2,059 research outputs found

    Symmetry Breaking for Answer Set Programming

    Full text link
    In the context of answer set programming, this work investigates symmetry detection and symmetry breaking to eliminate symmetric parts of the search space and, thereby, simplify the solution process. We contribute a reduction of symmetry detection to a graph automorphism problem which allows to extract symmetries of a logic program from the symmetries of the constructed coloured graph. We also propose an encoding of symmetry-breaking constraints in terms of permutation cycles and use only generators in this process which implicitly represent symmetries and always with exponential compression. These ideas are formulated as preprocessing and implemented in a completely automated flow that first detects symmetries from a given answer set program, adds symmetry-breaking constraints, and can be applied to any existing answer set solver. We demonstrate computational impact on benchmarks versus direct application of the solver. Furthermore, we explore symmetry breaking for answer set programming in two domains: first, constraint answer set programming as a novel approach to represent and solve constraint satisfaction problems, and second, distributed nonmonotonic multi-context systems. In particular, we formulate a translation-based approach to constraint answer set solving which allows for the application of our symmetry detection and symmetry breaking methods. To compare their performance with a-priori symmetry breaking techniques, we also contribute a decomposition of the global value precedence constraint that enforces domain consistency on the original constraint via the unit-propagation of an answer set solver. We evaluate both options in an empirical analysis. In the context of distributed nonmonotonic multi-context system, we develop an algorithm for distributed symmetry detection and also carry over symmetry-breaking constraints for distributed answer set programming.Comment: Diploma thesis. Vienna University of Technology, August 201

    Different Hagedorn temperatures for mesons and baryons from experimental mass spectra, compound hadrons, and combinatorial saturation

    Full text link
    We analyze the light-flavor particle mass spectra and show that in the region up to ~1.8GeV the Hagedorn temperature for baryons is about 30% smaller than for mesons, reflecting the fact that the number of baryon states grows more rapidly with the mass. We also show that the spectra are well reproduced in a model where hadrons are compound objects of quanta, whose available number increases with mass. The rapid growth of number of hadronic states is a combinatorial effect. We also point out that an upper limit on the excitation energy of these quanta results in a maximum number of hadron states that can be formed. According to this combinatorial saturation, no more light-flavor hadron resonances exist above a certain mass.Comment: powers in Eqs. (7,8) corrected and a reference adde

    Practical applications of multi-agent systems in electric power systems

    Get PDF
    The transformation of energy networks from passive to active systems requires the embedding of intelligence within the network. One suitable approach to integrating distributed intelligent systems is multi-agent systems technology, where components of functionality run as autonomous agents capable of interaction through messaging. This provides loose coupling between components that can benefit the complex systems envisioned for the smart grid. This paper reviews the key milestones of demonstrated agent systems in the power industry and considers which aspects of agent design must still be addressed for widespread application of agent technology to occur

    The role of intelligent systems in delivering the smart grid

    Get PDF
    The development of "smart" or "intelligent" energy networks has been proposed by both EPRI's IntelliGrid initiative and the European SmartGrids Technology Platform as a key step in meeting our future energy needs. A central challenge in delivering the energy networks of the future is the judicious selection and development of an appropriate set of technologies and techniques which will form "a toolbox of proven technical solutions". This paper considers functionality required to deliver key parts of the Smart Grid vision of future energy networks. The role of intelligent systems in providing these networks with the requisite decision-making functionality is discussed. In addition to that functionality, the paper considers the role of intelligent systems, in particular multi-agent systems, in providing flexible and extensible architectures for deploying intelligence within the Smart Grid. Beyond exploiting intelligent systems as architectural elements of the Smart Grid, with the purpose of meeting a set of engineering requirements, the role of intelligent systems as a tool for understanding what those requirements are in the first instance, is also briefly discussed

    CLIVAR Exchanges - Special Issue: WCRP Coupled Model Intercomparison Project - Phase 5 - CMIP5

    Get PDF

    Gauge/Gravity Duality and Some Applications

    Full text link
    We discuss the AdS/CFT correspondence in which space-time emerges from an interacting theory of D-branes and open strings. These ideas have a historical continuity with QCD which is an interacting theory of quarks and gluons. In particular we review the classic case of D3 branes and the non-conformal D1 brane system. We outline by some illustrative examples the calculations that are enabled in a strongly coupled gauge theory by correspondence with dynamical horizons in semi-classical gravity in one higher dimension. We also discuss implications of the gauge-fluid/gravity correspondence for the information paradox of black hole physics.Comment: 19 pages, 2 figures, Contribution to "Conference in Honor of Murray Gell-Mann's 80th Birthday

    Influence of the ratio on the mechanical properties of epoxy resin composite with diapers waste as fillers for partition panel application

    Get PDF
    Materials play significant role in the domestic economy and defense with the fast growth of science and technology field. New materials are the core of fresh technologies and the three pillars of modern science and technology are materials science, power technology and data science. The prior properties of the partition panel by using recycled diapers waste depend on the origin of waste deposits and its chemical constituents. This study presents the influence of the ratio on the mechanical properties of polymer in diapers waste reinforced with binder matrix for partition panel application. The aim of this study was to investigate the influence of different ratio of diapers waste polymer reinforced epoxy-matrix with regards to mechanical properties and morphology analysis. The polymer includes polypropylene, polystyrene, polyethylene and superabsorbent polymer (SAP) were used as reinforcing material. The tensile and bending resistance for ratio of 0.4 diapers waste polymers indicated the optimum ratio for fabricating the partition panel. Samples with 0.4 ratios of diapers waste polymers have highest stiffness of elasticity reading with 76.06 MPa. A correlation between the micro structural analysis using scanning electron microscope (SEM) and the mechanical properties of the material has been discussed

    KRITIKUS ÁLLAPOTOKKAL ÖSSZEFÜGGÔ NEUROMUSCULARIS ZAVAROK – FIGYELJÜNK RÁ!

    Get PDF
    A szepszishez és egyéb súlyos, kritikus állapotokhoz társuló neuromuscularis tünetek nem ritka és újonnan felismert jelenségek, ennek ellenére a mindennapos klinikai gyakorlatban kevés jelentőséget tulajdonítanak nekik. A kritikus állapothoz társuló polyneuropathia (CIP) és myopathia (CIM) a szeptikus betegek közel felét érinti. Ezeket a betegeket nehezebb leszoktatni a lélegeztetőgépről, ezáltal megnyúlik az intenzív osztályos és a kórházi tartózkodásuk ideje, ami mind a beteg, mind az egészségügyi ellátórendszer szempontjából kedvezőtlen. A közlemény célja, hogy összefoglaljuk a CIP/CIM pato - fiziológiai hátterét, a diagnosztikai lehetőségeket, áttekintést nyújtsunk a preventív és terápiás lehetőségekről és felhívjuk a figyelmet ezekre a kórképekre, valamint a korán megkezdett kezelés fontosságára

    A review of architectures and concepts for intelligence in future electric energy system

    Get PDF
    Renewable energy sources are one key enabler to decrease greenhouse gas emissions and to cope with the anthropogenic climate change. Their intermittent behavior and limited storage capabilities present a new challenge to power system operators to maintain power quality and reliability. Additional technical complexity arises from the large number of small distributed generation units and their allocation within the power system. Market liberalization and changing regulatory framework lead to additional organizational complexity. As a result, the design and operation of the future electric energy system have to be redefined. Sophisticated information and communication architectures, automation concepts, and control approaches are necessary in order to manage the higher complexity of so-called smart grids. This paper provides an overview of the state of the art and recent developments enabling higher intelligence in future smart grids. The integration of renewable sources and storage systems into the power grids is analyzed. Energy management and demand response methods and important automation paradigms and domain standards are also reviewed.info:eu-repo/semantics/publishedVersio
    corecore