64 research outputs found

    Temperature To Digital Converter Design And Measurement

    Get PDF
    Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2016Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2016Bu çalışmada AMS 0.35u CMOS teknolojisinde 12 bitlik bir sıcaklık sayısal dönüştürücü tasalarlandı ve serimi yapıldı. Tasarlanan dönüştürücü Euro Practice aracılığıyla İTÜ VLSI Labs finans desteği ile üretildi. Dönüştürücünün yonga boyutları 1024um X 600um 0.6144 mm2 iken giriş çıkış padleri ve ESD elamanlar ile birlikte toplamda 1.43 mm2 alan kaplamaktadır. Simulasyon sonuçları ile -40C 85C sıcaklık aralığıda 12 bitlik 0.25C çözünürlük gösterilmiş ve ölçüm sonuçları ile yine aynı sıcaklık aralığında 10 bitlik 1C çözünürlük doğrulanmıştır.Temperature to digital converter is designed and taped-out using AMS035HB4 process. The dimension of the IC core is 1024um X 600um while full chip with esd and pad rings occupying 1024um X 1395um. The simulation results show that 12 bits temperature to digital conversion is achieved with 0.25C resolution while measurement verifies 10 bits temperature to digital conversion with 1 C resolution.Yüksek LisansM.Sc

    Low-Noise Micro-Power Amplifiers for Biosignal Acquisition

    Get PDF
    There are many different types of biopotential signals, such as action potentials (APs), local field potentials (LFPs), electromyography (EMG), electrocardiogram (ECG), electroencephalogram (EEG), etc. Nerve action potentials play an important role for the analysis of human cognition, such as perception, memory, language, emotions, and motor control. EMGs provide vital information about the patients which allow clinicians to diagnose and treat many neuromuscular diseases, which could result in muscle paralysis, motor problems, etc. EEGs is critical in diagnosing epilepsy, sleep disorders, as well as brain tumors. Biopotential signals are very weak, which requires the biopotential amplifier to exhibit low input-referred noise. For example, EEGs have amplitudes from 1 μV [microvolt] to 100 μV [microvolt] with much of the energy in the sub-Hz [hertz] to 100 Hz [hertz] band. APs have amplitudes up to 500 μV [microvolt] with much of the energy in the 100 Hz [hertz] to 7 kHz [hertz] band. In wearable/implantable systems, the low-power operation of the biopotential amplifier is critical to avoid thermal damage to surrounding tissues, preserve long battery life, and enable wirelessly-delivered or harvested energy supply. For an ideal thermal-noise-limited amplifier, the amplifier power is inversely proportional to the input-referred noise of the amplifier. Therefore, there is a noise-power trade-off which must be well-balanced by the designers. In this work I propose novel amplifier topologies, which are able to significantly improve the noise-power efficiency by increasing the effective transconductance at a given current. In order to reject the DC offsets generated at the tissue-electrode interface, energy-efficient techniques are employed to create a low-frequency high-pass cutoff. The noise contribution of the high-pass cutoff circuitry is minimized by using power-efficient configurations, and optimizing the biasing and dimension of the devices. Sufficient common-mode rejection ratio (CMRR) and power supply rejection ratio (PSRR) are achieved to suppress common-mode interferences and power supply noises. Our design are fabricated in standard CMOS processes. The amplifiers’ performance are measured on the bench, and also demonstrated with biopotential recordings

    Ultra-low power mixed-signal frontend for wearable EEGs

    Get PDF
    Electronics circuits are ubiquitous in daily life, aided by advancements in the chip design industry, leading to miniaturised solutions for typical day to day problems. One of the critical healthcare areas helped by this advancement in technology is electroencephalography (EEG). EEG is a non-invasive method of tracking a person's brain waves, and a crucial tool in several healthcare contexts, including epilepsy and sleep disorders. Current ambulatory EEG systems still suffer from limitations that affect their usability. Furthermore, many patients admitted to emergency departments (ED) for a neurological disorder like altered mental status or seizures, would remain undiagnosed hours to days after admission, which leads to an elevated rate of death compared to other conditions. Conducting a thorough EEG monitoring in early-stage could prevent further damage to the brain and avoid high mortality. But lack of portability and ease of access results in a long wait time for the prescribed patients. All real signals are analogue in nature, including brainwaves sensed by EEG systems. For converting the EEG signal into digital for further processing, a truly wearable EEG has to have an analogue mixed-signal front-end (AFE). This research aims to define the specifications for building a custom AFE for the EEG recording and use that to review the suitability of the architectures available in the literature. Another critical task is to provide new architectures that can meet the developed specifications for EEG monitoring and can be used in epilepsy diagnosis, sleep monitoring, drowsiness detection and depression study. The thesis starts with a preview on EEG technology and available methods of brainwaves recording. It further expands to design requirements for the AFE, with a discussion about critical issues that need resolving. Three new continuous-time capacitive feedback chopped amplifier designs are proposed. A novel calibration loop for setting the accurate value for a pseudo-resistor, which is a crucial block in the proposed topology, is also discussed. This pseudoresistor calibration loop achieved the resistor variation of under 8.25%. The thesis also presents a new design of a curvature corrected bandgap, as well as a novel DDA based fourth-order Sallen-Key filter. A modified sensor frontend architecture is then proposed, along with a detailed analysis of its implementation. Measurement results of the AFE are finally presented. The AFE consumed a total power of 3.2A (including ADC, amplifier, filter, and current generation circuitry) with the overall integrated input-referred noise of 0.87V-rms in the frequency band of 0.5-50Hz. Measurement results confirmed that only the proposed AFE achieved all defined specifications for the wearable EEG system with the smallest power consumption than state-of-art architectures that meet few but not all specifications. The AFE also achieved a CMRR of 131.62dB, which is higher than any studied architectures.Open Acces

    메모리 어플리케이션을 위한 빠른 과도 응답 성능을 가지는 디지털 낮은 드롭아웃 레귤레이터 설계

    Get PDF
    학위논문(박사) -- 서울대학교대학원 : 공과대학 전기·정보공학부, 2023. 2. 정덕균.In this dissertation, the design of a fast transient response digital low-dropout regulator (DLDO) applicable to next-generation memory systems is discussed. Recent technologies in memory systems mainly aim at high power density and fast data rate. Accordingly, the need for a power converter withstanding a large amount of load current change in a short period is increased. Accordingly, a solution for compensating for a voltage drop that causes significant damage to a memory data input/output is searched according to a periodic clock signal. With this situation, two structures that achieve fast transient response performance under the constraints of memory systems are proposed. To mitigate the transient response degradation under slow external clock conditions, an adaptive two-step search algorithm with event-driven approaches DLDO is proposed. The technique solves the limitations of loop operation time dependent on slow external clocks through a ring-amplifier-based continuous-time comparator. Also, shift register is designed as a circular structure with centralized control of each register to reduce the cost. Finally, the remaining regulation error is controlled by an adaptive successive approximation algorithm to minimize the settling time. Fast recovery and settling time are shown through the measurement of the prototype chip implemented by the 40-nm CMOS process. Next, a digital low dropout regulator for ultra-fast transient response is designed. A slope-detector-based coarse controller to detect, compensate, and correct load current changes occurring at every rising or falling edge of tens to hundreds of megahertz clocks is proposed. Compensation efficiency is increased by the method according to the degree of change in load voltage over time. Furthermore, the LUT-based shift register enables the fast loop response speed of the DLDO. Finally, a bidirectional latch-based driver with fast settling speed and high resolution are proposed. The prototype chip is implemented with a 40-nm CMOS process and achieves effective load voltage recovery through fast transient response performance even with low load capacitance.본 논문은 차세대 메모리 시스템에 적용 가능한 빠른 과도 응답 성능을 가지는 디지탈 낮은 드롭아웃 레귤레이터의 설계에 대해 기술한다. 메모리 시스템의 최근 기술들은 높은 전력 밀도와 빠른 데이터 속도를 주된 목표로 하며 이에 맞추어 단기간, 많은 양의 부하 전류 변화를 견디는 파워 컨버터의 필요성이 높아지고 있다. 이에 주기적인 클락 신호에 따라 메모리 데이터 입출력에 유의미한 손상을 발생시키는 전압 강하를 보상하는 해결 방안을 탐색한다. 이를 통해 메모리 시스템이 가지는 제약조건 하에서 빠른 과도 응답 성능을 달성하는 두 가지 구조를 제안한다. 첫 번째 시연으로서, 느린 외부 클락 조건에서 유발되는 디지탈 낮은 드롭아웃 레귤레이터의 과도 응답 성능 저하를 완화시키기 위한 이벤트 주도 방식의 적응형 두 단계 서치 기술을 제안한다. 본 기술은 느린 외부클락에 의존한 루프 동작 시간의 한계를 고리 증폭기 기반 연속 시간 비교기를 통해 해결한다. 또한 자리 이동 레지스터의 구현에 소모되는 비용을 줄이고자 각 레지스터의 제어 장치를 중앙으로 집적시킨 순환형 구조로 설계되었다. 마지막으로 남아있는 조정 에러는 적응방식의 축차 비교형 알고리즘으로 제어하여 교정에 필요한 시간을 최소화하였다. 40-nm CMOS 공정으로 구현된 프로토타입 칩의 측정을 통해 부하 전압의 빠른 회복 속도와 정정시간을 보임을 확인하였다. 두 번째 시연으로서, 초고속 과도 응답 환경에 적합한 디지털 낮은 드롭아웃 레귤레이터가 설계되었다. 수십~수백 메가헤르쯔 클락의 상승 또는 하강 엣지마다 발생하는 부하 전류 변화를 탐지하고 보상하고 정정하기 위해 기울기 탐지기 기반 coarse 제어기 기술을 제안한다. 시간에 따른 부하 전압 변화의 정도에 따라 차등 보상하는 알고리즘을 적용함으로써 보상 효율을 높였다. 나아가 순람표 기반 자리이동 레지스터는 부하 전류 과도 상태 이후 디지탈 레귤레이터의 빠른 루프 응답 속도를 가능케 하였다. 마지막으로 남은 조정 에러를 제어하는데 있어서 기존 자리이동 레지스터 방식에서 벗어나 빠른 수렴 속도와 높은 해상도를 가지는 양방향 래치 기반 드라이버가 제안되었다. 해당 프로토타입 칩은 40-nm CMOS 공정으로 구현되었으며, 낮은 부하 축전용량에도 빠른 과도 응답 성능을 통해 효과적인 부하 전압 회복을 이루어 내었다.CHAPTER 1 INTRODUCTION 1 1.1 MOTIVATION 1 1.2 VARIOUS TYPES OF LDO 4 1.2.1 ANALOG LDO VS. DIGITAL LDO 4 1.2.2 CAP LDO VS. CAP-LESS LDO 6 1.3 THESIS ORGANIZATION 8 CHAPTER 2 BACKGROUNDS ON DIGITAL LOW-DROPOUT REGULATOR 9 2.1 BASIC DIGITAL LOW-DROPOUT REGULATOR 9 2.2 FAST TRANSIENT RESPONSE LOW-DROPOUT REGULATOR 12 2.2.1 RESPONSE TIME 13 2.2.1 SETTLING TIME 20 2.3 VARIOUS METHODS FOR IMPLEMENT FAST TRANSIENT DIGITAL LDO 21 2.3.1 EVENT-DRIVEN DIGITAL LDO 21 2.3.2 FEEDFORWARD CONTROL 23 2.3.3 COMPUTATIONAL DIGITAL LDO 25 2.4 DESIGN POINTS OF FAST TRANSIENT RESPONSE DIGITAL LDO 27 CHAPTER 3 A FAST DROOP-RECOVERY EVENT-DRIVEN DIGITAL LDO WITH ADAPTIVE LINEAR/BINARY TWO-STEP SEARCH FOR VOLTAGE REGULATION IN ADVANCED MEMORY 29 3.1 OVERVIEW 29 3.2 PROPOSED DIGITAL LDO 32 3.2.1 MOTIVATION 32 3.2.2 ALSC WITH TWO-DIMENSIONAL CIRCULAR SHIFTING REGISTER 36 3.2.3 SBSC WITH SUBRANGE SUCCESSIVE-APPROXIMATION REGISTER 39 3.2.4 STABILITY ANALYSIS 41 3.3 CIRCUIT IMPLEMENTATION 44 3.3.1 TIME-INTERLEAVED RING-AMPLIFIER-BASED COMPARATOR 44 3.3.2 ASYNCHRONOUS 2D CIRCULAR SHIFTING REGISTER 49 3.3.3 SUBRANGE SUCCESSIVE APPROXIMATION REGISTER 51 3.4 MESUREMENT RESULTS 54 CHAPTER 4 A FAST TRANSIENT RESPONSE DIGITAL LOW-DROPOUT REGULATOR WITH SLOPE-DETECTOR-BASED MULTI-STEP CONTROL FOR DIGITAL LOAD APPLICATION 62 4.1 OVERVIEW 62 4.2 PROPOSED DIGITAL LDO 64 4.2.1 MOTIVATION 64 4.2.2 ARCHITECTURE OF DIGITAL LDO 66 4.2.3 SLEW-RATE DEPENDENT COARSE-CONTROL LOOP 69 4.2.4 FINE-CONTROL LOOP 72 4.2.5 CONTROL FOR LOAD-TRANSIENT RESPONSE 74 4.3 CIRCUIT IMPLEMENTATION 77 4.3.1 COMPARATOR-TRIGGERED OSCILLATOR DESIGN 77 4.3.2 SLOPE DETECTOR DESIGN 81 4.3.3 LUT-BASED SHIFT REGISTER DESIGN 84 4.3.4 BI-DIRECTIONAL LATCH-BASED DRIVER DESIGN 86 4.4 MEASUREMENT(SIMULATION) RESULTS 90 CHAPTER 5 CONCLUSION 95 BIBLIOGRAPHY 97 초 록 109박

    CMOS Design of Reconfigurable SoC Systems for Impedance Sensor Devices

    Get PDF
    La rápida evolución en el campo de los sensores inteligentes, junto con los avances en las tecnologías de la computación y la comunicación, está revolucionando la forma en que recopilamos y analizamos datos del mundo físico para tomar decisiones, facilitando nuevas soluciones que desempeñan tareas que antes eran inconcebibles de lograr.La inclusión en un mismo dado de silicio de todos los elementos necesarios para un proceso de monitorización y actuación ha sido posible gracias a los avances en micro (y nano) electrónica. Al mismo tiempo, la evolución de las tecnologías de procesamiento y micromecanizado de superficies de silicio y otros materiales complementarios ha dado lugar al desarrollo de sensores integrados compatibles con CMOS, lo que permite la implementación de matrices de sensores de alta densidad. Así, la combinación de un sistema de adquisición basado en sensores on-Chip, junto con un microprocesador como núcleo digital donde se puede ejecutar la digitalización de señales, el procesamiento y la comunicación de datos proporciona características adicionales como reducción del coste, compacidad, portabilidad, alimentación por batería, facilidad de uso e intercambio inteligente de datos, aumentando su potencial número de aplicaciones.Esta tesis pretende profundizar en el diseño de un sistema portátil de medición de espectroscopía de impedancia de baja potencia operado por batería, basado en tecnologías microelectrónicas CMOS, que pueda integrarse con el sensor, proporcionando una implementación paralelizable sin incrementar significativamente el tamaño o el consumo, pero manteniendo las principales características de fiabilidad y sensibilidad de un instrumento de laboratorio. Esto requiere el diseño tanto de la etapa de gestión de la energía como de las diferentes celdas que conforman la interfaz, que habrán de satisfacer los requisitos de un alto rendimiento a la par que las exigentes restricciones de tamaño mínimo y bajo consumo requeridas en la monitorización portátil, características que son aún más críticas al considerar la tendencia actual hacia matrices de sensores.A nivel de celdas, se proponen diferentes circuitos en un proceso CMOS de 180 nm: un regulador de baja caída de voltaje como unidad de gestión de energía, que proporciona una alimentación de 1.8 V estable, de bajo ruido, precisa e independiente de la carga para todo el sistema; amplificadores de instrumentación con una aproximación completamente diferencial, que incluyen una etapa de entrada de voltaje/corriente configurable, ganancia programable y ancho de banda ajustable, tanto en la frecuencia de corte baja como alta; un multiplicador para conformar la demodulación dual, que está embebido en el amplificador para optimizar consumo y área; y filtros pasa baja totalmente integrados, que actúan como extractores de magnitud de DC, con frecuencias de corte ajustables desde sub-Hz hasta cientos de Hz.<br /

    700mV low power low noise implantable neural recording system design

    Get PDF
    This dissertation presents the work for design and implementation of a low power, low noise neural recording system consisting of Bandpass Amplifier and Pipelined Analog to Digital Converter (ADC) for recording neural signal activities. A low power, low noise two stage neural amplifier for use in an intelligent Radio-Frequency Identification (RFID) based on folded cascode Operational Transconductance Amplifier (OTA) is utilized to amplify the neural signals. The optimization of the number of amplifier stages is discussed to achieve the minimum power and area consumption. The amplifier power supply is 0.7V. The midband gain of amplifier is 58.4dB with a 3dB bandwidth from 0.71 to 8.26 kHz. Measured input-referred noise and total power consumption are 20.7 μVrms and 1.90 μW respectively. The measured result shows that the optimizing the number of stages can achieve lower power consumption and demonstrates the neural amplifier's suitability for instu neutral activity recording. The advantage of power consumption of Pipelined ADC over Successive Approximation Register (SAR) ADC and Delta-Sigma ADC is discussed. An 8 bit fully differential (FD) Pipeline ADC for use in a smart RFID is presented in this dissertation. The Multiplying Digital to Analog Converter (MDAC) utilizes a novel offset cancellation technique robust to device leakage to reduce the input drift voltage. Simulation results of static and dynamic performance show this low power Pipeline ADC is suitable for multi-channel neural recording applications. The performance of all proposed building blocks is verified through test chips fabricated in IBM 180nm CMOS process. Both bench-top and real animal test results demonstrate the system's capability of recording neural signals for neural spike detection

    Multi-Modal Wireless Flexible Gel-Free Sensors with Edge Deep Learning for Detecting and Alerting Freezing of Gait in Parkinson's Patients

    Full text link
    Freezing of gait (FoG) is a debilitating symptom of Parkinson's disease (PD). This work develops flexible wearable sensors that can detect FoG and alert patients and companions to help prevent falls. FoG is detected on the sensors using a deep learning (DL) model with multi-modal sensory inputs collected from distributed wireless sensors. Two types of wireless sensors are developed, including: (1) a C-shape central node placed around the patient's ears, which collects electroencephalogram (EEG), detects FoG using an on-device DL model, and generates auditory alerts when FoG is detected; (2) a stretchable patch-type sensor attached to the patient's legs, which collects electromyography (EMG) and movement information from accelerometers. The patch-type sensors wirelessly send collected data to the central node through low-power ultra-wideband (UWB) transceivers. All sensors are fabricated on flexible printed circuit boards. Adhesive gel-free acetylene carbon black and polydimethylsiloxane electrodes are fabricated on the flexible substrate to allow conformal wear over the long term. Custom integrated circuits (IC) are developed in 180 nm CMOS technology and used in both types of sensors for signal acquisition, digitization, and wireless communication. A novel lightweight DL model is trained using multi-modal sensory data. The inference of the DL model is performed on a low-power microcontroller in the central node. The DL model achieves a high detection sensitivity of 0.81 and a specificity of 0.88. The developed wearable sensors are ready for clinical experiments and hold great promise in improving the quality of life of patients with PD. The proposed design methodologies can be used in wearable medical devices for the monitoring and treatment of a wide range of neurodegenerative diseases

    Integrated reference circuits for low-power capacitive sensor interfaces

    Get PDF
    This thesis consists of nine publications and an overview of the research topic, which also summarizes the work. The research described in this thesis concentrates on the design of low-power sensor interfaces for capacitive 3-axis micro-accelerometers. The primary goal throughout the thesis is to optimize power dissipation. Because the author made the main contribution to the design of the reference and power management circuits required, the overview part is dominated by the following research topics: current, voltage, and temperature references, frequency references, and voltage regulators. After an introduction to capacitive micro-accelerometers, the work describes the typical integrated readout electronics of a capacitive sensor on the functional level. The readout electronics can be divided into four different functional parts, namely the sensor readout itself, signal post-processing, references, and power management. Before the focus is shifted to the references and further to power management, different ways to realize the sensor readout are briefly discussed. Both current and voltage references are required in most analog and mixed-signal systems. A bandgap voltage reference, which inherently uses at least one current reference, is practical for the generation of an accurate reference voltage. Very similar circuit techniques can be exploited when implementing a temperature reference, the need for which in the sensor readout may be justified by the temperature compensation, for example. The work introduces non-linear frequency references, namely ring and relaxation oscillators, which are very suitable for the generation of the relatively low-frequency clock signals typically needed in the sensor interfaces. Such oscillators suffer from poor jitter and phase noise performance, the quantities of which also deserve discussion in this thesis. Finally, the regulation of the supply voltage using linear regulators is considered. In addition to extending the battery life by providing a low quiescent current, the regulator must be able to supply very low load currents and operate without off-chip capacitors

    Anti-artifacts techniques for neural recording front-ends in closed-loop brain-machine interface ICs

    Get PDF
    In recent years, thanks to the development of integrated circuits, clinical medicine has witnessed significant advancements, enabling more efficient and intelligent treatment approaches. Particularly in the field of neuromedical, the utilization of brain-machine interfaces (BMI) has revolutionized the treatment of neurological diseases such as amyotrophic lateral sclerosis, cerebral palsy, stroke, or spinal cord injury. The BMI acquires neural signals via recording circuits and analyze them to regulate neural stimulator circuits for effective neurological treatment. However, traditional BMI designs, which are often isolated, have given way to closed-loop brain-machine interfaces (CL-BMI) as a contemporary development trend. CL-BMI offers increased integration and accelerated response speed, marking a significant leap forward in neuromedicine. Nonetheless, this advancement comes with its challenges, notably the stimulation artifacts (SA) problem inherent to the structural characteristics of CL-BMI, which poses significant challenges on the neural recording front-ends (NRFE) site. This paper aims to provide a comprehensive overview of technologies addressing artifacts in the NRFE site within CL-BMI. Topics covered will include: (1) understanding and assessing artifacts; (2) exploring the impact of artifacts on traditional neural recording front-ends; (3) reviewing recent technological advancements aimed at addressing artifact-related issues; (4) summarizing and classifying the aforementioned technologies, along with an analysis of future trends
    corecore