355 research outputs found

    Digital controlled oscillator (DCO) for all digital phase-locked loop (ADPLL) – a review

    Get PDF
    Digital controlled oscillator (DCO) is becoming an attractive replacement over the voltage control oscillator (VCO) with the advances of digital intensive research on all-digital phase locked-loop (ADPLL) in complementary metal-oxide semiconductor (CMOS) process technology. This paper presents a review of various CMOS DCO schemes implemented in ADPLL and relationship between the DCO parameters with ADPLL performance. The DCO architecture evaluated through its power consumption, speed, chip area, frequency range, supply voltage, portability and resolution. It can be concluded that even though there are various schemes of DCO that have been implemented for ADPLL, the selection of the DCO is frequently based on the ADPLL applications and the complexity of the scheme. The demand for the low power dissipation and high resolution DCO in CMOS technology shall remain a challenging and active area of research for years to come. Thus, this review shall work as a guideline for the researchers who wish to work on all digital PLL

    Clock multiplication techniques for high-speed I/Os

    Get PDF
    Generation of a low-jitter, high-frequency clock from a low-frequency reference clock using classical analog phase-locked loops (PLLs) requires a large loop filter capacitor and power hungry oscillator. Digital PLLs can help reduce area but their jitter performance is severely degraded by quantization error. In this dissertation different clock multiplication techniques have been explored that can be suitable for high-speed wireline systems. With the emphasis on ring oscillator based architecture using cascaded stages, three possible architectures are explored. First, a scrambling TDC (STDC) is presented to improve deterministic jitter (DJ) performance when used with a low-frequency reference clock. A cascaded architecture with digital multiplying delay locked loop as the first stage and hybrid analog/digital PLL as the second stage is used to achieve low random jitter in a power efficient manner. Fabricated in a 90nm CMOS process, the prototype frequency synthesizer consumes 4.76mW power from a 1.0V supply and generates 160MHz and 2.56 GHz output clocks from a 1.25MHz crystal reference frequency. The long-term absolute jitter of the 60MHz digital MDLL and 2.56 GHz digital PLL outputs are 2.4 psrms and 4.18 psrms, while the peak-to-peak jitter is 22.1 ps and 35.2 ps, respectively. The proposed frequency synthesizer occupies an active die area of 0.16mm2 and achieves power efficiency of 1.86 mW/GHz. Second, a hybrid phase/current-mode phase interpolator (HPC-PI) is presented to improve phase noise performance of ring oscillator-based fractional-N PLLs. The proposed HPC-PI alleviates the bandwidth trade-off between VCO phase noise suppression and ΔΣ quantization noise suppression. By combining the phase detection and interpolation functions into an XOR phase detector/interpolator (XOR PD-PI) block, accurate quantization error cancellation is achieved without using calibration. Use of a digital MDLL in front of the fractional-N PLL helps in alleviating the bandwidth limitation due to reference frequency and enables bandwidth extension even further. The extended bandwidth helps in suppressing the ring-VCO phase noise and lowering the in-band noise floor. Fabricated in 65nm CMOS process, the prototype generates fractional frequencies from 4.25 to 4.75 GHz, with an in-band phase noise floor of -104 dBc/Hz and 1.5 psrms integrated jitter. The clock multiplier achieves power efficiency of 2.4mW/GHz and FoM of -225.8 dB. Finally, an efficient clock generation, recovery, and distribution techniques for flexible-rate transceivers are presented. Using a fixed-frequency low-jitter clock provided by an integer-N PLL, fractional frequencies are generated/recovered locally using multi-phase fractional clock multipliers. Fabricated in a 65nm CMOS, the prototype transceiver can be programmed to operate at any rate from 3-to-10 Gb/s. At 10 Gb/s, integrated jitter of the Tx output and recovered clock is 360 fsrms and 758 fsrms, respectively

    Tune and chromaticity diagnostics

    Get PDF

    Low-Power High-Data-Rate Transmitter Design for Biomedical Application

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Design of energy efficient high speed I/O interfaces

    Get PDF
    Energy efficiency has become a key performance metric for wireline high speed I/O interfaces. Consequently, design of low power I/O interfaces has garnered large interest that has mostly been focused on active power reduction techniques at peak data rate. In practice, most systems exhibit a wide range of data transfer patterns. As a result, low energy per bit operation at peak data rate does not necessarily translate to overall low energy operation. Therefore, I/O interfaces that can scale their power consumption with data rate requirement are desirable. Rapid on-off I/O interfaces have a potential to scale power with data rate requirements without severely affecting either latency or the throughput of the I/O interface. In this work, we explore circuit techniques for designing rapid on-off high speed wireline I/O interfaces and digital fractional-N PLLs. A burst-mode transmitter suitable for rapid on-off I/O interfaces is presented that achieves 6 ns turn-on time by utilizing a fast frequency settling ring oscillator in digital multiplying delay-locked loop and a rapid on-off biasing scheme for current mode output driver. Fabricated in 90 nm CMOS process, the prototype achieves 2.29 mW/Gb/s energy efficiency at peak data rate of 8 Gb/s. A 125X (8 Gb/s to 64 Mb/s) change in effective data rate results in 67X (18.29 mW to 0.27 mW) change in transmitter power consumption corresponding to only 2X (2.29 mW/Gb/s to 4.24 mW/Gb/s) degradation in energy efficiency for 32-byte long data bursts. We also present an analytical bit error rate (BER) computation technique for this transmitter under rapid on-off operation, which uses MDLL settling measurement data in conjunction with always-on transmitter measurements. This technique indicates that the BER bathtub width for 10^(−12) BER is 0.65 UI and 0.72 UI during rapid on-off operation and always-on operation, respectively. Next, a pulse response estimation-based technique is proposed enabling burst-mode operation for baud-rate sampling receivers that operate over high loss channels. Such receivers typically employ discrete time equalization to combat inter-symbol interference. Implementation details are provided for a receiver chip, fabricated in 65nm CMOS technology, that demonstrates efficacy of the proposed technique. A low complexity pulse response estimation technique is also presented for low power receivers that do not employ discrete time equalizers. We also present techniques for implementation of highly digital fractional-N PLL employing a phase interpolator based fractional divider to improve the quantization noise shaping properties of a 1-bit ∆Σ frequency-to-digital converter. Fabricated in 65nm CMOS process, the prototype calibration-free fractional-N Type-II PLL employs the proposed frequency-to-digital converter in place of a high resolution time-to-digital converter and achieves 848 fs rms integrated jitter (1 kHz-30 MHz) and -101 dBc/Hz in-band phase noise while generating 5.054 GHz output from 31.25 MHz input

    INJECTION-LOCKING TECHNIQUES FOR MULTI-CHANNEL ENERGY EFFICIENT TRANSMITTER

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Techniques for high-performance digital frequency synthesis and phase control

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.Includes bibliographical references (p. 183-190).This thesis presents a 3.6-GHz, 500-kHz bandwidth digital [delta][sigma] frequency synthesizer architecture that leverages a recently invented noise-shaping time-to-digital converter (TDC) and an all-digital quantization noise cancellation technique to achieve excellent in-band and out-of-band phase noise, respectively. In addition, a passive digital-to-analog converter (DAC) structure is proposed as an efficient interface between the digital loop filter and a conventional hybrid voltage-controlled oscillator (VCO) to create a digitally-controlled oscillator (DCO). An asynchronous divider structure is presented which lowers the required TDC range and avoids the divide-value-dependent delay variation. The prototype is implemented in a 0.13-am CMOS process and its active area occupies 0.95 mm². Operating under 1.5 V, the core parts, excluding the VCO output buffer, dissipate 26 mA. Measured phase noise at 3.67 GHz achieves -108 dBc/Hz and -150 dBc/Hz at 400 kHz and 20 MHz, respectively. Integrated phase noise at this carrier frequency yields 204 fs of jitter (measured from 1 kHz to 40 MHz). In addition, a 3.2-Gb/s delay-locked loop (DLL) in a 0.18-[mu]m CMOS for chip-tochip communications is presented. By leveraging the fractional-N synthesizer technique, this architecture provides a digitally-controlled delay adjustment with a fine resolution and infinite range. The provided delay resolution is less sensitive to the process, voltage, and temperature variations than conventional techniques. A new [delta][sigma] modulator enables a compact and low-power implementation of this architecture. A simple bang-bang detector is used for phase detection. The prototype operates at a 1.8-V supply voltage with a current consumption of 55 mA. The phase resolution and differential rms clock jitter are 1.4 degrees and 3.6 ps, respectively.by Chun-Ming Hsu.Ph.D

    Energy-efficient wireline transceivers

    Get PDF
    Power-efficient wireline transceivers are highly demanded by many applications in high performance computation and communication systems. Apart from transferring a wide range of data rates to satisfy the interconnect bandwidth requirement, the transceivers have very tight power budget and are expected to be fully integrated. This thesis explores enabling techniques to implement such transceivers in both circuit and system levels. Specifically, three prototypes will be presented: (1) a 5Gb/s reference-less clock and data recovery circuit (CDR) using phase-rotating phase-locked loop (PRPLL) to conduct phase control so as to break several fundamental trade-offs in conventional receivers; (2) a 4-10.5Gb/s continuous-rate CDR with novel frequency acquisition scheme based on bang-bang phase detector (BBPD) and a ring oscillator-based fractional-N PLL as the low noise wide range DCO in the CDR loop; (3) a source-synchronous energy-proportional link with dynamic voltage and frequency scaling (DVFS) and rapid on/off (ROO) techniques to cut the link power wastage at system level. The receiver/transceiver architectures are highly digital and address the requirements of new receiver architecture development, wide operating range, and low power/area consumption while being fully integrated. Experimental results obtained from the prototypes attest the effectiveness of the proposed techniques
    corecore