45 research outputs found

    Intraoperative Planning and Execution of Arbitrary Orthopedic Interventions Using Handheld Robotics and Augmented Reality

    Get PDF
    The focus of this work is a generic, intraoperative and image-free planning and execution application for arbitrary orthopedic interventions using a novel handheld robotic device and optical see-through glasses (AR). This medical CAD application enables the surgeon to intraoperatively plan the intervention directly on the patient’s bone. The glasses and all the other instruments are accurately calibrated using new techniques. Several interventions show the effectiveness of this approach

    Unexpected case of ankle tuberculosis in a young professionals leading to delay in diagnosis

    Get PDF
    We report a case of a 38 year-old engineer presented with left ankle pain for 2 years and initially treated as gouty arthritis because of high serum uric acid. A year later his left ankle become swollen and plain radiograph showed soft tissue swelling around the ankle with normal articular surface and bone. An MRI investigation reported as gouty arthritis of ankle with tophi. While on treatment for gouty arthritis, he developed pus discharge from the swelling. The ankle pain also worsen and he was unable to weight bear on the affected leg. An incision and drainage shown pus from the ankle joint which grew pseudomonas aeruginosa. He was treated with intravenous followed by oral ciprofloxacin 250 mg bd. However his condition does not improved and a month after antibiotic treatment a repeated radiograph shows narrowing of joint space with irregular cortical destruction, osteopenic bone . suggestive of worsening of his septic arthritis. During this period he deny of having any fever, cough or night sweats. However he did notice some loss of weight and loss of appetite. He has worked in Africa and Russia before in petroleum industry. After 4 months of antibiotic and no sign of improvement, a biopsy and repeat culture was taken from the ankle which reveal tuberculous arthritis and positive for AFB culture. A plain chest radiograph revealed miliary tuberculosis picture. He was started on a anti TB treatment and the wound healed after a few weeks. After 4 months of treatment he was able to walk without support with reduce ankle range of motion. This case illustrate that the diagnosis was delay because tuberculosis was not suspected in a young professionals with ankle pain and elevated serum uric acid level. Further delay in diagnosis because MRI report also suggestive of gouty tophi and the pus culture and sensitivity grew pseudomonas aeruginosa

    3D Innovations in Personalized Surgery

    Get PDF
    Current practice involves the use of 3D surgical planning and patient-specific solutions in multiple surgical areas of expertise. Patient-specific solutions have been endorsed for several years in numerous publications due to their associated benefits around accuracy, safety, and predictability of surgical outcome. The basis of 3D surgical planning is the use of high-quality medical images (e.g., CT, MRI, or PET-scans). The translation from 3D digital planning toward surgical applications was developed hand in hand with a rise in 3D printing applications of multiple biocompatible materials. These technical aspects of medical care require engineers’ or technical physicians’ expertise for optimal safe and effective implementation in daily clinical routines.The aim and scope of this Special Issue is high-tech solutions in personalized surgery, based on 3D technology and, more specifically, bone-related surgery. Full-papers or highly innovative technical notes or (systematic) reviews that relate to innovative personalized surgery are invited. This can include optimization of imaging for 3D VSP, optimization of 3D VSP workflow and its translation toward the surgical procedure, or optimization of personalized implants or devices in relation to bone surgery

    Computer aided method for 3D assessment of the lower limb alignment for orthopedic surgery planning

    Get PDF
    Tese de mestrado integrado, Engenharia Biomédica e Biofísica (Engenharia Clínica e Instrumentação Médica) Universidade de Lisboa, Faculdade de Ciências, 2017Os membros inferiores são responsáveis por fornecer suporte à totalidade do corpo humano e são essenciais nas mais variadas tarefas como estar de pé, andar e correr. Por vezes, e devido a diversos motivos, podem existir defeitos ou deformações nos membros inferiores que têm um impacto direto na qualidade de vida de uma pessoa, quer por se ver afetado o lado estético pessoal ou por condicionar significativamente a mobilidade. Uma característica da estrutura do membro inferior que é diretamente afetada por estas deformações é o seu alinhamento, isto é, a posição relativa dos ossos e articulações que compõem o membro. Graças à evolução da medicina moderna, corrigir estas deformações é agora uma prática bastante comum no campo da cirurgia ortopédica. No entanto, antes de qualquer cirurgia corretiva e até de qualquer planeamento que esta exija, a deformação tem de ser corretamente analisada, o que é feito através da chamada avaliação do alinhamento do membro inferior. Atualmente, num contexto clínico, esta avaliação é feita manualmente num espaço de trabalho bi-dimensional, normalmente utilizando apenas imagens de raios-X da perna inteira no plano anatómico frontal. Uma revisão ao estado da arte no que toca a métodos de planeamento cirúrgico dedicados ao membro inferior permite concluir que de facto existe software capaz de realizar este planeamento, mas que, no entanto, para além de terem custos elevadíssimos associados, nenhum utilizada modelos 3D como fonte de informação, o que traria imensos benefícios, especialmente ao nível da informação acerca da rotação e da inclinação dos ossos. Existem no entanto algum software a um nível mais experimental que utiliza modelos 3D para realizar a avaliação do alinhamento do membro inferior, sendo que nenhum deles passou ainda a estar disponível comercialmente. Numa perspetiva de implementar um método automático baseado em computador para realizar o planeamento pré-cirurgico da cirurgia de correção para ser utilizado em contexto clínico, foi proposto um projeto para o desenvolvimento de um novo software capaz de efetuar a avaliação do alinhamento do membro inferior em modelos 3D dos doentes. O projeto foi dividido em quatro etapas distintas que se desenrolaram ao longo de um estágio de sete meses. Na primeira etapa, o objetivo consistiu em gerar diversos modelos 3D dos membros inferiores de diferentes pacientes. Para tal, recorreu-se ao software de segmentação de imagens médicas Mimics 14.0 e utilizaram-se imagens de tomografia computorizada dos pacientes. Após o processo de segmentação, obtiveram-se os modelos 3D cuja qualidade teve de ser assegurada através de um processo de remeshing e cuja correta orientação espacial teve de ser também assegurada, já que a avaliação do alinhamento é sensível à orientação da perna. Para tal, utilizou-se o software de renderização 3D Geomagic Studio 14. Optou-se ainda por separar os modelos dos ossos nas suas porções proximal e distal, de modo a reduzir futuramente os tempos de computação. Findo todo este processo, assegurou-se que diferentes utilizadores poderiam gerar estes modelos sem grande variabilidade ou erro no resultado final através da comparação dos modelos obtidos de um mesmo paciente por três utilizadores distintos, sendo que os modelos obtidos apresentavam volumes com diferenças inferiores a 1% relativamente ao valor médio e com um baixo desvio padrão. Numa segunda etapa, os ângulos e medidas consideradas necessárias para uma avaliação adequada foram definidos, apresentando os valores esperados para estas medidas de acordo com a literatura. Assim, foi possível definir também os pontos anatómicos que são necessários para a definição destes mesmos ângulos e medidas e que portanto têm de ser encontrados pelo software. Na terceira etapa, fez-se então o desenvolvimento propriamente dito do software. Encontravam-se já disponíveis alguns métodos automáticos desenvolvidos no contexto projeto, contudo, estes métodos exigiam que o utilizador conhecesse as ferramentas do Geomagic de modo a obter algumas informações, e que depois fosse capaz de utilizar estas informações para editar os scripts de modo a que estes funcionassem para cada paciente em específico. Para além disso, apenas pontos muito específicos podiam ser encontrados. Nesse sentido, isto é, de modo a que todo o processo de encontrar os pontos anatómicos relevantes pudesse ser feito diretamente pelo utilizador, no programa, e sem exigir quaisquer conhecimentos de programação, um conjunto de técnicas foi implementado, dando ao programa uma grande componente gráfica. Para os diferentes pontos, foi necessário recorrer a diferentes metodologias, algumas desenvolvidas propositadamente para o efeito e implementadas em linguagem de programação Python "pura", e algumas adaptadas de outras já existentes e disponíveis no próprio Geomagic. Foi ainda assegurado que existiam métodos alternativos caso os métodos padrão não fossem os mais adequados devido a uma estrutura diferente da esperada dos próprios modelos 3D. De todo este processo resultou um programa que usa os modelos 3D gerados e, da maneira mais automática possível e com uma interface do utilizador fácil de usar, fornece todos os ângulos e medidas, efetuando assim a dita avaliação do alinhamento do membro inferior em 3D. Uma análise ponderada aos resultados obtidos permitiu identificar quais os pontos anatómicos que estarão a ser obtidos de maneira menos ideal e por isso a levar a alguns resultados não tão bons como o esperado. A dependência criada da seleção e limitação de certas áreas nas quais ocorre uma iteração que permite encontrar certos pontos é possivelmente a maior falha do programa desenvolvido que se torna assim demasiado sensível ao input do utilizador. Note-se, contudo, que os próprios testes apresentam algumas falhas que podem influenciar os resultados obtidos, tal como não ter sido definido um roteiro de teste que obrigasse a uma utilização uniforme por parte de todos os utilizadores, e também os diferentes níveis de experiência com o programa por parte dos utilizadores de teste. No entanto, a maioria das medidas obtidas apresenta valores constantes ao longo de diversas utilizações, igualando os valores que seriam obtidos manualmente, mas com o potencial de os obter em metade do tempo. Pode concluir-se então que, no momento, a avaliação do alinhamento 3D é possível utilizando o software desenvolvido. É possível ainda apontar algumas limitações e fazer algumas sugestões de modo a que estas sejas ultrapassadas. Algumas limitações partiram do facto da experiência a programar em Python ser bastante limitada, e outras partiram do software utilizado para fazer o desenvolvimento. Por exemplo, o método que teria sido o mais indicado para encontrar um certo número de pontos na Tibia não foi possível de implementar devido a um bug interno do software. Existe ainda muita coisa que pode ser feita no que toca ao software desenvolvido e ao objectivo final de desenvolver um método de planeamento pré-operativo: em primeiro lugar, é necessário realizar mais testes, de modo a aumentar o tamanho da amostra e o intervalo de confiança dos testes; em segundo lugar, eliminar a dependência do Geomagic para utilizar o programa seria o ideal; finalmente, de modo a completar o plano inicial, deve ser implementada a possibilidade de visualizar o resultado da cirurgia nos modelos 3D.The lower limbs are responsible for supporting the body and are essential for several tasks such as standing, walking and running. Sometimes, and due to various reasons, defects or deformities can be found on the lower limbs and this has an impact on a person’s quality-of-life. One characteristic of the structure of the lower limb that is affected by these deformities is its alignment, i.e. the relative positions of the bones and joints that it includes. Thanks to the evolution of modern medicine, fixing these deformities is now a common practice in the orthopedics' surgical field. Before any corrective surgery and its respective planning, the deformity needs to be properly analyzed, which is accomplished by the assessment of the alignment of the whole lower limb. Currently, in clinical setting, this assessment is carried out manually in the two-dimensional space, normally using wholeleg X-ray images of the anatomical frontal plane, but complex deformities can not be assessed properly in a 2D image. In a desire to create an automatic computer-based method for the preoperative planning of deformity correction and knee surgery, a project consisting of developing a new software for assessing the lower limb alignment based on 3D models was proposed. The project was comprised of four stages: In the first stage, 3D models of different patients’ lower limbs were generated using both segmentation and 3D rendering software, and it was ensured that these models could be generated by any user without significant variability/error in the final outcome; In the second stage, the exact angles and measures needed for a proper assessment were defined, as well as the anatomic landmarks required to calculate them that should then be found by the software; During the third stage, the software development took place, from which resulted a program that uses the generated 3D models and, in the most automatic way possible and with an easy-to-use interface, returns all the needed angles and measures; The final stage of the project was to ensure that the program is reliable and consistent in its results in both intraobserver and interobserver domain, and that it composes an improvement when compared with the manual procedure, while also ensuring that the results obtained by using the program match those obtained manually. A lot can still be done and improved regarding the developed software and the ultimate goal of fully developing a preoperative planning method, but, so far, the 3D alignment assessment that results from the program has been considered to perform its task properly and in an improved way when compared to the traditional technique, even though some limitations can be observed

    Personalized Hip and Knee Joint Replacement

    Get PDF
    This open access book describes and illustrates the surgical techniques, implants, and technologies used for the purpose of personalized implantation of hip and knee components. This new and flourishing treatment philosophy offers important benefits over conventional systematic techniques, including component positioning appropriate to individual anatomy, improved surgical reproducibility and prosthetic performance, and a reduction in complications. The techniques described in the book aim to reproduce patients’ native anatomy and physiological joint laxity, thereby improving the prosthetic hip/knee kinematics and functional outcomes in the quest of the forgotten joint. They include kinematically aligned total knee/total hip arthroplasty, partial knee replacement, and hip resurfacing. The relevance of available and emerging technological tools for these personalized approaches is also explained, with coverage of, for example, robotics, computer-assisted surgery, and augmented reality. Contributions from surgeons who are considered world leaders in diverse fields of this novel surgical philosophy make this open access book will invaluable to a wide readership, from trainees at all levels to consultants practicing lower limb surger

    로봇을 이용한 자율적 하악골채취 골절단술의 기초방법 개발과 그 정확도 평가

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 치의학대학원 치의과학과, 2019. 2. 김성민.Objectives: An autonomous robot osteotomy system using direct coordinate determination was developed in our study. The registration accuracy was evaluated by measuring the fiducial localization error (FLE) and target registration error (TRE) and the accuracy of the designed osteotomy method along a preprogrammed plan was evaluated. Furthermore, the accuracy of the robotic osteotomy and a manual osteotomy was compared in regard to cut position, length, angle and depth. Methods: A light-weight-robot was used in this study, with an electric gripper. A direct coordinate determination method, using three points on the teeth, was developed for registration and determination of FLE and TRE, as measured on a mandible model. Sixteen landmarks on the mandible were prepared with holes and zirconia beads and the TRE was computed in ten repeated measurements using the robot. A direct coordinate determination via three points was used for registering and a twenty stone model (7 cm x 7 cm x 3 cm). The osteotomy line was designed similar to the ramal bone graft (2 cm x 1 cm x 0.5 cm). To evaluate accuracy, we measured a position (how accurate the robot arm is located), length (how accurate the robot arm is moving while cutting), angle (the angle at which the robot arm is located), and depth (the depth of the disc cutting) error. Sixteen mandible phantoms were used to simulate the osteotomy for the ramus bone graft. An image of the phantom was obtained by three-dimensional camera scanning and a virtual ramal bone graft was designed with computer software. To evaluate an accuracy and precision, the mandible phantoms were scanned with cone beam computer tomography (CBCT). Cut position, length, angle and depth errors were measured and the results of the robotic surgery were compared with that of manual surgery. Results: The mean value of the FLE was 0.84 ± 0.38 mm and the third reference point which detected the lingual fossa of the right second molar had a larger error than the other reference points. The mean value of the TRE was 1.69 ± 0.82 mm and there were significant differences between the anterior body, posterior body, and coronoid/condyle groups. Landmarks at the anterior body had the lowest TRE (0.96 ± 0.47 mm) and landmarks on the coronoid and condyle had the highest TRE (2.12 ± 0.99 mm). An autonomous robot osteotomy with a direct coordinate determination using three points was successfully achieved. On the model RBG osteotomy, the posterior cut had 0.77±0.32 absolute mean value, the anterior cut had 0.82±0.43, the inferior cut had 0.76 ± 0.38 and the superior cut had 1.37 ± 0.83, respectively. The absolute mean values for osteotomy errors for position, length, angle, and depth were 0.93 ± 0.45 mm, 0.81 ± 0.34 mm, 1.26 ± 1.35°, and 1.19 ± 0.73 mm, respectively. The position and length errors were significantly lower than angle and depth errors. In the comparison between robotic surgery and manual surgery, there were significant differences of absolute mean value and variance in all categories. For the robotic surgery, the cut position, length, angle and depth errors were 0.70 ± 0.34 mm, 0.35 ± 0.19 mm, 1.32 ± 0.96° and 0.59 ± 0.46 mm, respectively. For the manual surgery, the cut position, length, angle and depth errors were 1.83 ± 0.65 mm, 0.62 ± 0.37 mm, 5.96 ± 3.47° and 0.40 ± 0.31 mm, respectively. The robotic surgery had significantly higher accuracy and lower variance for cut position, length and angle errors. On the other hand, the depth error had a significantly higher absolute mean value and variance than the robotic surgery. Conclusions: An autonomous robot osteotomy scheme was developed, using the direct coordinate determination by three points on the teeth, and proved an accurate method for registration. The incisal edge or buccal pit of the teeth were more proper reference points than the fossa of the teeth. The measured RMS of the TRE increased when the target moved away from the reference points. Robotic surgery showed high accuracy and precision in positioning and reduced accuracy in controlling the depth of disc sawing. The robotic surgery showed high accuracy and precision in positioning and somewhat low accuracy in controlling the depth of the disc sawing. Comparing robotic and manual surgeries, the robotic surgery was superior in accuracy and precision in position, length and angle. However, the manual surgery had higher accuracy and precision in depth.1. 목 적 본 연구에서는 세 점 접촉을 통한 좌표 결정 방식을 통해 실제 모델의 좌표와 로봇이 가지고 있는 좌표를 정합하는 방식을 이용하여 자율 로봇을 이용한 하악골채취 골절단술의 기초방법을 개발하고자 한다. 개발된 정합 방법의 위치 추적 오류 (fiducial localization error)와 목표 정합 오류 (target registration error)를 측정하여 정합의 정확성을 평가하고자 한다. 또한 사전에 프로그래밍된 골절단을 직육면체 모델에 시행하고 위치, 길이, 각도, 깊이의 오류를 측정하여 정확성을 알아보고자 한다. 추가적으로 3차원 가상수술을 통해 하악 상행지 골이식술(ramal bone graft)을 설계하고 하악 팬텀 모형에서 이에 맞게 자율 로봇이 골절단술을 수행하여 악골에서 있어서 로봇을 이용한 골절단술의 정확성을 평가해 보고 반대측은 대조군으로 외과의가 기존의 전통적인 방식으로 골절단술을 수행함으로써 양측을 비교하고자 한다. 2. 방 법 본 연구에서는 경량 로봇의 최종 작용체(end effector)에 전자 그리퍼(gripper)를 연결하고 이 그리퍼가 수술용 절삭기구나 디스크가 연결된 치과용 핸드피스를 잡고 골절단을 수행하도록 하였다. 실제 모델의 좌표와 로봇이 가지고 있는 좌표를 중첩하기 위해 세 점을 찍어 첫번째 점을 원점으로 하고, 두번째 점의 방향을 x축으로, 그리고 세 번째 점이 결정하는 평면을 xy 평면으로 인식하도록 하였다. 첫번째 실험에서는 위치 추적 오류와 목표 정합 오류의 평가를 위해 하악골 모델에 치아의 기준 세 점과 하악골의 총 16개의 목표 위치에 1mm 구멍을 뚫고 1mm 지름의 지르코니아 구를 적용하여 CBCT 상에서 잘 보일 수 있도록 하였다. 각 목표 위치에 10번씩 반복하여 위치를 인식하여 오류를 계산하고 목표 정합 오류의 위치별 차이를 분석하였다. 두번째 실험에서는 총 20 개의 직육면체 석고 모델 (7cm x 7cm x 3cm)을 제작하였고 석고의 절단 크기는 하악 상행지 골채취을 위한 골절단 크기 (2cm x 1cm x 0.5cm)와 동일하게 설계하였다. 로봇팔을 이용하여 3점 접촉을 하면 좌표값을 계산하여 미리 프로그래밍된 위치에서 골절단을 수행하였다. 로봇에 의해 수행된 석고 절단선은 위치, 길이 각도 및 깊이로 나누어 오류를 측정하였다. 세번째 실험에서는 하악 상행지 골채취를 위한 골절단 실험을 위해 총 16개의 하악 팬텀 모형을 사용하였다. 팬텀 모형을 삼차원 스캐닝으로 삼차원 영상을 얻고 가상 수술을 시행하여 골절단 크기와 형태 그리고 그 위치에 대한 계획을 세웠다. 이 가상 수술 계획에 따라 로봇이 팬텀 모델에 골절단 수술을 하였다. 반대 측은 대조군으로 기존의 전통적인 방식으로 외과의가 수행하여 양측의 오차를 비교하였다. 절단선의 위치, 길이, 각도 및 깊이를 측정하여 각각의 정확도를 비교하였다. 위치 오류는 x축으로는 로봇이 표면 접촉을 인식하고 골절단을 시행하기에 0의 값으로 측정되었고 y 축과 z 축으로 나누어 측정되었으며 평균값과 제곱평균제곱근를 계산하였다. 3. 결 과 위치 추적 오류와 목표 정합 오류는 각각 0.49±0.22 mm 와 0.98±0.47 mm로 측정되었으며 기준접에서 멀어질수록 목표 정합 오류는 더 큰 값을 보였다. 석고 모델 실험에서 절단선의 위치, 길이, 각도 및 깊이의 평균과 표준오차는 각각 0.93 ± 0.45 mm, 0.81 ± 0.34 mm, 1.26 ± 1.35°, 1.19 ± 0.73 mm 이었다. 위치가 가장 정확한 값을 보였으며 길이 그리고 깊이 순으로 오차가 증가하였으며, 각도와 절단 깊이 제어가 가장 오차가 많은 술식이었다. 하악 팬텀 수술에서 로봇을 이용한 골절단의 위치, 길이, 각도 및 깊이 오차 값은 각각 0.70 ± 0.34 mm, 0.35 ± 0.19 mm, 1.32 ± 0.96°, 0.59 ± 0.46 mm 였으며 외과의의 골절단에서는 값이 각각 1.83 ± 0.65 mm, 0.62 ± 0.37 mm, 5.96 ± 3.47°, 0.40 ± 0.31 mm 였다. 위치, 길이, 각도 오차는 로봇이 더 작은 값을 보였고 깊이 오차는 외과의의 수술에서 더 작은 값을 보였다. 4. 결 론 본 연구에서는 하악 상행지 골채취를 위한 자율 로봇을 이용한 골절단 시스템을 개발하였고 위치추적오류와 목표정합오류 모두 우수한 값을 보였다. 석고 모형과 하악 팬텀 모향을 이용한 두가지 실험 모두에서 유용성과 향상된 정확성을 확인할 수 있었다. 세점 접촉 좌표 결정 시스템은 실제 모델의 좌표를 로봇의 좌표로 등록하는 데 유용한 시스템이었으며, 하악 상행지 골절단술에 대한 자율로봇 시스템의 정확도는 기존의 외과의가 직접 수행하는 방식보다 우수하였다.Abstract (in English) 1. Introduction 1 2. Materials and Methods. 12 3. Results 26 4. Discussion 32 5. Conclusions 40 6. References 41 Tables and Figures 48 Abstract (in Korean) 74Docto

    Patient-Specific Implants in Musculoskeletal (Orthopedic) Surgery

    Get PDF
    Most of the treatments in medicine are patient specific, aren’t they? So why should we bother with individualizing implants if we adapt our therapy to patients anyway? Looking at the neighboring field of oncologic treatment, you would not question the fact that individualization of tumor therapy with personalized antibodies has led to the thriving of this field in terms of success in patient survival and positive responses to alternatives for conventional treatments. Regarding the latest cutting-edge developments in orthopedic surgery and biotechnology, including new imaging techniques and 3D-printing of bone substitutes as well as implants, we do have an armamentarium available to stimulate the race for innovation in medicine. This Special Issue of Journal of Personalized Medicine will gather all relevant new and developed techniques already in clinical practice. Examples include the developments in revision arthroplasty and tumor (pelvic replacement) surgery to recreate individual defects, individualized implants for primary arthroplasty to establish physiological joint kinematics, and personalized implants in fracture treatment, to name but a few

    Augmented reality for orthopedic and maxillofacial oncological surgery: a systematic review focusing on both clinical and technical aspects

    Get PDF
    This systematic review offers an overview on clinical and technical aspects of augmented reality (AR) applications in orthopedic and maxillofacial oncological surgery. The review also provides a summary of the included articles with objectives and major findings for both specialties. The search was conducted on PubMed/Medline and Scopus databases and returned on 31 May 2023. All articles of the last 10 years found by keywords augmented reality, mixed reality, maxillofacial oncology and orthopedic oncology were considered in this study. For orthopedic oncology, a total of 93 articles were found and only 9 articles were selected following the defined inclusion criteria. These articles were subclassified further based on study type, AR display type, registration/tracking modality and involved anatomical region. Similarly, out of 958 articles on maxillofacial oncology, 27 articles were selected for this review and categorized further in the same manner. The main outcomes reported for both specialties are related to registration error (i.e., how the virtual objects displayed in AR appear in the wrong position relative to the real environment) and surgical accuracy (i.e., resection error) obtained under AR navigation. However, meta-analysis on these outcomes was not possible due to data heterogenicity. Despite having certain limitations related to the still immature technology, we believe that AR is a viable tool to be used in oncological surgeries of orthopedic and maxillofacial field, especially if it is integrated with an external navigation system to improve accuracy. It is emphasized further to conduct more research and pre-clinical testing before the wide adoption of AR in clinical settings
    corecore