
2
0
0
7
 
J
I
N
S
T
 
2
 
P
0
9
0
0
7

PUBLISHED BY INSTITUTE OFPHYSICS PUBLISHING AND SISSA

RECEIVED: June 25, 2007
ACCEPTED: September 11, 2007

PUBLISHED: September 14, 2007

Multi-scale analysis of lung computed tomography
images

I. Gori,ab∗ F. Bagagli,c M.E. Fantacci,ac A. Preite Martinez,d A. Retico,a I. De Mitri,e

S. Donadio, f C. Fulcheri,g G. Gargano,h R. Magro,i M. Santoro j and S. Stumbokl

aIstituto Nazionale di Fisica Nucleare (INFN), Sezione di Pisa,
Largo Pontecorvo 3, 56127 Pisa, Italy

bBracco Imaging S.p.A.,Via E. Folli 50, 20134 Milano, Italy
cDipartimento di Fisica, Università di Pisa, Largo Pontecorvo 3, 56127 Pisa, Italy
dCentro Studi e Ricerche Enrico Fermi, Via Panisperna 89/A, 00184 Roma, Italy
eDipartimento di Fisica, Università del Salento, and INFN, Sezione di Lecce,
Via per Arnesano, 73100, Lecce, Italy

f Dipartimento di Fisica, Università di Genova, and INFN, Sezione di Genova,
Via Dodecaneso 33, 16146, Genova, Italy

gDipartimento di Fisica Sperimentale, Università di Torino, and INFN, Sezione di Torino,
Via P. Giuria 1, 10125, Torino, Italy

hDipartimento di Fisica, Università di Bari, and INFN, Sezione di Bari,
Via Amendola 173, 70126, Bari, Italy

iDipartimento di Fisica e Tecnologie Relative, Università di Palermo,
Viale delle Scienze, Edificio 18, 90128, Palermo, Italy

jDipartimento di Scienze Fisiche, Università Federico II diNapoli,
via Cintia-Complesso Monte S.Angelo, 80126, Napoli, Italy

kStruttura Dipartimentale di Matematica e Fisica, Università di Sassari,
Via Vienna 2, 07100, Sassari, Italy

l INFN, Sezione di Cagliari,Cittadella Universitaria di Monserrato,
Casella Postale 170, 09042, Monserrato (CA), Italy
E-mail: ilaria.gori@pi.infn.it

ABSTRACT: A computer-aided detection (CAD) system for the identification of lung internal no-
dules in low-dose multi-detector helical Computed Tomography (CT) images was developed in the
framework of the MAGIC-5 project. The three modules of our lung CAD system, a segmentation
algorithm for lung internal region identification, a multi-scale dot-enhancement filter for nodule
candidate selection and a multi-scale neural technique forfalse positive finding reduction, are de-
scribed. The results obtained on a dataset of low-dose and thin-slice CT scans are shown in terms
of free response receiver operating characteristic (FROC)curves and discussed.
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1. Introduction

Lung cancer is the leading cause of cancer-related mortality in developed countries [1, 2]. Only 10–
15% of all men and women diagnosed with lung cancer live five years after diagnosis [2, 3] and no
significant improvement has occurred in the last 20 years [4]. Early-stage cancer is asymptomatic,
so more than 70% of patients diagnosed with lung cancer are inthe advanced stages of the disease,
when it’s too late for effective treatments [5]. However thefive-year survival rate for people who
are diagnosed with early-stage lung cancer (stage I) can reach 70% [6].

In this scenario, the implementation of screening programsfor the asymptomatic high-risk
population is an approach that is being tried to reduce the mortality rate of lung cancer. It was
proved that screening programs with X-ray radiography don’t lead to a reduction of the mortality
rate [7 – 10], due to the low sensitivity of this technique in the identification of small, early-stage
cancers.

Lung cancer most commonly manifests itself with the formation of non-calcified pulmonary
nodules. Computed Tomography (CT) is proved to be the best imaging modality for the detection of
small pulmonary nodules, particularly since the introduction of the multi-detector-row and helical
CT technologies [11 – 13].

Therefore CT-based screening programs are regarded as a promising technique for detecting
small, early-stage lung cancers [14, 15]. In CT-based screening protocols, low-dose settings are
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required, since the examined population is asymptomatic, and therefore potentially healthy. How-
ever, low-dose images are noisier than standard-dose ones,so it’s more difficult to identify small
nodules when low-dose settings are used. Moreover, the amount of data that need to be interpreted
in CT examinations can be very large, especially in screening programs, when a thin slice thickness
is usually used, thus generating up to about 300 two-dimensional images per scan. Computer-Aided
Detection (CAD) could support radiologists in the identification of small, early-stage pathological
objects in screening CT scans.

The MAGIC-5 project [16] aims at developing CAD software systems for Medical Appli-
cations on distributed databases by means of a GRID Infrastructure Connection approach [17].
In particular, MAGIC-5 researchers work on mammographic images for breast cancer detection,
NMR–SPECT–PET images for the diagnosis of the Alzheimer disease and Computed Tomography
images for lung cancer identification. The CAD system we propose for small pulmonary internal
nodule identification was developed and validated on a set ofimages acquired from the Pisa centre
of the First Italian Randomized Controlled Trial (ITALUNG-CT), recently started in order to study
the potential impact of screening on a high-risk populationusing low-dose helical CT [18, 19].

The CAD system is a three steps procedure: a segmentation algorithm identifies the lung in-
ternal region, then a multi-scale dot-enhancement filter provides a list of nodule candidates and
finally a multi-scale neural network-based classification module reduces the number of false posi-
tive findings per scan.

2. The lung CT database

A low-dose lung CT database was acquired from the Pisa centreof the ITALUNG-CT trial, the
First Italian Randomized Controlled Trial for the screening of lung cancer [18, 19]. The CT scans
are acquired with a 4-slice spiral CT scanner according to a low-dose protocol (screening setting:
140 kV, 20 mA, mean equivalent dose 0.6 mSv), with 1.25-mm slice collimation.

Each scan is a sequence of slices stored in DICOM (Digital Imaging and COmmunications in
Medicine) format. The reconstructed slice thickness is 1 mm. The average number of slices per
scan is about 300 with a 512×512 pixel matrix, a pixel size ranging from 0.53 to 0.74 mm and
12 bit grey levels in Hounsfield units (HU).

The pathological structures to be automatically detected by a CAD system are non calcified
nodules. Such nodules can be divided into three main categories, depending on their location in
the lung: internal nodules, fully contained in the lung parenchyma, sub-pleural nodules, originated
inside the lung parenchyma but adjacent or connected to the pleura, and pleural nodules, originated
from the pleura and grown toward the lung parenchyma.

The identification of internal, sub-pleural and pleural nodules requires dedicated procedures,
due to their different location and shape (see figure 1). Our preliminary results on sub-pleural and
pleural nodule identification can be found in [20, 21].

In this study, only internal nodule identification is considered.
According to ITALUNG-CT screening protocol, in the baseline CT examinations radiologists

mark the nodules with a diameter greater than 5 mm, which can be a sign of the presence of
lung cancer at an early stage, thus allowing an early diagnosis of this disease. Once identified,
nodules are kept under control by means of follow up CT examinations, in which the nodules with
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Figure 1. Examples of small pulmonary nodules: a) internal nodule; b)sub-pleural nodule; c) pleural
nodule.

Figure 2. Examples of internal small pulmonary nodules.

diameters between 3 and 5 mm should also be marked, but only ifnewly formed. Only nodules
with diameters greater than 8-10 mm are subjected to furtherexaminations like Positron Emission
Tomography (PET) or biopsy.

The CT database acquired for this study is constituted by baseline examinations, so our goal
is to develop a CAD system for the identification of internal nodules with diameters greater than 5
mm. Two experienced radiologists have selected the structures of interest from the so far collected
database of 39 CT scans. This task has been carried out by means of a dedicated visualization and
annotation tool developed in the framework of the MAGIC-5 collaboration. The resulting dataset
consists of 75 solid internal nodules with diameters in the 5–12 mm range. The maximum value is
12 mm, but 96% of the nodules have diameters ranging from 5 to 8mm. Examples of solid internal
nodules extracted from our dataset are shown in figure 2: theymay have CT values in the same
range of those of blood vessels and airway walls and may be strongly connected to them.

Some internal ground-glass opacities had also been selected by radiologists, but their number
was too small to allow a dedicated analysis; therefore this type of pathological objects was excluded
from our target list.

– 3 –
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Figure 3. Lung volume 3D segmentation algorithm (a slice of the full 3Dvolume is shown): a) algorithm
input (the original CT scan); b) scan after thresholding; c)scan after selection of connected regions and
rolling ball algorithm; d) algorithm output (segmented lung volume).

3. The CAD system

As explained in the Introduction, our CAD system consists inthree main modules: first of all,
the lung internal region is identified by means of a purposelybuilt segmentation algorithm. As a
second step, nodule candidates are detected using a multi-scale 3D filter enhancing spherically-
shaped objects. Finally, a multi-scale voxel-based neuraltechnique is implemented to reduce the
amount of false positive findings per scan.

3.1 Lung internal region segmentation

A lung volume 3D segmentation algorithm was implemented according to the procedure proposed
in [22]. First of all, to separate the low-intensity lung parenchyma from the high-intensity sur-
rounding tissue (fat tissue and bones), the voxel intensities are thresholded at a fixed value (-
400 HU) [22, 23]. Then, in order to discard all the regions notbelonging to the lungs, the connected
lung regions for the left and right lungs are selected starting with a seed point inside each lung. At
this stage vessels and airway walls are not included in the segmented lung. Finally, a combina-
tion of the erosion and dilation morphological operations,known asrolling-ball algorithm [24],
is applied. The rolling-ball operator uses a spherical kernel, having the effect of including in the
segmented lung all the vessels and all the airway walls smaller than the ball size: a radius of 10
voxels for the spherical kernel was chosen in order to include all the objects within our nodule
dimension target. An example of the various stages of the lung volume segmentation algorithm is
shown in figure 3.

Since our goal is internal nodule research only, the lung volume identified by the segmentation
algorithm is eroded on the external side by a 2.5 mm-thick band, so as to define thelung internal
region, where internal nodules with a diameter greater than 5 mm areexpected to be found. In
figure 4 an example of lung internal region is shown, comparedwith the lung volume identified by
simply implementing the segmentation algorithm describedabove.

3.2 Nodule candidate identification

The automated nodule candidate detection should be characterized by a sensitivity value close to
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Figure 4. a) Original volume; b) lung volume obtained by the segmentation algorithm (outer contours) and
lung internal region.

100%, in order to avoid setting ana priori upper bound to the CAD system performance. To this
aim, we followed the approach proposed in [25]. Lung nodulesare modeled as spherical objects
with a Gaussian profile and the 3D matrix of data is filtered with a filter function zdot built to
discriminate between spherical objects and objects with planar or elongated shapes. In particular,
zdot is defined as follows from the eigenvalues of the Hessian matrix of each voxel:

zdot(λ1,λ2,λ3) =

{

|λ3|
2/|λ1| if λ1,λ2,λ3 < 0,

0 otherwise,

whereλ1,λ2,λ3 are the eigenvalues of the Hessian matrix of each voxel, sorted so that|λ1| ≥ |λ2| ≥

|λ3|.
To enhance the sensitivity of this filter to nodules of different sizes, a multi-scale approach is

followed. According to the indications given in [25 – 27], the zdot function is combined to a Gaus-
sian smoothing at several scalesσmin = σ1, . . . ,σmax = σN. Within the range[σ1,σN], intermediate
smoothing scales are computed asσi = r i−1σ1 for i = 2, . . . ,N−1, wherer = (σN/σ1)

1/N−1. The
final filter valuezmax assigned to each voxel is defined as the maximumzdot value obtained from
the different scales (denotedzdot(σi) for i = 1, . . . ,N), multiplied by the relative scale factor:

zmax = max
i∈{1,...,N}

σ2
i zdot(σi).

Once the 3D filtered matrix is calculated, a peak-detection algorithm is applied to detect the local
maxima, which, sorted in decreasing order, are the list of nodule candidates identified by the filter.

The range[σ1,σN] and the numberN of smoothing scales have to be chosen in order to make
the filter able to enhance nodules of the desired dimension target.

Assuming a nodule can be denoted by a 3D Gaussian function of scaleσ , its diameter can be
reasonably assumed to be 4σ , thus accounting for more than 95% of the nodule volume. Therefore
implementing the multi-scale filter in a range[σ1,σN] allows to enhance nodules with a diameter
in a range[dmin = σ1∗4,dmax = σN ∗4].

In figure 5 the response of the filter, implemented withσ1=1.25 mm,σN=2 mm andN=5, to
synthetic nodules (3D Gaussian functions with scaleσ varying between 0.25 mm and 5 mm), is
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Figure 5. Response of the multi-scale filter implemented in the scale rangeσ1=1.25 mm,σN=2 mm and
N=5, to synthetic nodules modeled as 3D Gaussian functions with scaleσ varying between 0.25 mm and
5 mm.

shown. As expected, the maximum filter response is obtained for nodule diameters betweenσ1 ∗

4=1.25∗4 mm=5 mm andσN ∗4=2∗4 mm=8 mm. However it can be noticed that the filter response
remains higher than the 90% of the maximum value for nodule diameters in all our dimension
target, between 5 and 12 mm. Moreover, we found that 5 is the minimum value ofN required to
obtain a flat response. Therefore in this workσ1=1.25 mm,σN=2 mm andN=5 were chosen to
identify nodules in our dimension target.

The dot-enhancement filter implemented with these parameters was run on the entire lung vol-
ume identified by the segmentation algorithm proposed in [22] (see figure 3 and figure 4). Then,
from the filter output list, a list ofinternal nodule candidates was created, constituted by filter out-
puts located in the previously identified lung internal region only (see figure 4). As it is explained
in the next paragraph, the list contains a large number of false positives (FP).

3.3 False positive reduction

3.3.1 The basic idea of the Multi-Scale Voxel-Based Neural Approach (MS-VBNA)

Most false positive findings are crossings between blood vessels. In figure 6 some examples of FP
are shown.

To reduce the number of FP/scan, we developed a procedure called Multi-Scale Voxel-Based
Neural Approach(MS-VBNA).

First of all, a region of interest (ROI) is defined from each internal nodule candidate of the
filter output list as the set of the voxelsv belonging to a sphere of radius 5 pixels around the voxel
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Figure 6. Some examples of false positive findings generated by the dot-enhancement filter.

Figure 7. Consecutive slices containing an internal nodule of diameter 5.5 mm (top) and corresponding ROI
(bottom).

identified by the filter and with intensity valueIv above a relative thresholdt

t = max
v∈sphere

Iv−
1
3

(

max
v∈sphere

Iv− min
v∈sphere

Iv

)

.

ROIs are so defined in order to include voxels of the structures of interest (nodules or FP as,
for example, blood vessel crossings) and not background voxels. In order not to have in a ROI
only voxels belonging to calcific structures that could be present in the sphere, ROIs are identified
only once all the voxels withIv ≥ 200 HU are set to 200 HU. In figure 7 an example of ROI
corresponding to an internal nodule of diameter 5.5 mm is shown.

At this stage we consider a nodule candidate, and consequently its ROI, ascorresponding to a
nodule(in other words, we consider a nodulefound by the filter) if the voxel identified by the filter
lies within a sphere centered on the nodule and having diameter equal to the nodule dimension.

The basic idea of the MS-VBNA is to associate to each voxel of aROI a feature vector con-
stituted by the intensity values of its 3D neighbors, the three eigenvalues of thegradient matrix
defined as

Gi, j =
[

∑∂xi I ∂xj I
]

, i, j = 1,2,3,

– 7 –
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Figure 8. Basic idea of the Voxel-Based Neural Approach to false positive reduction: each voxel is charac-
terized by a feature vector constituted by the intensity values of its 3D neighbors and the eigenvalues of the
gradient and the Hessian matrices.

whereI(x1,x2,x3) is the intensity function and the sums are over the neighborhood area, and the
three eigenvalues of the Hessian matrix defined as

Hi, j =
[

∂ 2
xixj

I
]

, i, j = 1,2,3,

whereI(x1,x2,x3) is the intensity function [28] (see figure 8). As we proved in [29] using these
six features, in addition to the simple voxel neighborhood rolled down into a vector, improves the
system discrimination capability.

Feature vectors are then classified by a standard three-layer feed-forward back-propagation
neural network which is trained and tested to assign each voxel either to the nodule or normal
tissue target class.

3.3.2 The training and testing phase

The network training and testing phase was carried out as follows. The available dataset of 39
scans containing 75 internal nodules was partitioned into ateaching set of 15 scans containing 30
nodules and a validation set of 24 scans containing 45 nodules; the partition was defined so as to
make the teaching set representative of all the nodule dimensions.

In figure 9 the distribution of nodule diameters in the teaching set and in the validation set is
shown.

Then, the 15 scans of the teaching set were analyzed and used to set the parameters for the
training and testing phase. In particular, ROIs corresponding to the 30 nodules in the teaching set
were considered. We know that clearly the number of voxels ofa ROI doesn’t provide a precise
measurement of the nodule dimension, due to the ROI definition itself. However the mean number
of voxels increases as the nodule dimension increases. In fact the mean number of voxels for
nodules with diameters until 6 mm is 46, for nodules with diameters between 6 and 7 mm is 96 and
for nodules with diameters above 7 mm is 124.

In particular, for all nodules in the teaching set the numberof voxels in the ROI is greater than
20; moreover, for all but one nodules with diameters above 7 mm, the number of voxels in the ROI
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Figure 9. Diameter distribution of the 30 internal nodules in the teaching set and the 45 internal nodules in
the validation set.

is greater than 100 and all but two ROIs with more than 100 voxels correspond to nodules greater
than 7 mm.

Following the hypothesis that the network could really learn to recognize a nodule if the neigh-
borhoods used to create the feature vector for the ROI voxelswere large enough to intersect the
nodule edge, we decided to train and test the network using two different neighborhood sizes;
in particular 7× 7× 3 (7× 7 voxels for three consecutive slices) was chosen assmall size and
13×13×5 (13×13 voxels for five consecutive slices) was chosen aslarge size. According to our
hypothesis, using the small neighborhood allowed the network to recognize at the most nodules of
7 mm of diameter, whereas for larger nodules the larger neighborhood was surely necessary.

Therefore, using the relation described above between the number of voxels in the ROIs and
nodule dimensions, we decided to train and test the neural network using the small neighborhood
size for ROIs with less than 100 voxels, the large neighborhood size for ROIs with more than 100
voxels.

The goal of this threshold of 100 voxels is not to define a real partition between ROIs that
could be recognized using small and large neighborhoods; itis only an indicative threshold to be
used to train and test the network in an effective way.

It can easily be calculated that a feature vector deriving from a 7×7× 3 neighborhood has
153 entries, 147 deriving from the neighborhood rolled downand 6 deriving from the gradient and
the Hessian matrices. A feature vector deriving from a 13×13×5 neighborhood would have 851
features. So we decided not to consider all the neighborhoodbut only a down-sampled part, as
shown in figure 10. In this way a feature vector deriving from a13× 13× 5 neighborhood has
also 153 entries. As a consequence, we trained and tested a feed-forward back-propagation neural
network with 153 input nodes and two output nodes.

The training and testing phase was performed according to the 5× 2 cross validation

– 9 –
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Figure 10. Feature vectors deriving from two different neighborhood sizes: in the first case (top), the
7×7×3 neighborhood is rolled down into a vector of 147 entries; inthe second case (bottom), the 13×13×5
neighborhood is down-sampled and rolled down to obtain a vector of 147 features, too. In both cases, the 6
features deriving from the gradient and the Hessian matrices are added.

method [30]. This method consists in performing 5 replications of the 2-fold cross validation
method. In each replication, the teaching set is randomly partitioned into two sets (Ai andBi for
i = 1, . . . ,5) with an almost equal number of entries. The learning algorithm is trained on each
set and tested on the other one. The results achieved in each trial for the correct classification of
individual voxels are reported in table 1, where the sensitivity and the specificity values obtained
on the test sets and on the whole teaching set in the ten trialsare shown. Since the performance of a
classifier and the comparison among different classifiers are conveniently evaluated in terms of the
areaAz under the ROC curve [31], we reported in table 1 also the estimated areas under the ROC
curves obtained in each trial. The average and the standard deviation ofAz obtained in the 10 trials
on testing and teaching sets are reported too, thus showing the effectiveness and the robustness of
the neural classifier performance.

Among the networks with a similar performance on test sets, the second one in table 1 was
more balanced with respect to sensitivity and specificity onthe test set and achieved the best per-
formance on the teaching set. Moreover it was the network with the largest area under the ROC
curve, so it was expected to be the one with the greatest discrimination capability.
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Teaching set On testing set On teaching set

Train Test Sens. (%) Spec. (%) Az Sens. (%) Spec. (%) Az

A1 B1 74.1 79.7 0.850 85.8 83.0 0.921
B1 A1 79.0 82.6 0.890 87.3 85.5 0.936
A2 B2 75.4 85.9 0.884 83.3 88.8 0.927
B2 A2 78.5 80.0 0.858 86.9 82.4 0.916
A3 B3 73.2 85.9 0.873 82.3 87.4 0.919
B3 A3 79.4 79.9 0.872 85.6 82.7 0.916
A4 B4 73.7 84.4 0.868 82.5 86.8 0.915
B4 A4 74.0 82.3 0.857 85.6 85.9 0.924
A5 B5 77.6 79.3 0.865 84.8 81.0 0.907
B5 A5 74.3 87.1 0.888 83.5 89.3 0.932

Average 0.871 0.921
Std deviation 0.014 0.008

Table 1. Evaluation of the performance of the standard back-propagation learning algorithm for the neural
classifier according to the 5×2 cross validation method.

Therefore this trained neural network was applied to the ROIs voxels.

3.3.3 The application of the trained neural network: from voxels to ROIs

To be sure to make the approach sensible to all our nodule dimension target, we decided to apply
the trained network at two different scales, characterizedby two different thresholds on the number
of voxels in the ROI and feature vectors deriving from the twodifferent size voxel neighborhoods.

In particular, for thefirst scaleonly ROIs with more than 20 voxels are processed and for each
voxel the network is applied to the feature vector deriving from the 7×7×3 neighborhood.

For thesecond scale, only ROIs with more than 50 voxels are processed and for eachvoxel the
network is applied to both the feature vectors that can be associated to the voxel, that is to say the
feature vector deriving from the 7×7×3 neighborhood, obtaining the outputout1 = (out1,1,out1,2),
and the feature vector deriving from the 13× 13× 5 neighborhood, obtaining the outputout2 =

(out2,1,out2,2). Then the final output assigned to the voxel for the second scale is out1 if |out1,1 −

out1,2| > |out2,1−out2,2|, out2 otherwise.

This choice of the two thresholds of 20 and 50 voxels is done only depending on the analysis
of the teaching set, as well as the parameters used in the training and testing phase: as explained in
the subsection 3.3.2, no nodule in the teaching set has less than 20 voxels in its corresponding ROI.
Moreover, nodules that could not be recognized using only the 7×7×3 neighborhood have more
than 50 voxels. In both cases, the choice of the threshold is conservative and it is expected not to
compromise the system capability to generalize.

At each scale a nodule candidate is then classified as “CAD nodule” if the percentage of
voxels in its ROI tagged as “nodule” by the neural classifier is above a threshold. By varying these
thresholds at the two scales a free response receiver operating characteristic (FROC) curve can be
evaluated.
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Figure 11. Distribution of the positions of the 30 internal nodules of the teaching set in the lists provided by
the filter.

Lists truncated at Filter sensitivity (%)

80 88.9
100 91.1
120 91.1
140 93.3
160 95.6
180 95.6
200 95.6

Table 2. Dot-enhancement filter sensitivity.

4. Results

In figure 11 the distribution of the positions of the 30 internal nodules of the teaching set in the lists
of internal nodule candidates provided by the filter is shown.

As it can be noticed, the lists provided by the dot-enhancement filter for the 15 scans of teach-
ing set have to be truncated at 140 to include all annotated nodules. We fixed this parameter and we
evaluated the filter sensitivity on the validation set of 24 scans containing 45 nodules, by truncating
the lists at different values around it, in particular we truncated the lists at a valueM, for M = 80,
100, 120, 140, 160, 180, 200. The results are shown in table 2.

We then applied the MS-VBNA to the same truncated lists and weevaluated the performance
of our CAD system in terms of FROC curves. In figure 12, the FROCcurves obtained on the
validation set by truncating the lists atM = 80,140,200 are shown. It can be noticed that the
maximum sensitivity achieved by the CAD system is clearly different for different values ofM,
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Figure 12. FROC curves on the validation set of 24 scans containing 45 internal nodules.

due to the different filter sensitivity. However, FROC curves are very close to each other up to
a very good sensitivity (85% range), thus proving the robustness of the system. In particular, a
sensitivity of 86.7% at 5.4–7.6 FP/scan and a sensitivity of84.4% at 4.1–5.8 FP/scan are measured.
In other words, the MS-VBNA maintains a very good sensitivity (86.7%) by eliminating 91-96%
of dot-enhancement filter false positive findings. For the slightly lower sensitivity of 84.4%, the
false positive reduction rate of the MS-VBNA is 94-97%.

5. Conclusions

A CAD system for the identification of internal nodules with diameters greater than 5 mm was
developed. The three basic modules of the system are described and the results obtained on a
validation dataset of 24 low-dose CT scans with 1-mm reconstructed slice thickness containing
45 internal nodules are presented. A sensitivity of 86.7% was obtained at a low level of false
positive findings (5.4–7.6 FP/scan); the sensitivity remains high (84.4%) even at 4.1–5.8 FP/scan.
In particular, the procedure we developed for false positive reduction (MS-VBNA) works in a very
satisfactory way: it eliminates more than 90% of dot-enhancement filter false positive findings and
maintains a very good sensitivity.

The results obtained so far are promising, but further work is foreseen.
The basic concept of CAD is to provide a second opinion to assist radiologists’ image in-

terpretation [32]. Many studies [33 – 37] investigated and proved the CAD ability to improve the
performance of radiologists in lung nodule detection in screening and clinical CT examininations.

For example, in [33] Brochu et al. compared the performance achieved by three radiologists
with different levels of experience in detecting lung nodules in 30 screening CT examinations,

– 13 –



2
0
0
7
 
J
I
N
S
T
 
2
 
P
0
9
0
0
7

without the assistance of CAD and using a CAD system as secondreader. The CAD system used
in the study was the commercial system ImageCheckerR©V1.0 (R2 Technology). The CAD alone
achieved a sensitivity of 79% in the detection of nodules measuring 4 mm or larger, at a rate of 3.5
FP per examination. The sensitivity of the three radiologists in the detection of the same nodules
before and after using the CAD system as second reader variedfrom a mean of 59% to a mean of
90%, with a gain of 31%.

In the next phase of our work we plan to evaluate the effect of our CAD system as second
reader on the performance of radiologists with different levels of experience.

Moreover, a validation of our CAD system against a larger database is required. To this aim,
a larger database, not only of baseline but also of repeat andfollow up examinations is being
collected.

As explained in section 2, according to ITALUNG-CT screening protocol, in follow up exam-
inations the nodules with diameters in the 3–5 mm range should also be identified; therefore we
intend to adapt our procedure, by adjusting the parameters at every step, such as the band thickness
in lung internal region segmentation, the multi-scale filter range in nodule candidate identification
and the voxel neighborhood size in false-positive reduction, to this new dimension target, in order
to develop a CAD system useful in every phase of a screening program, on the basis of radiologists’
requests.
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