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A parametric study of the coalescence of liquid drops in
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The coalescence of two liquid drops surrounded by a viscous gas is considered in the framework of the conven-
tional model. The problem is solved numerically with particular attention to resolving the very initial stage of
the process which only recently has become accessible both experimentally and computationally. A systematic
study of the parameter space of practical interest allows the influence of the governing parameters in the system
to be identified and the role of viscous gas to be determined. In particular, it is shown that the viscosity of
the gas suppresses the formation of toroidal bubbles predicted in some cases by early computations where the
gas’ dynamics was neglected. Focussing computations on the very initial stages of coalescence and considering
the large parameter space allows us to examine the accuracy and limits of applicability of various ‘scaling laws’
proposed for different ‘regimes’ and, in doing so, reveal certain inconsistencies in recent works. A comparison to
experimental data shows that the conventional model is able to reproduce many qualitative features of the initial
stages of coalescence, such as a collapse of calculations onto a ‘master curve’ but, quantitatively, overpredicts
the observed speed of coalescence and there are no free parameters to improve the fit. Finally, a phase diagram
of parameter space, differing from previously published ones, is used to illustrate the key findings.

1. Introduction

When two drops of the same liquid come into contact, a coalescence process merges the two distinct bodies
of liquid into one, after which the resulting single body evolves towards its equilibrium shape (Figure 1). This
process can be observed in a range of natural phenomena and holds the key to a vast number of emerging
technologies such as the ‘3D-printers’ used to additively manufacture complex products by assembling liquid
microdrops in ‘2D-slices’ (Derby 2010) or the coalescence-induced jumping mechanism being harnessed to en-
hance the heat transfer properties of a solid covered by a condensed liquid (Enright et al. 2012). Although the
equilibrium configuration of such systems is sometimes known, the dynamics of the process that leads to it is not
always well understood. An example of unexpected dynamic behaviour is the repeated partial coalescence of an
ever decreasing sized drop with a liquid bath, the so-called ‘coalescence cascade’, observed by ultra high-speed
imaging techniques (Thoroddsen & Takehara 2000).

Although improving optical techniques have made it possible to study small-scale high-speed free-surface
flows (Thoroddsen et al. 2008), they have intrinsic limitations associated with their spatial resolution and, in
particular, are unable to resolve the cusp-like region formed when two drops are pressed into one another, or
when one drop is pressed into a solid (Eddi et al. 2013). As a result, one can often only observe the appearance
of the bridge between the two drops when it has already travelled ∼10% of the initial drop radius, i.e. long after
what one would class as the initial stages of coalescence as such, where the merging of the two liquid bodies
into one has already occurred. An alternative technique, based on measuring the electrical resistance of the
bridge connecting the drops, has been applied in Paulsen et al. (2011, 2014) where, for the first time, the sub-
micron scales of the coalescence phenomenon have been resolved. This offers a unique opportunity to compare
the predictions of the conventional model, i.e. simply the classical equations of hydrodynamics (incompressible
Navier-Stokes equations with the surface tension of the liquid-gas interface assumed constant), which are known
to be ‘singular’ for this problem (Eggers et al. 1999), with the new experiments for the initial stages of the
coalescence phenomenon at unprecedentedly small spatio-temporal scales.

In a recent publication (Sprittles & Shikhmurzaev 2012a), the coalescence of liquid drops in an inviscid
dynamically-passive gas, henceforth referred to as a ‘passive gas’, was computed, in the framework of two different
mathematical models, by adapting a finite-element code initially developed for dynamic wetting phenomena
(Sprittles & Shikhmurzaev 2012c, 2013, 2012b). The results were compared to experiments from both electrical
measurements in Paulsen et al. (2011) and optical ones in Thoroddsen et al. (2005). The first model examined
was the conventional one used in most studies, e.g. in Eggers et al. (1999), and the one considered in this work.
Its essence is that, after the two drops touch at a point, it is assumed that an infinitesimal smooth liquid bridge
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Figure 1. Comparison of our coalescence computations with free spheres in the inertial regime, against experiments in
Paulsen et al. (2012) conducted using 1 mm radii pendant drops of silicone oil with Re = 1.9× 104. The dimensionless
time ti is based on the inertial scale. As can be seen, the neck region is accurately described far beyond the initial stages
of the process even though the global geometry is different.

is formed that connects them, so that the coalescence as such is actually over. The model is concerned with the
subsequent process, namely how the Laplacian capillary pressure due to the highly curved free surface drives the
already formed single body of liquid towards its equilibrium shape. The results of our numerical computations
(Sprittles & Shikhmurzaev 2012a) showed that the conventional model of the coalescence phenomenon, whose
solution is known to contain singularities in, amongst other things, the radial velocity at the start of the process
(Hopper 1984, 1990, 1993a,b; Richardson 1992), overshoots experimental data from Paulsen et al. (2011), i.e.
it overpredicts the speed at which coalescence occurs, whilst a singularity-free model, incorporating interface
formation dynamics (Shikhmurzaev 2007), captures the data more accurately. This model has recently been the
subject of further, more detailed, investigation in Sprittles & Shikhmurzaev (2014a).

Notably, in Sprittles & Shikhmurzaev (2012a) the main emphasis was on a direct comparison between the two
aforementioned models and experimental data. In contrast, here our attention will be focussed entirely on the
conventional model, which, so far, remains the most popular approach to describe such flows, with computations
resolving both the fine-scales associated with the initial bridge propagation right through to the scales on which
the overall dynamics of the coalescing drops comes into play. In particular, we will report on the results of a
full parametric study of the coalescence process which allowed us to (a) determine the role of parameters in the
model; (b) identify different ‘regimes’ proposed in the published literature and the crossovers between them; and
(c) calculate the accuracy of ‘scalings’ proposed for these regimes. As a result of the comprehensive comparison
between our computations and previous theoretical works on the coalescence phenomenon we will identify a
number of discrepancies in the previous published literature.

Furthermore, given that, as shown in Sprittles & Shikhmurzaev (2012a), the conventional model overpredicts
the speed of coalescence compared to data from experiments, where the exterior fluid was air, i.e. a viscous
gas, one could argue that the overshoot could, perhaps, be attributed to the neglect of the gas’ dynamics. For
example, one may argue that the high pressures needed to squeeze the gas out of the cusp-like region at the
bridge-front, if accounted for in the model, could slow the front down. Therefore, in the present paper, we also
include two-phase calculations of the coalescence phenomenon into our parametric study and make a direct
comparison of the results to the experimental data.

2. Asymptotic results and ‘scaling laws’ for the coalescence of liquid drops

Simplified expressions for the coalescence event which are valid in different ‘regimes’, have gained popularity
due to their simplicity compared to the full-scale theoretical description for, in particular, providing explicit
formulas to fit experimental data. On the theoretical level, in the framework of the conventional model, the most
commonly used results are those in Hopper (1984), where conformal mapping techniques have been used to derive
an exact solution to the problem of two-dimensional viscous-dominated coalescence. On the level of the scaling
laws, the most frequently used ones were derived in Eggers et al. (1999), for both viscous- and inertia-dominated
coalescence. The recent results in Paulsen et al. (2012) suggest the existence of a third inertially-limited viscous
regime which precedes all others. The results of these works will be subject to scrutiny in the forthcoming
sections, and are therefore now briefly described.

2.1. Viscous-dominated regime

The natural scale for velocity in this regime is given by Uv = σ/µ, where µ is the liquid’s viscosity and σ is
the surface tension of the liquid-gas interface, so that the capillary number Ca = µUv/σ = 1. The appropriate
time scale is then Tv = Rµ/σ, where R is the drop’s initial radius, which is the characteristic length scale in
all regimes. The Reynolds number then becomes Re = ρσR/µ2, where ρ is the liquid’s density. Alternatively,
some works, e.g. Paulsen et al. (2012), characterise the coalescence in terms of the Ohnesorge number which is
related to the Reynolds number by Oh = Re−1/2. Henceforth, unless denoted by a subscript ‘dim’ to denote
‘dimensional’, all quantities will be assumed dimensionless.
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2.1.1. Exact solution in Hopper (1984)

The exact result obtained in Hopper (1984) gives the entire two-dimensional shape of two identical coalescing
cylinders, described by Stokes flow, in a passive gas as a function of time. What will be of most interest to us in
characterising the coalescence event are the bridge radius r and height of the drops h (Figure 2) as a function
of time t, which are given by

r =
√

2(1−m)(1 +m2)−1/2, h =
√

2(1 +m)(1 +m2)−1/2 (2.1)

where the parameter m is related to the time by

t =
π
√

2

4

∫ 1

m2

[
τ(1 + τ)1/2K(τ)

]−1

dτ, K(τ) =

∫ 1

0

[
(1− x2)(1− τx2)

]
dx, (2.2)

an expression which can easily be evaluated numerically.

2.1.2. Scaling law in Eggers et al. (1999)

The scaling laws in Eggers et al. (1999) are derived by balancing the driving capillary pressure σκ, where κ
is the curvature at the bridge front, with the key resistive mechanism, i.e. either viscous or inertial forces. In
both cases, the driving force is shown to result primarily from the longitudinal curvature so that κ ∝ 1/d(t),
where d(t) is the longitudinal radius of curvature at the bridge front (Figure 2).

In the viscous-dominated case, it is shown that, local to the bridge front for r � 1, the two-dimensional
solution from Hopper (1984) can be used to provide the radius of curvature, which scales like rα, where α = 3.
In other words, it is assumed that the evolution of 2D and 3D drops are identical in the initial stages. It is then
further argued that α = 3/2 when the gas has some viscosity µg.

As a result, the expression for the (dimensionless) bridge radius for r � 1 has the form

r = −Cvt ln t, Cv =
(α− 1)

2π
, α =

{
3, µ̄ = 0;
3/2, µ̄ > 0.

(2.3)

Notably, and somewhat counter-intuitively, when the external fluid is regarded to be viscous, the form of
equation (2.3) does not depend on the gas-to-liquid viscosity ratio µ̄ = µg/µ, and it is only α which changes
from 3 to 3/2, although, it is specified in Eggers et al. (1999) that the region of applicability of the formula
should depend on this parameter; (2.3) is expected to hold for r < µ̄2/3.

2.2. Inertia-dominated regime

The characteristic scale for velocity in the inertia-dominated regime is obtained by setting the Weber number
to unity, so that Ui =

√
σ/(ρR). The characteristic time scale for this regime is then given by Ti =

√
ρR3/σ.

The Reynolds number in the inertia-dominated regime Rei is related to the one in the viscous regime Re by
Rei = Re1/2.

In Eggers et al. (1999), it is suggested that the driving capillary pressure due to the surface tension and based
on the longitudinal curvature obtained from the undisturbed free-surface shape of the drops d(t) ∼ r2dim(tdim)/R

is balanced by the dynamic pressure ρ (drdim/dtdim)
2
. As a result, one has rdim/R = Ci (tdim/Ti)

1/2
, where Ci

is a constant of proportionality, so that, once non-dimensionalised by our characteristic scales in this regime,
the scaling law takes the form

r = Cit
1/2
i . (2.4)

where ti is time made dimensionless by Ti.
Notably, in contrast to (2.3), there is no closed-form expression for r(t), as the expression contains an unknown

prefactor. These issues are addressed in further detail in Sprittles & Shikhmurzaev (2014b).

2.3. Inertially-limited viscous regime

Recently, an ‘inertially-limited viscous’ (ILV) regime has been shown in Paulsen et al. (2012), through a combi-
nation of experimental and computational techniques, to precede either the viscosity-dominated regime or the
inertia-dominated one, for non-zero values of Re, see also Paulsen (2013); Paulsen et al. (2014). In particular, it
is noted that in Hopper’s exact solution (2.1), for Stokes flow, once coalescence commences, the entire volume
of each drop is translated towards the other, so that the motion cannot be considered as ‘local’ to the neck
region, as in (2.3) and (2.4). Such global motion can be observed, for example, by measuring the height of the
drops, i.e. a position far away from the bridge, as a function of time.

In Paulsen et al. (2012), it is shown that for finite Re the neck must reach a finite radius before it has enough
force to create this global motion; until it does so, it is in the ILV regime. Experiments suggest that in this
regime the bridge propagates at a constant speed, which is simply determined from dimensional analysis to be
Uv. This gives

r = Cvt. (2.5)

where, in contrast to (2.3), Cv is an a-priori unknown prefactor.



4 J.E. Sprittles and Y.D. Shikhmurzaev

Figure 2. A definition sketch for the coalescence of two identical ‘pinned hemispheres’ grown from syringes (left) and
a sketch of coalescing ‘free spheres’ (right) showing the bridge radius rb and apex height h. In the results section, the
bridge radius will simply be denoted as r.

3. Overview of the study

Although many experimental and theoretical studies have considered the various regimes, and the crossovers
between them, there has been no systematic parametric study of the system using a full-scale theoretical
description accounting for viscous, inertial and capillary effects as well as the influence of the ambient fluid
surrounding the coalescing drops. Furthermore, computations have tended to either focus on only the very
initial stages of the process, often using boundary integral methods to look only at the viscous regime (Eggers
et al. 1999) or the inertial one (Oguz & Prosperetti 1989; Duchemin et al. 2003), or on the global dynamics,
with the initial stages not considered. As a result, in none of these works have the influence of a viscous gas
been considered in detail. It is this gap in the theoretical research on coalescence which we shall now address
and, as a by-product, uncover and examine various inconsistencies in the published literature.

In section 4, the problem formulation is given for both the case of free spheres coalescing as well as the
pinned hemispherical drop configuration often considered experimentally (Figure 2). Section 5 describes the
main elements of our computational approach including, when required, references to more detailed expositions.
Results are presented in section 6, where a full systematic study of parameter space is performed which elucidates,
in particular, the effect of both the liquid’s and the outer gas’ properties. At each stage, a detailed comparison
with the previous literature, summarised in section 2, is provided. The full parametric study is followed by a
comparison to experimental results both from qualitative and quantitative perspective in section 7. The results
from sections 6 and 7 are tied in with the published literature in section 8, where it proves illustrative to
represent our findings with a phase diagram. Final conclusions and, motivated by our results, suggestions for
new directions of experimental and theoretical research are given in section 9.

4. Problem formulation

Two different geometries will be considered in this work (Figure 2) both regarding the axisymmetric coa-
lescence of liquid drops formulated in the standard way. The majority of calculations will be for the typical
experimental setup in which hemispherical drops are grown from syringes and surrounded by a viscous gas but
at certain points we will also be compelled to study the case of coalescing free spheres.

It has previously been demonstrated that, for the parameter regimes considered, in the initial stages of coa-
lescence the effects of gravity can be ignored (Sprittles & Shikhmurzaev 2012a), so that the problem becomes
symmetric and can be reduced to determining the motion of one drop in the (r, z)-plane of a cylindrical coordi-
nate system with the symmetry conditions on the z = 0 plane at which the drops initially touch (Figure 2). The
syringe, when considered, is taken to be a semi-infinite cylinder with zero-thickness walls located at r = 1, z > 1
which separates the liquid phase r < 1 from the gas r > 1, where the lengths are scaled with the radius of each
drop R. The precise far field conditions, i.e. those associated with the syringe head, have a negligible effect on
the initial stages of coalescence (Sprittles & Shikhmurzaev 2012a).

Both fluids, i.e. the liquid forming the drops and the ambient gas, are considered to be incompressible and
Newtonian with constant densities ρ, ρg and viscosities µ, µg. As before and henceforth, the subscript g refers
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to properties of the gas. The fluids occupy domains Ω and Ωg, respectively (Figure 2). To non-dimensionalise
the system of the governing equations for the bulk variables, we use the drop radius R as the characteristic
length scale, Uv as the scale for velocities, Tv as the time scale and σ/R as the scale for pressure. Then, the
continuity and momentum balance equations in the two phases take the form

∇ · u = 0, Re

[
∂u

∂t
+ u · ∇u

]
= ∇ ·P; P = −pI +

[
∇u + (∇u)

T
]
, r ∈ Ω (4.1)

∇ · ug = 0, ρ̄Re

[
∂ug
∂t

+ ug · ∇ug
]

= ∇ ·Pg; Pg = −pgI + µ̄
[
∇ug + (∇ug)T

]
, r ∈ Ωg (4.2)

where P, u and p are the stress tensor, velocity and pressure in the fluid; I is the metric tensor of the coor-
dinate system. The non-dimensional parameters are the Reynolds number Re = ρσR/µ2 based on the liquid’s
properties, the gas-to-liquid density ratio ρ̄ = ρg/ρ and the corresponding viscosity ratio µ̄ = µg/µ.

Here, we have assumed that both the liquid and gas are incompressible so that the Mach number M = U/a,
where a is the speed of sound, in each fluid is small throughout the drops’ motion. The fastest speed will be at
the bridge front for the coalescence of the lowest-viscosity drops considered, and the largest Mach number will
be in the air phase, where a ∼ 340 m s−1 as opposed to the liquid where it is many times larger. A good estimate
for the maximum speed U , as confirmed a-posteriori by computations, is the capillary speed Uv = σ/µ which is
a maximum of 20 m s−1 for the liquids considered giving in the air phase M = 0.06. Thus, our assumption of
incompressibility is well justified, especially given that in the well-known isentropic formulas of gas dynamics
the magnitude of the density variation is proportional to M2.

The conventional boundary conditions used for free-surface flows are the kinematic condition, stating that the
fluid particles forming the free surface stay on the free surface at all time; the continuity of both components of
velocity across the interface; and the balance of tangential and normal forces acting on an element of the free
surface from the two bulk phases and from the neighbouring surface elements:

∂f

∂t
+ u · ∇f = 0, ug = u, (4.3)

n · (P−Pg) · (I− nn) = 0, n · (P−Pg) · n = ∇ · n. (4.4)

Here f(r, z, t) = 0 describes the a priori unknown free-surface shape, with the unit normal vector n = ∇f/|∇f |
pointing into the liquid, and the tensor (I−nn) extracts the component of a vector parallel to the surface with
the normal n.

At the plane of symmetry z = 0, the standard symmetry conditions of impermeability and zero tangential
stress are applied

u · ns = 0, ns ·P · (I− nsns) = 0, r ∈ ∂Ω; (4.5)

ug · ns = 0, ns ·Pg · (I− nsns) = 0, r ∈ ∂Ωg, (4.6)

where ns is the unit normal to the plane of symmetry. In the conventional model we are studying here, the free
surface is assumed to always be smooth so that where it meets the plane of symmetry we have n · ns = 0.

On the axis of symmetry r = 0, the standard normal and tangential velocity condition state that the velocity
has only the component parallel to the axis and the radial derivative of this component is zero (the velocity
field is smooth at the axis),

u · na = 0,
∂

∂r
[u · (I− nana)] = 0, r = 0; (4.7)

where na is the unit normal to the axis of symmetry in the (r, z)-plane.
For the case of coalescing free spheres, the free surface is assumed smooth at the apex r = 0, z = h(t) so

that n · na = 0 there, whilst the case of coalescing pinned hemispheres requires more conditions to account for
the presence of the syringe. Specifically, at the point in the (r, z)-plane where the (initially hemispherical) free
surface meets the syringe tip, we have a pinned contact-line:

f(1, 1, t) = 0 (t ≥ 0). (4.8)

It is assumed that in the far field, the exterior gas and the liquid inside the syringe are at rest, so that

u, ug → 0 as r2 + z2 →∞, (4.9)

whilst on the cylinder’s surface, no-slip is applied

u = ug = 0 at r = 1, z ≥ 1. (4.10)

The conventional model postulates that, once the drops come into contact, they produce a smooth free surface,
i.e. they coalesce on the sub-fluid-mechanical scale and round the corner enforced by the drops’ configuration
at the moment of touching. A bridge of zero radius with infinite azimuthal and longitudinal curvatures of the
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free surface is obviously a singular configuration and hence cannot be used as a starting point for computation;
one has to use an approximation to this configuration, i.e. specify the initial shape as having, near the origin, a
tiny but finite-size bridge with some radius rmin > 0, where the free surface crosses the plane of symmetry at a
right angle. By introducing explicitly the radius rmin from which our computations start, we ensure that they
are mesh-independent under refinement, unlike those studies in which the initial bridge radius was defined in
terms of the mesh, e.g. Menchaca-Rocha et al. (2001). Then, we can study the effect of a finite rmin separately.

The free-surface shape far away from the origin (i.e. from the point of the initial contact) is initially the
undisturbed hemispherical/spherical drop. A shape which satisfies these criteria can be taken from Hopper
(1984), i.e. the analytic two-dimensional solution to the problem for Stokes flow. In parametric form, the initial
free-surface shape is taken to be

r(θ) =
√

2
[
(1−m2)(1 +m2)−1/2(1 + 2m cos (2θ) +m2)−1

]
(1 +m) cos θ,

z(θ) =
√

2
[
(1−m2)(1 +m2)−1/2(1 + 2m cos (2θ) +m2)−1

]
(1−m) sin θ, (4.11)

for 0 < θ < θu, where m is chosen such that r(0) = rmin is the initial bridge radius, which we choose, and θu
is chosen such that r(θu) = z(θu) = 1 for hemispherical drops and r(θu) = 0 for spherical ones. Notably, for
rmin → 0 we have m→ 1 and r2 +(z−1)2 = 1, i.e. the drop’s profile is a semicircle of unit radius which touches
the plane of symmetry at the origin as required.

An alternative approach, considered briefly in §6.1, is to start the simulation with a truncated sphere of radius
rmin which meets the plane-of-symmetry at an angle θ = 180◦ and then to rapidly change θ until a smooth free
surface (θ = 90◦) is obtained. To do so, one can prescribe the angle θ(t) = 180◦ − 90◦ min(1, t/Tr) where Tr is
the timescale over which the free surface is ‘rounded’.

Finally, we need to prescribe the fluid initial velocities in the two phases, which we will assume to be zero:

u = ug = 0 at t = 0. (4.12)

This condition is based on the assumption that the drops are brought together slowly. Computations confirm
that if instead the maximum possible approach velocity 8× 10−5m s−1 from the experiments in Paulsen et al.
(2011) is used to formulate an initial condition, then the results obtained are graphically indistinguishable from
those presented. This is to be expected as the initial bridge speeds are many times larger than the approach
speeds used.

5. Computational approach

In order to tackle the coalescence phenomenon in its entirety, we must solve a two-phase free-boundary problem
with effects of viscosity, inertia and capillarity all present, so that a computational approach is unavoidable. To
do so, we use a finite-element framework which was originally developed for dynamic wetting flows and has been
thoroughly tested in Sprittles & Shikhmurzaev (2012c, 2013) as well as being applied to flows undergoing high
free-surface deformation in Sprittles & Shikhmurzaev (2012b), namely microdrop impact onto and spreading
over a solid surface. Notably, the method has been specifically designed for multiscale flows, so that the very
small length scales associated with the early stages of coalescence can be captured alongside the global dynamics
of the two drops’ behaviour. In other words, all of the spatio-temporal scales which are resolved in the electrical
experiments mentioned earlier (Paulsen et al. 2011), as well as the scales associated with later stages of the
drop’s evolution, which are accessible to optical observation, can, for the first time, be simultaneously resolved.
A user-friendly step-by-step guide to the implementation of the method has already been provided (Sprittles
& Shikhmurzaev 2012c, 2013) and, although this is for a single-phase flow, the extension to a two-phase flow
is a relatively straightforward procedure which doesn’t introduce any conceptually new ideas to the framework
already used. This code has also been benchmarked in Sprittles & Shikhmurzaev (2012a) against previous
simulations of coalescence in Paulsen et al. (2012) at the scales resolved in that work.

The computational domain is truncated, so that ‘far-field’ conditions on the gas and the liquid in the cylinder
must be applied at a finite distance from the origin. To do so, we apply ‘soft’ conditions on these boundaries
and ensure that these boundaries are sufficiently far from the coalescing hemispheres that neither the conditions
specified there nor any further increase of rfar and zfar (Figure 2) have any influence on the drops’ dynamics.

6. Parametric Study

A systematic study of the governing parameters in the coalescence process will now be considered and then,
in §7, the results will be compared to available experimental data. An advantage of this approach is that the
parameters can be independently varied in the computations whereas in the experiments often it is the viscosity
which is varied, so that Re and µ̄ are related, which makes isolating the effect of each parameter more difficult.
Our approach here will be to consider the simplest possible setup first, and then add layers of complexity. For
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Figure 3. Bridge radius as a function of time for the case Re = 0 compared to Hopper’s solution (2.1), the dashed line.
Curve 1 is for three-dimensional free spheres with rmin = 10−4, curve 2 the same except that rmin = 10−3 and curve 3
is for two-dimensional free cylinders (rmin = 10−4).

example, first of all a passive gas will be considered (µ̄ = ρ̄ = 0), and only once the role of the remaining
parameters has been established will the gas dynamics be considered. Once the full parametric study and
comparison to experiment have been performed, this will all be tied together with the published literature in
§8.

To understand the different regimes of drop coalescence, the appropriate scalings in these regimes, the
crossover between them and their comparison to experiments which are able to capture many decades of bridge
radius, results will be given on log-log plots.

6.1. Influence of initial conditions, dimensionality and geometry

To estimate the influence of the initial conditions compared to the solution obtained as the initial bridge radius
rmin → 0, computations for finite rmin are compared to Hopper’s solution (2.1) which was obtained for the
inertialess coalescence of two-dimensional liquid cylinders. The possible effect of errors associated with a finite
initial radius is particularly important when considering the initial stages of motion where small changes in the
initial time can sometimes drastically alter the agreement between experiments and scalings, see (Thoroddsen
et al. 2005, §5.3). To be consistent with Hopper’s solution, we will take Re = 0 and consider the gas to be
passive.

6.1.1. Effect of finite minimum radius

Simulations shown in Figure 3, performed for rmin = 10−4, show that the computed solution (curve 3) for the
bridge radius of free cylinders coalescing is graphically indistinguishable from Hopper’s exact solution (dashed
line) from r = 10−3 (marked by the lower horizontal dash-dot line) onwards. This is despite the fact that
in Hopper’s solution at t = 0 the bridge radius is infinitesimal whereas in the computations r = 10−4. As a
consequence of the observed agreement from r = 10−3, we do not have to concern ourselves with calculating
the time t0 at which the bridge would reach a radius rmin, and then subtract this from the time elapsed in the
computation t, i.e. to plot r against t − t0; instead, we can simply plot computations from r = 10−3 knowing
that the error associated with starting at a finite bridge radius is negligible.

6.1.2. Equivalence of two-dimensional and three-dimensional solutions

Although Hopper’s solution is strictly valid only for two-dimensional motion, results in Eggers et al. (1999)
and Paulsen et al. (2012) suggest that this expression may also approximate the initial stages of the axisymmetric
three-dimensional solution as well. The curves in Figure 3 confirm that this is the case: curves 1 and 3 obtained
for coalescing spheres and cylinders, respectively, are graphically indistinguishable up to at least r = 10−1

(upper horizontal dash-dot line). Clearly, at longer times the two curves must diverge as the two configurations
have different equilibrium bridge radii reqm, with reqm = 21/2 = 1.41 for cylinders and reqm = 21/3 = 1.26 for
spheres.

To re-enforce our arguments about the effect of the initial bridge radius, computations for free spheres with
a larger rmin = 10−3 are shown by curve 2 in Figure 3 and it can be seen that in this case after r = 10−2 the
curve falls on top of the computed solution for rmin = 10−4 (curve 1) and hence also Hopper’s solution. Thus,
for both rmin considered, at r = 10rmin the curves are insensitive to the finite initial radius used. Notably,
computations confirm that for the range of Re considered in this work, similar levels of insensitivity to the
initial finite radius were observed.



8 J.E. Sprittles and Y.D. Shikhmurzaev

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
−4

10
−3

10
−2

10
−1

10
0 r 1

t

2

Figure 4. Bridge radius as a function of time for the case Re = 0 for free spheres for (curve 1) and pinned hemispheres
(curve 2). The dashed lined is Hopper’s solution (2.1).

6.1.3. Effect of geometry

In Figure 4, the evolution of the bridge radius for the coalescence of three-dimensional free spheres (curve
1) and pinned hemispheres (curve 2) is shown. Very slight deviations between the two curves are observed for
the entire time; however, until r = 10−1 these differences are so small that they are likely to fall below the
resolution of any experimental accuracy. Therefore, the effect of geometry can be considered negligible until
r = 10−1 after which the bridge of pinned hemispheres is slower as it asymptotes to a smaller equilibrium radius
of reqm = 0.71 than the free spheres (reqm = 1.26).

Notably, the case Re = 0 is most likely to highlight any effect of the global geometry (far away from the
bridge) on the initial stages of the bridge’s evolution as at finite Reynolds number, as we will see later, the flow
near the bridge will be more ‘localised’ in comparison to Stokes flow, where the entire body of fluid moves from
t = 0.

6.1.4. Effect of initial free surface shape

To further re-enforce the point, that the effect of our initial conditions is negligible from r = 10−3, we have
compared the two different start-up strategies proposed in §4, namely to either (a) use Hopper’s solution as
an initial condition for the free surface shape or (b) use a truncated sphere and make the free surface smooth
where it meets the plane of symmetry over a time-scale Tr, which we choose here to be Tr = 10−5. Again, from
r = 10−3, the curves obtained from either start-up strategy were seen to be graphically indistinguishable.

6.1.5. Summary

For rmin = 10−4, from 10−3 < r < 10−1, i.e. what will be considered as the ‘initial stages of motion’, the
bridge evolution of the coalescing drops is graphically indistinguishable:
• From those obtained for rmin = 0.
• For spheres and cylinders of the same radius.
• For free spheres and pinned hemispheres

6.2. Effect of the Reynolds number

If the parameters governing the initial configuration are fixed, and the gas is still passive, then the only parameter
remaining is the Reynolds number Re. Unless specified, computations are with pinned hemispheres, which in
all cases considered give the same behaviour as free spheres up to at least r = 0.1.

6.2.1. Small Reynolds numbers: Re ≤ 1

All curves for Re ≤ 1 are seen to be graphically indistinguishable on a log-log plot from those obtained for
Re = 0 in Figure 5. This is an intriguing result: measurements of the bridge radius show no evidence of an ILV
regime for Re ≤ 1.

As can be seen from curve 2 in Figure 6, for Re ≤ 1 it is Hopper’s exact solution (2.1) that provides the
best approximation of the computed bridge front evolution for r < 0.1, confirming again that this range is
described by inertialess Stokes flow. In other words, we are in what has classically been referred to as a ‘viscous
regime’. Curve 3 is the expression (2.3) from Eggers et al. (1999), which is an asymptotic approximation of
Hopper’s solution (curve 2). It is seen to be inaccurate in the range 10−3 < r < 10−1 of interest, as suggested in
Eggers et al. (1999) where r < 0.03 is said to be the range of applicability of their formula. In a previous work
(Sprittles & Shikhmurzaev 2012a), this expression was shown to describe reasonably the conventional model
when Cv = Cv(Re) in (2.3) was fitted, which, strictly speaking, it should not be, as (2.3) was originally derived
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Figure 5. Bridge radius as a function of time for a variety of different Reynolds numbers. Curve 0 is for Re = 0
(curves for Re ≤ 1 are graphically indistinguishable from it), 1: Re = 101, 2: Re = 102, 3: Re = 103 and 4: Re = 104.
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Figure 6. Comparison of the full numerical solution for Re = 0 (and hence all Re ≤ 1) curve 0 with scalings and the
exact solution for free cylinders. Curve 1: linear plot (2.5) of r = 3t; curve 2: Hopper’s solution for free cylinders (2.1);
curve 3: formula (2.3) for a passive gas, i.e. r = −(1/π)t ln t. It is clear that Hopper’s solution best approximates the full
numerical solution.

as an approximation to the exact expression (2.1). Notably, the linear expression (curve 1), indicative of the
ILV regime, is also seen to diverge from the computed result (curve 0).

6.2.2. Large Reynolds numbers: Re ≥ 1

From Figure 5, it can be seen that curve 1, for Re = 10, has diverged noticeably from the Stokes flow solution
(curve 0) by around r = 0.1. A further increase in the Reynolds number to Re = 100 (curve 2) ensures no
agreement with the Stokes solution, although the divergence is rather small for r < 0.01. Clearly, once Re ≥ 103

significant deviations from the Stokes flow solution are seen, so that inertial effects are becoming increasingly
important.

Given that the inertial regime is characterised by a different time scale Ti = (ρR3/σ)1/2 as opposed to
Tv = µR/σ, in Figure 7 we plot the curves of Figure 5 against the (dimensionless) inertial time ti = t(Tv/Ti) =
t/Re1/2 instead of the viscous one.

The ‘inertial regime’ itself is usually characterised by the scaling in (2.4), and by fitting the prefactor (Ci = 1.5)
to the curve from the highest Reynolds number considered (curve 4), we obtain the dashed line A2 in Figure 7.
One can see that at Re = 104 (curve 4), the inertial scaling (curve A2) approaches the full numerical solution
at around r = 10−2, which is consistent with the inertial regime being entered when r ∼ Re−1/2. For the case
of Re = 103 (curve 3), fitting (2.5) to the early time behaviour gives dashed line A1, so that if the crossover
is defined where curve A2 meets curve A1, as considered in Paulsen et al. (2011), this will occur at around
r ∼ 2× 10−2, i.e. again at r ∼ Re−1/2 = 10−3/2 = 3× 10−2. The details of this crossover will be considered in
far greater details in §7.1.

Notably, the scaling (2.4) has a rather limited region of applicability, even when Re is sufficiently large to
ensure the drops are in an ‘inertial regime’. This aspect is considered in detail in Sprittles & Shikhmurzaev
(2014b), where an improved scaling law for this regime is derived and shown to agree well with both the
fully-computed solution as well as a range of experimental data from the published literature.

For Re = 102 (curve 2) and Re = 101 (curve 1), both (2.1) and (2.4) fail to approximate any of the observed
behaviour, meaning that this is a region of parameter space where both the viscous and inertial forces are
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dashed line A1 is for (2.5), i.e. a linear curve (r = 70ti) and A2 is for (2.4), i.e. the scaling r = 1.5t
1/2
i = 1.5t1/2/Re1/4

important, so that simplified expressions based on neglecting either of these will be inherently inaccurate. This
area of parameter space will later be referred to as the ‘transition’ region and will be rigorously defined in §8.

6.2.3. Global motion and the ILV regime

It has been shown that for Re ≤ 1, the early stage of the bridge’s propagation is well approximated by
Hopper’s solution (2.1) for free cylinders whilst for Re > 1 all of the proposed expressions fail to describe the
initial stages of motion. At first sight, this appears to contradict the results of Paulsen et al. (2012), where it
was shown that for Re ≤ 1 (Oh > 1), an ILV regime is present where inertia cannot be neglected, so that (2.1)
does not hold. Simulations and experiments on free spheres confirmed, by measuring the speed at which the
centres of the drops move towards each other, that the Stokes flow solution does not accurately describe the
global motion of the drops in the very initial stages of motion.

In Figure 8, we plot the results of simulations performed using free spheres, showing the distance which the
apex height h of the drop (Figure 2) has moved from its initial position h0 = 2 as a function of bridge’s radius.
This is a measure indicative of the influence of the coalescence dynamics on the three-dimensional global motion
and thus Hopper’s two-dimensional solution cannot provide an approximate expression for the evolution of h.
From Figure 8, we can see that even at very small Reynolds number, the curves do not immediately fall onto
the computed Stokes flow solution (curve 0), as could have been anticipated from the results in Paulsen et al.
(2012). For example, at Re = 10−3 (curve 1), the bridge travels as far as r = 0.1 before it approaches the Stokes
flow solution. For Re = 10−2 (curve 2), it is r = 0.2 and for Re = 10−1 (curve 3) it takes until r = 0.6. At higher
Reynolds number, the Stokes flow solution is not approached until the drop starts to reach its equilibrium state.

Thus, as first observed in Paulsen et al. (2012), for 0 < Re ≤ 1 it takes a certain time until the global motion
of the drops is approximately described by the Stokes flow solution. However, during this period, the bridge
radius is described perfectly by the Stokes flow solution. Therefore, we find that the ILV regime is a description
of the global motion of the drops, as opposed to being an expression for the local bridge front evolution, as
originally suggested. This means that there is a boundary layer around the bridge front region, which grows in
time and inside which the flow is inertialess. Outside this region it is the inertial effects that are important, so
that the bridge evolution can be described by Stokes flow solution whilst the global motion of the drops takes
some time to follow this behaviour.

6.2.4. Summary

It has been shown that in the initial stages of coalescence (10−3 < r < 10−1) described in the framework of
the conventional model, for Re ≤ 1:
• The bridge propagation is described by (2.1), i.e. by Stokes flow theory. Neither (2.3) nor (2.4) are accurate.
• The ILV regime describes the global motion and can be observed by monitoring the motion of the apex of

free spheres.
For Re > 1:
• For Re ≤ 102 a truly inertial regime, with Ci in (2.4) fixed, is never reached.

• For Re ≥ 103 an inertial regime is entered when r ∼ Re−1/2 after which r ' 1.5t
1/2
i .

6.3. The influence of a viscous gas

Having established the role of the parameters for coalescence in a passive gas, we now consider how a dynamically-
active viscous gas will effect the process. To estimate reasonable parameter values, consider typical liquids with
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Figure 9. Free surface profiles for the case of two low-viscosity liquid drops (Re = 104) coalescing in a passive gas,
calculated in the framework of the conventional model, showing the formation of a toroidal bubble (recalling that z = 0
is a plane of symmetry) at location ‘B’. Curves 1-6 are in equal time steps from t = 0 through to t = 10−7 with curve 7,
at the time when the free surface touches the plane of symmetry (z = 0), at t = 1.14× 10−7. This bubble does not form
if the dynamics of the viscous ambient gas is accounted for.

viscosities µ ∼ 10−3–10 Pa s and densities ρ ∼ 103 kg m−3, in contact with gases at atmospheric pressure having
µg ∼ 10 µPa s and ρg ∼ 1 kg m−3. Then µ̄ ∼ 10−6–10−2 and ρ̄ ∼ 10−3.

6.3.1. Toroidal bubbles: suppression of their formation by a viscous gas

Before examining the quantitative effect which a viscous gas has on the propagation of the bridge front, we
will look at the qualitative behaviour of the system in the early stages of coalescence of low-viscosity drops,
where toroidal bubbles have been obtained in local inviscid boundary-integral calculations (Oguz & Prosperetti
1989; Duchemin et al. 2003). A trail of toroidal bubbles are formed at high Re when capillary waves generated
by the disturbance to the free-surface shape caused by the bridge propagation have a large enough amplitude
to reconnect in front of the bridge (Figure 9). Notably, although the bubble formed in Figure 9 for Re = 104,
located at ‘B’, has microscopic dimensions for typical drop sizes, this bubble, should it appear, is likely to be
the first in a trail of bubbles of increasing size, as shown in Duchemin et al. (2003), so that the question as to
whether or not this initial bubble forms is indicative of whether or not macroscopic bubbles could be generated
and experimentally detected. In fact, the end of the toroidal bubble formation stage is indicated by a slight
‘kink’ in curve 4 of Figure 5 (at r, t ∼ 10−2), which disappears when the gas’ viscosity is accounted for (c.f.
curve 3 in Figure 12). As explained in Sprittles & Shikhmurzaev (2012a), current computational approaches
do not accurately capture toroidal bubble formation, but since these bubbles, as shown below, are unphysical,
there is little motivation to develop the advanced techniques required to do so.

As the predicted toroidal bubbles have never been observed experimentally, it is of particular interest to see
if the presence of a viscous gas is able to suppress their formation. This cannot be inferred from previous works
which consider either no inertial effects, so that there is no mechanism for bubble formation (Eggers et al. 1999);
no viscous effects, so that bubble formation cannot be suppressed by the gas (Duchemin et al. 2003); or no gas
dynamics at all, as in previous computational works (Sprittles & Shikhmurzaev 2012a; Paulsen et al. 2012).

In Figure 10, we show the results of calculations for the coalescence of low viscosity drops (also Re = 104) in
air (µ̄ = 6 × 10−3). As one can clearly see, a viscous gas acts as a barrier to toroidal bubble formation, which



12 J.E. Sprittles and Y.D. Shikhmurzaev

0  0.2 0.4 0.6 0.8 1  
0  

0.2

0.4

0.6

0.8

1  
z × 102

r × 10

z = 0.2 r 3/2

2

1

Figure 10. Free surface profiles for the case of two low-viscosity liquid drops (Re = 104) coalescing in a viscous gas with
µ̄ = 6 × 10−3 calculated in the framework of the conventional model. The dashed line shows the scaling for the height
(i.e. distance from the plane of symmetry) of the gas bubble predicted in Eggers et al. (1999) as a function of bridge
front radius. Note that the scales in the r- and the z-directions are different, so that the cross-section of the trapped air
bubble in front of the bridge is actually more circular than it appears here. The profiles correspond to different times
from the onset of coalescence; curve 1 correspond to t = 2.3×10−2 and curve 2 to t = 3.5×10−2, with equal time-spacing
in between and outside.

results in an entirely different behaviour of the free surface from that previously observed for a passive gas, i.e.
physically a vacuum, where toroidal bubbles are formed (Figure 9). It can be seen that the propagating bridge
creates a capillary wave and pushes a gradually growing pocket of air in front of itself, and it is the dynamics of
this pocket of air that now prevents the free surface of each of the drops from reaching the plane of symmetry,
reconnecting, and trapping a toroidal bubble of air.

As can be seen, the computed free-surface shape is consistent with the predictions in Eggers et al. (1999)
that the radius of the curvature at the bridge front scales like r3/2, in contrast to the case of coalescence in a
passive gas, where the radius of curvature scales like r3. Notably, for the case of a viscous gas, the radius of
curvature at the bridge front is larger than the undisturbed free-surface height, which scales like r2, so that the
gas bubble protrudes ‘into’ the liquid drop and causes a local maximum in the free-surface height z = z(r). As
shown in Figure 10 by the dashed line, the latter scales as r3/2 for a considerable distance.

Notably, for realistic parameters it is the viscosity of the ambient gas that plays the key role in the suppression
of the toroidal bubble appearance. This is highlighted by the fact that, if we set ρ̄ = 0, toroidal bubbles are
not formed until the gas-to-liquid viscosity ratio is reduced to µ̄ ≈ 10−7. Therefore, in reality it is always the
viscosity and not the density of the ambient gas that holds the key to the toroidal bubble suppression. Indeed,
under normal conditions, the viscosity of the gas is above a certain value, say, 1 µPa s, so that for the gas-to-
liquid viscosity ratio to be of the order of 10−7, one must have a liquid with viscosity of the order of 10 Pa s,
and, as shown in Sprittles & Shikhmurzaev (2012a), even for coalescing drops of much lower viscosity than
10 Pa s, the toroidal bubble does not form even if the ambient fluid is a vacuum. The same point can be made
in another way: if we take two drops of a low-viscosity liquid that would produce a toroidal bubble in a vacuum
and replace the vacuum with a gas of gradually increasing viscosity and density, the gas’ viscosity would prevent
the bubble formation long before the gas-to-liquid density ratio has a noticeable effect on the process.

Having established that the presence of a viscous gas completely alters the initial stages of the coalescence
process for a low-viscosity liquid, it is of interest to study how the parameters associated with the gas, namely
the density and viscosity ratios, affect the motion.

6.3.2. Influence of gas density

For ρ̄ ≤ 0.01, which covers the range of realistic liquid-gas systems, the influence of the finite gas density on
the dynamics of coalescence are seen to be negligible. Once ρ̄ = 0.1 an effect on the bridge front evolution for
small radii can be observed, but this only becomes relevant for liquid-liquid systems, which are not considered
here in any detail. Therefore, henceforth the effect of this parameter will not be considered.

6.3.3. Influence of gas viscosity

Consider now how the viscosity ratio µ̄ affects the coalescence event. First, taking Re = 102 as a representative
case, we show in Figure 11 that the viscosity of the gas does have an influence on the initial stages of coalescence
and that, as one would hope, for very small viscosity ratio, e.g. for µ̄ = 10−6 (curve 2), the result is almost
indistinguishable from the case of a passive gas examined in §6.2 (curve 1). At the highest viscosity ratio
considered µ̄ = 1 (curve 5), the effect is rather substantial, with a noticeable difference from the passive gas
situation (curve 1) well past r = 0.1. The viscosity ratio of µ̄ = 1 is, of course, unrealistic for liquid-gas systems,
but it is entirely relevant to liquid-liquid ones to which our analysis fully applies. This reduction in the speed
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Figure 11. Influence of gas viscosity on the time-dependence of the radius of the bridge connecting the coalescing
drops calculated for fixed Re = 102 with curve 1: µ̄ = 0, 2: µ̄ = 10−6, 3: µ̄ = 10−4, 4: µ̄ = 10−2 and 5: µ̄ = 1.
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Figure 12. The effect of the Reynolds number on the time-dependence of the radius of the bridge connecting the
coalescing drops calculated for a fixed viscosity ratio µ̄ = 10−2 (solid lines) compared to the µ̄ = 0 case (dashed lines)
with curve 1: Re = 0, curve 2: Re = 102 and curve 3: Re = 104.

of propagation of the bridge’s front is due to the additional energy dissipated in the squeezing of fluid out of
the thin gap formed ahead of the bridge (Figure 10).

Figure 12 shows how the inclusion of a gas (µ̄ = 10−2) affects the coalescence process at different Reynolds
numbers (in the liquid, as the inertial effects in the gas have a negligible influence). In all cases, the gas has
a noticeable effect on the motion compared to the passive gas cases (dashed lines) but what is particularly
interesting is that for all Re considered, the curve from the viscous-gas case converges to the passive-gas one at
around t = 1, i.e. dimensionally at the viscous time scale Tv = µR/σ. However, at this time (t = 1), the bridge
radii depends on Re, with a smaller the Reynolds number (curve 1 is for Re = 0) giving a larger bridge radius.
In other words, we observe that for a fixed viscosity ratio, the lower the Reynolds number is in the liquid, the
more of the coalescence process is affected by the presence of the gas. This will help to explain our findings in
§7 where the effects of Re and µ̄ can no longer be varied independently.

6.3.4. Scaling laws to account for the gas’ influence

In §6.2 it has been shown for the passive gas case that, for Re = µ̄ = 0, equation (2.1) accurately approximates
the initial stages of motion whilst (2.3) is less useful. However, whilst (2.1) is exclusively for one-phase motion
without any indication of what effect the dynamics of an ambient gas may have on the initial stages, the scaling
law (2.3) predicts that taking into consideration the viscosity of the gas will slow the initial stages of coalescence
by a factor of four, and, notably, this change in behaviour is predicted to be independent of the viscosity ratio
for r < µ̄2/3.

From Figure 13, where the effect of switching from an inviscid exterior (curve 1) to viscous one (curves 2, 3)
at Re = 0 is considered, we can immediately see that (2.3) is both qualitatively and quantitatively incorrect:
the initial stages depend strongly on the viscosity ratio with a larger µ̄ resulting in a slower coalescence. In
particular, curve 3, for µ̄ = 1, is always well below curve 2, obtained for µ̄ = 10−4.

In an attempt to quantify the effect of the viscosity ratio, the dashed lines in Figure 13 are equation (2.1)
with fitted prefactors, i.e. instead of computing r = f(t) given exactly by (2.1), we consider r = Hf(t), where
H is a constant chosen to produce a best fit. It is found that for µ̄ = 0, 10−4, 1 these prefactors are, respectively,
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Figure 13. An illustration of the influence of the gas viscosity on the coalescence of drops (with Re = 0). Curve 1:
µ̄ = 0, 2: µ̄ = 10−4 and 3: µ̄ = 1. The top dashed line correspond to (2.1) whilst the middle and lower ones are the same
expression with a fitted prefactor of 0.6 and 0.35, respectively.

H = 1, 0.6, 0.35. This approach does not originate from any theory, but is simply intended to estimate the effect
which a viscous gas has on the motion. It shows, in particular, that for a small viscosity ratio µ̄ = 10−4, the
initial bridge speed is still significantly decreased, but that this effect does not last long, whilst for matched
viscosities µ̄ = 1 the bridge speed is decreased by roughly a factor of three for almost all of the initial stage of
coalescence (r < 0.1). Notably, the different deviations of the dashed lines from the computed solutions suggest
that any attempt to somehow make minor adjustments to the passive gas case to account for a viscous exterior
are unlikely to work.

6.3.5. Summary

The following has been observed for liquid drops coalescing in the viscous gas usually considered in experi-
ments, e.g. air at atmospheric pressure, for Re ∈ (0, 104):
• Inertial effects in the gas have a negligible effect.
• The viscosity of the gas prevents toroidal bubble formation.
• The bridge evolution can be substantially slower in its initial stages, an effect which increases with the

gas-to-liquid ratio µ̄.
• For fixed µ̄, lower Re results in the coalescence process being affected on a larger length scale.
• Equation (2.3) does not capture the aforementioned effects.

7. Comparison to experiments

Having performed a systematic study of the conventional model’s predictions, we now proceed to compare
these to experimental data where parameters can no longer be independently varied. In particular, in the
experiments of Paulsen et al. (2011), the liquids are water-glycerol mixtures, whose viscosity varies in the range
of µ = 2–230 mPa s, whilst the density (ρ = 1200 kg m−3) and surface tension with air (σ = 65 mN m−1)
remain approximately the same. These experiments were conducted in air of density ρg = 1.2 kg m−3 and
viscosity µg = 18 µPa s. Therefore, as the viscosity is varied, the Reynolds number and viscosity ratio are no
longer independent, and we have µ̄ = 4.6× 10−5Re1/2. Using these material parameters, we arrive at

Re ∈ (1, 105), µ̄ = 4.6× 10−5Re1/2 ∈ (10−4, 10−2), ρ̄ = 10−3. (7.1)

Notably, the range in (7.1) has already been covered in the parametric study of §6, so that all that remains
to be done is to compare the predictions of the conventional model to experimental data.

7.1. Collapse of data onto a ‘master curve’

In Paulsen et al. (2011), it is shown that data for the initial stages of bridge front evolution, collected from
electrical measurements of the coalescence event over a range of different viscosity liquid, can be collapsed onto
a master curve:

r/rc =
2

1/(t/tc) + 1/
√
t/tc

(7.2)

where tc, rc are referred to as the (dimensionless here) ‘crossover’ time and radius, where the dominant term
in (7.2) changes. In particular, for t � tc, there is linear growth r/rc ∼ 2t/tc, and for later times, t � tc, the
scaling is of square-root type r/rc ∼ 2

√
t/tc. Fitting rc and tc for every curve enables the dependence of the

crossover time on Re to be established.
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Figure 14. Effect of the Re, with µ̄ = 4.6 × 10−5Re1/2 for the case of a varying viscosity. Curve 1: Re = 10, curve 2:
Re = 102, curve 3: Re = 103, curve 4: Re = 104 and curve 5: Re = 105. Dashed lines are equation (7.2) with constants
that are plotted in the lower figure: diamonds are tc and squares are rc.

It is of interest to see if a similar fit can be performed with the theoretical curves obtained from the conven-
tional model. In Figure 14, curves 1–5 for Re = 10–105 are fitted with the master curve by choosing (tc, rc)
such that (7.2) goes through the computed curves at r = 10−3 and r = 10−1. The fit is relatively good, and
the parameters used are plotted in Figure 14 as a function of Reynolds number. Notably, as seen in the ex-
periments Paulsen et al. (2011), crossover time and radius scale with Re−1/2 as opposed to with Re−1, as
suggested in some previous works, e.g. Eggers et al. (1999); Wu et al. (2004); Aarts et al. (2005). What this
essentially means is that the characteristic length scale L appearing in the Reynolds number that determines
the crossover value Rec should be the (dimensional) bridge height L ∼ r2dim/R so that the crossover occurs
when Rec = ρσr2dim/(µ

2R) ∼ 1, i.e. when r ∼ Re−1/2.

7.2. Direct comparison to experimental data

The analysis in §7.1 suggests that many of the trends observed in the experiment are also seen from the
computations using the conventional model. Here, a more direct comparison between theory and experiment,
going further than simply confirming the correct scaling behaviour, is performed for the liquids in Paulsen et al.
(2011) with viscosities µ = 3.3, 48, 230 mPa s as for these mixtures σ and ρ vary least (ρ = 1200 kg m−3

and σ = 65 mN m−1). (The required information about the mixtures was provided to us by Dr J.D. Paulsen,
Dr J.C. Burton and Professor S.R. Nagel.) For the chosen mixtures, one has Re = 1.4×104, 68, 2.9. To elucidate
the role of the gas’ viscosity, we will look at the difference between the coalescence occurring in a passive gas
studied earlier (Sprittles & Shikhmurzaev 2012a) and, as in experiments, in air of density ρg = 1.2 kg m−3

and viscosity µg = 18 µPa s. Then, the gas-to-liquid density ratio is ρ̄ = 10−3 and the viscosity ratios are,
respectively, µ̄ = 5.5× 10−3, 3.8× 10−4, 7.8× 10−5.

Importantly, as one can clearly see in Figure 15, over the range of viscosities considered, the presence of the
gas does slow down the evolution of the bridge front (curves 2), as compared to the case of a passive gas (curves
1), but this effect is not sufficient to account for the discrepancy between the conventional model’s predictions
and the experimental data from Paulsen et al. (2011) over the entire period of the experiment. In particular,
although the gas viscosity slows the speed of the initial motion down, even for the relatively high-viscosity liquid
drops, the conventional model still overshoots the data for the initial stages of the experiment.

It is interesting to see that, roughly, the magnitude of the effect which the introduction of a viscous gas has on
the bridge evolution is the same across two orders of magnitude in liquid viscosity. The reason is that although
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Figure 15. The time-dependence of the radius of the liquid bridge connecting the coalescing drops obtained in the
framework of the conventional model. Curve 1: the drops are in a passive gas; curve 2: the ambient gas is viscous with
(Re, µ̄)=(1.4 × 104, 5.5 × 10−3) in (A), (68, 3.8 × 10−4) in (B) and (2.9, 7.8 × 10−5) in (C). The dashed line in (C)
corresponds to (2.1). The error bars are from experiments in Paulsen et al. (2011), and the triangles are from optical
observations in Thoroddsen et al. (2005).

the viscosity ratio with air decreases with increasing liquid viscosity, the Reynolds number also decreases and,
as shown in §6.3.3, this results in the gas’ influence becoming larger. These two opposing effects appear to
approximately balance each other.

8. Discussion

Consider now what has been learnt about the initial stages of bridge propagation described in the framework of
the conventional model and how this ties in with previously published experimental and computational studies.

8.1. The presence of an inertially-limited-viscous regime for Re ≤ 1

It has been shown that for a passive gas, the Stokes flow solution (2.1) describes the initial stages of growth
for Re ≤ 1, a result that is in direct conflict with the conclusions of Paulsen et al. (2012) which claim that the
Stokes flow solution is only entered after the ILV regime has occurred. In Paulsen et al. (2012), a key observation
in favour of the ILV regime is that, at finite Re, it takes a certain time for the apex of the drop to follow the
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Stokes flow solution, and we have also observed this phenomenon. How then, do these apparently contradictory
findings square with each other?

First, the computations performed in Paulsen et al. (2012), see for example Fig. 3E there, are for r > 10−2

which only leaves the interval 10−2 < r < 10−1 to consider the initial stage of motion. Consequently, the good
agreement of Hopper’s solution (2.1) with full computations at Re ∼ 1, for r � 1, confirmed here in Figure 15
for exactly the same case as the one in Fig. 3E of Paulsen et al. (2012), appears to have been missed. Instead, in
Paulsen et al. (2012), the results of the computations are shown to give an approximately linear growth in the
bridge radius and this is used as evidence against the Stokes regime. We have seen that this is not the case. For
Re ≤ 1, µ̄ = 0 and r � 1, the bridge propagation is best described by Hopper’s solution (2.1) corresponding to
the Stokes regime.

Far from the bridge front, at finite Re, the inertia is important as the flow then takes some time to develop,
in contrast to the Re = 0 case. Thus, if one considers the global motion of the drops for Re ≤ 1, it makes sense
to talk of an ILV regime, even though local to the bridge front the finiteness of Re has a negligible effect.

Second, we would like to tie these observations in with the experimental findings in Paulsen et al. (2011, 2012).
This is quite tricky, as it involves considering the effect of the gas on the motion as well as recognising that
quantitatively the experiments do not agree well with the predictions of the conventional model (Figure 15).
One thing that can be noted; however, is that there has been no systematic experimental investigation of the
regime Re ≤ 1 and r � 1. In Paulsen et al. (2011) the electrical measurements allowed for r � 1, but all data
was for Re ≥ 1, whilst in Paulsen et al. (2012) hanging pendent drops of huge viscosity were considered, so that
Re ≤ 1, but only optical measurements were made, so that r > 0.1. Further experiments on this regime may
reveal more details about the initial stages of motion.

8.2. Characterising parameter space

Much has been made about the different ‘regimes’ of coalescence, their different ‘scalings’ and the possibility
of collapsing all data onto a master curve using two fitting parameters. However, let us consider instead the
question of when such simplified models actually allow us to ascertain accurate quantitative information about
the coalescence event. First, such data about the entire drop shape is impossible, as it is only in the two-
dimensional case that the theory of Hopper (1984) applies, and the other works all consider only predictions for
the bridge radius as a function of time, i.e. ‘local’ information. Moreover, to increase our chances of progress
in this task, let us further simplify matters by considering the gas to be passive, so that the only governing
parameter is then the Reynolds number. So the question essentially becomes, at a given Re, at what bridge
radii r is there a quantitative formula which relates r to time t?

This question has been addressed in previous works, e.g. Paulsen et al. (2012), but the difference between
their approach and the one we take here is that we are interested in where quantitative predictions can be made,
rather than where qualitative behaviour occurs. Mathematically, the difference is that, whilst previous works
have put all coalescence events where the bridge radius scales in a certain way, e.g. linear r = Cvt, into one
regime, with Cv fitted to the data in an arbitrary way, here, we will only consider regimes in which there are
no fitted prefactors, e.g. (2.1), or those in which the prefactor is known and fixed. This is not a better approach
than Paulsen et al. (2012), it is just a different one, motivated by a desire to understand in which parts of
parameter space quantitative predictions using simple analytic formulas can be made.

To be precise, consider the error E(t) between a computed solution r(t) and an approximate expression
rapprox(t) to be given by

E =
|r − rapprox|

r
(8.1)

and consider, for a given Re, the values of the radius r for which relative error falls below 10% (E < 0.1),
i.e. very crudely, below experimental error. The result will be that for each rapprox there is a section of (Re, r)
phase space in which the approximate expression meets the required tolerance. As with the computations, only
r > 10−3 is considered, as before this point there are large relative errors associated with the finite initial bridge
radius from which the computations start.

In Figure 16, the new phase diagram is shown which, to be consistent with previous works, has been produced
for the case of free spheres coalescing. A phase diagram for pinned hemispheres differs very little, as it is only
in the later stages of motion, r > 0.1, that geometry starts to have an effect. It makes sense to plot r against
Re1/2 rather than Re as (a) we see that the boundaries to the different regions of phase space are given by
r ∝ Re−1/2 and (b) by flipping the curves about the plane Re = 1, the plot becomes r vs Oh = Re−1/2 so that
a comparison to the phase diagram in Paulsen et al. (2012) can more easily be performed.

Square markers show the region in which Hopper’s solution (2.1) accurately describes the computed solutions
to within the required tolerance. These quantitative results confirm that, in the initial stages of motion, the
Stokes flow solution describes the bridge’s dynamics for a distance r = r(Re) and that this distance scales like
Re−1/2. Exiting the viscous regime does not mean that the motion is then in an inertial regime. In actual fact,
there is a large part of parameter space where the motion can neither be considered viscosity-dominated nor
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inertia-dominated. Although it is tempting to call this the inertially-limited viscous regime, and in some sense
it is, as it is the region where inertial and viscous forces are important, we have labelled this region ‘Transition’
as, to be consistent with our aims, there is no quantitative predictive expression for this region, and all what
we know is that the process goes across this regime from ‘viscous’ to ‘inertial’.

For high enough Re, roughly Re > 100, an inertial regime is entered in which (2.4) with Ci = 1.5 accurately
describes the computed solution. Notably, this region has both a lower bound, as it takes some distance for
viscous effects to become negligible, and an upper bound at which point the assumptions made in (2.4), such
as the motion being driven entirely by the longitudinal curvature, no longer hold, see Sprittles & Shikhmurzaev
(2014b) for further details.

The phase diagram we have created can be very simply interpreted. In the viscous region, the motion can
be approximated by the Stokes equations, i.e. neglecting the inertial terms, whilst in the inertial regime the
viscous terms are negligible, so that the Euler equations should be able to describe the motion. Elsewhere the
full Navier-Stokes equations are necessary for accurate computation and thus simplified expressions based on
the aforementioned limiting cases cannot in principle be accurate.

The computed two-dimensional phase diagram is actually a cross-section (µ̄ = 0) of the three-dimensional
parameter space (r,

√
Re, µ̄) which would be required if the viscosity ratio was also accounted for. At moderate

µ̄, it is likely that Hopper’s solution will no longer become an accurate representation of the initial stages, so
that no currently-available quantitative expressions exist for this period. It may be that in this case, a linear
expression, as proposed in Paulsen et al. (2011), describes the data well, but that the required prefactor’s
dependency on Re and µ̄ will be a-priori unknown. Thus, in this situation, the region in which computations
are required to provide quantitative predictions of the coalescence phenomenon will inevitably grow.

9. Outlook

Using computational techniques, a systematic parametric study of the process of coalescence in the framework
of the conventional model has been performed and has enabled us to identify a number of misconceptions in
the published literature and suggest avenues of further research.

In particular, our results have shown that:
(a) When viscous forces dominate inertial ones, Hopper’s solution (Hopper 1984) best approximates the

initial stages of coalescence local to the bridge front and the inertially-limited viscous regime is seen to be
a characteristic of the global motion of the drops. In contrast, experimental results in Paulsen et al. (2012);
Paulsen (2013); Paulsen et al. (2014) indicate that this regime also affects the local motion of the bridge front.
The reason for this discrepancy remains unexplained.

(b) There is a ‘transition region’ in which, currently, there is no predictive analytic theory.
(c) Toroidal bubbles are not formed for coalescence of liquid drops in air at atmospheric pressure.
(d) The conventional model captures the scaling behaviour of the transitions between different regimes ob-

served in experiments, but quantitatively overshoots the data for r vs t.
Each of these findings suggests a particular avenue of enquiry deserving of further attention:
(a) Electrical methods focused on the very initial stages of coalescence for high-viscosity liquids (low Re)

would determine whether or not experimental measurements agree with the conventional model’s prediction
that this regime can be described by Hopper’s solution.

(b) If it is possible to develop an asymptotic theory for the transition regime, that gives a simplified framework
into which the predictions of the conventional model can be understood, much like Hopper’s solution for the
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viscous-regime, then this should be considered and our results would provide a benchmark for it. If not, as seems
likely, particularly when considering the influence of an ambient fluid as well, then computational techniques
should be recognised as the only approach giving quantitative predictions for this regime.

(c) To attempt to reach the regime in which toroidal bubble formation can be observed, one must consider
lowering the influence of the gas viscosity. This could potentially be realised by reducing the ambient pressure
of the gas. Simulations in this regime may shed further light on this possibility and thus aid any experimental
attempts.

(d) Perhaps most importantly, experimental and theoretical aspects of the coalescence process should be
reconsidered in light of the poor quantitative agreement between electrical measurements and the predictions
of the conventional model. Two possibilities for the discrepancy are that (i) there is an effect in the experiment
which is not accounted for in the theory, such as the influence of the electric field on the motion or (ii) that
the conventional model itself is unable to capture the initial stages of motion due to its singular nature, and, if
this is the case, then singularity-free descriptions that incorporate extra physics, such as the interface formation
model considered in Sprittles & Shikhmurzaev (2012a, 2014a), deserve further attention.
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