122,563 research outputs found

    Heterogeneous bubble nucleation dynamics

    Get PDF
    Heterogeneous nucleation is the most effective mechanism for the inception of phase transformation. Solid walls and impurities act as a catalyst for the formation of a new thermodynamic phase by reducing the activation energy required for a phase change, hence enhancing nucleation. The formation of vapour bubbles close to solid, ideally flat, walls is addressed here by exploiting a mesoscale description that couples diffuse interface modelling of the two-phase vapour-liquid system with fluctuating hydrodynamics, extending previous work by the authors on homogeneous nucleation. The technical focus of this work is to directly account for hydrophobic or hydrophilic walls through appropriate boundary conditions compliant with the fluctuation-dissipation balance, a crucial point in the context of fluctuating hydrodynamics theory. This methodology provides access to the complete dynamics of the nucleation process, from the inception of multiple bubbles up to their long-Time macroscopic expansion, on time and spatial scales unaffordable by standard techniques for nucleation, such as molecular dynamics. The analysis mainly focuses on the effect of wall wettability on the nucleation rate, and, albeit qualitatively in agreement with classical nucleation theory predictions, it reveals several discrepancies to be ascribed to layering effects in the liquid close to the boundary and to bubble-bubble interactions. In particular, it is found that, close to moderately hydrophilic surfaces, the most probable nucleation events occur away from the wall through a homogeneous mechanism

    A study of factors affecting nucleation and bubble growth in pressurised metered dose inhalers

    Get PDF
    Various hypotheses have been introduced to explain disintegration of the continuous liquid phase into individual droplets leading to spray formation in pressurised metered dose inhalers (pMDIs). In a practicable system, the liquid formulation to be discharged from the pressurised container needs to be nucleated to ensure spray generation. Nucleation can be described as the generation of a nucleus of the vapour phase within the bulk liquid. As a stable nucleus is formed, it grows significantly and then detaches from its nucleation site to move upwards in the liquid phase. In our research, the effects of various parameters on the nucleation of HFA227 was analysed with the aim of gaining a better understanding of bubble formation and the nucleation process in HFA propellants, including the surface geometrical properties, actuator orifice size and the mass flow rate through the orifice. Other important factors influencing the nucleation process that were considered comprised the viscosity and surface tension of the formulation, thermodynamic state variables including temperature, pressure and degree of superheat. The results highlighted the effect of surface imperfections on the rate of nucleation and bubble growth. A comparison of two different orifice sizes was made and a significant change in the shape and motion of the bubbles was observed. An intense nucleation was also observed at higher mass flow rate of HFA227 through the valve. It is anticipated that recognising the factors affecting nucleation and bubble growth of HFA227 may lead to potential routes of influencing the medical aerosol generation mechanism inside the pMDI and control the fine particle size distribution

    A combined immersed boundary/phase-field method for simulating two-phase pipe flows

    Get PDF
    The investigation of the flow in a pipe is a major issue for the pipeline capacity but also plays an important role for the control and prevention of phenomena that could damage the pipe, such as corrosion, erosion, and the potential formation of wax or their deposits. Therefore, the characterization of the flow patterns is also a major issue for the prediction of the distribution over the cross-section of the pipe, in order to understand any problems that may interrupt or shut down the operation of the production line. The main purpose of the present effort is to develop an appropriate numerical method for simulating two-phase pipe flows. Advanced Computational Fluid Dynamics (CFD) methods are employed as Navier-Stokes solver, while a Phase-Field method is used to simulate the interfacial region between the two fluids. A Ghost-Cell Immersed Boundary Method (GCIBM) was developed and implemented for the reconstruction of smooth rigid boundaries (pipe wall) based on the work of Tseng and Ferziger (2003). The method was also modified in order to incorporate appropriate boundary conditions for coupling the Phase-Field and Navier-Stokes solvers for two-phase pipe flows. Tseng and Ferziger (2003) used the GCIBM for turbulent single-phase flows; the present modified version comprises a continuation of the method for handling two-phase pipe flows. The computational model is capable of handling large density and viscosity ratios with good accuracy. The developed GCIBM algorithm was validated against analytical solutions for single and two-phase pipe flow, presenting very good agreement. The computational model was compared to available experimental data from the literature for single rising bubbles and bubble coalescence in vertical pipe also with good agreement. The numerical method was used to investigate the lateral wall effects of a 3-D single bubble in a viscous liquid for different pipe diameters and bubble flow regimes. The dynamics of 3-D Taylor bubbles was also examined in vertical pipes for different properties of fluids (e.g. air-water system) and dimensionless parameters relevant to the problem (e.g. ReB, Eo, Mo). The numerical results were compared with available experimental and numerical data from the literature, presenting good agreement.Open Acces

    Hydrodynamics of Gas–Liquid Slug Flows in a Long In-Plane Spiral Shaped Milli-Reactor

    Get PDF
    An experimental investigation of gas–liquid Taylor flows in a millimetric in-plane spiral shaped reactor with various tube curvature ratios (52 < λ < 166) is reported. Thanks to the compactness of the reactor and the use of an ad hoc imaging system and processing, the axial evolution of bubble lengths and velocities could be recorded and extracted along the whole reactor length (~3 m). The experimental results showed a significant linear increase of bubble length and velocity with axial position. Very long, stable Taylor bubbles (LB/dit up to 40) and liquid slugs were generated, in particular due to the poor wettability of the surface and the important role it played in bubble formation. At identical inertial force (i.e., identical Reynolds number), a higher centrifugal force (i.e., lower tube curvature ratio) likely led to shorter Taylor bubble lengths while only slightly affecting the liquid slug lengths. The axial pressure drop could be estimated from the axial increase in bubble volume, and compared with the measured pressure drop and that predicted by the correlations from literature. By considering both the friction and capillary pressure drops, it was observed that the predicted two-phase pressure drop was slightly dependent on the centrifugal force and that the capillary pressure drop,determined from the unit cell number, capillary number and static contact angle, was dominant

    An experimental investigation into the correlation between Acoustic Emission (AE) and bubble dynamics

    Get PDF
    Bubble and cavitation effects phenomena can be encountered in two-phase gas-liquid systems in industry. In certain industries, particularly high-risk systems such as a nuclear reactor/plant, the detection of bubble dynamics, and the monitoring and measurement of their characteristics are necessary in controlling temperature. While in the petro-chemical engineering industry, such as oil transportation pipelines, the detection and monitoring of bubbles/cavitation phenomena are necessary to minimise surface erosion in fluid carrying components or downstream facilities. The high sensitivity of Acoustic Emission (AE) technology is feasible for the detection and monitoring of bubble phenomena in a two phase gas-liquid system and is practical for application within the industry. Underwater measurement of bubble oscillations has been widely studied using hydrophones and employing acoustic techniques in the audible range. However, the application of Acoustic Emission (AE) technology to monitor bubble size has hitherto not been attempted. This thesis presents an experimental investigation aimed at exploring AEs from gas bubble formation, motion and destruction. AE in this particular investigation covers the frequency range of between 100 kHz to 1000 kHz. The AE waveform analysis showed that the AE parameter from single bubble inception and burst events, i.e. AE amplitude, AE duration and AE energy, increased with the increase of bubble size and liquid viscosity. This finding significantly extends the potential use of AE technology for detecting the presence of bubbles in two-phase flow. It is concluded that bubble activity can be detected and monitored by AE technology both intrusively and non-intrusively. Furthermore, the bubble size can be determined by measurement of the AE and this forms the significant contribution of this thesis.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    A Parametric Study of the Coalescence of Liquid Drops in a Viscous Gas

    Get PDF
    The coalescence of two liquid drops surrounded by a viscous gas is considered in the framework of the conventional model. The problem is solved numerically with particular attention to resolving the very initial stage of the process which only recently has become accessible both experimentally and computationally. A systematic study of the parameter space of practical interest allows the influence of the governing parameters in the system to be identified and the role of viscous gas to be determined. In particular, it is shown that the viscosity of the gas suppresses the formation of toroidal bubble predicted in some cases by early computations where the gas' dynamics was neglected. Focussing computations on the very initial stages of coalescence and considering the large parameter space allows us to examine the accuracy and limits of applicability of various `scaling laws' proposed for different `regimes' and, in doing so, reveal certain inconsistencies in recent works. A comparison to experimental data shows that the conventional model is able to reproduce many qualitative features of the initial stages of coalescence, such as a collapse of calculations onto a `master curve' but, quantitatively, overpredicts the observed speed of coalescence and there are no free parameters to improve the fit. Finally, a phase diagram of parameter space, differing from previously published ones, is used to illustrate the key findings.Comment: Accepted for publication in the Journal of Fluid Mechanic

    Development of a Multi-field Two-fluid Approach for Simulation of Boiling Flows

    Get PDF
    Safe and reliable operation of nuclear power plants is the basic requirement for the utilization of nuclear energy since accidents can release radioactivity and with that cause irreversible damage to human beings. Reliability and safety of nuclear reactors are highly dependent on the stability of thermal hydraulic processes occurring in them. Nucleate boiling occurs in Pressurized Water Reactors (PWRs) and Boiling Water Reactors (BWRs) as well as in their passive safety systems during an accident. Passive safety systems are solely driven by thermal gradients and gravitational force removing residual heat from the reactor core independent of any external power supply in the case of accidents. Instability of flow boiling in these passive circuits can cause flow oscillations. These oscillations may induce insufficient local cooling and mechanical loads, which threatens the reactors’ safety. Analysis of boiling two-phase flow and associated heat and mass transfer requires an accurate modeling of flow regime transitions and prediction of boiling parameters such as void fraction, steam bubble sizes, heat transfer coefficient, etc. Flow boiling has been intensively investigated through experiments, one-dimensional codes, and Computational Fluid Dynamics (CFD) methods. Costly hardware and no accessibility to all locations in complex geometries restrict the experimental investigation of flow boiling. Since one-dimensional codes such as ATHLET, RELAP and TRACE are ”lumped parameter” codes, they are unable to simulate complex flow boiling transition patterns. In the last decades, with the development of supercomputers, CFD has been considered as a useful tool to model heat and mass transfer occurring in flow boiling regimes. In many industrial applications and system designs, CFD codes and particularly the Eulerian-Eulerian (E-E) two-fluid model are quickly replacing the experimental and analytical methods. However, the application of this approach for flow boiling modelling poses a challenge for the development of bubble dynamics and wall boiling models to predict heat and mass transfer at the heating wall as well as phase-change mechanism. Many empirical and mechanistic models have been proposed for bubble dynamics modelling. Nevertheless, the validity of these models for only a narrow range of operating conditions and their uncertainties limit their applicability and consequently presently necessitate us to calibrate them for a given boundary condition via calibration factors. For that reason, the first aim of this thesis is the development of a bubble dynamics model for subcooled boiling flow, which needs no calibration factor to predict the bubble growth and detachment. This mechanistic model is formulated based on the force balance approach, physics of a single nucleated bubble and several well-developed models to cover the whole bubble life cycle including formation, growth and departure. This model considers dynamic inclination angle and contact angles between the bubble and the heating wall as well as the contribution of microlayer evaporation, thermal diffusion and condensation around the bubble cap. Validation against four experimental flow boiling data sets was conducted with no case-dependent recalibration and yielded good agreement. The second goal is the implementation of the developed bubble dynamics model in the E-E two-fluid model as a sub-model to improve the accuracy of boiling flow simulation and reduce the case dependency. This implementation requires an extension of the nucleation site activation and wall heat-partitioning models. The bubble dynamics and heat-partitioning models were coupled with the Population Balance Model (PBM) to handle bubble interactions and predict the Bubble Size Distribution (BSD). In addition, the contribution of bubble sliding to wall heat transfer, which has been rarely considered in other modelling approaches, is considered. Validation for model implementation in the E-E two-fluid model was made with ten experimental cases including R12 and R134a flow boiling in a pipe and an annulus. These test cases cover a wide range of operating parameters such as wall heat flux, fluid velocity, subcooling temperature and pressure. The validated parameters were the bubble diameter, void fraction, bubble velocity, Interfacial Area Density (IAD), bubble passing frequency, liquid and wall temperatures. Two-phase flow morphologies for an upward flow in a vertical heating pipe may change from bubbly to slug, plug, and annular flow. Since these flow patterns have a great impact on the heat and mass transfer rates, an accurate prediction of them is critical. The aim of this thesis is the implementation of the developed bubble dynamics and heat-partitioning models in the recently developed GENeralized TwO-Phase flow (GENTOP) framework for the modelling of these flow patterns transition as well. An adopted wall heat-partitioning model for high void fractions is presented and for a generic test case, flow boiling regimes of water in a vertical heating pipe were modelled using ANSYS CFX 18.2. Moreover, the impacts of wall superheat, subcooling temperature and fluid velocity on the flow boiling transition patterns and the effects of these patterns on the wall heat transfer coefficient were evaluated.:Nomenclature xi 1 Introduction 1 1.1 Background and motivation . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 State-of-the-art in modelling of subcooled flow boiling 11 2.1 Physics of boiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 Bubble growth modelling . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3 CFD simulation of boiling flows . . . . . . . . . . . . . . . . . . . . . 21 2.3.1 The Eulerian-Eulerian two-fluid model . . . . . . . . . . . . . 21 2.3.2 The Population Balance Model (PBM) . . . . . . . . . . . . . 22 2.3.3 Governing equations of the two-fluid model . . . . . . . . . . 25 2.3.4 Closure models for adiabatic bubbly flow . . . . . . . . . . . . 28 2.3.5 Phase transfer models . . . . . . . . . . . . . . . . . . . . . . 37 2.3.6 The Rensselaer Polytechnic Institute (RPI) wall boiling model 37 2.4 Flow boiling transition patterns in vertical pipes . . . . . . . . . . . . 42 2.5 The GENeralized TwO-Phase flow (GENTOP) concept . . . . . . . . . 45 2.5.1 Treatment of the continuous gas . . . . . . . . . . . . . . . . 46 2.5.2 The Algebraic Interfacial Area Density (AIAD) model . . . . . 46 2.6 Interfacial transfers of continuous gas . . . . . . . . . . . . . . . . . 47 2.6.1 Drag and lift forces . . . . . . . . . . . . . . . . . . . . . . . . 48 2.6.2 Cluster and surface tension forces . . . . . . . . . . . . . . . . 49 2.6.3 Complete coalescence . . . . . . . . . . . . . . . . . . . . . . 50 2.6.4 Entrainment modelling . . . . . . . . . . . . . . . . . . . . . . 51 2.6.5 Turbulence modelling . . . . . . . . . . . . . . . . . . . . . . 51 2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3 An improved bubble dynamics model for flow boiling 55 3.1 Modelling of the bubble formation . . . . . . . . . . . . . . . . . . . 55 3.1.1 Bubble growth rate . . . . . . . . . . . . . . . . . . . . . . . . 57 3.1.2 Force balance . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 ix 3.1.3 Detachment criteria . . . . . . . . . . . . . . . . . . . . . . . 63 3.1.4 Wall heat flux model . . . . . . . . . . . . . . . . . . . . . . . 69 3.1.5 Heat transfer in the heating wall . . . . . . . . . . . . . . . . 70 3.2 Results and discussions . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3.2.1 Discretization dependency study . . . . . . . . . . . . . . . . 72 3.2.2 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . 72 3.2.3 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . 79 3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4 An improved wall heat-partitioning model 85 4.1 The cavity group activation model . . . . . . . . . . . . . . . . . . . . 85 4.1.1 Bubble sliding length and influence area . . . . . . . . . . . . 88 4.1.2 Model implementation in the Eulerian-Eulerian framework . . 89 4.2 Results and discussions . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4.2.1 DEBORA experiments . . . . . . . . . . . . . . . . . . . . . . 90 4.2.2 Subcooled flow boiling of R134a in an annulus . . . . . . . . 102 4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 5 Modelling of flow boiling patterns in vertical pipes 115 5.1 Adopted wall heat-partitioning model for high void fractions . . . . . 115 5.2 Results and discussions . . . . . . . . . . . . . . . . . . . . . . . . . . 118 5.2.1 Effect of wall superheat on the flow boiling transition patterns 118 5.2.2 Effect of flow morphologies on the wall heat transfer coefficient124 5.2.3 Comparison of GENTOP and Eulerian-Eulerian two-fluid models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 5.2.4 Effect of subcooling on the flow boiling transition patterns . . 129 5.2.5 Effect of inlet fluid velocity on the flow boiling transition patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 6 Conclusions and outlook 133 6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 6.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 References 137 Declaration 15

    Discrete particle simulation of bubble and slug formation in a two-dimensional gas-fluidised bed: a hard-sphere approach.

    Get PDF
    A discrete particle model of a gas-fluidised bed has been developed and in this the two-dimensional motion of the individual, spherical particles was directly calculated from the forces acting on them, accounting for the interaction between the particles and the interstitial gas phase. Our collision model is based on conservation laws for linear and angular momentum and requires, apart from geometrical factors, two empirical parameters: a restitution coefficient and a friction coefficient. A sequence of collisions is processed using techniques which find their application in hard-sphere simulations which are commonly encountered in the field of molecular dynamics. The hydrodynamic model of the gas phase is based on the volume-averaged Navier-Stokes equations. Simulations of bubble and slug formation in a small two-dimensional bed (height 0.50 m, width 0.15 m) with 2400 particles (dp = 4 mm, material: aluminium, p = 2700 kg m¿3) showed a strong dependency of the flow behaviour with respect to the restitution and friction coefficient. A preliminary experimental validation of our model was performed using a small scale "two-dimensional" gas-fluidised bed (height 0.30 m, width 0.15 m, depth 0.015 m) with 850 ¿m ballotini glass particles (p = 2930 kg m¿3) as the bed material. Results compared fairly well with the results of a simulation which was performed with 40,000 particles using realistic values for the restitution and friction coefficients which were obtained from simple independent experiment
    corecore