11,176 research outputs found

    Analysis of Various Classification Techniques for Computer Aided Detection System of Pulmonary Nodules in CT

    Get PDF
    Lung cancer is the leading cause of cancer death in the United States. It usually exhibits its presence with the formation of pulmonary nodules. Nodules are round or oval-shaped growth present in the lung. Computed Tomography (CT) scans are used by radiologists to detect such nodules. Computer Aided Detection (CAD) of such nodules would aid in providing a second opinion to the radiologists and would be of valuable help in lung cancer screening. In this research, we study various feature selection methods for the CAD system framework proposed in FlyerScan. Algorithmic steps of FlyerScan include (i) local contrast enhancement (ii) automated anatomical segmentation (iii) detection of potential nodule candidates (iv) feature computation & selection and (v) candidate classification. In this paper, we study the performance of the FlyerScan by implementing various classification methods such as linear, quadratic and Fischer linear discriminant classifier. This algorithm is implemented using a publicly available Lung Image Database Consortium – Image Database Resource Initiative (LIDC-IDRI) dataset. 107 cases from LIDC-IDRI are handpicked in particular for this paper and performance of the CAD system is studied based on 5 example cases of Automatic Nodule Detection (ANODE09) database. This research will aid in improving the nodule detection rate in CT scans, thereby enhancing a patient’s chance of survival

    Deep Convolutional Architecture for Block-Based Classification of Small Pulmonary Nodules

    Get PDF
    A pulmonary nodule is a small round or oval-shaped growth in the lung. Pulmonary nodules are detected in Computed Tomography (CT) lung scans. Early and accurate detection of such nodules could help in successful diagnosis and treatment of lung cancer. In recent years, the demand for CT scans has increased substantially, thus increasing the workload on radiologists who need to spend hours reading through CT-scanned images. Computer-Aided Detection (CAD) systems are designed to assist radiologists in the reading process and thus making the screening more effective. Recently, applying deep learning to medical images has gained attraction due to its high potential. In this paper, inspired by the successful use of deep convolutional neural networks (DCNNs) in natural image recognition, we propose a detection system based on DCNNs which is able to detect pulmonary nodules in CT images. In addition, this system does not use image segmentation or post-classification false-positive reduction techniques which are commonly used in other detection systems. The system achieved an accuracy of 63.49% on the publicly available Lung Image Database Consortium (LIDC) dataset which contains 1018 thoracic CT scans with pulmonary nodules of different shapes and sizes

    Using Various Processing Methods to Identify Lung Cancer

    Get PDF
    Lung cancer has become the leading killer of humans stricken with invasive cancer, affecting husbands to wives, friends to neighbors as it is air bourne and causing suffering for many families. Early detection of cancer is one of the important step in treat the decease. According to author prevention is better than cure, basede on that image processing methods are widely used in recent times, for earlier detection and treatment stages. The objective of this work is study of lung cancer images that are collected form different hospitals where the treatment is going on and focuses on early stage lung cancer detection. Lung cancer is prominent cancer that states large number of deaths of more than a million in every year. It makes sense that need of detecting the lung lymph nodule at early stage in computer tomography medical images to detect the occurrence of cancer at early stages, the requirement of procedures, methods and techniques are increasing. There are number of methods and techniques available but none of them provide a better accuracy of detection. One of the techniques is content based image retrieval computer aided diagnosis system (CAD) for early detection of lung nodules from the chest computer tomography (CT) images. The optimization of algorithm allows doctors to identify the lumps present in the CT lung images in the early stage

    Pixel machine learning with clonal selection algorithm for lung nodules visualization

    Get PDF
    The early detection of lung nodules is critical to provide a better chance of survival from lung cancer. Since benign/malignant lung cancer may be caused by the growth of lung nodules, the diagnosis of an early detection of lung nodules is important. With rapidly development of advanced technology, detection of lung nodules becomes efficient by utilizing computer-aided detection (CAD) systems that can automatically detect and localize the nodules from computed tomography (CT) scans. CAD is fundamentally based on pattern recognition by extensive use of machine learning approaches which is highly interrelated to mathematical algorithms. In this study, a pixel machine learning algorithm which is developed by artificial immune system (AIS) based algorithm – Clonal Section Algorithm (CSA) is proposed for lung nodules visualization. By using pixel machine learning algorithm, several pre-processing procedures can be avoided to prevent the loss of information from image intensities. It is found that the proposed classification algorithm using original intensity values from CT scans is able to provide reasonable visualization results for lung nodules detection

    Automatic detection of lung nodules in CT datasets based on stable 3D mass–spring models

    Get PDF
    We propose a computer-aided detection (CAD) system which can detect small-sized (from 3 mm) pulmonary nodules in spiral CT scans. A pulmonary nodule is a small lesion in the lungs, round-shaped (parenchymal nodule) or worm-shaped (juxtapleural nodule). Both kinds of lesions have a radio-density greater than lung parenchyma, thus appearing white on the images. Lung nodules might indicate a lung cancer and their early stage detection arguably improves the patient survival rate. CT is considered to be the most accurate imaging modality for nodule detection. However, the large amount of data per examination makes the full analysis difficult, leading to omission of nodules by the radiologist. We developed an advanced computerized method for the automatic detection of internal and juxtapleural nodules on low-dose and thin-slice lung CT scan. This method consists of an initial selection of nodule candidates list, the segmentation of each candidate nodule and the classification of the features computed for each segmented nodule candidate.The presented CAD system is aimed to reduce the number of omissions and to decrease the radiologist scan examination time. Our system locates with the same scheme both internal and juxtapleural nodules. For a correct volume segmentation of the lung parenchyma, the system uses a Region Growing (RG) algorithm and an opening process for including the juxtapleural nodules. The segmentation and the extraction of the suspected nodular lesions from CT images by a lung CAD system constitutes a hard task. In order to solve this key problem, we use a new Stable 3D Mass–Spring Model (MSM) combined with a spline curves reconstruction process. Our model represents concurrently the characteristic gray value range, the directed contour information as well as shape knowledge, which leads to a much more robust and efficient segmentation process. For distinguishing the real nodules among nodule candidates, an additional classification step is applied; furthermore, a neural network is applied to reduce the false positives (FPs) after a double-threshold cut. The system performance was tested on a set of 84 scans made available by the Lung Image Database Consortium (LIDC) annotated by four expert radiologists. The detection rate of the system is 97% with 6.1 FPs/CT. A reduction to 2.5 FPs/CT is achieved at 88% sensitivity. We presented a new 3D segmentation technique for lung nodules in CT datasets, using deformable MSMs. The result is a efficient segmentation process able to converge, identifying the shape of the generic ROI, after a few iterations. Our suitable results show that the use of the 3D AC model and the feature analysis based FPs reduction process constitutes an accurate approach to the segmentation and the classification of lung nodules

    Computational methods for the analysis of functional 4D-CT chest images.

    Get PDF
    Medical imaging is an important emerging technology that has been intensively used in the last few decades for disease diagnosis and monitoring as well as for the assessment of treatment effectiveness. Medical images provide a very large amount of valuable information that is too huge to be exploited by radiologists and physicians. Therefore, the design of computer-aided diagnostic (CAD) system, which can be used as an assistive tool for the medical community, is of a great importance. This dissertation deals with the development of a complete CAD system for lung cancer patients, which remains the leading cause of cancer-related death in the USA. In 2014, there were approximately 224,210 new cases of lung cancer and 159,260 related deaths. The process begins with the detection of lung cancer which is detected through the diagnosis of lung nodules (a manifestation of lung cancer). These nodules are approximately spherical regions of primarily high density tissue that are visible in computed tomography (CT) images of the lung. The treatment of these lung cancer nodules is complex, nearly 70% of lung cancer patients require radiation therapy as part of their treatment. Radiation-induced lung injury is a limiting toxicity that may decrease cure rates and increase morbidity and mortality treatment. By finding ways to accurately detect, at early stage, and hence prevent lung injury, it will have significant positive consequences for lung cancer patients. The ultimate goal of this dissertation is to develop a clinically usable CAD system that can improve the sensitivity and specificity of early detection of radiation-induced lung injury based on the hypotheses that radiated lung tissues may get affected and suffer decrease of their functionality as a side effect of radiation therapy treatment. These hypotheses have been validated by demonstrating that automatic segmentation of the lung regions and registration of consecutive respiratory phases to estimate their elasticity, ventilation, and texture features to provide discriminatory descriptors that can be used for early detection of radiation-induced lung injury. The proposed methodologies will lead to novel indexes for distinguishing normal/healthy and injured lung tissues in clinical decision-making. To achieve this goal, a CAD system for accurate detection of radiation-induced lung injury that requires three basic components has been developed. These components are the lung fields segmentation, lung registration, and features extraction and tissue classification. This dissertation starts with an exploration of the available medical imaging modalities to present the importance of medical imaging in today’s clinical applications. Secondly, the methodologies, challenges, and limitations of recent CAD systems for lung cancer detection are covered. This is followed by introducing an accurate segmentation methodology of the lung parenchyma with the focus of pathological lungs to extract the volume of interest (VOI) to be analyzed for potential existence of lung injuries stemmed from the radiation therapy. After the segmentation of the VOI, a lung registration framework is introduced to perform a crucial and important step that ensures the co-alignment of the intra-patient scans. This step eliminates the effects of orientation differences, motion, breathing, heart beats, and differences in scanning parameters to be able to accurately extract the functionality features for the lung fields. The developed registration framework also helps in the evaluation and gated control of the radiotherapy through the motion estimation analysis before and after the therapy dose. Finally, the radiation-induced lung injury is introduced, which combines the previous two medical image processing and analysis steps with the features estimation and classification step. This framework estimates and combines both texture and functional features. The texture features are modeled using the novel 7th-order Markov Gibbs random field (MGRF) model that has the ability to accurately models the texture of healthy and injured lung tissues through simultaneously accounting for both vertical and horizontal relative dependencies between voxel-wise signals. While the functionality features calculations are based on the calculated deformation fields, obtained from the 4D-CT lung registration, that maps lung voxels between successive CT scans in the respiratory cycle. These functionality features describe the ventilation, the air flow rate, of the lung tissues using the Jacobian of the deformation field and the tissues’ elasticity using the strain components calculated from the gradient of the deformation field. Finally, these features are combined in the classification model to detect the injured parts of the lung at an early stage and enables an earlier intervention

    Automatic Pulmonary Nodule Detection in CT Scans Using Convolutional Neural Networks Based on Maximum Intensity Projection

    Get PDF
    Accurate pulmonary nodule detection is a crucial step in lung cancer screening. Computer-aided detection (CAD) systems are not routinely used by radiologists for pulmonary nodule detection in clinical practice despite their potential benefits. Maximum intensity projection (MIP) images improve the detection of pulmonary nodules in radiological evaluation with computed tomography (CT) scans. Inspired by the clinical methodology of radiologists, we aim to explore the feasibility of applying MIP images to improve the effectiveness of automatic lung nodule detection using convolutional neural networks (CNNs). We propose a CNN-based approach that takes MIP images of different slab thicknesses (5 mm, 10 mm, 15 mm) and 1 mm axial section slices as input. Such an approach augments the two-dimensional (2-D) CT slice images with more representative spatial information that helps discriminate nodules from vessels through their morphologies. Our proposed method achieves sensitivity of 92.67% with 1 false positive per scan and sensitivity of 94.19% with 2 false positives per scan for lung nodule detection on 888 scans in the LIDC-IDRI dataset. The use of thick MIP images helps the detection of small pulmonary nodules (3 mm-10 mm) and results in fewer false positives. Experimental results show that utilizing MIP images can increase the sensitivity and lower the number of false positives, which demonstrates the effectiveness and significance of the proposed MIP-based CNNs framework for automatic pulmonary nodule detection in CT scans. The proposed method also shows the potential that CNNs could gain benefits for nodule detection by combining the clinical procedure.Comment: Submitted to IEEE TM

    Multi-scale analysis of lung computed tomography images

    Get PDF
    A computer-aided detection (CAD) system for the identification of lung internal nodules in low-dose multi-detector helical Computed Tomography (CT) images was developed in the framework of the MAGIC-5 project. The three modules of our lung CAD system, a segmentation algorithm for lung internal region identification, a multi-scale dot-enhancement filter for nodule candidate selection and a multi-scale neural technique for false positive finding reduction, are described. The results obtained on a dataset of low-dose and thin-slice CT scans are shown in terms of free response receiver operating characteristic (FROC) curves and discussed.Comment: 18 pages, 12 low-resolution figure
    • …
    corecore