372 research outputs found

    Operations Management

    Get PDF
    Global competition has caused fundamental changes in the competitive environment of the manufacturing and service industries. Firms should develop strategic objectives that, upon achievement, result in a competitive advantage in the market place. The forces of globalization on one hand and rapidly growing marketing opportunities overseas, especially in emerging economies on the other, have led to the expansion of operations on a global scale. The book aims to cover the main topics characterizing operations management including both strategic issues and practical applications. A global environmental business including both manufacturing and services is analyzed. The book contains original research and application chapters from different perspectives. It is enriched through the analyses of case studies

    A Building Information Modeling (BIM)-centric Digital Ecosystem for Smart Airport Life Cycle Management

    Get PDF
    An increasing number of new airport infrastructure construction and improvement projects are being delivered in today\u27s modern world. However, value creation is a recurring issue due to inefficiencies in managing capital expenditures (CapEx) and operating expenses (OpEx), while trying to optimize project constraints of scope, time, cost, quality, and resources. In this new era of smart infrastructure, digitalization transforms the way projects are planned and delivered. Building Information Modeling (BIM) is a key digital process technique that has become an imperative for today\u27s Architecture, Engineering, Construction and Operations (AECO) sector. This research suggests a BIM-centric digital ecosystem by detailing technical and strategic aspects of Airport BIM implementation and digital technology integration from a life cycle perspective. This research provides a novel approach for consistent and continuous use of digital information between business and functional levels of an airport by developing a digital platform solution that will enable seamless flow of information across functions. Accordingly, this study targets to achieve three objectives: 1- To provide a scalable know-how of BIM-enabled digital transformation; 2- To guide airport owners and major stakeholders towards converging information siloes for airport life cycle data management by an Airport BIM Framework; 3- To develop a BIM-based digital platform architecture towards realization of an airport digital twin for airport infrastructure life cycle management. Airport infrastructures can be considered as a System of Systems (SoS). As such, Model Based Systems Engineering (MBSE) with Systems Modeling Language (SysML) is selected as the key methodology towards designing a digital ecosystem. Applying MBSE principles leads to forming an integrating framework for managing the digital ecosystem. Furthermore, this research adopts convergent parallel mixed methods to collect and analyze multiple forms of data. Data collection tools include extensive literature and industry review; an online questionnaire; semi-structured interviews with airport owner parties; focus group discussions; first-hand observations; and document reviews. Data analysis stage includes multiple explanatory case study analyses, thematic analysis, project mapping, percent coverage analysis for coded themes to achieve Objective 1; thematic analysis, cluster analysis, framework analysis, and non-parametric statistical analysis for Objective 2; and qualitative content analysis, non-parametric statistical analysis to accomplish Objective 3. This research presents a novel roadmap toward facilitation of smart airports with alignment and integration of disruptive technologies with business and operational aspects of airports. Multiple comprehensive case study analyses on international large-hub airports and triangulation of organization-level and project-level results systematically generate scalable technical and strategic guidelines for BIM implementation. The proposed platform architecture will incentivize major stakeholders for value-creation, data sharing, and control throughout a project life cycle. Introducing scalability and minimizing complexity for end-users through a digital platform approach will lead to a more connected environment. Consequently, a digital ecosystem enables sophisticated interaction between people, places, and assets. Model-driven approach provides an effective strategy for enhanced decision-making that helps optimization of project resources and allows fast adaptation to emerging business and operational demands. Accordingly, airport sustainability measures -economic vitality, operational efficiency, natural resources, and social responsibility- will improve due to higher levels of efficiency in CapEx and OpEx. Changes in business models for large capital investments and introducing sustainability to supply chains are among the anticipated broader impacts of this study

    An Agile Roadmap for Live, Virtual and Constructive-Integrating Training Architecture (LVC-ITA): A Case Study Using a Component based Integrated Simulation Engine

    Get PDF
    Conducting seamless Live Virtual Constructive (LVC) simulation remains the most challenging issue of Modeling and Simulation (M&S). There is a lack of interoperability, limited reuse and loose integration between the Live, Virtual and/or Constructive assets across multiple Standard Simulation Architectures (SSAs). There have been various theoretical research endeavors about solving these problems but their solutions resulted in complex and inflexible integration, long user-usage time and high cost for LVC simulation. The goal of this research is to provide an Agile Roadmap for the Live Virtual Constructive-Integrating Training Architecture (LVC-ITA) that will address the above problems and introduce interoperable LVC simulation. Therefore, this research describes how the newest M&S technologies can be utilized for LVC simulation interoperability and integration. Then, we will examine the optimal procedure to develop an agile roadmap for the LVC-ITA. In addition, this research illustrated a case study using an Adaptive distributed parallel Simulation environment for Interoperable and reusable Model (AddSIM) that is a component based integrated simulation engine. The agile roadmap of the LVC-ITA that reflects the lessons learned from the case study will contribute to guide M&S communities to an efficient path to increase interaction of M&S simulation across systems

    Automated Scenario Generation Environment

    Get PDF
    Report describes IST\u27s investigation into the feasibility of automating the process of planning and scenario generation for large scale (joint level) simulation exercises and development of an architecture for that purpose

    Sensemaking of narratives: informing the capabilities development process

    Get PDF
    This capstone project determines whether sensemaking of soldier narratives can inform the Department of Defense‘s (DOD) capability development process (CDP). Sensemaking is the process of creating awareness and understanding in situations of high complexity or uncertainty. The authors gathered service member narratives concerning their use of fielded equipment, which created metadata for both quantitative and qualitative research and analysis. This capstone compares results from sensemaking of narratives with results from the Warfighter Technology Tradespace Methodology (WTTM), a system designed for the rapid fielding of equipment for small forward operating bases (FOBs) and combat outposts (COPs). The capstone finds that 1) soldier narratives inform the fielding process by providing an additional layer of meaning and context, and 2) soldier narratives do not replace current feedback mechanisms; rather, they play a complementary role. This capstone finds that narratives as a feedback mechanism can be applied during operational testing of newly developed or fielded equipment for the DOD‘s CDP.http://archive.org/details/sensemakingofnar1094542657Major, United States Army;Major, United States Army;Major, United States ArmyApproved for public release; distribution is unlimited

    DIG-MAN: Integration of digital tools into product development and manufacturing education

    Get PDF
    General objectives of PRODEM education. Teaching of product development requires various digital tools. Nowadays, the digital tools usually use computers, which have become a standard element of manufacturing and teaching environments. In this context, an integration of computer-based technologies in manufacturing environments plays the crucial and main role, allowing to enrich, accelerate and integrate different production phases such as product development, design, manufacturing and inspection. Moreover, the digital tools play important role in management of production. According to Wdowik and Ratnayake (2019 paper: Open Access Digital Tool’s Application Potential in Technological Process Planning: SMMEs Perspective, https://doi.org/10.1007/978-3-030-29996-5_36), the digital tools can be divided into several main groups such as: machine tools and technological equipment (MTE), devices (D), internet(intranet)-based tools (I), software (S). The groups are presented in Fig. 1.1. Machine tools and technological equipment group contains all existing machines and devices which are commonly used in manufacturing and inspection phase. The group is used in physical shaping of manufactured products, measurement tasks regarding tools and products, etc. The next group of devices (D) is proposed to separate the newest trends of using mobile and computer-based technologies such as smartphones or tablets and indicate the necessity of increased mobility within production sites. The similar need of separation is in the case of internet(intranet)-based tools which indicate the growing interest in network-based solutions. Hence, D and I groups are proposed in order to underline the significance of mobility and networking. These two groups of the digital tools should also be supported in the nearest future by the use of 5G networks. The last group of software (S) concerns computer software produced for the aims of manufacturing environments. There is also a possibility to assign the defined solutions (e.g. computer programs) to more than one group (e.g. program can be assigned to software and internet-based tools). The main role of tools allocated inside separate groups is to support employees, managers and customers of manufacturing firms focused on abovementioned production phases. The digital tools are being developed in order to increase efficiency of production, quality of manufactured products and accelerate innovation process as well as comfort of work. Nowadays, digital also means mobile. Universities (especially technical), which are focused on higher education and research, have been continuously developing their teaching programmes since the beginning of industry 3.0 era. They need to prepare their alumni for changing environments of manufacturing enterprises and new challenges such as Industry 4.0 era, digitalization, networking, remote work, etc. Most of the teaching environments nowadays, especially those in manufacturing engineering area, are equipped with many digital tools and meet various challenges regarding an adaptation, a maintenance and a final usage of the digital tools. The application of these tools in teaching needs a space, staff and supporting infrastructures. Universities adapt their equipment and infrastructures to local or national needs of enterprises and the teaching content is usually focused on currently used technologies. Furthermore, research activities support teaching process by newly developed innovations. Figure 1.2 presents how different digital tools are used in teaching environments. Teaching environments are divided into four groups: lecture rooms, computer laboratories, manufacturing laboratories and industrial environments. The three groups are characteristic in the case of universities’ infrastructure whilst the fourth one is used for the aims of internships of students or researchers. Nowadays lecture rooms are mainly used for lectures and presentations which require the direct communication and interaction between teachers and students. However, such teaching method could also be replaced by the use of remote teaching (e.g. by the use of e-learning platforms or internet communicators). Unfortunately, remote teaching leads to limited interaction between people. Nonverbal communication is hence limited. Computer laboratories (CLs) usually gather students who solve different problems by the use of software. Most of the CLs enable teachers to display instructions by using projectors. Physical gathering in one room enables verbal and nonverbal communication between teachers and students. Manufacturing laboratories are usually used as the demonstrators of real industrial environments. They are also perfect places for performing of experiments and building the proficiency in using of infrastructure. The role of manufacturing labs can be divided as: ‱ places which demonstrate the real industrial environments, ‱ research sites where new ideas can be developed, improved and tested. Industrial environment has a crucial role in teaching. It enables an enriched student experience by providing real industrial challenges and problems

    Improving building occupant comfort through a digital twin approach:A Bayesian network model and predictive maintenance method

    Get PDF
    This study introduces a Bayesian network model to evaluate the comfort levels of occupants of two non-residential Norwegian buildings based on data collected from satisfaction surveys and building performance parameters. A Digital Twin approach is proposed to integrate building information modeling (BIM) with real-time sensor data, occupant feedback, and a probabilistic model of occupant comfort to detect and predict HVAC issues that may impact comfort. The study also uses 200000 points as historical data of various sensors to understand the previous building systems’ behavior. The study also presents new methods for using BIM as a visualization platform and for predictive maintenance to identify and address problems in the HVAC system. For predictive maintenance, nine machine learning algorithms were evaluated using metrics such as ROC, accuracy, F1-score, precision, and recall, where Extreme Gradient Boosting (XGB) was the best algorithm for prediction. XGB is on average 2.5% more accurate than Multi-Layer Perceptron (MLP), and up to 5% more accurate than the other models. Random Forest is around 96% faster than XGBoost while being relatively easier to implement. The paper introduces a novel method that utilizes several standards to determine the remaining useful life of HVAC, leading to a potential increase in its lifetime by at least 10% and resulting in significant cost savings. The result shows that the most important factors that affect occupant comfort are poor air quality, lack of natural light, and uncomfortable temperature. To address the challenge of applying these methods to a wide range of buildings, the study proposes a framework using ontology graphs to integrate data from different systems, including FM, CMMS, BMS, and BIM. This study’s results provide insight into the factors that influence occupant comfort, help to expedite identifying equipment malfunctions and point towards potential solutions, leading to more sustainable and energy-efficient buildings.publishedVersio

    EXPLOITING KASPAROV'S LAW: ENHANCED INFORMATION SYSTEMS INTEGRATION IN DOD SIMULATION-BASED TRAINING ENVIRONMENTS

    Get PDF
    Despite recent advances in the representation of logistics considerations in DOD staff training and wargaming simulations, logistics information systems (IS) remain underrepresented. Unlike many command and control (C2) systems, which can be integrated with simulations through common protocols (e.g., OTH-Gold), many logistics ISs require manpower-intensive human-in-the-loop (HitL) processes for simulation-IS (sim-IS) integration. Where automated sim-IS integration has been achieved, it often does not simulate important sociotechnical system (STS) dynamics, such as information latency and human error, presenting decision-makers with an unrealistic representation of logistics C2 capabilities in context. This research seeks to overcome the limitations of conventional sim-IS interoperability approaches by developing and validating a new approach for sim-IS information exchange through robotic process automation (RPA). RPA software supports the automation of IS information exchange through ISs’ existing graphical user interfaces. This “outside-in” approach to IS integration mitigates the need for engineering changes in ISs (or simulations) for automated information exchange. In addition to validating the potential for an RPA-based approach to sim-IS integration, this research presents recommendations for a Distributed Simulation Engineering and Execution Process (DSEEP) overlay to guide the engineering and execution of sim-IS environments.Major, United States Marine CorpsApproved for public release. Distribution is unlimited
    • 

    corecore