

9,7

7 5 0,74 230 50 90 100 

ABS 0,17 0,19 20 2 5 0,71 230 50 90 100 

ABS 0,01 0,01 1 20 

4,3

8 0,12 230 50 90 100 

ABS 0,26 0,28 8 8 8 1,63 230 50 90 100 

ABS 1,4 1,55 40 10 40 0,49 230 50 90 100 

ABS 0,84 0,93 24 10 24 0,69 230 50 90 100 

ABS 0,92 1,01 10 15 20 3,91 230 50 90 100 

PP 1,62 1,78 24 5 24 2,58 230 50 90 100 

PP 1,48 1,63 20 20 20 0,22 230 50 90 100 

PP 4,22 4,65 32 

22,

25 18 8,86 230 50 90 100 

PP 0,78 0,86 2 20 20 1,49 230 50 90 100 

PP 0,01 0,01 1 1,4 10 0,1 230 50 90 100 

PP 0 0 3 1,4 1,4 0,09 230 50 90 100 

PP 0,05 0,05 

7,5

6 2 

20,

02 0,26 230 50 90 100 

PP 0,18 0,2 

9,9

2 

9,7

7 5 0,74 230 50 90 100 

PP 0,17 0,19 20 2 5 0,71 230 50 90 100 

PP 0,01 0,01 1 20 

4,3

8 0,12 230 50 90 100 

PP 0,26 0,28 8 8 8 1,63 230 50 90 100 

PP 1,4 1,55 40 10 40 0,49 230 50 90 100 

PP 0,84 0,93 24 10 24 0,69 230 50 90 100 

PP 0,92 1,01 10 15 20 3,91 230 50 90 100 

PP 0,28 0,25 20 3 5 0,62 230 30 95 111 

PP 0,28 0,25 20 3 5 0,62 150 20 95 5 

PP 0,28 0,25 20 3 5 0,62 230 20 95 5 

PP 0,28 0,25 20 3 5 0,62 230 20 95 5 

PP 0,28 0,25 20 3 5 0,62 230 50 95 98 

PP 0,28 0,25 20 3 5 0,62 230 20 95 98 

PP 0,28 0,25 20 3 5 0,62 230 30 95 98 

PP 0,28 0,25 20 3 5 0,62 230 30 95 1,3 

PP 0,28 0,25 20 3 5 0,68 230 50 90 5 

PP 0,04 0,04 6 2 6 0,42 230 50 95 100 

PP 0,04 0,04 6 2 6 0,54 150 20 80 5 

PP 0,04 0,04 6 2 6 0,54 230 20 95 5 

PP 0,04 0,04 6 2 6 0,54 230 20 95 128 

ABS 0,24 0,27 14 6,1 14 0,41 230 50 90 100 

ABS 0,5 0,55 20 6 20 0,45 230 50 90 100 

ABS 0,31 0,34 
9,9

6 5 
9,9

6 1,01 230 50 90 100 

ABS 0,05 0,05 

4,7

3 5 4,5 0,26 230 50 90 100 
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ABS 0,07 0,08 20 3 3 1,03 230 50 90 100 

ABS 1,84 2,03 7 20 20 3,29 230 50 90 100 

ABS 0,72 0,8 5 

19,

94 20 0,54 230 50 90 100 

ABS 1,32 1,45 20 20 20 2,19 230 50 90 100 

ABS 1,84 2,03 7 20 20 3,29 230 50 90 100 

ABS 1,62 1,78 24 5 24 2,58 230 50 90 100 

ABS 1,48 1,63 20 20 20 0,22 230 50 90 100 

ABS 4,22 4,65 32 

22,

25 18 8,86 230 50 90 100 

ABS 0,78 0,86 2 20 20 1,49 230 50 90 100 

ABS 0,01 0,01 1 1,4 10 0,1 230 50 90 100 

ABS 0 0 3 1,4 1,4 0,09 230 50 90 100 

ABS 0,05 0,05 

7,5

6 2 

20,

02 0,26 230 50 90 100 

ABS 0,18 0,2 

9,9

2 

9,7

7 5 0,74 230 50 90 100 

ABS 0,17 0,19 20 2 5 0,71 230 50 90 100 

ABS 0,01 0,01 1 20 

4,3

8 0,12 230 50 90 100 

ABS 0,26 0,28 8 8 8 1,63 230 50 90 100 

ABS 1,4 1,55 40 10 40 0,49 230 50 90 100 

ABS 0,84 0,93 24 10 24 0,69 230 50 90 100 

ABS 0,92 1,01 10 15 20 3,91 230 50 90 100 

PP 0,04 0,04 6 2 6 0,54 243 20 95 98 

PP 0,04 0,04 6 2 6 0,54 230 20 95 111 

PP 0,04 0,04 6 2 6 0,54 230 20 95 128 

PP 0,05 0,04 6 3 6 0,35 230 50 95 100 

PP 0,5 0,45 20 6 20 0,45 230 50 95 100 

PP 0,05 0,04 
4,7

3 5 4,5 0,26 230 50 95 100 

PP 0,31 0,28 

9,9

6 5 

9,9

6 1,02 230 50 95 100 

PP 0,07 0,07 20 3 3 1,05 230 50 95 100 

PP 1,32 1,21 20 20 20 2,15 230 50 95 100 

PP 0,72 0,66 5 
19,
94 20 0,54 230 50 95 100 

PP 1,3 1,19 20 24 20 0,58 230 50 95 100 

PP 1,84 1,69 7 20 20 3,43 230 50 95 100 

PP 4,22 3,87 32 
22,
25 18 9 230 50 95 100 

PP 4,22 3,87 32 
22,
25 18 9 230 50 95 100 

PP 0,24 0,27 14 6,1 14 0,41 230 50 90 100 

PP 0,5 0,55 20 6 20 0,45 230 50 90 100 

PP 0,31 0,34 

9,9

6 5 

9,9

6 1,01 230 50 90 100 

PP 0,05 0,05 
4,7

3 5 4,5 0,26 230 50 90 100 

PP 0,07 0,08 20 3 3 1,03 230 50 90 100 
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PP 1,84 2,03 7 20 20 3,29 230 50 90 100 

PP 0,72 0,8 5 
19,
94 20 0,54 230 50 90 100 

PP 1,32 1,45 20 20 20 2,19 230 50 90 100 

PP 1,84 2,03 7 20 20 3,29 230 50 90 100 

PP 1,62 1,78 24 5 24 2,58 230 50 90 100 

PP 1,48 1,63 20 20 20 0,22 230 50 90 100 

PP 4,22 4,65 32 
22,
25 18 8,86 230 50 90 100 

PP 0,78 0,86 2 20 20 1,49 230 50 90 100 

PP 0,01 0,01 1 1,4 10 0,1 230 50 90 100 

PP 0 0 3 1,4 1,4 0,09 230 50 90 100 

PP 0,05 0,05 
7,5

6 2 
20,
02 0,26 230 50 90 100 

PP 0,18 0,2 
9,9

2 
9,7

7 5 0,74 230 50 90 100 

PP 0,17 0,19 20 2 5 0,71 230 50 90 100 

PP 0,01 0,01 1 20 
4,3

8 0,12 230 50 90 100 

PP 0,26 0,28 8 8 8 1,63 230 50 90 100 

PP 1,4 1,55 40 10 40 0,49 230 50 90 100 

PP 0,84 0,93 24 10 24 0,69 230 50 90 100 

PP 0,92 1,01 10 15 20 3,91 230 50 90 100 

PP 0,28 0,25 20 3 5 0,62 230 30 95 111 

PP 0,28 0,25 20 3 5 0,62 150 20 95 5 

PP 0,28 0,25 20 3 5 0,62 230 20 95 5 

PP 0,28 0,25 20 3 5 0,62 230 20 95 5 

PP 0,28 0,25 20 3 5 0,62 230 50 95 98 

PP 0,28 0,25 20 3 5 0,62 230 20 95 98 

PP 0,28 0,25 20 3 5 0,62 230 30 95 98 

PP 0,28 0,25 20 3 5 0,62 230 30 95 1,3 

PP 0,28 0,25 20 3 5 0,68 230 50 90 5 

PP 0,04 0,04 6 2 6 0,42 230 50 95 100 

PP 0,04 0,04 6 2 6 0,54 150 20 80 5 

PP 0,04 0,04 6 2 6 0,54 230 20 95 5 

PP 0,04 0,04 6 2 6 0,54 230 20 95 128 

PP 0,04 0,04 6 2 6 0,54 243 20 95 98 

PP 0,04 0,04 6 2 6 0,54 230 20 95 111 

PP 0,04 0,04 6 2 6 0,54 230 20 95 128 

PP 0,05 0,04 6 3 6 0,35 230 50 95 100 

PP 0,5 0,45 20 6 20 0,45 230 50 95 100 

PP 0,05 0,04 
4,7

3 5 4,5 0,26 230 50 95 100 

PP 0,31 0,28 

9,9

6 5 

9,9

6 1,02 230 50 95 100 

PP 0,07 0,07 20 3 3 1,05 230 50 95 100 
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PP 1,32 1,21 20 20 20 2,15 230 50 95 100 

PP 0,72 0,66 5 
19,
94 20 0,54 230 50 95 100 

PP 1,3 1,19 20 24 20 0,58 230 50 95 100 

PP 1,84 1,69 7 20 20 3,43 230 50 95 100 

PP 4,22 3,87 32 
22,
25 18 9 230 50 95 100 

 
Plastic displacement analysis in micro parts provided by CAE analysis. 
 

X 
Displacement 

Y 
Displacement 

Z 
Displacement 

Total 
Displacement 

0,1219 0,1157 0,0827 0,0651 

0,1855 0,1579 0,068 0,0955 

0,0974 0,0978 0,0554 0,0512 

0,0342 0,0315 0,0379 0,0259 

0,1482 0,0272 0,0282 0,075 

0,0825 0,2648 0,2612 0,1357 

0,0552 0,1953 0,1832 0,1008 

0,1491 0,1484 0,1994 0,1265 

0,0825 0,2648 0,2612 0,1357 

0,3021 0,2966 0,0755 0,1531 

0,0821 0,1513 0,1508 0,1009 

0,3532 0,2202 0,2469 0,2254 

0,024 0,1662 0,172 0,1018 

0,0142 0,0456 0,0168 0,0256 

0,0274 0,0112 0,0118 0,0156 

0,0625 0,1235 0,0301 0,0705 

0,0912 0,0524 0,0885 0,0484 

0,1715 0,0489 0,0445 0,0903 

0,0166 0,0916 0,0823 0,0774 

0,1012 0,1011 0,1086 0,0575 

0,2366 0,2441 0,0796 0,1387 

0,1483 0,146 0,0891 0,0834 

0,1277 0,2315 0,1993 0,1437 

0,0083 0,0114 0,0053 0,0082 

0,0906 0,0333 0,0302 0,0464 

0,152 0,0649 0,056 0,079 

0,152 0,0649 0,056 0,079 

0,162 0,0638 0,0547 0,0837 

0,0083 0,0123 0,0074 0,0099 

0,0095 0,0142 0,0081 0,0114 

0,0082 0,0122 0,0072 0,0096 
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0,01817 0,0554 0,0528 0,0921 

0,0623 0,0632 0,034 0,0343 

0,0319 0,0201 0,0323 0,0172 

0,0552 0,0344 0,0563 0,03 

0,055 0,0347 0,0561 0,0302 

0,0594 0,0363 0,0603 0,0325 

0,0554 0,0341 0,0561 0,0301 

0,0554 0,0341 0,0561 0,0301 

0,1654 0,0549 0,0466 0,1735 

3,9863 0,1911 0,0827 8,321 

0,0453 0,0388 0,0462 0,0348 

0,1107 0,1145 0,0627 0,0603 

0,1946 0,0393 0,0424 0,0996 

0,1906 0,191 0,273 0,1739 

0,0757 0,2403 0,2042 0,1365 

0,3189 0,311 0,1368 0,1719 

0,0954 0,2741 0,699 7,163 

0,4154 0,2487 0,3251 0,2871 

0,1219 0,1157 0,0827 0,0651 

0,1855 0,1579 0,068 0,0955 

0,0974 0,0978 0,0554 0,0512 

0,0342 0,0315 0,0379 0,0259 

0,1482 0,0272 0,0282 0,075 

0,0825 0,2648 0,2612 0,1357 

0,0552 0,1953 0,1832 0,1008 

0,1491 0,1484 0,1994 0,1265 

0,0825 0,2648 0,2612 0,1357 

0,1219 0,1157 0,0827 0,0651 

0,1855 0,1579 0,068 0,0955 

0,0974 0,0978 0,0554 0,0512 

0,0342 0,0315 0,0379 0,0259 

0,1482 0,0272 0,0282 0,075 

0,0825 0,2648 0,2612 0,1357 

0,0552 0,1953 0,1832 0,1008 

0,1491 0,1484 0,1994 0,1265 

0,0825 0,2648 0,2612 0,1357 

0,3021 0,2966 0,0755 0,1531 

0,0821 0,1513 0,1508 0,1009 

0,3532 0,2202 0,2469 0,2254 

0,024 0,1662 0,172 0,1018 

0,0142 0,0456 0,0168 0,0256 
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0,0274 0,0112 0,0118 0,0156 

0,0625 0,1235 0,0301 0,0705 

0,0912 0,0524 0,0885 0,0484 

0,1715 0,0489 0,0445 0,0903 

0,0166 0,0916 0,0823 0,0774 

0,1012 0,1011 0,1086 0,0575 

0,2366 0,2441 0,0796 0,1387 

0,1483 0,146 0,0891 0,0834 

0,1277 0,2315 0,1993 0,1437 

0,3021 0,2966 0,0755 0,1531 

0,0821 0,1513 0,1508 0,1009 

0,3532 0,2202 0,2469 0,2254 

0,024 0,1662 0,172 0,1018 

0,0142 0,0456 0,0168 0,0256 

0,0274 0,0112 0,0118 0,0156 

0,0625 0,1235 0,0301 0,0705 

0,0912 0,0524 0,0885 0,0484 

0,1715 0,0489 0,0445 0,0903 

0,0166 0,0916 0,0823 0,0774 

0,1012 0,1011 0,1086 0,0575 

0,2366 0,2441 0,0796 0,1387 

0,1483 0,146 0,0891 0,0834 

0,1277 0,2315 0,1993 0,1437 

0,0083 0,0114 0,0053 0,0082 

0,0906 0,0333 0,0302 0,0464 

0,152 0,0649 0,056 0,079 

0,152 0,0649 0,056 0,079 

0,162 0,0638 0,0547 0,0837 

0,0083 0,0123 0,0074 0,0099 

0,0095 0,0142 0,0081 0,0114 

0,0082 0,0122 0,0072 0,0096 

0,01817 0,0554 0,0528 0,0921 

0,0623 0,0632 0,034 0,0343 

0,0319 0,0201 0,0323 0,0172 

0,0552 0,0344 0,0563 0,03 

0,055 0,0347 0,0561 0,0302 

0,1219 0,1157 0,0827 0,0651 

0,1855 0,1579 0,068 0,0955 

0,0974 0,0978 0,0554 0,0512 

0,0342 0,0315 0,0379 0,0259 

0,1482 0,0272 0,0282 0,075 
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0,0825 0,2648 0,2612 0,1357 

0,0552 0,1953 0,1832 0,1008 

0,1491 0,1484 0,1994 0,1265 

0,0825 0,2648 0,2612 0,1357 

0,3021 0,2966 0,0755 0,1531 

0,0821 0,1513 0,1508 0,1009 

0,3532 0,2202 0,2469 0,2254 

0,024 0,1662 0,172 0,1018 

0,0142 0,0456 0,0168 0,0256 

0,0274 0,0112 0,0118 0,0156 

0,0625 0,1235 0,0301 0,0705 

0,0912 0,0524 0,0885 0,0484 

0,1715 0,0489 0,0445 0,0903 

0,0166 0,0916 0,0823 0,0774 

0,1012 0,1011 0,1086 0,0575 

0,2366 0,2441 0,0796 0,1387 

0,1483 0,146 0,0891 0,0834 

0,1277 0,2315 0,1993 0,1437 

0,0594 0,0363 0,0603 0,0325 

0,0554 0,0341 0,0561 0,0301 

0,0554 0,0341 0,0561 0,0301 

0,1654 0,0549 0,0466 0,1735 

3,9863 0,1911 0,0827 8,321 

0,0453 0,0388 0,0462 0,0348 

0,1107 0,1145 0,0627 0,0603 

0,1946 0,0393 0,0424 0,0996 

0,1906 0,191 0,273 0,1739 

0,0757 0,2403 0,2042 0,1365 

0,3189 0,311 0,1368 0,1719 

0,0954 0,2741 0,699 7,163 

0,4154 0,2487 0,3251 0,2871 

0,4154 0,2487 0,3251 0,2871 

0,1219 0,1157 0,0827 0,0651 

0,1855 0,1579 0,068 0,0955 

0,0974 0,0978 0,0554 0,0512 

0,0342 0,0315 0,0379 0,0259 

0,1482 0,0272 0,0282 0,075 

0,0825 0,2648 0,2612 0,1357 

0,0552 0,1953 0,1832 0,1008 

0,1491 0,1484 0,1994 0,1265 

0,0825 0,2648 0,2612 0,1357 
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0,3021 0,2966 0,0755 0,1531 

0,0821 0,1513 0,1508 0,1009 

0,3532 0,2202 0,2469 0,2254 

0,024 0,1662 0,172 0,1018 

0,0142 0,0456 0,0168 0,0256 

0,0274 0,0112 0,0118 0,0156 

0,0625 0,1235 0,0301 0,0705 

0,0912 0,0524 0,0885 0,0484 

0,1715 0,0489 0,0445 0,0903 

0,0166 0,0916 0,0823 0,0774 

0,1012 0,1011 0,1086 0,0575 

0,2366 0,2441 0,0796 0,1387 

0,1483 0,146 0,0891 0,0834 

0,1277 0,2315 0,1993 0,1437 

0,0083 0,0114 0,0053 0,0082 

0,0906 0,0333 0,0302 0,0464 

0,152 0,0649 0,056 0,079 

0,152 0,0649 0,056 0,079 

0,162 0,0638 0,0547 0,0837 

0,0083 0,0123 0,0074 0,0099 

0,0095 0,0142 0,0081 0,0114 

0,0082 0,0122 0,0072 0,0096 

0,01817 0,0554 0,0528 0,0921 

0,0623 0,0632 0,034 0,0343 

0,0319 0,0201 0,0323 0,0172 

0,0552 0,0344 0,0563 0,03 

0,055 0,0347 0,0561 0,0302 

0,0594 0,0363 0,0603 0,0325 

0,0554 0,0341 0,0561 0,0301 

0,0554 0,0341 0,0561 0,0301 

0,1654 0,0549 0,0466 0,1735 

3,9863 0,1911 0,0827 8,321 

0,0453 0,0388 0,0462 0,0348 

0,1107 0,1145 0,0627 0,0603 

0,1946 0,0393 0,0424 0,0996 

0,1906 0,191 0,273 0,1739 

0,0757 0,2403 0,2042 0,1365 

0,3189 0,311 0,1368 0,1719 

0,0954 0,2741 0,699 7,163 

0,4154 0,2487 0,3251 0,2871 
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Micro injection processes of plastic parts (CAE systems). 
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Annex 2. Tests carried out with the designed system. 
 
System test, defect analysis and cycle counter (material ABS). 

Ci. 
No 

Press. 
Inject 

Material 
Temperature 

Mold 
Temperature  

Filling 
time Vol. Vacu. Burns 

Incomplete 
parts Flas 

Sink 
marks 

 1 111  219  32.1  13  
15.3
   2   2      

 2 111 225  35  23  15   3       1  

 3 111  230  32 20  18   2       1 

 4 115 235 30 18 12    2   5    

 5 111 230 30  17 10            

1  
100.3
  218.55  32.26  1.38  

35.2
6  2   2  4      

2  105 218  32  10  35  2   1 3    1  

3 111  215  30  15  32  1  1 1      

4  111 210 30  17  
32.5
            

1  99  220  32  0.96  
35.7
4     2  4   3  

2  99  215  32  4.7  
25.4
     1  2    2  

3 98 210  32  10  19          1  

4  98  210 30  10 17            

 1 90  146  48  7.68  
35.4
  2      3  3  

 2 93  130  40  6    1 2    2  2  

 3  93  180  35  5    1     1  2  

 4  91  220 30  3    1       1  

 5 90 239 30  3  
35.2
            

1  110  220  32  1.88  
35.9
    1   2   2  

2 115 218 30 2.5 35      1   1  

3  118  218  30 3  35            

1 99.9 238 32 2.65 
35.4
6  1 2  1 

2 95 236 33 8 36 1 1  2 1 

3 90 230 35 6 35 1  1   

4 90 230 34.9 6 35      

1 100  220  32  2.38  
35.2
4      2    3  

2 100 230 32 2.5 35  1         
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3 90 245  30  3  
35.5
    1    2    

4 90 240 30 3.2 35.5  1    

5 90 239 30 3  
35.2
            

1 90 220 35 0.9 33 1 2 5  2 

2 85 215 32 10 32   2  2 

3 70 205 35 19 31    2 1 

4 50 210 31 15 36   1   

5 57 210 30 16 35 1     

6 60 210 30 16 35      

1 80 225 32 2 32 2  1  4 

2 70 230 35 3 35 1   2  

3 65 235 35 3 35  1    

4 67.5 240 35 3 35      

1 90 210 30 3 35 1  5   

2 90 220 32 10 35   3  1 

3 100 225 35 15 36   2  1 

4 90 230 35 20 36    1  

5 90 230 36 19 36      

1 70 210 30 5 30 2  4  1 

2 68 220 30 10 30 2  2  1 

3 65 225 31 12 32 1  1   

4 60 230 32 14 35  1    

5 61 230 32 14 35      

1 80 220 32 5 30 3   3  

2 75 225 30 4 32 2   2 1 

3 69 230 30 3 30 1     

4 59 230 30 3 30      

1 92 220 35 4 32   1  1 

2 90 228 30 6 35     1 

3 90 230 30 6 35      

1 100 220 30 2 32  2  2  

2 95 215 30 5 33  1   1 

3 90 210 31 3 35 1   1  

4 90 210 32 4 35      

1 80 200 30 4 30 2  2  1 

2 82 215 31 6 32 1  1  1 

3 85 218 30 7 33 1     

4 90 220 30 7 35      
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System test, defect analysis and cycle counter (material PP). 

Ci. 
No 

Press. 
Inject 

Material 
Temperature 

Mold 
Temperature  

Filling 
time Vol. Vacu. Burns 

Incomplete 
parts Flas 

Sink 
marks 

1 100  205  32  13 32 2  1  3 

2 105 220  31  15 15 1   2  

3 110  230  30 15 12  2    

4 111 225 30 15 12      

1 112 205  34  10 35   1  1 

2 110  205  35 12 35      

1 90 200  30  5 7 4  4   

2 94  210  35 10 15   2   

3 95 215  35  12 15      

1 90 220 35 10 32  3  1 4 

2 85 215 32 8 31  2  2  

3 81 210 30 8 31      

1 89  215  35 7 35 1   2 2 

2 92 230  33  4 30 1  1   

3 96  230  31 5 32 1     

4 95 230 30 5 32      

1 99 205 32 10 35 1   1 2 

2 105 210 33 9 30    1  

3 110 210 34 8 30      

1 99 220 30 10 30  1  1  

2 95 220 31 10 30      

1 110 230 30 6 32 1  2 2  

2 77 210 32 13 32 1   1  

3 75 215 32 12 30      

1 90 220 30 5 35   2  4 

2 80 225 30 8 37 1   1 3 

3 72 230 31 7 40     2 

4 69 230 31 7 39      

1 95 210 32 10 30 1  1   

2 96 210 32 15 30      

1 90 220 35 10 32  3  1 4 

2 85 215 32 8 31  2  2  

3 81 210 30 8 31      

1 75 215 32 10 35  2  2 3 

2 70 210 32 8 40     1 

3 69 210 32 7 39      
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1 90 215 30 12 30  2  2 2 

2 92 210 30 8 30 1 1    

3 94 210 32 10 31     1 

4 94 210 31 10 31      

1 100 215 30 10 30 1   1  

2 99 220 30 7 30      

1 90 200 35 10 30 2    2 

2 95 205 33 10 30    1 1 

3 94 210 33 10 31      


