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Abstract

The investigation of the flow in a pipe is a major issue for the pipeline capacity but

also plays an important role for the control and prevention of phenomena that could

damage the pipe, such as corrosion, erosion, and the potential formation of wax or their

deposits. Therefore, the characterization of the flow patterns is also a major issue for the

prediction of the distribution over the cross-section of the pipe, in order to understand

any problems that may interrupt or shut down the operation of the production line.

The main purpose of the present effort is to develop an appropriate numerical method

for simulating two-phase pipe flows. Advanced Computational Fluid Dynamics (CFD)

methods are employed as Navier-Stokes solver, while a Phase-Field method is used to

simulate the interfacial region between the two fluids. A Ghost-Cell Immersed Boundary

Method (GCIBM) was developed and implemented for the reconstruction of smooth rigid

boundaries (pipe wall) based on the work of Tseng and Ferziger (2003). The method was

also modified in order to incorporate appropriate boundary conditions for coupling the

Phase-Field and Navier-Stokes solvers for two-phase pipe flows. Tseng and Ferziger (2003)

used the GCIBM for turbulent single-phase flows; the present modified version comprises

a continuation of the method for handling two-phase pipe flows. The computational

model is capable of handling large density and viscosity ratios with good accuracy.

The developed GCIBM algorithm was validated against analytical solutions for single-

and two-phase pipe flow, presenting very good agreement. The computational model was

compared to available experimental data from the literature for single rising bubbles and

bubble coalescence in vertical pipe also with good agreement. The numerical method was

used to investigate the lateral wall effects of a 3-D single bubble in a viscous liquid for
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different pipe diameters and bubble flow regimes. The dynamics of 3-D Taylor bubbles

was also examined in vertical pipes for different properties of fluids (e.g. air-water system)

and dimensionless parameters relevant to the problem (e.g. ReB, Eo, Mo). The numerical

results were compared with available experimental and numerical data from the literature,

presenting good agreement.
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Θερμοπύλες1

Τιμή σ΄ εκείνους όπου στην ζωή των

ώρισαν και φυλάγουν Θερμοπύλες.

Ποτέ από το χρέος μη κινούντες·

δίκαιοι κ΄ ίσιοι σ΄ όλες των τες πράξεις,

αλλά με λύπη κιόλας κ΄ ευσπλαχνία·

γενναίοι οσάκις είναι πλούσιοι, κί όταν

είναι πτωχοί, πάλ΄ εις μικρόν γενναίοι,

πάλι συντρέχοντες όσο μπορούνε·

πάντοτε την αλήθεια ομιλούντες,

πλην χωρίς μίσος για τους ψευδομένους.

Και περισσότερη τιμή τούς πρέπει

όταν προβλέπουν (και πολλοί προβλέπουν)

πώς ο Εφιάλτης θα φανεί στο τέλος,

κ΄ οι Μήδοι επί τέλους θα διαβούνε.

Κωνσταντίνος Π. Καβάφης, (1863-1933)

1
Από τα Ποιήματα 1897-1933, ΄Ικαρος 1984
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Thermopylae2

Honour to those who in their lives have fixed

and guard strait passes of Thermopylae.

They from the path of duty never stray;

upright and scrupulous in every act,

but tolerant withal and merciful;

generous when possessed of affluence,

and still in small things generous when poor -

still helping to the utmost of their power;

speaking the truth despite all hindrances,

without ill-will, however, for the liars.

And greater honour is well due to them

when they foresee (and many of them foresee)

that in the end Ephialtes will appear,

that after all the Persian shall break through.

Constantine P. Cavafy, (1863-1933)

2Poems by C.P. Cavafy. Translated, from the Greek, by J.C. Cavafy. Ikaros, 2003
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Chapter 1

Introduction

1.1 Background

According to Brennen (2005), a multiphase flow is defined as any fluid flow consisting

of more than one phase (e.g. gas, liquid and solid). Such flows occur in the petrochemical

industry, environment and biological systems, heat and mass transfer processes, among

others (Ishii and Takashi, 2010; Yeoh and Tu, 2010). It is obvious that the prediction

of the flow behaviour on the aforementioned types of flow is of high importance for the

efficiency and optimization of those processes.

Over the past decades, the oil and gas sectors have presented significant progress,

developing new technologies and cost-effective solutions, in order to face the new chal-

lenges of petroleum and gas production processes. This progress was achieved by the

latest advancements in the field of multiphase flows. It is well known that many, if not

most, flows are a form of multiphase flow which indicates their importance, almost at

any aspect of engineering systems, especially for optimum design, cost reduction, safety

and efficient operations.

In general, the physical mechanisms that govern the multi-phase flows are charac-

terised by great complexity and the derivation of the appropriate equations for their

description is more sophisticated than single-phase flows. The configuration of multiple

interfacial regions with or without moving boundaries, along with the presence of discon-
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tinuities across the interfacial region due to fluid properties, are only some of the great

challenges facing the field of multi-phase flows.

Intensive research has been conducted by many scientists and engineers for the in-

vestigation and prediction of multi-phase flows, many times with satisfactory results.

Notwithstanding the great progress in the field of multi-phase flows, it is recognized

that fundamental research is still required in order to address many open technological

problems (e.g. deep-water fields). The solutions to these open problems are neither

straightforward, as they depend upon a large number of constraints, nor are they, for

most of the time, economical and technological feasible. On the other hand, multi-phase

transportation of fluids are preferable not only for economical reasons, but because they

are also the only technologically feasible means. For instance, multi-phase transportation

of fluids with ice conditions or in very deep waters are characterised by great difficulties

and technological challenges, which pose great demands for engineers and scientists.

The most common category of multi-phase flows are two-phase flows and may be

divided, regarding the combination of the two phases, in the following subcategories:

gas-liquid flows (e.g. oil-gas mixture transportation), gas-solid flows (e.g. fluidized beds),

liquid-solid flows (e.g. slurry transportation) and liquid-liquid flows (e.g oil-water trans-

portation). Information for problems involving multiphase flows, is provided in detail in

the textbook by Yeoh and Tu (2010).

Two-phase flow may also be categorised as separated, dispersed and mixed or tran-

sitional flow, regarding the interfacial configuration (Ishii and Takashi, 2010). Each of

the aforementioned categories may also be classified in more subcategories. According

to Figure 1.1, the separated flows can also be grouped into film, annular and jet flows,

regarding the phase configuration. Similarly, mixed or transitional flows may also be de-

scribed by five different flow regimes such as bubbly-annular flow, droplet-annular flow,

bubbly droplet-annular flow, and cap, slug or Churn-turbulent flow. Finally, dispersed

flows can also be categorized in bubbly, droplet and particulate flows, based on the ge-

ometry of the interfacial region. All the subcategories along with their configurations are

illustrated in Figure 1.1.
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In this study, particular emphasis is given to the gas-liquid flows and liquid-liquid

flows. Gas-liquid flows are the most complex among the two-phase flows, primarily due

to the compressibility effect of one of the phases and deformation of interfacial region.

Figure 1.1: Categories of two-phase flows. Redrawn from the work of Ishii and Takashi (2010).
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1.1.1 Flow patterns in horizontal pipes

The characterisation of the flow patterns is also a major issue for the prediction of the

distribution over the cross section of the pipe, in order to understand any problem that

may interrupt, delay or shut down the operation of the production line. However, without

the determination of the flow regimes, it is not possible to calculate other parameters

of engineering significance, such as heat transfer and pressure drop. It is also worth

mentioning that flow regimes depend on many parameters such as inclination of the pipe

or tube, geometry and pressure (Argyropoulos, 2011).

Figure 1.2: Gas-liquid flow regimes in horizontal pipes. From the work of Bratland (2010),

reproduced with the author’s permission.

In Figure 1.2, it is seen the flow patterns for horizontal gas-liquid flow. According to

Azzopardi (2006) and Bratland (2010) the flow patterns are specified as follows:

Dispersed bubble flow: In this flow regime, the gas bubbles are dispersed in the

continuous liquid phase. In the case of high liquid velocity, a significant increase of

turbulence intensity takes place in the flow. As a result the bubbles are dispersed in the
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cross-section of the pipe and with the gravity effect are concentrated on the upper part

of the pipe.

Stratified flow: In this flow pattern, the flow is separated by a smooth interface. The

liquid phase is situated on the bottom of the pipe (under normal gravity conditions)

with the gas above it. Subsequently, this flow pattern is characterised by two regimes;

a stratified smooth and a stratified wavy. The difference between them is based on

the interface at stratified flow. Thus, at low gas velocities the flow regime is stratified

smooth. On the other hand, when the gas velocity is increased, waves are propagated on

the interfacial region in the direction of the flow.

Plug or elongated bubble flow: This flow regime is defined as the formation of plugs

of gas in liquid phase. Thus, the plug flow regime appears a similar behaviour to the

bubble flow at low flow rates and moderate liquid rate.

Slug flow: This flow pattern is intermittent, similarly to plug flow. In stratified flow

with the increase of gas velocity, the formation and propagation of waves take place

and may reach the upper part of the pipe. In this case, the gas is throttled or even

blocked instantly and as a result this flow discontinuity is responsible for the formation

of elongated bubbles or slugs (Bratland, 2010).

Annular flow: This flow regime is characterised by a continuous gas core with a wall

film. Subsequently, liquid may be entrained in the form of drops inside the gas core. The

configured film under the gravity effect is thicker on the bottom of the pipe but as the

gas velocity is increased the film becomes peripherally more uniform (Azzopardi, 2006).

During the course of this study, a substantial number of numerical simulations were

performed for liquid-liquid and gas-liquid horizontal pipe flows in order to test the devel-

oped in house code but also investigate different types of flow. More specifically, single-

and two-phase Poiseuille flow, droplet coalescence, single droplet and interfacial waves

in pipe flows are some of the considered flows, which were investigated for different fluid

properties, as a part of the validation process for the developed numerical method. More

details will be presented in the next chapters.
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1.1.2 Flow patterns in vertical pipes

Similar to the above Section 1.1.1, Figure 1.3 depicts the gas-liquid flow regimes in

vertical pipes (Bratland, 2010). The flow regimes in vertical pipes appear great similarities

with those in horizontal pipes but also a great difference is the absence of stratified flow.

For more information the interested reader is directed to the works of Hewitt (1982),

Dukler and Taitel (1986) and Whalley (1987). According to Figure 1.3 the flow patterns

can be defined as:

Dispersed bubble flow: In this flow regime, similar to horizontal pipes, a number of

bubbles is dispersed in the continuous liquid phase.

Slug flow: This flow regime is characterised by the formation of large bubbles ap-

proaching in diameter the equivalent pipe diameter, as a result of the coalescence of

smaller bubbles.

Churn flow: In this flow pattern, the produced bubbles from slug flow fragment to

a thick and unstable oscillating liquid film. This type of flow is characterised by chaotic

behaviour which makes very difficult its investigation.

Figure 1.3: Gas-liquid flow regimes in vertical pipes. From the work of Bratland (2010),

reproduced with the author’s permission.

Annular flow: This flow regime is characterised by the presence of a liquid film in the
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vicinity of pipe wall, whilst the gas phase is situated in the core.

Wispy annular flow or annular flow with droplets: In this flow pattern, the gas core

is comprised by drops which their number is increased by the high rate of liquid flow. As

a result, large streaks (wisps) of liquid are formed.

In this study, a number of different gas-liquid flows were investigated in vertical pipes,

such as rising of single spherical bubbles and Taylor bubbles.

1.2 Objectives of the research

The investigation of the pipe flow is a major issue for the pipelines capacity but also

plays an important role for the control and prevention of phenomena that could damage

the pipe, such as corrosion, erosion and the potential formation of wax or other deposits.

Thus, the pipe flow simulations are very useful for the design, monitoring, operational

support, sizing and optimization of the pipeline network (Bratland, 2009).

In this study, the main interest is concentrated mainly on the gas-liquid and less on

the liquid-liquid pipe flows. This forms a major challenge as it requires one to incor-

porate with large µ and ρ ratios and achieve a real accurate resolution for simulating

the interface and the interactions between the mechanisms which are important for the

study of the physical problem. A Finite Difference Method (FDM) is employed while a

phase-field method is adopted for simulating the interface based on the work of Ding et al.

(2007). The computational model is extended to handle pipe flows by using a Ghost Cell

Immersed Boundary Method (GCIBM) based on the work of Tseng and Ferziger (2003).

The combination of the aforementioned methods is implemented for first time in order

to investigate 3-D pipe flows, according to the author’s knowledge.

The main goals of the present study are specified as follows:

1. Develop and demonstrate a computational 3-D two-phase model for the de-

scription of two-phase pipe flows.

2. Achieve laminar two-phase pipe flows with accurate simulation of the gas-liquid

and liquid-liquid interface, following the topological changes.
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3. Validate and compare the numerical results with available experimental and

analytical data from the literature.

4. Investigate the wall effects of 3-D single bubble rising in a vertical pipe.

5. Study of a single 3-D Taylor bubble rising in a vertical pipe.

The study of three-dimensional Taylor bubbles and the wall effects on a three-

dimensional buoyant bubble in a pipe is motivated by their high importance in many

industrial applications and physiological systems. This type of flows, for instance, is

present in oil and gas extraction, fluid transport in pipelines, nuclear reactor cooling and

drilling systems (Lu and Prosperetti, 2009), as well as in blood vessels and veins.

Under special circumstance, Taylor bubbles are formed as “sausage” shape (Cavanagh

and Eckmann, 1999) in human blood vessels known as gas embolism (Mukundakrishnan

et al., 2007). This disorder occurs frequently in divers. The formation of air bubbles in

the bloodstream can lead to pulmonary barotrauma or Decompression Sickness (DCS)

and may cause unanticipated consequences for the divers health, as well as stroke or

thrombosis.

Many studies have been devoted to investigate numerically the dynamics of Taylor

bubbles, but mainly limited in axisymmetric simulations using VOF (Bugg and Saad,

2002) and Front Tracking (Kang et al., 2010) methods for tracking the interfacial region.

In the present study, for first time fully three-dimensional numerical simulations were con-

ducted using a combined ghost cell immersed boundary/phase-field method with large

density ratio (e.g. 1000). As a result, a full parametric study for different properties of

fluid was performed for the formation of a Taylor bubble, such as viscosity and density ra-

tio, Eotvos number, Morton number and buoyancy Reynolds number. Three-dimensional

numerical simulations were also conducted for studying the cylindrical wall effects on a

single rising bubble in a pipe. The implementation of the proposed numerical method for

the aforementioned physical problems has not been reported in the literature, according

to the author’s knowledge. In both cases, the numerical predictions were compared with

available experimental results, presenting good agreement.
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1.3 Structure of the thesis

In the remainder of this thesis: Chapter 2 illustrates the majority of the Immersed

Boundary (IB) methods with particular emphasis on Ghost-Cell Immersed Boundary

Method (GCIBM) in Chapter 3, a detailed literature review is presented of the Interface

tracking and capturing methods for the simulation of the interfacial region between two

immiscible fluids, with the main focus on phase-field method; in Chapter 4, the mathe-

matical formulation and the numerical method are exhibited; in Chapter 5, the validation

of the developed in house code is outlined; in Chapters 6 and 7 the wall effects of a single

bubble rising in vertical pipe and the dynamics of Taylor bubbles were examined and

the numerical results are presented and discussed, respectively; finally in Chapter 8, the

main conclusions from the present study are outlined and some general considerations

for turbulent two-phase pipe flows are presented, as well as future directions for the

implementation and improvement of the proposed numerical method.

This study concludes with three Appendices, which consist of the non-dimensional

analysis for the Navier-Stokes and continuity equations along with the derivation of an-

alytical solution for single- and two-phase pipe flows, and a review paper respectively.
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Chapter 2

Immersed boundary methods

2.1 Introduction

This chapter aims primarily at presenting a comprehensive review of the available

Immersed Boundary (IB) methods in the literature. A large number of relatively recent

studies were considered, together with reference to the classical detailed review papers

by Iaccarino and Verzicco (2003) and Mittal and Iaccarino (2005). Also the work of Ban-

dringa (2010) is very interesting, including extensive comparisons of several IB methods

and for this is also highly recommended.

For completeness, a brief discussion of the classification of the methods along with

the advantages and disadvantages of each method are also presented and discussed. Spe-

cial emphasis is given to the Ghost-Cell Immersed Boundary Method (GCIBM) and its

improvements, since it is the selected method for the numerical simulations in the present

study.
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2.2 Definition and classification of immersed bound-

ary methods

The use of Computational Fluid Dynamics (CFD) has helped engineers and scien-

tists to confront complex phenomena in order to analyze and understand the physical

mechanisms governing them. For simple geometries such as cube and channel domains

the grid generation is usually trivial, on the other hand for complex geometries such as

reactors, vehicles and heat exhangers, the mesh generation poses great difficulties along

with high demand in time. Moreover, the use of turbulence modelling combined with

moving boundaries and high Reynolds number flows can make the problem even worse.

Given the above mentioned circumstances the use of a body conforming grid is not

always the best choice. In view of these difficulties, an alternative is the use of the

immersed boundary method which allows the physical boundary to cut a grid volume.

The origin of the term “Immersed boundary method” comes from the work of Peskin

(1972). The method was introduced by Peskin in order to investigate the blood flow

in heart valves, assuming 2-D geometry and low-Re number for the blood flow (Peskin,

1972, 1977, 1982). The main idea behind this method is that the computational grid

does not have to conform to the shape of the geometry (e.g. heart) and allows with the

appropriate forcing conditions the discretization of the motion equations on a Cartesian

grid. In order to enforce the desired boundary conditions it will be needed to modify the

motion equations in the vicinity of the boundary, by adding a forcing function.

The type of grid that is often associated with the IB method is the Cartesian grid

combined often with a Finite Difference Method (FDM). In the literature, IB methods

have also been applied with Finite Element Method (FEM) (Bramble and King, 1996)

and Finite Volume Method (FVM)(Ye et al., 1999). In the present study, an IB method

with a FDM is adopted, which often is considered to be easier in programming than

FVM or FEM. However, the best selection is dependent on the physics of the problem

and may be also made by guiding the available studies in the literature. The selection of

a Cartesian grid is preferable because it is not difficult to derive and requires less time
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and effort.

One of the main advantages of the IB method is the simple way of grid generation. The

IB method can deal with almost any arbitrary body shape and appears to save memory

and CPU time (Tseng and Ferziger, 2003). Another advantage is that IB method can

also handle very well cases with moving boundaries (e.g. fluid-structure interactions)

which require a new mesh at each time step along with an efficient algorithm to project

the solution for the new mesh. On the other hand, the IB methods suffer from imposing

the appropriate boundary conditions and in some cases this could be a very difficult task.

Other issues are the accuracy of the boundary representation and the efficiency of the

numerical schemes (Mittal and Iaccarino, 2005).

The selected forcing approach for imposing the desired boundary conditions in the

vicinity of the boundary is very important for the characterisation of the proposed IB

method among the other types, but it also determines the accuracy of the type.

Considering the unsteady incompressible flow for a Newtonian fluid, the governing

equations can be written as:

∇ · u = 0 (2.1)

∂u

∂t
+ u · ∇u = −1

ρ
∇p+

µ

ρ
∇2u + g (2.2)

where u is the velocity of fluid flow, ρ the density, p the pressure, g the gravity acceleration

and µ the viscosity.

According to Mittal and Iaccarino (2005), there are two alternatives for the selection

of the appropriate force function, fIB. The first is the “continuous forcing approach”

and the second is the “discrete forcing approach”. The main difference between the two

approaches is the way that the forcing term is incorporated in the Navier-Stokes equations

(2.1) and (2.2), leading to the following equations (2.3)-(2.5).

∇ · u = 0, in Ωfluid ∪ Ωsolid (2.3)

∂u

∂t
+ u · ∇u = −1

ρ
∇p+

µ

ρ
∇2u + g + fIB (2.4)
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u = uΓIB
, at ΓIB (2.5)

where Ωfluid and Ωsolid denote the fluid and solid domain, respectively. ΓIB is the interface

between the solid and fluid domain. The set of the above equations (2.3-2.5) is well-known

as standard formulation of IB method (Kang et al., 2009).

In the “continuous forcing approach”, the forcing term is introduced before the dis-

cretization of the governing equations. In these methods, a Dirac delta function is often

adopted (Peskin, 1982) in order to have a non-zero force function. On the other hand, the

methods fall to the “discrete forcing approach” using an implicit forcing term, which is

never computed in practice (Tseng and Ferziger, 2003; Mohd-Yusof, 1997). More details

for both categories will be presented in the next subsections.

2.2.1 Continuous forcing approach

This class includes a substantial number of methods that introduce a continuous

forcing approach in order to enforce the desired boundary conditions for the boundary

representation, including methods for treating elastic and rigid boundaries.

One of the advantages of these methods is that they are independent of the discreti-

sation process due to the fact that the forcing function is implemented before the process

starts. The approach is characterised by simplicity and it is easy for implementing to an

existing Navier-Stokes solver.

The use of smooth functions for the reconstruction of immersed boundary is not rec-

ommended for high Reynolds number flows, because they fail to represent the immersed

boundary with high accuracy. The more the Reynolds number increases, the more the

number of grid nodes increases inside the immersed boundary.

2.2.1.1 Methods for elastic boundaries

The IB method was first proposed by Peskin (1982, 2002) with the aim of modelling

and predicting the low-Re blood flow in human cardiovascular system. The key idea be-

hind this method is the reconstruction of the immersed boundary using a set of massless
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points for tracking the set of elastic fibers and the introduction of a Dirac delta function,

as a force term. The solution of the governing equations is obtained by using a stationary

Cartesian grid. However, problems appear with the fibers locations and the nodal points

of the grid. As a result, the Dirac function is replaced by a smooth distribution function

which is preferable for a discrete Cartesian grid. The appropriate selection of the dis-

tribution function is of high importance for the method and several have been proposed

over the years (Beyer and Leveque, 1992; Saiki and Biringen, 1996; Lai and Peskin, 2000).

Many scientists and engineers have contributed to the extension and improvement

of the method. Improvements of the method are mainly focused on accuracy (Li and

Lai, 2001; Xu and Wang, 2006) and stability (Tu and Peskin, 1992; Stockie and Wetton,

1999).

2.2.1.2 Methods for solid boundaries

The first attempts for implementing the IB method to problems with solid boundaries

were performed by Briscolini and Santangelo (1989) and Goldstein et al. (1993).

Briscolini and Santangelo (1989) developed a mask method1 for investigating 2-D

incompressible flows. Numerical results for 2-D driven cavity and flow around a cylinder

at various Reynolds numbers were presented and discussed. The numerical results were

compared with available numerical data, presenting satisfactory agreement.

Goldstein et al. (1993) used a similar IB method to Peskin’s method for modelling

2-D flow around a circular cylinder, 3-D turbulent channel flow and ribbed turbulent

channel flow. This IB method introduces a force function which expresses the force on

the element of surface and xs is a boundary point:

f(xs, t) = α

∫ t

0

U(xs, t
′) dt′ + βU(xs, t) (2.6)

where α and β are negative constants. This feedback forcing approach was designed

with the aim of controlling the velocity close to the surface region. Numerical results

were presented for flow around a cylinder at low Reynolds number and compared with

1IBM referred as “mask method”.

37



Chapter 2. Immersed boundary methods

available numerical data exhibiting fair agreement. The main disadvantage of the method

is that the values of α and β are required to be large enough for accurate predictions.

The large values also create limitations to the time step resulting in numerical stability

problems, in particular for unsteady flows (Mittal and Iaccarino, 2005).

Saiki and Biringen (1996) investigated the uniform flow on stationary and moving

cylinders. In this study, the method of Goldstein et al. (1993) was employed using fourth

order FDM. The use of FDM was selected in order to minimize the development of

parasitic or spurious oscillations caused by the forcing term, in contrast to Goldstein’s

method. Both methods implement forcing terms in Navier-Stokes equations for enforcing

the fluid velocity to be zero at the desired points which represent the solid boundary.

A similar approach is the penalty method or fictitious domain method (Iaccarino and

Verzicco, 2003). The method was developed by Angot et al. (1999) and Khadra et al.

(2000). The key idea behind the method is that the immersed boundary is assumed

to be a porous medium and solved using the Navier-Stokes/Brinkman equations. The

difference with the ordinary Navier-Stokes equations is an additional term. This term is

known as Darcy drag and expresses the porous medium on the flow. Accordingly, the

forcing function can be written in the following form:

f =
ν(u−VS)

ρDaK
(2.7)

where Da =
K0

L2
is the Darcy number, K0 the permeability of the medium, L the char-

acteristic length, K the new free parameter, and VS the desired velocity distribution.

The method suffers from weaknesses such as the parameter K and the time step

restriction. As a result, a compromise is required for specifying the rigid boundary and

at the same time preserving a numerically stable scheme with affordable computational

cost.

2.2.2 Discrete forcing approach

This category includes the methods for which the imposition of the desired immersed

boundary condition is enforced without computing or inserting any forcing term. The
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forcing term is not computed, because an implicit forcing technique is adopted (Kang

et al., 2009).

The key idea behind this approach is the enforcement of the desired velocity VBi at

each time step. Hence, the governing equations (2.3)-(2.5) can be discretised as:

un+1
i − uni

∆t
= RHSi + fi (2.8)

where RHSi includes the viscous and convective terms and the pressure gradient. In

order for the forcing term to enforce the immersed boundary condition for the velocity

at every time step, the forcing term must give un+1
i = VBi

n+1. Accordingly, the forcing

term, fi, is given by:

fi = −RHSi +
VBi

n+1 − uni
∆t

(2.9)

Thus, the forcing term in Eq. (2.4) can be written as:

fIB =
(VBi

n+1 − uni )

∆t
+ u · ∇u +

1

ρ
∇p− µ

ρ
∇2u− g at ΓIB

fIB = 0 elsewhere

The above form of forcing term is satisfactory when the grid is coincided with the bound-

ary. In the case of solid interface which does not coincide with the grid, the computation

of the forcing term is obtained by using several techniques which belong in the class of

discrete forcing approach such as the direct forcing technique or the ghost-cell technique.

The implementation algorithm for the direct forcing technique may be found in the work

of Balaras (2004). The ghost-cell algorithm will be presented in detail in Section 4.4.2

(Chapter 4).

The aforementioned forcing formulation has the advantage of not suffering from user-

defined parameters or any stability constraints to the time step. However, this approach

depends strongly on the adopted discretisation algorithm for the governing equations

(Mittal and Iaccarino, 2005).
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2.2.2.1 Direct forcing

This approach was first proposed by Mohd-Yusof (1997). The spectral method of

Mohd-Yusof uses the forcing term to mirror the values of the velocity field across the

immersed boundary. However, the method suffers from mass conservation problems in

the boundary cells and its accuracy is dependent on the adopted interpolation scheme.

The method was implemented for simulating 3-D laminar ribbed channel flow, presenting

substantial improvements compared to previous studies.

Fadlun et al. (2000) developed a numerical method for simulating incompressible

flows with second order accuracy. This method interprets a combination of immersed

boundary and finite difference method with satisfactory results for flows such as the

formation of a vortex ring from a curvilinear nozzle, flow around a sphere and a motored

IC piston/cylinder assembly. The proposed method is an extended version of Mohd-Yusof

(1997) for 3-D FDM and the difference between the two methods is that the Fadlun et al.

(2000) method does not mirror the velocity field across the immersed boundary compared

to the Mohd-Yusof (1997) method.

Further improvements of the aforementioned method were presented by Balaras (2004)

and Gilmanov et al. (2003) with satisfactory results. The first case is restricted to 2-D

and axisymmetric geometries, while the latter case is applied only for stationary bodies of

simple (convex) shape. The overall accuracy for the proposed methodology of Gilmanov

et al. (2003) is second order and tested for laminar flow around a sphere.

Gilmanov and Sotiropoulos (2005) proposed a new hybrid 3-D IB method, called as

Hybrid Cartesian Immersed Boundary (HCIB). The method was tested for cases such

as flow past a planktonic copenod and flow past an undulating fish-like body. The

numerical results obtained appeared to be in good agreement with available numerical

and experimental data. However, difficulties arise from high Reynolds flows, which might

be treated by using local or adaptive grid refinement in the vicinity of immersed boundary.

Recently, Ge and Sotiropoulos (2007) presented a continuation of the work of Gilmanov

and Sotiropoulos (2005) by extending the HCIB approach to curvilinear coordinates. Nu-

merical results were exhibited for physiological flow through a mechanical heart valve
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and compared with experimental data, appearing a reasonable agreement. Similar to the

above studies, Choi et al. (2007) developed a more general IB method capable for high

Reynolds number and suitable for arbitrary grid topologies. The proposed method was

examined for five different problems such as flow over a circular cylinder, sphere, NACA

0012 airfoil and stationary mannequin.

There are more studies with IB methods that follow the direct forcing approach but

it is not possible to describe all of them, due to space limitations. However, the interested

reader may find more information concerning comparisons of the IB methods for mass

conservation, numerical schemes, among others, in the work of Bandringa (2010) and

review paper by Mittal and Iaccarino (2005).

2.2.2.2 Ghost-cell approach

Tseng and Ferziger (2003) extended the studies of Fadlun et al. (2000) and Verzicco

et al. (2000), by using a ”ghost cell“ technique (Majumdar et al., 2001) for enforcing the

desired boundary conditions on the IB. The ghost cells are determined as the cells in

the solid region which have at least one fluid neighbour cell in the fluid region (Mittal

and Iaccarino, 2005). The desired boundary conditions in the IB are obtained by using

an interpolation scheme (e.g. linear, bilinear, quadratic) in order to evaluate the ghost

cell values. The accuracy of the method is based on the selection of the interpolation

scheme. The proposed method was implemented for flow past a circular cylinder, Large

Eddy Simulation (LES) over a wavy surface and geophysical flow over a 3-D bump.

The numerical results were validated with available experimental and numerical data,

exhibiting good agreement. The method is characterised by no additional CPU time

since there are no new terms to calculate. The programming of the method is relatively

simple and can be added very easily to existing codes, as a separate module.

An improved version of Fadlun’s method was developed by Gao et al. (2007). In

this approach, the treatment of ghost cell points is handled by replacing the polynomial

function with second order Taylor series expansions. As a result, the method employs an

inverse distance weighting (IDW) interpolation and avoids the inverse matrix problems
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which can be created using polynomial functions. The numerical methods was tested for

cases such as flow past a circular cylinder, a sphere, two cylinders and an array of 18

staggered cylinders. According to the numerical results, an overall second order accuracy

was achieved.

Major improvements of the method were also presented by Mittal et al. (2008). The

proposed sharp interface IB method based on the ghost cell approach with particular

emphasis on fast, accurate and efficient solutions for flows with 3-D moving boundaries.

The method satisfies with high accuracy the representation of immersed boundary. Nu-

merical results obtained were validated for flow past a circular cylinder, airfoil, sphere and

accelerated bodies, presenting good results against available numerical and experimental

data from the literature.

Berthelsen and Faltinsen (2008) presented an IB method via a ghost cell approach

for irregular bodies. The key idea of the method is to obtain the local ghost cell value by

extrapolating (one-dimensional) the solution smoothly across the boundary in the same

direction as the adopted discretisation approach. The temporal discretisation is achieved

by using a second order Runge-Kutta method, while in the spatial discretisation a FDM

is employed with local refinement in the vicinity of the immersed boundary. In addition,

the convective terms are approximated by a weighted essentially non-oscillatory (WENO)

scheme and the rest terms with central schemes. Overall the method preserves second

order accuracy. The method was validated against various flow problems such as flow past

a circular cylinder and objects with sharp corners (e.g facing square, chamfered plate).

Pan and Shen (2009) presented an improved version of the Tseng and Ferziger (2003)

method by solving the Navier-Stokes equation with an implicit pressure correction ap-

proach along with local refinement. The stability and convergence of the solution obtained

is satisfied for velocity and pressure using multigrid methods. Numerical simulations were

performed for different flow problems (flow past circular cylinder and sphere) in order to

validate the method and the numerical results compared with available experimental and

numerical data.

Shinn et al. (2009) presented an IB method based on a ghost cell approach. Their
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method is focused on the treatment of mass continuity on the ghost cells. In order to

achieve that they solve the mass continuity on the ghost cells together with the pressure

equations, in a similar way to the work of Mark and van Wachem (2008). As a result,

the method conserves mass continuity at any ghost cell with improved accuracy at the

boundaries. Numerical results were presented and discussed for shear and buoyancy

driven flows such as triangular and sinusoidal cavity and natural convection in square

cavity.

2.2.2.3 Cut-cell finite-volume approach

Beside the above studies, there is another technique for developing IB methods, namely

cut-cell (Clarke et al., 1986). The main advantage of this approach compared to the

aforementioned is the capability to conserve locally the mass and the momentum using

a finite volume approach (Mittal and Iaccarino, 2005). The cut-cell technique was first

presented by Clarke et al. (1986) for investigating inviscid flows using Cartesian grids.

Some years later, the technique was extended for allowing the motion of immersed

boundaries (Ye et al., 1999; Udaykumar et al., 2001). The method has also been imple-

mented for various flow problems, such as flow induced vibrations (Mittal et al., 2003),

objects in free fall through a fluid (Mittal et al., 2004) and many others.

Batty et al. (2007) proposed a new novel approach for accurate solid fluid coupling.

The new method provides robustness and accurate solution on relatively coarse Cartesian

meshes, with major improvements in the time consumption. A new variational interpre-

tation of the pressure equation was introduced for coupled fluids. As a result, the pressure

was viewed as a function that decreases the kinetic energy of the system.

Ikeno and Kajishima (2007) presented an IB method which satisfies the consistency

with a desired wall velocity. This difficulty arises from the inability of pressure with

the velocity to represent the solid wall, which does not coincide with the computational

mesh. To cope with this drawback, a pressure solver with the necessary modifications was

proposed. The method was implemented for LES of a plane channel, pipe and nuclear

rod bundle.
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2.3 Chapter summary

In the present Chapter, an attempt was made to present the main categories of IB

methods and classify them, regarding the selected force function for enforcing the de-

sired boundary conditions, known as “continuous forcing approach” and “discrete forcing

approach”.

The main advantages and disadvantages of “continuous forcing approach” can be

summarised as (Mittal and Iaccarino, 2005):

1. Attractive for flows with moving elastic boundaries.

2. Easy implementation.

3. Independent of the discretisation process due to the fact that the force function is

introduced before the start of process.

4. Lack of representing a smooth immersed boundary.

5. No need for pressure boundary condition.

6. User-defined parameters may cause numerical stability problems.

7. The more the Reynolds number increases, the more the required number of nodes

increases inside the immersed body.

The main advantages and disadvantages of “discrete forcing approach” can be sum-

marised as (Mittal and Iaccarino, 2005):

1. Smooth representation of the immersed boundary.

2. Control of the solver properties (numerical stability and accuracy).

3. No need for user-defined parameters or constraints for time step.

4. Attractive for flows with high Reynolds number.

5. Dependent on the discretisation process.

6. Not attractive for flows with moving boundaries.

7. Imposition of a pressure boundary condition for the immersed boundary.
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In the present study, a GCIBM was selected for the numerical simulations based on

the work of Tseng and Ferziger (2003). This method was particularly chosen because of

its simplicity to be implemented in existing numerical codes as a separate module and

at the same time allows the preserving of the second order accuracy near the boundary

for the Navier-Stokes solver. The GCIBM is capable of handling Dirichlet and Neumann

boundary conditions, as well as rigid or moving boundary. Finally, the method was

further extended to incorporate the appropriate boundary condition for the phase-field

method which is the simulation method for the interfacial region. More details for the

selected phase-field method will be presented in the next Chapter.

For more details on the evaluation of IB methods regarding mass conservation, turbu-

lent flows by means of Large Eddy Simulation (LES), compressible flows, among others,

the interested reader is directed to the works of (Mittal and Iaccarino, 2005; Iaccarino

and Verzicco, 2003) and Bandringa (2010).
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Chapter 3

Interface tracking and capturing

methods

3.1 Introduction

The present chapter presents a review of the available numerical techniques for sim-

ulating the interfacial region between two immiscible fluids. A substantial number of

studies were considered for a number of interface-tracking and capturing methods.

Details for the main characteristics of the methods such as advantages and drawbacks,

as well as the key ideas of each method are presented and discussed. Special attention

is given to the Phase-Field, since it is the selected technique for the simulation of the

interfacial region.

In the remainder of this section, a number of the better-established and most promis-

ing versions of the methods, according to the present author opinion, along with some

recently developed ones, will be presented and discussed.
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3.2 Categories of interface tracking and capturing

methods

The numerical simulation of discontinuous fronts and interface regions between two

immiscible fluids may be accomplished by using several interface tracking or capturing

methods.

The main categories for the computation of free surfaces and fluid interfaces can be

divided in two classes (Gopala and van Wachem, 2008; Yeoh and Tu, 2010): a) surface

methods (e.g. Front Tracking method, Level-Set method) and b) volume methods (e.g.

Marker Particle method, Volume of Fluid). The first category includes methods of which

the interfacial region is tracked by a large number of special marker points and the latter

class comprises methods that represent the interface by an indicator function or massless

particles. The first type of methods allows the precise representation (geometry and

location) of the interface. The second class of methods uses specific advection schemes

in order to preserve and reconstruct the interfacial region.

The advantages of the first class of methods are that the position of the interfacial

region is known and maintain a sharp profile during the simulation, as well as they are the

simplest to implement. On the other hand, they appear difficult to simulate coalescence

and break up phenomena.

The main advantage of the volume methods is accurate mass conservation during the

simulation. However, they are unable to prescribe the position of the interface and as a

result numerical techniques are adopted for the reconstruction of the interfacial region.

A more detailed discussion of the above mentioned methods is given below.

3.2.1 Volume of fluid methods

The volume of fluid (VOF) method falls in the class of volume methods and is based

on the simple approach of the volume fraction. The method is characterised by simplicity,

mass conservation between phases and satisfactory accuracy but also by increasing com-

putational complexity. The VOF method tracks the interfacial region by computing the
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fractional volume of each material occupied in each computational cell (Hyman, 1984).

In VOF methods, a scalar indicator function, C, known as volume fraction or color func-

tion is adopted. The value of C is associated with the region of each fluid and interface.

Thus, C = 0 (no material) and C = 1 (full of material), while 0 < C < 1 if the interfacial

region cut the computational cell. At every time step the interfacial region reconstruction

is achieved by using the cell volume fraction and its nearest neighbours cells accordingly,

by means of FDM or other more complicated numerical methods. The reconstructed

interfacial region is characterised as sharp. However, special attention is needed for the

case of 0 < C < 1, because of the developed numerical errors for computing the fluxes

which may lead to unrealistic values of volume fraction C according to Scardovelli and

Zaleski (1999).

Over the years, several versions of the method have been developed by many en-

gineers and scientists. The first version of the method known as Simple Line Interface

Calculation (SLIC) VOF was introduced by Noh and Woodward (1976) and later followed

by the Donor-Acceptor technique of Hirt and Nichols (1981). These two types express

the simplest versions of the method, but with the least accuracy. The main difference

between these two methods is that they use different technique for the reconstruction of

the interfacial region. The first algorithm adopts a piecewise constant approximation,

while the latter algorithm uses a piecewise constant/stair-stepped approximation (Rider

and Kothe, 1998).

A large number of studies have been devoted to improve the accuracy of the above

mentioned techniques for the reconstruction of the interfacial region. Chorin (1980)

improved SLIC-VOF method with a multidimensional algorithm for the interface recon-

struction. Other more accurate schemes have been proposed, such as the Flux Corrected

Transport (FCT) by Boris and Book (1973), Zalesak (1979) and Rudman (1997), the Flux

Line-segment model for Advection and Interface Reconstruction (FLAIR) by Ashgriz and

Poo (1991), the SURFER by Lafaurie et al. (1994), the Compressive Interface Captur-

ing Scheme Arbitrary Meshes (CICSAM) by Ubbink (1997), the Lagrangian - PLIC by

Van Wachem and Schouten (2002), among others.
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A significant improvement of VOF methods was the introduction of Piecewise Linear

Interface Calculation (PLIC) VOF by Youngs (1982). The Young’s method presents

robustness and efficiency but is limited to only first order of accuracy. Improvements

and extensions of Young’s method were developed by many researchers. Puckett and

Saltzman (1992) extended the PLIC-VOF by using an adaptive mesh refinement (AMR)

technique. Kothe et al. (1996) enhanced the method by combining a second order Runge-

Kutta method along with structured and unstructured grid.

Van Sint Annaland et al. (2005) developed a 3-D VOF method based on Young’s

method. The 3-D VOF method was implemented for investigating rising bubbles in

quiescent liquids. The numerical results obtained were compared to experimental data

from the bubble diagram of Grace (1973), presenting good agreement.

Another problem of the VOF methods is the implementation of surface tension to

the interfacial region. The problem is getting even worse with the computation of surface

tension in systems of high density ratio. As a result, an inaccurate calculation of the

surface tension at the interface creates ”parasitic or spurious currents” (Lafaurie et al.,

1994). Serious attempts to face this problem were presented by Francois et al. (2006),

Popinet (2009), among others.

Francois et al. (2006) proposed a numerical approach combining the VOF method

with surface tension models. They employ the Continuum Surface Force (CSF) and Sharp

Surface Force (SSF) models with the aim to identify any notable differences. The main

difference between the aforementioned surface tension models was the implementation

of the pressure jump condition across the interfacial region. However, both techniques

suffer from the presence of parasitic or spurious currents.

Popinet (2009) presented a novel technique for modelling two-phase flows based on

the VOF method. The technique is characterised by an adaptive quad/octree spatial

discretization for surface tension driven flows. The numerical results obtained showed

good agreement for the test case of capillary wave oscillations and for the case of a

stationary droplet.

Despite all the aforementioned improvements and extensions of VOF methods, there
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are still limitations (Sethian, 1999). These methods are characterised by inaccurate re-

construction of the interfacial region and as a result it is required to have a substantial

number of cells in order to obtain a reasonable representation of the interface. Compu-

tation of the normal and curvature from volume fraction may lead to lack of accuracy.

Furthermore, the use of high-order discretization schemes for the reduction of numerical

diffusion requires a considerable amount of work and time. More information for VOF

methods is provided in detail in the review paper by Scardovelli and Zaleski (1999).

Recently, Dyadechko and Shashkov (2005) developed the Moment of Fluid (MOF)

method which may be characterised as a generalisation of the VOF method. Jemison

et al. (2013) claim that the MOF method gives better results for deforming boundaries

with corners or thin filaments compared to VOF methods, LS methods or CLSVOF

methods (Wang et al., 2012; Cervone et al., 2009). Application of the method for the

free-surface dam-break and the Rayleigh-Taylor problems can be found in the work of

Ahn and Shashkov (2009).

3.2.2 Marker particle methods

A standard approach for modelling interfaces is the Marker Particle (MP) method

(Harlow and Welch, 1965). In this method, the interfacial region is reconstructed by a

set of marker particles at any time (Sethian, 1999). This method is known as MP method,

as well as under the names, string methods and nodal methods. In 2-D problems, line

segments are commonly used for the interface representation, while in 3-D problems,

triangles are preferable.

MP methods are characterised by high degree of accuracy, robustness and account for

substantial topology changes in interface. However, these methods are computationally

expensive, in particular for 3-D problems. More difficulties arise with merging, break

up and shrinking of the interface, resulting in additional marker particles requirements

during the simulation (Scardovelli and Zaleski, 1999; Van Sint Annaland et al., 2005,

2006; Gopala and van Wachem, 2008).

The first MP method known as Marker and Cell (MAC) was presented by Harlow
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and Welch (1965) at the Los Alamos National Laboratory. Significant refinement and

optimization of the method was made by Amsden and Harlow (1970) and renamed as

the Simplified Marker and Cell (SMAC) method.

Chen et al. (1991) improved the older version of SMAC method with reference to the

computational cost and mass storage for transient flows, by using new marker movements

and cell reflagging techniques. The improved version of the method is known as Simplified

Marker (SM) method. Numerical results for SMAC and SM methods were obtained for

three different problems (e.g. broken dam problem, cavity in horizontal and vertical

plane) and comparisons made between the solutions.

Some years later, Chen et al. (1997) presented the Surface Marker and Micro Cell

(SMMC), which is an improved version of SM method. The main advantage of the

new method is that it can track the interfacial region much faster compared to previous

versions of the method. Subsequently, numerical results were validated with experimental

data for water sloshing in a tank, presenting good agreement between the shapes and the

locations of the free surfaces.

3.2.3 Level set methods

Notable among the surface methods is the Level-Set (LS) method (Osher and Sethian,

1988; Sethian and Straint, 1992; Sussman et al., 1994, 1999; Sethian, 1999; Chang et al.,

1996; Sussman and Smereka, 1997; Sussman and Fatemi, 1999; Osher and Fedkiw, 2001).

The main idea behind of this method is the introduction of a distance or level set function

φ. The distance function φ corresponds to one fluid with positive value (φ > 0) and

negative for the other fluid (φ < 0). For the interfacial region, φ is equal to zero.

The equation which expresses the advection of the distance function with the local fluid

velocity is defined as:

∂φ

∂t
+ Ui

∂φ

∂xi
= 0 (3.1)

LS methods are characterised by simplicity and easy implementation. The LS methods

fall in the sharp interface methods and give results with high accuracy when the interface
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is advected parallel to one of the co-ordinate axis (Gopala and van Wachem, 2008; Van

Sint Annaland et al., 2005). However, the main disadvantage of this class of methods is

the mass loss, where the interfacial region shows significant deformations.

Improvements and modifications of the LS methods are many, with probably the

most important being the works of Sussman and Fatemi (1999), Enright et al. (2002) and

Menard et al. (2007).

Sussman and Fatemi (1999) introduced an improved LS method with better accuracy

and efficiency. The novel part of the technique is the implementation of a ’constraint’

along with high-order discretization schemes. The numerical results obtained were com-

pared with available experimental and theoretical data. It was concluded that the method

presented better representation of the interfacial region with smaller mass loss.

Enright et al. (2002) proposed a novel technique in order to improve the mass con-

servation of the LS method. Lagrangian marker particles were used to reconstruct the

level set in regions that are under-resolved. The numerical results appeared to be in

satisfactory agreement regarding the conservation mass compared to VOF method and

the Lagrangian schemes for the interfacial region.

Yu and Fan (2008) performed numerical simulations with a 3-D LS method for in-

vestigating the shape and terminal velocity of bubbles rising in liquid. The numerical

results were compared with experimental data from the work of Grace (1973), exhibiting

good agreement. Further results for bubble coalescence were also presented.

For more details of the LS method, the interested reader is directed to the review

paper of Sethian and Smereka (2003) and to the classical textbook by Sethian (1999).

3.2.4 Front tracking methods

Another ’successful’ class of methods and also widely used is the Front Tracking (FT)

methods. Early attempts of the FT methods were presented by Glimm’s group (Glimm

et al., 1981, 1986, 1998, 2001) and by Tryggvason’s group (Unverdi and Tryggvason,

1992a,b; Tryggvason et al., 2001).

The main concept of the method is to retain a sharp interfacial region between the
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two fluids, by using massless marker particles for the interface reconstruction. The main

advantage of the method is the high accuracy of the interfacial region but it is also

rather difficult to implement. The difficulty arises from the use of an additional grid for

tracking the interfacial region, whilst a fixed or Eulerian grid is adopted for solving the

Navier-Stokes equations.

Van Sint Annaland et al. (2006) performed numerical simulations for investigating

the dynamics of rising bubbles in quiescent liquids. The proposed model was able to

simulate systems (e.g. air-water) with large viscosity and density ratio. The numerical

results appeared to be in a good agreement with experimental data from the work of

Grace (1973).

The study of Van Sint Annaland et al. (2006) was continued by Dijkhuizen et al.

(2010) by using an improved version of the FT method. The method has been improved

for simulating flows with very small bubbles and high surface tension. As a result,

effects concerning the mass loss and the presence of spurious or parasitic currents have

been almost eliminated. Numerical results for stationary bubble and oscillating droplet

with viscous damping were compared with available experimental and analytical data,

presenting satisfactory agreement.

Hua and Lou (2007) developed an improved FT method for modelling bubbles rising

in quiescent liquids. The proposed method preserves the bubble volume by introducing

a volume correction procedure. Parametric analysis was performed for air-water systems

in order to investigate the effects of Reynolds number, Bond number, density ratio,

viscosity ratio and initial bubble shape. The numerical results predicted with satisfactory

agreement the bubble shape and terminal velocity compared to experimental data.

Extension of the previous study is the work of Hua et al. (2008) with the simulation of

3-D bubbles rising in water. An adaptive mesh refinement (AMR) technique is adopted

for simulating the interfacial region with high resolution. The numerical results were

compared with available experimental data, regarding the bubble terminal velocity and

shape.
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3.2.5 Phase-field methods or Diffusive Interface methods

Phase-Field (PF) or Diffusive-Interface (DI) methods belong to the large category of

interface capturing methods. This class of methods is very attractive as they do not

seem to be affected by problems such as mass conservation or the accurate computation

of surface tension. The key idea behind the phase-field method is the description of the

system by an order parameter (Qin and Bhadeshia, 2010). The order parameter may be

expressed by the difference between the concentrations of the two mixtures or the relative

mass density, or even with a phase indicator function.

The interfacial region between two immiscible fluids may be characterised as a very

narrow region in which the phase field variables vary gradually. Accordingly, the interface

position is implicitly captured by the phase-field variable. The idea for this class of

methods was proposed by Van der Waals (1979) many years ago, but it has been applied

for modelling two-phase flows relatively recently.

An important advantage of PF methods is the implicit tracking of the interfacial

region. There is no need for any a priori knowledge of the location of the interfacial

region. As a result, any topology alterations are treated without the need of mathematical

equations. On the other hand, PF methods require high grid resolution, in particular for

three dimensional problems in order to keep the interfacial region extremely thin and the

correct value of the adjustable parameter for the interface width.

There are many phase field models for simulating two-phase flows such as the Cahn-

Hilliard-van der Waals (CHW) model (Jacqmin, 1999), the Cahn-Hilliard (CH) model

(Cahn and Hilliard, 1958), the Model H (Hohenberg and Halperin, 1977; Starovoitov,

1994; Gurtin et al., 1996; Jasnow and Vinals, 1996; Badalassi et al., 2003), among others.

Lowengrub and Truskinovsky (1998) developed a quasi-incompressible Euler-Cahn-

Hilliard (ECH) model for the case of fluids with different densities. They implemented

the model for investigating the annihilation of a spherical droplet. It was found that

the ECH model can predict the topological transitions smoothly without any topological

singularities, in contrast to the sharp interface models.

Jacqmin (1999) presented numerical simulation by using the Cahn-Hilliard-van der
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Waals (CHW) model in order to calculate the phase-field convection with less than two

cells wide. He tested the CHW model for linear capillary waves and Rayleigh-Taylor

instabilities. One year later, Jacqmin (2000) investigated with CHW model the moving

contact line problem with promising results.

Badalassi et al. (2003) performed numerical simulations based on the Model H in

order to investigate multi-phase flows. The numerical results appeared to be in a fair

agreement with analytical solutions and scaling laws, and for the 3-D applications in the

presence of shear, reveal rich and complex structure, including strings.

Ding et al. (2007) performed numerical simulation for incompressible two-phase flows

with large density ratios based on a modified Model H. Numerical results were compared

with cases of axisymmetric bubble and Rayleigh-Taylor instability. Subsequently, results

for the head-on droplet collision and the onset of droplet entrainment in stratified flow

were also presented.

Recently, phase-field methods have been used for a variety of applications such as

droplet collision (Yue et al., 2004), moving contact lines (Seppecher, 1996; Jacqmin, 2000),

vesicle dynamics (Biben et al., 2005) and droplet coalescence involving four different

phases (Kim et al., 2009). The reader interested in more details is addressed to the

review papers by Anderson et al. (1998), Qin and Bhadeshia (2010) and the recent one

by Kim (2012).

3.2.6 Hybrid methods

As mentioned before all the available tracking and capturing interface methods have

advantages and drawbacks. In order to surmount the weaknesses of the above methods, a

number of hybrid methods has been proposed. Hybrid methods combine the advantages

of two or more of the above mentioned methods in one.

The most well-known and widely used of this category is the Coupled Level Set

Volume of Fluid (CLSVOF). The main idea of CLSVOF is to combine the VOF with LS

for preserving the mass conservation. The method was initially proposed by Bourlioux

(1995) and further improved by Sussman and Puckett (2000). Some years later, Sussman
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(2003) presented a second order accurate version of the method for modelling vapor

bubbles.

Son (2003) further improved the method by replacing the two pressure equations of

Sussman and Puckett (2000) method with one and by using a high order advection scheme

for the momentum equation, namely Cubic-Interpolated Propagation scheme (Takewaki

and Yabe, 1987).

Chakraborty et al. (2013) performed numerical simulations by using the CLSVOF

method for investigating the dynamics of axisymmetric bubbles rising in quiescent liquid.

The numerical results obtained were compared with experimental data from Bhaga and

Weber (1981) and Hnat and Buckmaster (1976), exhibiting good agreement.

Aulisa et al. (2003) presented a new method, combining mixed markers and VOF

algorithm for the reconstruction and advection of interface, in order to model two-phase

and free boundary flows. Many two-dimensional cases were tested, showing good accu-

racy and mass conservation. Finally, the MP method has been extended by using the

characteristic Galerkin finite element method (FEM) for metal forming by Yamada and

Matsui (2008) with interesting results.

Menard et al. (2007) performed numerical simulations for investigating the dense zone

of a spray. The proposed methodology is a combination of LS, VOF and Ghost Fluid

Method (GFM). The LS method is adopted for tracking interfacial region and GFM for

capturing precisely sharp discontinuities for pressure, viscosity and density, while the

VOF method is used for mass conservation. The numerical results were compared with

2-D and 3-D test cases.

Wang et al. (2012) developed a hybrid level set-volume constraint (HLSVC) method

for modelling deforming boundaries. The numerical results obtained were compared with

numerical data from the CLSVOF method. The main advantage of the HLSVC method is

the mass conservation and relatively easy implementation. Numerical results for various

applications were validated against on a number of benchmark problems (e.g. Rayleigh

capillary instability, rising bubble, break-up of a liquid jet, liquid jet flow in a gas cross-

flow).
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Recently, Jemison et al. (2013) proposed a Coupled Level Set-Moment of Fluid

Method (CLSMOF) for incompressible flows. The key idea behind the hybrid method

is the combination of the level-set function, the volume of function and the reference

centroid for the reconstruction of interfacial region. Numerical results for two- and three-

dimensional flow problems such as bubbles, jets, waves and drops are presented and

discussed.

3.3 Chapter summary

In the present Chapter, an attempt was made to briefly review the state of the art of

the main interface tracking and capturing methods. One of the differences between VOF

and LS methods is that the first category adopts a discontinuous function for the interface

reconstruction, while the latter class of methods expresses the interface reconstruction by

a contour of smooth function.

The first type of methods suffers from inaccurate representation of the interfacial

region but at the same time preserves exactly the mass of each fluid volume. On the

other hand, the use of a smooth function for the interface reconstruction allows numerical

results with better accuracy.

In Lagrangian methods, the interfacial region is explicitly tracked by using a set of

marker particles or a moving mesh. These methods suffer from weakness when applied

to interfaces with large deformations or topological alterations, along with the surface

tension effect. However, the application of this class of methods is accompanied by

highly accurate computations.

Phase-Field or Diffusive-Interface methods handle naturally the topology changes

or large deformations of the interface without any a priori knowledge of the location

or tracking of the interface. This is very useful for visualizing microstructural flows

and phenomena such as coalescence and morphology changes. On the other hand, the

main disadvantage is the value of interface width which is an adjustable parameter and

sometimes may lead to unrealistic values.
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In the present study, the Phase-Field method is the adopted technique for the simu-

lation of the interfacial region because of its aforementioned advantages for the investiga-

tion of physical problems with topology changes and coalescence, such as the dynamics

of Taylor bubbles rising in pipes, wall effects of single bubble rising in stagnant liquids,

dynamics of bubble swarms and droplets, among others.

Table 3.1: Advantages and disadvantages of interface and capturing methods.

Method Advantages Drawbacks

SLIC VOF Easy implementation Limited accuracy

Mass conservation Numerical diffusion

Extension to 3-D

Automatic merging and

breakage of interfacial region

PLIC VOF Accurate and relatively simple Difficult for 3-D flows

Mass conservation Difficult with boundary

Automatic merging and fitted grids

breakage of interfacial region

Front Tracking (FT) Extremely accurate Dynamic re-meshing

Robust Mapping of interface mesh

Accounts for substantial onto Eulerian mesh

topology changes in interface

Marker Particle (MP) Extremely accurate High computational cost

Robust Marker particle redistribution

Accounts for substantial

topology changes in interface

Level Set (LS) Easy implementation Limited accuracy

Simple Mass loss

Phase Field (PF) Visualization of microstructu- Interface width

ral development (adjustable parameter)

Naturally handled with Challenging for large

topology changes computational domain

and coalescence

Hybrid High accuracy Computational cost

Mass conservation Complex implementation
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Table 3.1 illustrates the main advantages and drawbacks of the aforementioned meth-

ods. Due to space limitations, the interested reader is directed to the review paper by

Scardovelli and Zaleski (1999), for VOF methods. Information for the currently widely

used LS methods may be found in Sussman et al. (1994), Sethian (1999) and Sussman and

Smereka (1997). More details for the development and progress of Phase-Field methods

can be found in the review papers by Anderson et al. (1998), Qin and Bhadeshia (2010)

and Kim (2012).
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Chapter 4

Mathematical formulation and

numerical methods

4.1 Introduction

A numerical methodology is presented for simulating laminar two-phase pipe flows of

separated phases with an interfacial region. The set of the 3-D model partial-differential

equations with their dimensionless form, along with the appropriate auxiliary relations

and boundary conditions, have been solved by means of a Finite Difference Method.

A uniform staggered grid was selected for the numerical simulations, while a pro-

jection method was adopted for coupling the continuity and momentum equations. In

momentum equations, an Adams-Bashforth was employed to discretise the diffuse term

and the treatment of the viscous term was obtained by a Crank-Nicolson scheme. Cen-

tral finite differences were used for the spatial discretisation. The interface simulation

was achieved by using a phase-field method based on the Cahn-Hilliard equation. The

convective Cahn-Hilliard equation was descretised by using a fifth-order WENO scheme.

Two immersed boundary algorithms were developed for the representation of the

rigid boundaries (pipe wall). The first IB method based on a penalty technique and the

latter is known as Ghost Cell Immersed Boundary Method and is based on the ghost cell

technique.
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4.2 Governing differential equations

4.2.1 Phase-field modelling

The modelling of interface region between two immiscible fluids can be accomplished by

using several interface methods. In the present study, a phase-field method was selected

for the computation of the interface between the two fluids. The interfacial region between

two immiscible fluids may be characterised as very narrow region in which the phase field

variables is gradually vary.

In the past few decades, phase-field models have gained great popularity for the inves-

tigation of interfacial phenomena and the micro-structure evolution during solidification.

The key idea behind the phase-field method is the description of the system by an order

parameter (Qin and Bhadeshia, 2010). The order parameter may be expressed as the

difference between the concentrations of the two mixtures or the relative mass density,

or even with a phase indicator function.

In the present formulation, the flow of two incompressible immiscible fluids (A and

B) with variable density and viscosity is considered. Every control volume in the domain

may contain a part of the phases A and B, and the amount of phase A or B (state of the

system) can be determined by the volume fraction, C, of one of the fluids (i.e. A). The

volume fraction, C (0 ≤ C ≤ 1) is a function of the position vector and represents the

order parameter for the phase-field model (Argyropoulos, 2011).

According to C the local properties such as viscosity (µ) and density (ρ), are specified

as follows:

ρ = (1− C)ρA + CρB (4.1)

µ = (1− C)µA + CµB (4.2)

where ρA and ρB are the bulk densities for phases A and B, respectively. Similarly, µA

and µB are the bulk viscosities for phases A and B, respectively. The above formulation

indicates that the density and the viscosity are linearized with C field in order to avoid

the discontinuities across the interfacial region.
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The governing equation for the description of the phase-field is the convective Cahn-

Hilliard equation:

∂C

∂t
+ u · ∇C −∇ · j = 0 (4.3)

where u is the velocity field and j denotes the volumetric diffuse flow rate of phase A

(jA) but it will be referred to as j in order to simplify the notation, defined as:

j = M(C)∇φ (4.4)

where φ is the chemical potential and is defined by the variation of the free energy with

respect to the volume fraction C and M(C) > 0 is the mobility (diffusion parameter).

From equations 4.3 and 4.4, it follows that the convective Cahn-Hilliard equation can be

written as:

∂C

∂t
+ u · ∇C = ∇ · (M(C)∇φ) (4.5)

It is also worth mentioning regarding equation 4.5 that C on the left-hand side rep-

resents a different function, depending on the selected interface method. Thus, for the

level-set method, the interface is characterised by a continuous function φ, representing

the distance to the interface which is set to zero on the interface, is positive on one side

and negative on the other. In VOF approach, C expresses the volume fraction of the

fluid (Lakehal, 2010).

According to the literature, many scientists have proposed various formulations for

the mobility. Jacqmin (1999) selected a mobility profile dependent on the interface width

and obtained by the following expression, M = O(εδ), 1 ≤ δ < 2. Badalassi et al. (2003)

used a phase-field dependent mobility, M(φ) = Mc(1−γφ2), following the work of Langer

et al. (1975).

Borcia and Bestehorn (2003) introduced the following expression for the mobility,

M(C) = 1, while Kim (2007) and Ding et al. (2007) used a mobility profile M(C) =

C(1 − C). In the present work was adopted the last formulation of mobility by Kim

(2007) and Ding et al. (2007). This formulation is characterised by lower levels of long-

range diffusion across the bulk regions (Kim, 2007).
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The dynamics of C can be obtained from a free-energy density model for immiscible

isothermal two-phase fluids according to Van der Waals (1979):

f = 0.5α |∇C|2 + βψ(C) (4.6)

where α and β are positive constants, ψ(C) the bulk energy density and f the free energy

density. The bulk energy density is given by the following expression:

ψ(C) = 0.25C2(1− C)2 (4.7)

In general, the available free energy density models can be classified as singular or non-

singular according to their behaviour (Jacqmin, 1999). The simplest non-singular model

with two equal minima at C = ±0.5 is ψ(C) = (C+ 0.5)2(C− 0.5)2 (Jacqmin, 1999). On

the other hand, singular free energy density models with interesting properties are the

ψ(C) = |C − 0.5|1.5 |C + 0.5|1.5 and the double obstacle energy model which was used by

Nochetto et al. (1996) and Oono and Puri (1988). More details for the characteristics of

the above mentioned free energy density models may be found in the work of Jacqmin

(1999).

The chemical potential or partial molar free energy, φ, is defined as the partial deriva-

tive of Gibbs free energy with respect to C:

φ =
δF

δC
= βψ′(C)− α∇2C (4.8)

From equations (4.6), (4.7) and (4.8), it follows that φ is equal to

φ = β(C3 − 1.5C2 + 0.5C)− α∇2C (4.9)

The interface profile in equilibrium may be derived by equating the right hand side

of equation (4.9) to zero. Hence, if the z-axis is normal to the interface yields:

d2C

dz2
− β

α
(C3 − 1.5C2 + 0.5C) = 0 (4.10)

The two positive constants α and β affect the surface tension (σ) and the interface

thickness (ε). The solution of the equation (4.10) yields the equilibrium profile of C,

normal to z-axis:

C(z) = 0.5 + 0.5 tanh

(
0.5

√
β

α
z

)
(4.11)
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where z = 0 at the interface for C = 0.5. The interface thickness (ε) is specified as

follows:

ε =

√
α

2β
(4.12)

In our case the volume fraction varies from C = 0.05 to C = 0.95 and this variation

defines a equilibrium interface thickness of 8.328ε.

For an isothermal system of fluids in equilibrium the surface tension is defined as the

integral of the free energy density along the surface area and is given by the following

equation (Bray, 1994):

σ = α

∫ +∞

−∞

(
dC

dz

)2

dz =
1

6

√
αβ (4.13)

From equations (4.12) and (4.13) the chemical potential φ can be written as:

φ = −6
√

2εσ∇2C + 6
√

2
1

ε
σ(C3 − 1.5C2 + 0.5C) (4.14)

where ε is the interface thickness and σ the surface tension.

Substituting the above equation (4.14) for φ in equation (4.5) the Cahn-Hilliard

equation can be written:

∂C

∂t
+ u · ∇C = ∇ · (C(1− C)∇(−6

√
2εσ∇2C + 6

√
2

1

ε
σ(C3 − 1.5C2 + 0.5C)) (4.15)

4.2.2 Equations of the fluid motion

The system of partial differential equations for the incompressible two-component

flows can be expressed as follows:

Continuity equation:

∇ · u = 0 (4.16)

where u is the velocity of fluid flow.

Navier-Stokes equations:

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+∇ · [µ(∇u +∇uT )] + φ∇C + ρg + fIB (4.17)

where ρ is the density, p the pressure, µ the viscosity, φ the chemical potential, fIB

the forcing term for the immersed boundary and g the gravitation acceleration. The

superscript T denotes the transpose operator.
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In the case of a single-phase flow the above equations are the same excluding that

the density and viscosity are now functions of the composition. According to the work of

Hohenberg and Halperin (1977), the set of equations (4.15)-(4.17) comprises the modified

model H. As mentioned earlier, the proposed numerical methodology does not rely on

the reconstruction of the interface for the calculation of the surface tension. The surface

tension is specified as a function of the concentration field.

4.2.3 Non-dimensionalisation

Considering the above equations (4.15)-(4.17), it is more convenient to express them

in dimensionless form as numerically are solved in the developed in house code. The

following variables and dimensionless numbers are introduced in order to derive the di-

mensionless form of the governing equations. The variables with the asterisk are the

dimensionless variables and with the subscript c are the characteristic variables. The

dimensionless variables and parameters can be defined as:

u∗ ≡ u

uc
, t∗ ≡ t

uc
Lc
, x∗ ≡ xc

Lc
, p∗ ≡ p

ρAu2
c

M∗ ≡ M

Mc

, φ∗ ≡ φ

φc
, g∗ ≡ g

gc
, ∇∗ ≡ L−1

c ∇

where Lc is the characteristic length scale, uc the characteristic velocity, u is the velocity,

t is the time, p is the pressure, M is the mobility, Mc is the characteristic mobility, φ is

the chemical potential, φc is the characteristic chemical potential, g is the gravitational

acceleration and gc is the characteristic gravitational acceleration.

It is important to mention that the characteristic velocity, uc, is equal to up for

pressure driven flows and ub for gravity driven flows in the present study. The up based

on the pressure gradient and the ub based on the gravity acceleration, respectively. The

aforementioned terms are defined as:

up =

√∣∣∣∣∂p∂z
∣∣∣∣ LcρA ub =

√
gLc
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the selected characteristic length scale (Lc) is the pipe diameter (Dp). The dimensionless

form for the viscosity and density is:

ρ∗ ≡ ρ

ρA
= (1− C) + rdC µ∗ ≡ µ

µA
= (1− C) + rvC

where C is the volume fraction, ρA the density of fluid A, µA the viscosity of fluid A, rd

the ratio density and rv the ratio viscosity.

The necessary dimensionless numbers for the description of the pressure driven flows

in this study are the pressure gradient-based Reynolds number, Peclet number, Capillary

number and Froude number, respectively.

Rep ≡
ρAupDp

µA
, P ep ≡

Dpup
Mcφc

, Cap ≡ µA
up
σ
, Frp ≡

up√
gDp

Accordingly, with the asterisks omitted henceforth for simplicity, the equations (4.15)-

(4.17) can be written as:

Cahn-Hilliard equation:
∂C

∂t
+ u · ∇C =

1

Pep
∇ ·M∇φ (4.18)

Continuity equation:

∇ · u = 0 (4.19)

Navier-Stokes equations:

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+

1

Rep
∇ · [µ(∇u +∇uT )] +

φ∇C
RepCap

+
ρ

Fr2
p

g + fIB (4.20)

The above equations (4.18) and (4.20) represent the Cahn-Hilliard and Navier-Stokes

equations for pressure driven flows with gravity. In the case of gravity driven flows (i.e.

rising single bubbles, bubble swarms, Taylor bubble) the continuity equation is identical,

while the equations (4.18) and (4.20) take the following form:

∂C

∂t
+ u · ∇C =

1

Peb
∇ ·M∇φ (4.21)

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+

1

Reb
∇ · [µ(∇u +∇uT )] +

φ∇C
Eo

+
ρ

Fr2
b

g + fIB (4.22)
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where the gravity gradient-based Reynolds number, Peclet number, Froude number and

Eotvos number are defined as:

Reb ≡
ρAubDp

µA
, P eb ≡

Dpub
Mcφc

, F rb ≡
ub√
gDp

, Eo ≡
ρAgD

2
p

σ

4.3 Boundary conditions

The boundary conditions for the numerical simulations are specified as follows. At the

inlet the velocity and pressure are set to zero. Periodic boundary conditions for pressure

and velocity are imposed on the domain in the flow direction as follows:

u(x0)

∣∣∣∣
(x0=Lx)

= u(x0)

∣∣∣∣
(x0=0)

(4.23)

p(x0)

∣∣∣∣
(x0=Lx)

= p(x0)

∣∣∣∣
(x0=0)

+ Lx
∂p

∂x
(4.24)

where Lx is the length of the computational domain and
∂p

∂x
is the pressure gradient.

4.4 Immersed boundary methods

The imposition of the desired boundary conditions on the immersed boundary method

is of vital importance for the construction of the appropriate IB algorithm, but also

characterizes the type of the proposed IB method among the other types and its accuracy.

In order to handle the immersed boundary for solid boundaries, the governing equations

should be modified properly to ensure the imposition of boundary conditions in the

vicinity of the boundary. Therefore, a forcing term fIB is introduced in Navier-Stokes

equations (4.20) to specify the boundary reconstruction at the fluid/body interface for

the pipe geometry.

The forcing term is equal to zero in the fluid domain and non zero in the solid or

interface domain. In that case, where the forcing term is non zero, a smooth Dirac

delta function is often used for the determination of the forcing term for some types

of IB methods. On the other hand, for types of IB methods such as the ghost-cell

68



Chapter 4. Mathematical formulation and numerical methods

immersed boundary method (GCIBM) (Tseng and Ferziger, 2003) the forcing term is

treated implicitly and as a result is not calculated. The boundary is represented by

a ghost cell technique inside the body (Majumdar et al., 2001). More details for the

developed GCIBM based on the idea of Tseng and Ferziger (2003) are presented and

discussed below.

4.4.1 IBM based on the penalty technique

The solid boundary which represents the pipe geometry does not conform with the

structure of the computational grid. Consequently for the imposition of boundary condi-

tions on immersed boundaries, it will be necessary to modify the momentum equations

in the vicinity of the boundary. More specifically, the forcing term is added to the mo-

mentum equations in order to achieve at the desired points the fluid velocity equal to

zero. Considering the following equation which expresses the forcing term, fIB,

fIB = − u

CIB
(4.25)

where u is the velocity of fluid flow and CIB the user define parameter and is taken

to be equal to 0.0001 for the considered cases. The selection of the appropriate value

for the CIB parameter was obtained by comparing the numerical results with analytical

solutions. Two cases are herein considered to validate and investigate the performance

of the proposed 1st order IB method, a single-phase and a two-phase annular pipe flow.

Before presenting the numerical results for the above mentioned test cases, it is necessary

to express some general observations for the user define parameter CIB.

When the parameter CIB → ∞, the forcing term (fIB) vanishes and the equation

returns again to the previous status of Navier-Stokes equations. On the contrary, when

CIB → 0, the forcing term (fIB) gives u = Vs, where Vs is the velocity distribution over

the boundary. This behaviour has main effects in numerical simulations, because the

value of CIB can be neither 0 or ∞. Thus, the solid and fluid regions are estimated by

finite, user defined values. The problem is getting worse when the values of CIB are set

to be very small. It is observed the increase of stiffness in the numerical system and as a
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result affects the convergence of the solution.

The solution in this situation can be obtained by ensuring a value of CIB which

compromises the need of approximating solid boundaries and the preservation of the nu-

merical stability at a reasonable computational cost. Subsequently, a partial improvement

to the stability of the method may be achieved by treating the forcing term implicitly

which helps the alleviation of the severe time step limitation of a fully explicit approach

(Iaccarino and Verzicco, 2003).

The aforementioned IBM is characterized by simply grid generation, easy implemen-

tation and is very attractive for applications with immersed elastic boundaries, such as

biological and multi-phase flows. However, the proposed method has also drawbacks

especially for flows with rigid bodies. As mentioned earlier, the parameter that intro-

duced in these approaches appears stability and accuracy problems. In addition, the

smoothing of forcing function in order to avoid the above mentioned problems has ef-

fect in the representation of immersed boundary which in cases of turbulent flows with

high Reynolds numbers is undesirable. It is worth mentioning that imposition of the

appropriate boundary condition is also required for the pressure solver, depending on the

particular implementation.

4.4.2 The proposed Ghost-cell immersed boundary method

The current section is focused on the development of a modified ghost cell immersed

boundary method based on the idea of Tseng and Ferziger (2003). A boundary forcing

term, fi, is imposed implicitly through a ghost-cell technique and is only active on the

boundary according to the Equations (2.8) and (2.9) in Chapter 2.

In this section, we present the proposed GCIBM in two dimensions for the sake of

clarity, even though the method has been implemented for the 3-D case. The proposed IB

method based on the ghost cell technique (see Figure 4.1). In this technique, the values

of the local field variable (φ) inside the body or outside of the fluid domain for a steady

boundary are unalterable at every time step. This is achieved by mirroring the values of

the image points and the values on the immersed boundary by satisfying the following
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equality:

φG = 2φB − φI (4.26)

where φG is the value of the variable φ at the ghost cell, φI is the value of the variable φ

at the image point and φB is the value of the variable φ at the boundary. It is interesting

to point out that the image point (I1) intersects the immersed boundary (B1), while

the boundary is located between the image point and the ghost cell. The value of the

Figure 4.1: Description of the proposed GCIBM.

local flow variable (φ) (i.e velocity components, pressure and volume fraction) at the

image point φI is computed by using an interpolation scheme and taking advantage of

the nearby adjacent fluid points, while the accuracy of the scheme is dependent on the

polynomial degree. Herein, three interpolation construction schemes were used, namely

linear, bilinear and quadratic.

Another issue of the method is the unknown value of the pressure at the immersed

boundary. Therefore, an appropriate boundary condition is needed to be imposed. A

Neumann boundary condition is adopted for the pressure which imposes a zero wall
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normal derivative.

∂P

∂n
= 0⇔

∂P

∂n
=
∂P

∂x
n̂x +

∂P

∂y
n̂y (4.27)

where n̂x and n̂y are the x and y directions of the unit vector normal to the boundary,

respectively. It is also worth noting that the method is also capable to handle moving

boundary with the constraint that the points where the imposition of the boundary

conditions takes place must be recalculated at every time step.

The proposed GCIBM can be described by the following steps:

(a) Identification of the fluid and solid cells: In the present case the specification of the

fluid and solid cells are based on the radius of the pipe. Hence, a cell is identified as

“fluid cell” if the distance between the cell center and pipe center is less than the pipe

radius, otherwise the cell is identified as “solid cell”.

(b) Identification of the ghost cells: These cells are located close to the boundary region

and have at least one fluid neighbour cell in the fluid region. The value at the ghost cells

is obtained by satisfying the mirroring condition (Eq. 4.26).

(c) Identification of the neighbour cells and the intersection point: According to Figure

4.1, the ghost cell (G1 = (xG1 , yG1) has an image point (I1 = (xI1 , yI1) and the intersection

point B1 = (xB1 , yB1) is the midpoint between G1 and I1. The relation of the above points,

regarding the coordinates of image point can be written as:

(xI1 , yI1) = (xB1 − [xG1 − xB1 ], yB1 − [yG1 − yB1 ]) (4.28)

The image points are determined in the flow region and the value of the local flow variable

(φ) at image point can be presented by using an interpolation scheme in terms of the

neighbour cells. Thus, for the selected linear interpolation scheme, the value of φ at the

image point can be specified as follows:

φ(xi, yj) = αB + α1xi + α2yj (4.29)

The coefficients are computed from the values at F1, F2 (two neighbour cells) and B1 (see
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Fig. 4.1). According to the three points, the coefficients can be expressed as:

α = D−1φ (4.30)

where α is the vector with the unknown coefficient, D is a 3x3 matrix for the linear

interpolation scheme and φ is the vector expressing the values of the two neighbour

points and intersection point.

α =


αB

α1

α2

 , D =


1 xB yB

1 x1 y1

1 x2 y2

 , φ =


φB

φ1

φ2

 (4.31)

In the case of a bilinear interpolation scheme, equation 4.29 is replaced by:

φ(xi, yj) = αB + α1xi + α2yj + α3xiyj (4.32)

while for a quadratic interpolation scheme takes the following form:

φ(xi, yj) = αB + α1xi + α2yj + α3x
2
i + α4xiyj + α5y

2
j (4.33)

Equation 4.30 holds as it is for both interpolation schemes, but α and φ vectors

together with the matrix D are different for each interpolation scheme. For bilinear

interpolation scheme yields:

α =


αB

α1

α2

α3

 , D =


1 xB yB xByB

1 x1 y1 x1y1

1 x2 y2 x2y2

1 x3 y3 x3y3

 , φ =


φB

φ1

φ2

φ3

 (4.34)

while for a quadratic interpolation scheme the above can be written as:

α =



αB

α1

α2

α3

α4

α5


, D =



1 xB yB x2
B xByB y2

B

1 x1 y1 x2
1 x1y1 y2

1

1 x2 y2 x2
2 x2y2 y2

2

1 x3 y3 x2
3 x3y3 y2

3

1 x4 y4 x2
4 x4y4 y2

4

1 x5 y5 x2
5 x5y5 y2

5


, φ =



φB

φ1

φ2

φ3

φ4

φ5


(4.35)
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(d) Calculating the values of the local flow variable (φ) at ghost cells: Once coefficients

values are computed from equation 4.30, then the values at image point can be calculated

from equation 4.29. Accordingly, the values of φ at ghost cells are worked out using the

mirror condition (see equation 4.26).

Figure 4.2: The proposed ghost-cell immersed boundary method.

It is important to mention that the first three steps take place only once because the

proposed GCIBM is implemented for smooth rigid boundary (e.g. pipe geometry). In

the case of deformable or moving boundaries the aforementioned steps must be repeated

at every time step. Figure 4.2 depicts the algorithm for the proposed IBM.

As mentioned earlier, for the calculation of the unknown pressure and volume fraction
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on the boundary a Neumann boundary condition is essential to be imposed. Then, the

form of matrix D is required to modify in order to accommodate the desired changes.

Hence, for the linear, bilinear and quadratic interpolation scheme the matrix D takes the

following forms, respectively:

D =


0 −sin(θB) cos(θB)

1 x1 y1

1 x2 y2

 (4.36)

D =


1 −sin(θB) cos(θB) cos(θB)xB − sin(θB)yB

1 x1 y1 x1y1

1 x2 y2 x2y2

1 x3 y3 x3y3

 (4.37)

D =



1 −sin(θB) cos(θB) −2sin(θB)xB cos(θB)xB − sin(θB)yB 2cos(θB)yB

1 x1 y1 x2
1 x1y1 y2

1

1 x2 y2 x2
2 x2y2 y2

2

1 x3 y3 x2
3 x3y3 y2

3

1 x4 y4 x2
4 x4y4 y2

4

1 x5 y5 x2
5 x5y5 y2

5


(4.38)

where tan(θB) is the slope of the normal at the surface B. Accordingly, equation 4.30 for

the coefficients of pressure and volume fraction is expressed as:
αB

α1

· · ·
αm

 = D−1


∂PB

∂n

P1

· · ·
Pm

 ,

αB

α1

· · ·
αm

 = D−1


∂CB

∂n

C1

· · ·
Cm

 (4.39)

where m is equal to two for the linear interpolation scheme, three for the bilinear inter-

polation scheme and five for the quadratic interpolation scheme. ∂PB

∂n
and ∂CB

∂n
are the

Neumann boundary conditions for pressure and volume fraction, respectively.
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4.5 Method of solution

The set of model partial-differential equations along with the appropriate boundary

conditions have been solved by means of the FDM. A staggered grid (Figure 4.3) was

employed to discretise equations (4.18-4.22). The velocity components (u, v and w) are

defined in the centres of the faces of the mass control volumes, while all the dependent

variables (pressure and volume fraction) are defined in the centre of each control volume.

Figure 4.3: 3-D staggered grid.

The numerical solution of the continuity and Navier-Stokes equations is achieved by

using a classical projection method (Chorin, 1967, 1968; Temam, 1968). The projection

method is based on the Helmholtz decomposition and constituted by two steps. The

former is the calculation of an intermediate velocity at every time step and the latter is

the projection of the intermediate velocity on the solenoid space in order to satisfy the

divergence-free (incompressibility) constrain.

The intermediate velocity is obtained by using the explicit Adams-Bashforth (Bash-

forth and Adams, 1883) scheme for the convective term and the implicit Crack-Nicholson
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(Crank and Nicolson, 1947) scheme for the viscous term of Navier-Stokes equations. The

update of the velocity field is achieved by using a first order Euler method at every time

step.

A time-split semi-implicit scheme was employed for the solution of the Cahn-Hilliard

equation based on the work of Badalassi et al. (2003). The details of this method along

with the aforementioned will be briefly presented in the next two sections.

4.5.1 Temporal discretisation

The numerical solution for the Cahn-Hilliard and Navier-Stokes equations from tn to

tn+1 are specified as follows:

Step 1: Compute the volume fraction, C, by solving the Cahn-Hilliard equation 4.21,

using the velocity field, u, at time step n.

Step 2: Calculate the surface tension force, φ∇C
Eo

at time step n + 1/2 by using the

averaged volume fraction, C, at time step n and n+ 1, respectively.

Step 3: Solving the momentum equations (4.22) and continuity equation (4.19) si-

multaneously and update the velocity field, u, at time step n+ 1

The time split semi-implicit method based on treating the first term of the right

hand side of equation (4.40) implicitly and the rest terms explicitly. As a result, semi-

implicit discretisation approaches can be created and solved efficiently with reasonable

computational cost (Badalassi et al., 2003).

Following the above mentioned steps, the volume fraction, C at time step tn+1 is

calculated from

1.5Cn+1 − 2Cn + 0.5Cn−1

tn+1 − tn
=

1

Pe
(α1∇2Cn+1 − α2∇4Cn+1)

+ 2
{ 1

Pe
[∇ · (M∇φ)− (α1∇2Cn − α2∇4Cn)]−∇ · (unCn)

}
− 1

Pe
[∇(M∇φ)− (α1∇2Cn−1 − α2∇4Cn−1)]

− ∇ · (un−1Cn−1) (4.40)

where α1 and α2 are defined as the approximate values for the nonlinear mobility.
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The solution for the Navier-Stokes is achieved by using a standard Euler first-order

in time projection method. An intermediate velocity, u∗, is introduced by splitting the

momentum equations in two parts such that:

un+1 − un = un+1 − u∗ + u∗ − un (4.41)

In the first part (predictor step), the intermediate velocity is obtained by working out the

viscous term with an implicit Crank-Nicolson scheme (Crank and Nicolson, 1947) and an

explicit Adams-Bashforth (Bashforth and Adams, 1883) scheme for the advective term.

Then, the predictor step without any pressure effects is

u∗ − un

∆t
=

1

ρn+1/2

{
−
[3

2
Ĥ(un)− 1

2
Ĥ(un−1)

]
+

1

2
Re−1[L̂(u∗, µn+1) + L̂(un, µn)] + fST + fIB

}
(4.42)

where Ĥ and L̂ are the discrete operators for the convection and diffusion, respectively.

The term fST represents the dimensionless interfacial and body forces, while fIB expresses

the force function for the IBM. Then a correction step is followed, where the pressure

gradient is introduced:

un+1 − u∗

∆t
= −∇p

n+1/2

ρn+1/2
(4.43)

The determination of the pressure is specified by the fulfillment of the divergence free

constraint at the new time step by the velocity:

∇ · un+1 = 0 (4.44)

Accordingly, the equation for the pressure is

∇ ·
(
∇pn+1/2

ρn+1/2

)
=
∇ · u∗

∆t
(4.45)

4.5.2 Spatial discretisation

The selection of the appropriate spatial discretisation scheme is based on the compro-

mise between accuracy, stability and computation complexity. A central finite difference
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scheme was employed for the spatial discretisation of Navier-Stokes and continuity equa-

tions. The used central-difference formulas of order O(h2) for first and second derivative

are expressed as follows:

φ′(x0) ≈ φ1 − φ−1

2h
, φ′′(x0) ≈ φ1 − 2φ0 + φ−1

h2
(4.46)

Central finite difference scheme was also employed for the discretisation in space for

the Laplace operator in diffusive terms, while for the advection term in the Cahn-Hilliard

equation a fifth-order weighted essentially non-oscillatory (WENO) scheme was selected.

The WENO scheme is described in detail in the works of (Jiang and Shu, 1996; Zhang

and Jackson, 2009; Shu, 2009), we briefly outline it below.

The reconstruction of a function φ where φ is the velocity components ui in the

Cahn-Hilliard equation, can be expressed as follows:

φ̂i+1/2 =
3∑

m=1

ωmφ̄
(m)
i+1/2 (4.47)

where ωm are the non-linear weights and φ̂i+1/2 is the polynomial reconstruction of φ on

the mth set of stencils,

ωm =
ω̂m∑3
l=1 ω̂l

, ω̂l =
γl

(ε+ βl)2
(4.48)

If ui ≥ 0 then γ1 = 0.3 , γ2 = 0.6, γ3 = 0.1 and the calculation of φ̂i+1/2 is obtained

by the following equations:

φ̂1
i+1/2 =

1

3
φi +

5

6
φi+1 −

1

6
φi+2

φ̂2
i+1/2 = −1

6
φi−1 +

5

6
φi −

1

3
φi+1

φ̂3
i+1/2 = −1

3
φi−2 −

7

6
φi−1 −

11

6
φi+2 (4.49)

while the smoothness indicators βl are estimated as:

β1 =
13

12
(φi − 2φi+1 + φi+2)2 + 0.25(3φi − 4φi+1 + φi+2)2

β2 =
13

12
(φi−1 − 2φi + φi+1)2 + 0.25(φi−1 − φi+1)2

β3 =
13

12
(φi−2 − 2φi−1 + φi)

2 + 0.25(φi−2 − 4φi−1 + 3φi)
2 (4.50)
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If ui < 0 then γ1 = 0.1 , γ2 = 0.6, γ3 = 0.3 and the calculation of φ̂i+1/2 is obtained by

the following equations:

φ̂1
i+1/2 =

11

6
φi+1 −

7

6
φi+2 −

1

3
φi+3

φ̂2
i+1/2 = −1

3
φi +

5

6
φi+1 −

1

6
φi+2

φ̂3
i+1/2 = −1

6
φi−1 +

5

6
φi +

1

3
φi+1 (4.51)

while the smoothness indicators βl are estimated as:

β1 =
13

12
(φi+1 − 2φi+2 + φi+3)2 + 0.25(3φi+1 − 4φi+2 + φi+3)2

β2 =
13

12
(φi − 2φi+2 + φi+1)2 + 0.25(φi − φi+2)2

β3 =
13

12
(φi−1 − 2φi + φi+1)2 + 0.25(φi−1 − 4φi + 3φi+1)2 (4.52)

Accordingly, the gradients of the convective terms are given by

∂φ

∂η
=
φ̂i+1/2 − φ̂i−1/2

h
(4.53)

where h is defined as the distance between the nodes.

4.5.3 Numerical solver

The numerical solution of the governing equations is achieved by a Gauss-Seidel Suc-

cessive Over Relaxation (SOR) method. The method introduces a parameter into the

iterative procedure and then attempts to optimise it in order to increase the convergence

rate.

The convergence rate is dependent on the largest eigenvalue of the iteration matrix.

Thus, the objective of the method is to minimise the largest eigenvalue as much as

possible. This method is described in detail in many numerical textbooks (Press et al.,

2007; Moin, 2010); we briefly present it here.

A system of equation can be expressed as: Ax = b and A = A1−A2, resulting in the

following equation:

A1x = A2x+ b (4.54)
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From equation 4.54 is created the following iterative relationship:

A1x
m+1 = A2x

m + b (4.55)

where m = 0, 1, 2, · · · is the iteration index. Let us define as A1 = D − L and A2 = U

where D is the diagonal matrix with the diagonal elements of matrix A, U is the upper

triangular matrix consisting of the negative of the upper triangular elements of matrix

A, and L is the lower triangular matrix consisting of the negative of the upper triangular

elements of matrix A.

According to the above relationship, we have

(D − L)φm+1 = Uφ(m) + b (4.56)

Let express d = φ(m+1) − φ(m) as the change between two successive iteration, such that

φ(m+1) = d+ φ(m) (4.57)

If we introduce a parameter ω in order to increase the change between two successive

iteration, then we have the following equation:

φ(m+1) = ωd+ φ(m) (4.58)

where ω > 1 is the relaxation parameter. If ω is equal to one the Gauss-Siedel method is

retrieved. In SOR, the first step based on the Gauss-Siedel is to obtain an intermediate

solution φ̃

D ˜φ(m+1) = Lφ(m+1) + Uφ(m) + b (4.59)

Finally, the SOR solution at the next iteration is given by the following expression:

φ(m+1) = φ(m) + ω( ˜φ(m+1) − φ(m)) (4.60)

4.5.4 Implementation of the numerical model

The numerical model was implemented in a CFD code developed in house. The

existing CFD code was written in Fortran 90/95 and initially parallelised with Open
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Multi-Processing (OMP). However, the parallelisation with OMP is inefficient when a

large number of processors is used. Therefore, the CFD code was also parallelised with

Message Passing Interface (MPI) in order to accommodate the increasing complexity of

calculations. This improvement helped to speed up the calculations and increase the

grid resolution in order to obtain fast results with high accuracy. An adaptive time step

technique was also implemented for helping to quicken the solution procedure. Figure

4.4 illustrates the solution algorithm for the current study.

Figure 4.4: Solution procedure algorithm.
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4.6 Chapter summary

In this Chapter, the mathematical formulation and the numerical methods for the

solution procedure were presented and discussed in detail. The governing equations

consisting by the continuity, Navier-Stokes and Cahn-Hilliard equations along with the

appropriate boundary condition and the auxiliary relations have been resolved by means

of the finite difference method. The solution of the governing equations was obtained

using an iterative algorithm, namely Gauss-Seidel Successive Over Relaxation (SOR).

Two different immersed boundary algorithms for the representation of the pipe geometry

were presented and discussed.
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Chapter 5

Validation of the numerical method

5.1 Introduction

An attempt was made to validate the results of the developed IB algorithms, regarding

velocity profile, with data from analytical solutions. The single- and two-phase Poiseuille

flow were selected for evaluating the accuracy of the developed IB algorithms. The

numerical method was verified and validated with available experimental data from the

literature.

The classical test case of a single bubble rising in a liquid-filled vertical pipe has

been investigated for different selections of Eotvos, Morton and Reynolds numbers. The

numerical results for the shape and terminal velocity, drag coefficient along with the in-

stantaneous Reynolds number were compared with experimental data from the literature.

Numerical simulations were performed for investigating the presence of parasitic or

spurious currents and their dependency with the interface thickness. Volume conservation

tests were conducted for investigating the mass conservation of bubble flows. The nu-

merical code was also tested for bubble coalescence with encouraging agreement against

experimental data.
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5.2 Validation of IB algorithm based on the penalty

technique

5.2.1 Single-phase Poiseuille flow

Numerical simulations were performed at Rep = 20 and pipe diameter Dp = 1. Three

different grids were selected for the validation of the proposed IB algorithm and compared

with those of analytical solution for single-phase Poiseuille flow. The coarse grid of

14x30x30, the medium grid of 14x60x60 and the fine grid of 14x120x120. A cross section

of the computational domain is depicted in Figure 5.1.

Figure 5.1: Representation of the computational domain for single-phase Poiseuille flow: (a)

cross section of the geometry and (b) 3-D geometry.

The selection of the appropriate value for the user define parameter CIBM in forcing

term, fi, was made by examining different values for CIB and time step (∆t) until the

code crashes. The final value was determined by the calculation of the % error regarding

the dimensionless maximum velocity. The analytical solution of u-velocity component for
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a steady state pipe flow is given by the following equation in dimensionless form:

u∗z =
Rep
16

(
1− r2

R2

)
(5.1)

where r is the radius and R the pipe radius. The dimensionless maximum velocity is

expressed as u∗max = Rep/16 and is equal to 1.25 for Rep = 20. For simplicity the asterisk

which denotes the dimensionless form is dropped. The full derivation of the analytical

solution is presented in Appendix B.

In Figure 5.2, it is shown that among the three grids with CIB = 0.0001 the finer

gives the best prediction for the velocity profile compared to the analytical solution.

Figure 5.2: Comparison of the velocity profiles for CIB = 0.0001, Rep = 20 and various grids

with the analytical solution.

Figure 5.3 illustrates the % error of maximum velocity (umax) with respect to the

computational grid. The lower the value of user define parameter CIB, the higher accuracy

for the representation of the pipe wall (smooth rigid) is achieved. It is noticed that the

best selection for the value of CIB is 0.0001 due to the minimum % error compared to
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the other values, while the accuracy of the method approaches the first order. The umax

% error for the coarse, medium and fine grid is 7.74%, 3.90% and 2.11%, respectively,

when the CIB is equal to 0.0001. For CIB = 0.0002 the % error is 7.82%, 4.04% and

2.33%. In the case of CIB = 0.0003 the % error of umax is equal to 7.90%, 4.15% and

2.52%. Finally, the % error of umax is 7.96%, 4.26% and 2.70%, respectively, for the three

selected grids and CIB = 0.0004.

Figure 5.3: % error of the umax vs. the grid size for various values of CIB.

It is concluded that the combination of the minimum value of CIB (=0.0001) with

the fine grid (14x120x120) is the best selection in order to obtain the highest accuracy for

steady state single-phase Poiseuille flow. It is also worth noting that for all the numerical

cases considered, the steady state status was achieved after the period of six dimensionless

time units. Finally, it is observed that for the specific time step (∆t = 0.0001), the grid

of 14x120x120 and values of parameter CIB for lower to 0.0001 and higher to 0.005, the

method is not working.
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5.2.2 Laminar two-phase annular pipe flow

In the previous section, validation of the numerical results with the analytical solution

for laminar single-phase Poiseuille flow was presented and discussed. Herein, in order

to demonstrate the validation of the proposed IBM, numerical simulations have been

conducted to investigate the laminar two-phase annular pipe flow between a heavy fluid

(A) on top of a lighter fluid (B),
µA
µB

= 0.1. Numerical simulations are performed at

Rep = 200 and compared with the steady state analytical solution for the velocity profile.

In the present case the surface tension is zero and the Cahn-Hilliard equation is employed

for the interface tracking only. Figure 5.4 illustrates the cross section of the computational

domain for the two-phase numerical simulations.

Figure 5.4: Representation of the computational domain for two-phase annular flow: (a) cross

section of the geometry and (b) 3-D geometry.

Various grids and values of parameter CIB were examined in order to select the

appropriate value for the parameter of the present flow problem. The final selection of CIB

was obtained by the comparison of the numerical results with those of analytical solution.

The analytical solution for the velocity profile is defined by the following equations in
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dimensionless form:

u∗z = −Rep
16

r2

R2
− Rep

16

(
k2

(
µA
µB
− 1

)
− µA
µB

)
, if 0 ≤ r ≤ kR (5.2)

and,

u∗z =
Rep
16

µA
µB

(
1− r2

R2

)
, if kR ≤ r ≤ R (5.3)

According to equation 5.2 the maximum velocity is equal to 4.0625. The full derivation

of the aforementioned equations is presented in Appendix B2.

Figure 5.5 presents the velocity profile for the coarse, the medium and the fine grid,

while CIB is taken to be equal to 0.0001. It is observed that the velocity profile with the

fine grid is much closer to the analytical velocity profile.

Figure 5.5: Velocity profiles for different grid resolutions compared to the analytical solution

at CIB = 0.0001 and Rep = 200.

Table 5.1 presents the overall characteristics of all scenarios with the value of pa-

rameter CIB which considered for the present numerical simulations. It is seen that the
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results for the fine grid appear the minimum % error compared to the analytical solution.

It is noticed that the accuracy of the method is close to first order. It is also worth

mentioning that for the case with the fine grid (14x240x240) other three values of CIB

= 0.0002, 0.0003 and 0.001 were examined. Even though the % error for maximum ve-

locity appears slightly lower values compared to the case for CIB = 0.0001. However,

the numerical results for the velocity profile with CIB = 0.0002, 0.0003 and 0.001 are

not captured the vicinity of the pipe wall, in contrast to the scenario for CIB = 0.0001.

Therefore, the value of 0.0001 is adopted as the best selection for this case.

Table 5.1: Cases considered for the appropriate selection of CIB.

Grid ∆h CIB umax % error

14x60x60 0.020 0.0001 3.2891 19.03

14x120x120 0.010 0.0001 3.6363 10.49

14x120x120 0.010 0.0010 3.6501 10.15

14x240x240 0.005 0.0001 3.8221 5.92

14x240x240 0.005 0.0002 3.8259 5.82

14x240x240 0.005 0.0003 3.8266 5.81

14x240x240 0.005 0.0010 3.8370 5.55

5.3 Validation of the GCIBM

5.3.1 Single-phase Poiseuille flow

Similar to Section 5.2.1, numerical simulations were conducted to evaluate the accu-

racy of the developed Ghost-Cell Immersed Boundary Method (GCIBM) at Rep = 20

for single-phase Poiseuille flow. Three different interpolation schemes (LI, BI and QI)

are examined for the GCIBM algorithm. The selection of the appropriate interpolation

scheme prescribes the desired level of accuracy.

The numerical results obtained were compared with those of the analytical solution

according to equation 5.1. Table 5.2 lists the parameters for the considered test cases,
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including the grid size, the values of the maximum velocity (umax) and the percentage

error of umax for each of the selected interpolation reconstruction scheme.

Table 5.2: Cases examined for GCIBM with different interpolation reconstruction schemes.

Grid ∆h uLImax % errorLI uBImax % errorBI uQImax % errorQI

14x30x30 0.040 1.2692 1.536 1.2746 1.968 1.2701 1.608

14x60x60 0.020 1.2628 1.024 1.2631 1.048 1.2654 1.232

14x120x120 0.010 1.2564 0.512 1.2563 0.504 1.2567 0.536

14x240x240 0.005 1.2521 0.168 1.2519 0.152 1.2517 0.136

LI: Linear interpolation scheme.

BI: Bilinear interpolation scheme.

QI: Quadratic interpolation scheme.

Figure 5.6: The percentage error of umax vs. the grid size for different interpolation schemes

for Rep = 20.

Figure 5.6 illustrates the percentage error of umax versus grid resolution for the three

selected interpolation reconstruction schemes. It is noted that the accuracy is slightly
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better for the high order interpolation schemes along with the finer grids, while for the

coarser mesh sizes the difference is almost negligible for linear and bilinear interpolation

schemes. It is also worth mentioning that the accuracy of the method is around to the

second order, as it can be seen from the curves for the finer mesh sizes which approach a

slope of two (Figure 5.6). It should be noted that the error of umax is not exclusively due

to the representation of the wall but also due to truncation errors in the finite difference

approximation of the Navier Stokes equations which are, in principle, second order for

single-phase flows.

It is observed that the minimum value of the umax percentage error is obtained for

the case of ∆h = 0.005 with the QI scheme and is equal to 0.136. For coarser grids the

QI scheme is not supported by the same superiority compared to the LI and BI schemes.

The GCIBM with the QI scheme provides slightly higher accuracy compared to BI and

LI schemes for fine grid resolution, but it is also more demanding in CPU time.

Figure 5.7: Comparison of the velocity profiles for LI reconstruction scheme and various mesh

resolutions with the analytical velocity profile for Rep = 20.
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Figure 5.7 presents the parabolic velocity profiles for four different mesh sizes com-

pared to the analytical velocity profile for single-phase Poiseuille flow. It is observed that

for ∆h = 0.01 and 0.005 the difference with the analytical solution is almost negligi-

bly, while for the cases of ∆h = 0.04 and 0.02 there is a very small deviation from the

analytical solution. Similar results were obtained for the cases of BI and QI schemes.

Figure 5.8 depicts the relation of umax vs. dimensionless time t. It is shown that for

the finer mesh resolution ∆h = 0.005, the umax is much closer to the analytical solution

compared to the other cases. It is worth noting that for all cases considered, the steady

state status is achieved after the period of six time units. The horizontal line represents

the analytical solution and its value is equal to 1.25.

Figure 5.8: umax vs. dimensionless time (t) for four different grids and QI scheme.

In Figure 5.9, it is illustrated the u-velocity contours for ∆h = 0.04 and 0.005. The

value of the u-velocity in the centre of the pipe is the maximum as expected and also the

smooth rigid boundary reconstruction is well configured for all cases. The black circle

is the ideal boundary of the pipe and the velocity on the boundary is zero. The Figure
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5.9(a) has a grid resolution (∆h = 0.04) and represents the LI scheme. The Figure 5.9 (b)

illustrates the distribution of u-velocity for ∆h = 0.005 and QI reconstruction scheme.

Similar distributions of u-velocity were obtained for the rest cases. All the values of umax

along with the percentage errors for each case are included in Table 5.2.

Figure 5.9: Contours of u velocity for: (a) LI and ∆h = 0.04 and (b) QI and ∆h = 0.005.

5.3.2 Laminar two-phase annular pipe flow

Numerical simulations conducted for laminar two-phase annular pipe flows, in order

to evaluate the developed GCIBM. The computational domain, the boundary conditions

and the properties of fluids are selected to be identical, according to Section 5.2.2.

Table 5.3 presents the test cases for the GCIBM performance for different grid reso-

lutions and interpolation schemes. The difference of umax percentage error for the same

grid resolution and different interpolation schemes is very small and for some cases negli-

gible, while the results for the finer grids display the lower levels of umax percentage error

(Figure 5.10). The minimum percentage error of umax is equal to 4.79 and occurs for the

case with ∆h = 0.005 and QI reconstruction scheme.

It is important to note that the Cahn-Hilliard equation is employed only for the

interface tracking. Even though with the above assumption, the proposed analytical
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Table 5.3: GCIBM cases examined for different reconstruction schemes

Grid ∆h uLImax % errorLI uBImax % errorBI uQImax % errorQI

14x30x30 0.040 2.8706 29.34 2.8977 28.67 2.8704 29.34

14x60x60 0.020 3.4006 16.29 3.3538 17.45 3.3558 17.39

14x120x120 0.010 3.6548 10.04 3.6548 10.04 3.6584 9.94

14x240x240 0.005 3.8292 5.74 3.8489 5.25 3.8678 4.79

LI: Linear interpolation scheme.

BI: Bilinear interpolation scheme.

QI: Quadratic interpolation scheme.

solution gives some confidence for the accuracy of the present GCIBM on the boundary.

Unfortunately, there is not any other available analytical solution in order to compare

the results for two-phase pipe flows.

Figure 5.10: The percentage error of umax vs. the grid size for different interpolation schemes

for Rep = 200.
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The aforementioned assumptions along with the inadequate grid resolution for two-

phase flows may explain the behaviour of percentage error for umax (Figure 5.10).

In Figure 5.11, it is observed that when the value of the pipe diameter (D) is between

0 and 0.25 and between 0.75 and 1.0 the more viscous fluid is present, while the less

viscous fluid is located between 0.25 and 0.75. As a result, the velocity values for the

less viscous are higher compared to the more viscous fluid. It is also indicated that the

maximum velocity occurs with the finer grid resolution ∆h = 0.005 and the velocity

profile approaches closer to the analytical velocity profile compared to the rest cases.

Herein, the coarse grid with resolution ∆h = 0.04 displays the lower velocity and diverses

from the analytical velocity profile, especially in the vicinity of the interfacial region at

D = 0.25 and 0.75 between the two fluids.

Figure 5.11: Comparison of the velocity profiles for LI scheme and various grid resolutions

with the analytical solution at Rep = 200.

Figure 5.12 depicts the maximum velocity with the dimensionless time for grid reso-
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lution ∆h = 0.04, 0.02, 0.01 and 0.005. It is seen that the steady state status is obtained

for LI reconstruction scheme after the period of 12 time units.

Figure 5.12: umax vs. dimensionless time t for the LI scheme and different grid resolutions.

Figure 5.13: Contours of u velocity for: (a) LI and ∆h = 0.04, and (b) LI and ∆h = 0.01.
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The contours of u velocity for LI reconstruction scheme and two different grid resolu-

tions are shown in Figure 5.13. It is observed that the maximum value of u velocity occurs

for the fine grid resolution ∆h = 0.01, while the accuracy of GCIBM for the boundary

representation (pipe geometry) is higher for the finer mesh size.

Figures 5.14 (a) and (b) illustrate velocity and volume fraction contours. These figures

show clearly the way the flow develops (magnitude and direction) and the location of the

highest velocities.

Figure 5.14: For grid resolution ∆h = 0.01 and LI reconstruction scheme: (a) Contours of

velocity and volume fraction, and (b) volume fraction.

5.4 Validation of the numerical method with exper-

imental data

5.4.1 A single rising bubble in a vertical pipe

Bubble flows play a vital role in many chemical and metallurgical processes, as well as

in operations such as boiling, fermentation, purification, distillation, cavitation, among
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others. Over the past decades, extensive investigation has been conducted by many re-

searchers for understanding the flow behaviour and the characteristics of a single rising

bubble in a pipe with quiescent viscous liquid (Wegener and Parlange, 1973). A sub-

stantial amount of experimental (Grace, 1973; Clift et al., 1978; Bhaga and Weber, 1981;

Stewart, 1995; Takemura and Magnaudet, 2003; Dijkhuizen et al., 2010), numerical (Kr-

ishna and Baten, 1999; Van Sint Annaland et al., 2005, 2006; Yu and Fan, 2008; Hua et al.,

2008; Chakraborty et al., 2013) and theoretical (Davies and Taylor, 1950; Moore, 1959;

Taylor and Acrivos, 1964) studies have been devoted to identify the physical mechanisms

that govern the phenomenon.

The free motion of a gravity driven single bubble in an infinite liquid medium depends

on the sum of the forces acting on the bubble and obeys Newton’ s second law. The

forces acting on a single bubble rising in a pipe are the gravitational force, the resistance

(drag) force and the buoyancy force. However, the gravitational force often is assumed

to be unimportant due to the negligible air density. The drag force expresses the bubble

resistance in the liquid and is dependent on the bubble shape. FD is defined as:

FD =
1

8
CDρlU

2
Tπd

2
e (5.4)

where CD is the drag coefficient, UT is the terminal velocity of the rising bubble and de =(
6V

π

)1/3

is the volume-equivalent bubble diameter. The terminal velocity is defined as

the steady state velocity at which the bubble reaches when the force balance of buoyancy

and drag is equal. On the other hand, the buoyancy force is given by the following

equation:

FB = −π
6
g(ρl − ρg)d3

e (5.5)

The rise of a single bubble in an infinite liquid is caused by the buoyancy force. As

a result, the onset of the surrounding liquid motion takes place, along with the shape

deformation of the bubble. These shape deformations and rising velocity are highly

dependent on the ratio viscosity and density, surface tension and the surrounding flow

field. As mentioned above, the bubble achieves a terminal velocity when FD = FB. As a
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result, the drag coefficient of the bubble, CD, can be estimated by the following equality:

FD = FB ⇔
1

2
CDρlU

2
Tπ
d2
e

4
=
π

6
g(ρl − ρg)d3

e ⇔

CD =
4

3

(ρl − ρg)gde
ρlU2

T

(5.6)

According to the dimensional analysis and the use of Π−theorem, the physical prob-

lem may be characterised by the following five dimensionless parameters (Grace, 1973):

rv =
µl
µg
, rd =

ρl
ρg
, ReT =

ρlUTde
µl

, Mo =
gµ4

l

ρlσ3
, Eo =

gρld
2
e

σ

where rv is the viscosity ratio, rd the density ratio, ReT the bubble Reynolds number, Mo

the Morton number and Eo the Eotvos number, respectively. The Re number expresses

the ratio of inertial forces to viscous forces, the Mo number represents the ratio of grav-

itational and viscous force to surface tension and determines the bubble shape, and Eo

number reflects the buoyancy force to surface tension and characterize the bubble shape.

Other useful dimensionless parameters which may be used in place of Eotvos number is

the bubble Weber number (WeT ) or Bond number (Bo). The latter dimensionless num-

ber is exactly the same as Eo number. Another useful dimensionless parameters are the

Froude number (Fr) and the buoyancy Reynolds number (ReB). It is also worth men-

tioning that Mo number can be written as a combination of the dimensionless parameters

Eo and ReB, as well as WeT number along with Re, Mo and Eo numbers, respectively:

WeT =
ρU2

Tde
σ

=
Re2

TMo0.5

Eo0.5
, Mo =

Eo3

Re4
B

, F rT =
UT√
gde

, ReB =
ρlg

0.5d1.5
e

µl

The values of Mo and Eo numbers are usually known, while the values of ReT , WeT

and FrT numbers required the definition of UT . In addition, it is preferable only one

of the dimensionless parameters to include the bubble terminal velocity and the rest to

depend only on the gravity acceleration and fluids properties. A well-known relation from

the literature for the definition of terminal velocity is given by:

UT =
√
gde (5.7)
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Grace (1973) conducted a large number of experiments for single rising bubbles in

21 different infinite liquids for investigating the bubble shape deformation. According

to these experimental data, he created a generalized bubble regime map based on the

Reynolds, Morton and Eotvos numbers. According to this graph, the bubble shape may

be categorized in the following three types: spherical, ellipsoidal and spherical cap. An

improved version of the Grace’ s graph was presented by Clift et al. (1978) with additional

bubble shapes (i.e. wobbling shape, spherical-cap, the skirted and the dimpled ellipsoidal-

cap).

Some years later, Bhaga and Weber (1981) extended the graph of Grace by adding

more subcategories for the the spherical cap regime. The subcategories are the oblate

ellipsoidal cap, spherical cap closed, spherical cap open, skirted with smooth skirt (steady)

and skirted with wavy skirt (unsteady), respectively. They also investigated the wake

formation and size of the bubble.

In the present section, the numerical method is tested for a single rising bubble in

a pipe and the obtained results are compared with experimental data from the work of

Bhaga and Weber (1981).

5.4.1.1 Selection of the appropriate pipe length

For investigating the behaviour and characteristics of the bubble flow under infinite

medium conditions is necessary to specify the suitable computational domain (pipe length

and diameter) for the numerical simulations. The computational domain was selected to

be large enough in order to minimise the effect by the pipe geometry and at the same time

to be affordable in computational cost and time. The selection criteria for the assessment

of the appropriate computational domain are the terminal rising bubble velocity and the

terminal bubble shape.

Herein, the ratio of the pipe length to the diameter of the initially spherical bubble

is specified as L∗p =
Lp
de

, while the ratio of the pipe diameter to the diameter of the

initially spherical bubble is defined as D∗p =
Dp

de
. Numerical simulations were performed

for ReB = 79.88, Eo = 32.2 and Mo = 8.2 · 10−4 which represent a rising bubble with
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an oblate ellipsoidal disk shape and ReTexp = 55.3, according to the work of Bhaga and

Weber (1981). Three additional dimensionless parameters are required to be specified

for the numerical simulations, namely ratio viscosity (rv), ratio density (rd) and the

instantaneous Reynolds number (Reinst). The rv and the rd were set to 100 and 1000,

respectively. Following the work of Chakraborty et al. (2013), the Reinst is defined as:

Reinst =
ρldeUinst

µl
, Uinst =

1

ncells

ncells∑
n=1

Cnun (5.8)

where Cn is the gas fraction in cell n and un is the flow velocity of cell n. A constant grid

resolution, ∆h = 0.004, was adopted for the numerical simulations.

Table 5.4: Selection of the appropriate pipe length for single rising bubble.

Cases Grid ∆h L∗p D∗p UTsim ReTsim ReTexp % error

(1) 214x262x262 0.004 6 7 0.277 58.54 55.3 5.85

(2) 286x262x262 0.004 8 7 0.266 56.11 55.3 1.47

(3) 358x262x262 0.004 10 7 0.265 56.02 55.3 1.31

(4) 428x262x262 0.004 12 7 0.265 55.97 55.3 1.21

Table 5.4 presents the cases considered for the pipe length sensitivity analysis along

with the L∗p, D
∗
p, grid resolution (∆h), terminal bubble velocity (UT ), simulated terminal

Reynolds number (ReTsim), experimental terminal Reynolds number (ReTexp), percentage

error between the simulated and experimental terminal Reynolds numbers. It is observed

that when the L∗p increases from 6 to 8 bubble diameters the effects on the terminal

bubble shape (Figure 5.15) and rising velocity are very small, while for pipe length more

than 8 bubble diameters the pipe wall effects are negligible.

Figure 5.15: Effects on the terminal bubble shape for L∗p = 6, 8, 10 and 12.
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Figure 5.16: The Reinst of the single rising bubble vs. t for L∗p = 6, 8, 10 and 12.

Figure 5.16 illustrates the Reinst with the dimensionless time. It is seen that the

Reinst is become almost identical for the cases (2-4) when the flow achieves steady state

status after t = 2.6. Hence, the difference for the simulated terminal Reynolds number

(ReTsim) for cases (2-4) is almost negligible. It is concluded that a pipe length more

than 8 bubble diameters is sufficient for the numerical simulations. This finding is in

agreement with the works of Mukundakrishnan et al. (2007) and Hua et al. (2008). In

the present study, a pipe length equal to 10 bubble diameters was adopted for all the

numerical simulations involving single rising bubbles.

5.4.1.2 Selection of the appropriate pipe diameter

Similar to the above Section 5.4.1.1, sensitivity analysis was performed for the appro-

priate selection of the pipe diameter. Therefore, four cases with different values for D∗p,

namely 5, 6, 7 and 8, were examined.

From Table 5.5 and Figures 5.17, for the D∗p, it is shown that for values more than 6

104



Chapter 5. Validation of the numerical method

bubble diameters the difference for the simulated Reynolds number and terminal bubble

shape are almost negligible, while for values less than 6 bubble diameters the difference

is considerable for UT and ReTsim .

Table 5.5: Selection of the appropriate pipe diameter for single rising bubble.

Cases Grid ∆h L∗p D∗p UT ReTsim ReTexp % error

(1) 358x193x193 0.004 10 5 0.296 62.50 55.3 13.01

(2) 358x226x226 0.004 10 6 0.275 58.10 55.3 5.07

(3) 358x262x262 0.004 10 7 0.265 56.02 55.3 1.31

(4) 358x298x298 0.004 10 8 0.265 55.96 55.3 1.20

Figure 5.17: Effects on the terminal bubble shape for D∗p equal to 5, 6, 7 and 8.

In Figure 5.18, it is observed that the instantaneous Reynolds number for the cases

with D∗p= 7 and 8 displays almost negligible values after t = 2.75, while for values less

than 6 bubble diameters there are significant differences.

According to the numerical results, the selection of a pipe diameter more than 6 bub-

ble diameters should be sufficient for minimising the pipe wall effects. This is supported

by the numerical study of Mukundakrishnan et al. (2007), which indicates that for D∗p ≥

6 the rise of a single bubble corresponds to minimum wall effects.

Hua et al. (2008) claims that for a pipe diameter more than 6 bubble diameters there

is no significant changes to terminal bubble velocity and shape, while for pipe diameter

between 8 to 10 bubble diameters the terminal bubble velocity differs only around 1 %.

Their numerical results agree with the experimental findings of Krishna et al. (1999),

which demonstrate that a pipe diameter equal to 8 bubble diameters or larger satisfies

the infinite medium conditions for a single rising bubble. In the present study, the pipe
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diameter was selected to be equal to 7 instead of 8 bubble diameters due to negligible

difference for ReTsim and to maintain an affordable computational time.

Figure 5.18: The Reinst of the single rising bubble with t for D∗p equal to 5, 6, 7 and 8.

5.4.1.3 Grid sensitivity analysis

A uniform Cartesian grid was selected for the numerical simulations based on a grid

sensitivity analysis among various grids with resolution of 0.006, 0.005, 0.004, 0.0035

and 0.003, respectively. The parameters for the numerical simulation are identical to the

above sections.

Table 5.6 presents the cases for the grid sensitivity analysis along with all the ap-

propriate parameters considered. An important issue for the numerical simulation of a

single rising bubble is the number of cells for the bubble. Regarding the selection of the

grid resolution for each simulation a number of cell per bubble was devoted. In Figure

5.19, it is observed that the final bubble shape for cases (1) and (2) with 24 and 29

cells per bubble, respectively, is slightly different in shape. For cases (3-5) the effects on
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the terminal bubble shape is almost negligible, as well as on the terminal velocity, the

instantaneous and simulated Reynolds number.

Table 5.6: Grid independence for single rising bubble.

Cases Grid ∆h cell/bub. L∗p D∗p UT ReTsim ReTexp % error

(1) 238x175x175 0.0060 24 10 7 0.279 58.91 55.3 6.54

(2) 286x210x210 0.0050 29 10 7 0.274 57.83 55.3 4.58

(3) 358x262x262 0.0040 36 10 7 0.265 56.02 55.3 1.31

(4) 408x300x300 0.0035 41 10 7 0.265 55.98 55.3 1.24

(5) 476x350x350 0.0030 48 10 7 0.264 55.90 55.3 1.09

Figure 5.19: Effects on the terminal bubble shape for different grid resolution.

Figure 5.20: Reinst of the single rising bubble t for different grid resolution (∆h).
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In the present simulations for single rising bubble, the finest grid with resolution

0.0030 was selected, even though the difference among the finer grids (cases 3-5) are

almost negligible. This selection was made in order to achieve the highest accuracy from

the adopted phase field or diffusion interface method for validation compromising with

the available computer sources, as well as for the test cases in Section 5.4.1.6.

5.4.1.4 Volume conservation test

Another important issue for successful numerical simulations of two-phase flows is the

requirement of the volume conservation between the two phases. This requirement is

one of the advantages of some of the most well known interface tracking and capturing

methods such as VOF, but also the disadvantage of other methods such as the level-set.

Figure 5.21: The percentage bubble volume error as a function of the dimensionless time.

The satisfaction of the aforementioned condition is presented by displaying the bub-

ble volume percentage error for a spherical and an oblate ellipsoidal bubble. The relative

error of bubble volume is computed for a specific time and compared to the initial bub-
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ble volume for a spherical shape bubble. The dimensionless parameters for the case of

spherical bubble are µl
µg

= 100, ρl
ρg

= 1000, Eo = 0.5 and Mo = 10−6, while for the oblate

ellipsoidal bubble are µl
µg

= 100, ρl
ρg

= 100, Eo = 10 and Mo = 0.1 . In Figure 5.21, it is

observed that the value of relative error is less than 1% for the spherical regime and less

than 1.4% which indicate that the volume of rising bubble is satisfactory conserved.

5.4.1.5 Presence of parasitic or spurious currents

One major issue of the classical interface tracking and capturing methods is the ac-

curate computation of surface tension. The most widely used technique for modelling

surface forces on the interfacial region is the Continuum Surface Force (CSF) by Brack-

bill et al. (1992), but its performance is affected by the presence of parasitic or spurious

currents. According to Lafaurie et al. (1994), parasitic or spurious currents are defined

as the “small amplitude velocity field due to the slight unbalance between the stresses at

the sites in the interfacial region”.

Harvie et al. (2006) claim that the parasitic or spurious current magnitude associated

with the surface tension force. Hence, the increase of surface tension is followed by an

increase of the parasitic currents magnitude. Their findings support that the parasitic

currents are not decreased in magnitude with the decrease of time step or mesh refinement.

The produced oscillations from the parasitic currents can be strong enough and usually

resulting to misprediction of the flow field velocities or deform the interfacial region

(Popinet and Zaleski, 1999).

Evidence of these parasitic or spurious currents has been reported by many scientists

and engineers, despite the fact that new numerical techniques for simulating the interfacial

region are used. Among them are the SURFER Lafaurie et al. (1994), CSF (Brackbill

et al., 1992), VOF (Hirt and Nichols, 1981), front-tracking method (Tryggvason et al.,

2001), and the second-gradient method (Jamet et al., 2002).

In the present study, a static bubble is considered as a test case for the presence of

parasitic currents on the interfacial region. The main reason for the generation of the

parasitic currents is the incorrect computation of the surface tension on the interface.
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The magnitude of the parasitic currents can be calculated by measuring the maximum

velocities during the time of the simulation. The selected parameters for the current

simulations are, D∗p = 7, L∗p = 10, Mo = 36.3, Eo = 240 and ρl
ρg

= 1000 and µl
µg

= 50.

Figure 5.22 illustrates the maximum spurious velocity vs. dimensionless time for

interfacial thickness equal to ε = 0.5∆h, which is the selected interfacial thickness for the

bubble rise simulations.

Figure 5.22: The maximum spurious velocity as a function of dimensionless time for Mo =

36.3, Eo = 240, ρg = 1000 and µl
µg

= 50 .

The appropriate value of interface thickness was selected by comparing the Umax for

different values of ε (Table 5.7) after one time step. The magnitude of terminal spurious

velocity is in the range of 1.48 · 10−6 ≤ ε ≤ 1.8 · 10−6 for 0.4∆h ≤ ε ≤ 0.6∆h. It is

observed that for ε = 0.5∆h displays the minimum value for the spurious velocity.
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Table 5.7: The maximum velocity for different values of interface thickness

Interface thickness (ε) Umax

0.40 · ∆h 1.48 · 10−6

0.45 · ∆h 1.27 · 10−6

0.50 · ∆h 1.25 · 10−6

0.55 · ∆h 1.39 · 10−6

0.60 · ∆h 1.82 · 10−6

5.4.1.6 Test cases

In the present section, four different test cases for single rising bubbles were examined

for validating the numerical method. Four numerical simulation selected for four differ-

ent flow regimes, namely spherical, oblate ellipsoidal, oblate ellipsoidal disk and oblate

ellipsoidal cap. The flow regimes obey the flow regime map of a bubble rising in quiescent

viscous liquids according to the work of Bhaga and Weber (1981), Grace (1973) and Clift

et al. (1978). The numerical results obtained were compared to available experimental

data from the aforementioned studies. The comparison is focused on the terminal bubble

shape and the simulated terminal Reynolds number (ReTsim).

Table 5.8 presents the parameters for the current simulations such as the Eotvos num-

ber (Eo), the Morton number (Mo), the simulated terminal Reynolds number (ReTsim),

the experimental terminal Reynolds number (ReTexp), as well as the relative error between

simulated and experimental terminal Reynolds numbers. In this section, all the numerical

simulations performed forD∗p = 7, L∗p = 10, ∆h = 0.0030, ρl
ρg

= 1000 and µl
µg

= 100.

Table 5.8: Parameters for the considered test cases.

Shape Eo Mo ReTsim ReTexp % error

Spherical 0.5 1.25 · 10−6 14.5 12 20

Oblate ellipsoidal 10 0.01 11.7 11.0 6.36

Oblate ellipsoidal disk 32.2 8.20 · 10−4 55.9 55.3 1.09

Oblate ellipsoidal cap 116 1.31 21.9 20.4 7.2
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Figure 5.23(a) illustrates the evolution of the 3-D terminal bubble shape for the

spherical regime. It is also observed that the terminal bubble shape is identical to that

specified from the regime map of the work of Bhaga and Weber (1981), indicating a well

predicted terminal shape for the spherical regime. However, the deviation between the

simulated terminal Reynolds number (ReTsim) and the experimental terminal Reynolds

number (ReTexp) is 20%. This behaviour can be explained by the small size of the domain

and/or by the low rise velocity where the percentage error will be high even for small

absolute errors, but without change in the simulation accuracy (Hua et al., 2008).

(a) (b)

Figure 5.23: Spherical shape: (a) Evolution of the terminal bubble shape and (b) the Reinst

versus the dimensionless time.

Figure 5.24(a) depicts the rising of an oblate ellipsoidal bubble until to reach the

terminal bubble shape. It is also observed that the obtained terminal oblate ellipsoidal

bubble shape predicts very well terminal bubble shape according to the regime maps

of Clift et al. (1978) and Bhaga and Weber (1981). The ReTsim is compared against the

ReTexp , presenting satisfactory agreement, while Figure 5.24(b) presents the instantaneous

Reynolds number versus dimensionless time. The relative error is calculated around to

6.4%.
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(a) (b)

Figure 5.24: Oblate ellipsoidal shape: (a) Evolution of the terminal bubble shape and (b) the

Reinst versus the dimensionless time.

The next test case is the simulation of an oblate ellipsoidal disk rising in infinite

liquid. Figure 5.25(a) illustrates the rising bubble which maintains an oblate ellipsoidal

shape and concludes to the terminal disk shape. The obtained terminal bubble shape

presents very good agreement compared to the identical case from the work of Bhaga

and Weber (1981), as shown in Figures 5.26(a) and 5.26(b). Figure 5.25(b) exhibits the

instantaneous Reynolds number relate to dimensionless time. It is observed that Reynolds

number reaches to the terminal phase after three dimensionless time units. The obtained

ReTsim yields a value of 55.9 which deviates only 1.09% from the ReTexp = 55.3.

The fourth test case is the bubble rising in the oblate ellipsoidal cap regime. Figure

5.27(a) exhibits the changes on the bubble shape during the simulation, while Figure

5.27(b) depicts the Reinst during the simulation time period, up to the point at which

the Reinst achieves a terminal value.

In Figures 5.28(a) and 5.28(b), it is observed that the predicted terminal bubble shape

exhibits an oblate ellipsoidal cap shape very similar to the experimental terminal bubble

shape of Bhaga and Weber (1981). The relative error between the ReTsim and ReTexp is
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(a) (b)

Figure 5.25: Oblate ellipsoidal disk shape: (a) Evolution of the terminal bubble shape and

(b) the Reinst versus the dimensionless time.

(a) (b)

Figure 5.26: (a) Comparison of the experimental terminal bubble shape according to the work

of Bhaga and Weber (1981) with the numerical predicted bubble shape (b).
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equal to 7.2%, as shown in Table 5.8.

(a) (b)

Figure 5.27: Oblate ellipsoidal cap shape: (a) Evolution of the terminal bubble shape and (b)

the Reinst versus the dimensionless time.

(a) (b)

Figure 5.28: (a) Comparison of the experimental terminal bubble shape according to the work

of Bhaga and Weber (1981) with the numerical predicted bubble shape (b).
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5.4.1.7 Comparison of drag coefficients

In this section, an attempt was made to compare the numerical results for the com-

putation of drag coefficient with the obtained correlation from the experimental study of

Bhaga and Weber (1981):

CD = [(2.67)0.9 + (16/Re)0.9]1/0.9 (5.9)

For Morton numbers more than 4 · 10−3 the above correlation behaves very well for high-

Mo liquids and is dependent only from the Reynolds number. The Reynolds number

in our study is the simulated terminal Reynolds number which is obtained from the

numerical simulation. The selected parameters for the present numerical simulations are

D∗p = 7, L∗p = 10, Eo = 10, ρl
ρg

= 1000, µl
µg

= 100 and Mo = 5.48 · 10−3, 0.01 and 0.1. A

grid of 476x350x350 with resolution of 0.003 was selected for the simulations.

Figure 5.29: Comparison of the numerical results for the relationship drag coefficient vs.

Reynolds number with the correlation of Bhaga and Weber (1981).

Figure 5.29 presents the computed drag coefficients as a function of the Reynolds
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number according to the equation (5.9) and the computed drag coefficients from the

numerical results according to equation (5.6).

The numerical predictions present small deviation from the correlation of Bhaga and

Weber (1981), especially for Re > 10. Small deviation is also seen for the numerical

predictions of Yu and Fan (2008) and Chakraborty et al. (2013), at Re > 10. In the

study of Chakraborty et al. (2013), it is mentioned that the small deviation may be

explained by the the loss of the axisymmetric behaviour of the flow. This claim is also

supported by the work of Frank et al. (2006) using Lattice Boltzmann technique, who

concluded that the axisymmetric condition is not valid for values of Re > 1.8.

In this study, this claim is no longer valid due to the adopted full 3-D simulations.

However, the small deviation of the current results may be explained by the numerical

error of the method obtained by the second order discretisation in space and first order

in time, as well as for the need of a finer grid.

5.4.2 Bubble coalescence

Another classical problem for testing the proposed numerical method is the coalescence

of two rising bubbles in a pipe. Two identical bubbles with de = Dp

7
and a desired

distance between their centers equal to 1.5 de were selected. A computational domain with

dimensions 12.6 de x 7 de x 7 de and a grid of 514x300x300 were adopted for the present

simulation. The selected parameters for the simulation are Eo = 16, Mo = 2 · 10−4,

ρl
ρg

= 1000 and µl
µg

= 100.

The numerical results were compared with the experimental data of Brereton and

Korotney (1991), presenting good agreement. Particularly, for the case of t = 1.05 the

deformation shape of the trailing bubble agrees very well with the experimental evolution

photograph (4) of the bubble coalescence from the work of Brereton and Korotney (1991).

The trailing bubble accelerates due to its entrance in the wake of the leading bubble. As

a result, the trailing bubble will merge with the leading bubble, as shown in Figure 5.30.

The terminal shape of the leading bubble is oblate ellipsoidal disk, according to the work

of Bhaga and Weber (1981).
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Figure 5.30: Evolution of the present bubble coalescence simulation and comparison with the

experimental photograph of Brereton and Korotney (1991).
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Figure 5.31: Enlarged view (zoom) for the last snapshot at t = 1.75.

Figure 5.31 depicts an enlarged view for the last snapshot at which the bubbles merge.

It is observed that the bubbles have almost merged but a very small part at the bottom

still exist. This observation also exists in photograph six of Figure 5.30 and indicates a

good capture of the phenomenon from the present numerical simulation.

Similar simulations have been performed by Van Sint Annaland et al. (2005) with

VOF, Yu and Fan (2008) with LS and Chakraborty et al. (2013) with CLSVOF. The

numerical studies of Van Sint Annaland et al. (2005) and Yu and Fan (2008) investi-

gated the problem with three-dimensional simulations, while the work of Chakraborty

et al. (2013) examined only axisymmetric simulations. In addition, the selected ratios of

viscosity and density were equal to 100 and 100, respectively.
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It should be noted that interface capturing methods such as the boundary integral

and front tracking methods cannot capture the topological change without numerical

“treatment” (Sussman and Smereka, 1997; Hua et al., 2008).

5.5 Chapter summary

The purpose of this Chapter is to validate the developed IB algorithms and test the

performance of the integrated numerical method for different problems.

Two different IB algorithms based on the penalty technique and ghost-cell technique

were validated against analytical solutions, regarding the velocity profile, for the cases of

single- and two-phase Poiseuille flow. Both algorithms presented good agreement with

the analytical solutions, but the superiority of GCIBM algorithm compared to the IBM

algorithm based on the penalty technique is undoubtedly.

A large number of numerical simulations were performed for investigating the per-

formance of the proposed numerical method for classical two-phase flows such as single

rising bubbles, toroidal bubbles and bubble coalescence. In the first case, four different

bubble regimes were selected from the classical flow regime map of Bhaga and Weber

(1981). The numerical predictions were found to be in a good agreement with available

experimental data from the work of Bhaga and Weber (1981).

Last but not least, the code was tested for simulating the coalescence of two rising

bubbles in a pipe. The numerical results obtained were compared against experimental

data from the work of Brereton and Korotney (1991), presenting very good agreement.

Additional effort was also devoted to investigate the performance of the numerical

method, regarding the mass conservation, as well as the presence of parasitic or spurious

currents and their dependency with the interface thickness.
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Lateral wall effects on a 3-D single

rising bubble in viscous liquid

6.1 Introduction

The objective of the present section is to investigate the three-dimensional cylindrical

wall effects on a buoyancy single rising bubble in stagnant liquids. Cylindrical wall

effects are present in many two-phase industrial applications (e.g. fluid transport in

pipelines) and physiological systems (e.g. blood vessels and veins). Three different bubble

regimes were considered in this numerical study, namely spherical, ellipsoidal and oblate-

ellipsoidal cap. A parametric analysis was performed for investigating the wall effects

based on the dimensionless numbers such as Reynolds number (Re), Weber number (We),

Morton number (Mo), Eotvos number (Eo) and the ratios of the cylinder diameter and

pipe length to the diameter of the initially spherical bubble (L∗p = Lp

de
, D∗p = Dp

de
). The

numerical predictions were compared with available experimental data.

It is important to refer that the numerical predictions also examined the performance

of the developed GCIBM method, as well as the capability of the phase-field method to

capture the topological changes of the interface under the influence of the wall distances.
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6.2 Literature survey

Many studies have been devoted to investigate numerically and experimentally the

interfacial mechanics of bubbles due to the particular interest in oil and gas extraction,

nuclear reactor design, and gas embolism. Uno and Kintner (1956) performed experiments

to study the cylindrical wall effects on the rate of rise of single air bubbles. Four different

quiescent liquids, namely distilled water, 61% glycerine, diethel glycol, and a solution

of a surface-active agent, along with different sizes of vertical tubes were examined. A

correlation for the bubble terminal velocity was also proposed as function of the tube

size.

Harmathy (1960) investigated the terminal velocity of large bubbles and drops for

Re = 500 under wall effects. He also proposed empirical and semi-empirical formulas for

the terminal velocity of solid spheres in restricted media.

Coutanceau and Thizon (1981) investigated theoretically and experimentally the

cylindrical wall effects on the rise of a single bubble for creeping flow. They concluded

that the cylindrical wall effects have major impact on the terminal velocity much sooner

than the bubble shape. As a result, they observed for a spherical bubble a measured 39%

decrease in velocity than the velocity under unbounded medium conditions.

Krishna et al. (1999) conducted a large number of experiments for the investigation of

the cylindrical wall effects on the rise velocity of a single bubble in water. They collected

measurements for different bubble diameters in a range of db = 3 − 80mm and different

cylindrical column diameters, DT = 0.01, 0.02, 0.03, 0.051, 0.1, 0.174 and 0.63 m. They

found that for db
DT

< 0.125 the wall effects on the rise velocity are negligible, and the

bubble velocity obeys with reasonable accuracy the Mendelson (1967) equation. On the

other hand for values of db
DT

> 0.125 the wall effects become significant and the rise

velocity of the bubble decreases.

Chen et al. (1999) performed numerical simulations to investigate in a closed ver-

tical cylinder the rise of a single bubble using a VOF method. Governing parameters

of the physical problem such as the ratios of viscosity and density, Reynolds number

and Bond number were investigated, regarding the bubble shape deformation, break up,
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joining and cusp formation. They also examined the formation of toroidal bubbles and

presented results for two- and three-dimensional coordinate framework, exhibiting rea-

sonable agreement with available experimental data.

Mukundakrishnan et al. (2007) performed axisymmetric numerical simulations for

studying the wall effects on the rise of buoyant bubbles in a finite cylinder using front

tracking coupled with a level contour reconstruction for the interfacial region. They

investigated the influence of dimensionless parameters such as the Morton number, Eotvos

number, Reynolds number and Weber number. They also determined the values of ratios

H∗ = H
d0

= 8 and R∗ = R
d0
≥ 3 at which the rise of a single bubble is independent

of any cylindrical wall effects. The numerical results were compared against available

experimental data, presenting good agreement.

The present effort is to investigate the pipe wall effects for a three-dimensional single

rising bubble in stagnant liquid. The combination of a GCIBM/phase-field method was

implemented for first time in order to investigate the current physical problem, according

to the author’s knowledge. The use of GCIBM for the reconstruction of the pipe wall is

characterised by simplicity compared to the use of cylindrical coordinates for full three-

dimensional and two-phase flows, as well as without additional difficulties for integrating

with the rest modules of the CFD code.

The current study presents numerical simulations regarding the terminal Reynolds

number in the range of 20.4 ≤ ReT ≤ 1850 for three bubble regimes. The present

range of terminal Reynolds number, especially for the spherical and oblate ellipsoidal

bubble regimes are significantly larger compared to the work of Mukundakrishnan et al.

(2007) (0.02 ≤ ReT ≤ 70), and for much smaller value of Morton number Mo = 2.52 ·

10−11 compared to the Mo = 0.01. It is also important to point out that the present

simulations are fully three-dimensional in contrast to the axisymmetric simulations of

Mukundakrishnan et al. (2007).

The present work is limited only for two bubble regimes at high terminal Reynolds

number and ReT < 2000 due to the high demand of very fine grid (diffusive-interface

method (DIM)) for capturing accurately the interfacial region. Another limitation for
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these types of flows is the very small time step around 10−5 − 10−6, depending on the

using numerical method. More details regarding the grid resolution issue will be discussed

in the following section.

6.3 Results and discussion

In the present study, three different bubble regimes, namely spherical, oblate ellipsoidal

and oblate ellipsoidal cap, were selected for investigating the cylindrical wall effects on

the terminal Reynolds number and bubble shape, as well as the characteristics of the flow

field regarding the motion of the bubble inside the pipe.

The ratio of the pipe length to the diameter of the initially spherical bubble is specified

as L∗p =
Lp
de

and is taken equal to 10, while the ratio of the pipe diameter to the diameter

of the initially spherical bubble is defined as D∗p =
Dp

de
and takes the following values 1.2,

1.6, 2, 2.5, 3, 3.5, 4 and 5. The value of de is taken to be equal to 0.14286.

The selection of the appropriate values for the ratio of pipe length is based on the

previous analysis which performed in Section 5.4.1.1. The values of the dimensionless pa-

rameters Morton number (Mo), Eotvos number Eo and experimental terminal Reynolds

number (ReTexp) considered, with reference to the three bubble regimes, were selected for

infinite medium conditions. The density and viscosity ratio for the current simulations

are ρl
ρg

= 1000 and µl
µg

= 100, respectively.

Table 6.1 presents the values of the dimensionless parameters Eo, Mo and ReTexp for

the three selected bubble regimes. In the present simulations, the grid resolution was

selected to be equal to 0.003. The values of the ReTexp were adopted from the regime

maps of Bhaga and Weber (1981), Grace (1973) and Clift et al. (1978). The values of Mo

number for spherical and oblate ellipsoidal bubble regimes represent air-water properties.

These two cases are real challenge for the present numerical method and for many

others in the literature (e.g. L-S, Front-tracking) due to the high demand for very fine

grid resolution. According to Bonometti and Magnaudet (2007) a minimum number of

100 grid points per bubble diameter is required, while Magnaudet and Mougin (2007)
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claim a minimum requirement of five cells within the boundary layer for ReT > 2 · 103,

which means the grid spacing should be less than 0.01 times the equivalent of bubble

radius. Similar studies regarding the investigation of a single rising air bubble in water for

infinite medium conditions have proposed different number of cells per bubble diameter,

for instance, 20 cells per bubble diameter with ∆h = 0.0125 using front tracking method

by Dijkhuizen et al. (2005), 20 cells per bubble diameter with ∆h = 0.001 using front

tracking method by Van Sint Annaland et al. (2006) and 20 cells per bubble diameter

with ∆h = 0.05 using a 3-D Level-Set method by Yu and Fan (2008). Very accurate

simulations for air-water system have been performed by Hua et al. (2008) using the

3-D front tracking method along with an adaptive, unstructured triangular mesh. An

improved version of 3-D front tracking method was also presented by Dijkhuizen et al.

(2010) with better performance in volume conservation and circumvent problems with

surface tension, as well as with high accuracy for small bubble diameters (de = 0.001, 20

cells/bubble).

In this study, 62 cells per bubble diameter were selected with a grid spacing ∆h =

0.0023. This is the best resolution which could be achieved according to the available

computer sources and the domain size.

Table 6.1: Parameters for the considered bubble regimes.

Shape Eo Mo ReTexp

Spherical 0.3 2.52 · 10−11 570

Oblate ellipsoidal 10 2.52 · 10−11 1950

Oblate ellipsoidal cap 116 1.31 20.4

6.3.1 Validation of the model

In this section, we consider a validation case for the cylindrical wall effects on the rise

of a single air bubble in water for different pipe diameters, according to the experimental

data of Krishna et al. (1999). The corresponding parameters for the numerical simulation

of air-water system are Mo = 2.6 · 10−11 and Eo = 11, while the values of D∗p are in
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the range 2 ≤ D∗p ≤ 3.34, according to Mukundakrishnan et al. (2007). The present

numerical predictions were compared with their numerical results and the corresponding

experimental data of Krishna et al. (1999).

Figure 6.1: Comparison of the present numerical predictions with the available experimental

and numerical data from the works of Krishna et al. (1999) and Mukundakrishnan

et al. (2007).

Figure 6.1 depicts the present numerical predictions of terminal velocities for air

bubble in water along with the available experimental and numerical data of Krishna

et al. (1999) and Mukundakrishnan et al. (2007). On the y-axis, we show the ratio of

terminal bubble velocity to the velocity by Mendelson (1967) equation:

UM =

√
2σ

ρlde
+
gde
2

(6.1)

where σ is the surface tension (= 0.072N/m), ρl is the density of liquid (= 1000 kg/m3,

g is the gravitational constant (= 9.81 m/s2) and de is the bubble diameter. On the x-
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axis, it is located the ratio of the pipe diameter to the diameter of the initially spherical

bubble.

From Figure 6.1, it is also shown that the present numerical predictions display a

small variation (around 2%) for the three different dimensionless diameters compared to

the numerical data of Mukundakrishnan et al. (2007) and approximately 7% with the

experimental data of Krishna et al. (1999). This discrepancy between the experimental

data and the present numerical predictions is mainly due to the inadequate grid resolution,

as well as the fact that the experimental measurements were collected from very long open

cylinders.

The difference between the present numerical predictions and the numerical data

of Mukundakrishnan et al. (2007) can be explained by the different adopted numerical

methods for the interface simulation and grid resolution, numerical error, as well as on

the difference between axisymmetric and three-dimensional simulations.

6.3.2 Bubble simulations

Figure 6.2 illustrates the simulated terminal Reynolds number (ReTsim) and the cor-

responding bubble terminal shapes at D∗p = 1.2, 1.6, 2, 2.5, 3, 3.5, 4 and 5, for various

dimensionless wall diameters and three bubble regimes. It is observed that the simulated

ReTsim increases gradually with the increase of the wall diameter. It is also important to

mention that the bubble terminal shapes at D∗p = 5 are almost identical with the bubble

shapes for the infinite medium conditions, according to the works of Yu and Fan (2008)

and Bhaga and Weber (1981). On the other hand, the author is not aware for experi-

mental data regarding terminal bubble shapes under lateral wall effects for comparison

with the present cases (e.g.D∗p < 5) .

The inertial forces are lower than viscous forces for small pipe diameters and are

getting higher for large pipe diameters, as shown in Figure 6.2. After a certain point,

the wall distance has only a minimum effect to the value of ReTsim (infinite medium

conditions, D∗p ≥ 6) and as a result a terminal Reynolds number is obtained.

In the case of spherical regime and D∗p = 5, the bubble deformation is almost neg-
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ligible, maintaining a spherical shape similar to the terminal bubble shape for infinite

medium conditions. The computed values for ReTsim and WeTsim were found to be equal

to 331.87 and 1.00, respectively. For 1.2 < D∗p < 5, a very small shape deformation of

bubble takes place on the top surface of the bubble, especially for D∗p = 1.2, while for

the rest selected D∗p = 2, 3 and 5 the shape deformation is indistinguishable. The slight

deformation for D∗p = 1.2 is located on the top surface of the bubble.

Figure 6.2: Values of the simulated terminal Reynolds number for various dimensionless pipe

diameters (D∗p).

It is also observed that the ReTsim decreases from 331.87 (D∗p = 5) to 2.26 (D∗p = 1.2).

The largest decrease rate occurs for D∗p < 2.5. The WeTsim also decreases from 1.00 to

4.7 · 10−5 with decreasing the wall distance from D∗p = 5 to 1.2 on the bubble, as shown

in Figures 6.3 and 6.4.

For the ellipsoidal regime and D∗p = 5, the bubble maintains an oblate ellipsoidal

shape identical to the terminal bubble shape for infinite medium conditions, while for

1.2 < D∗p < 3 the ReTsim presents a further decrease from 1261.62 at D∗p = 3 to 220 at D∗p
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= 1.2, as shown in Figure 6.2. The deformation of the bubble shape maintains almost

a spherical shape with a slight flatten in the radial direction. For D∗p < 3, the bubble

shape is almost spherical while the ReTsim is decreased gradually.

It should be noted that the bubble in the present case belongs to the ellipsoidal regime

according to the classification of Grace (1973), while in Clift et al. (1978)’s diagram

belongs to the wobbling regime. Thus, the bubble is characterised by oscillations during

its motion in the liquid.

Figure 6.3: Values of the simulated terminal Weber number for various D∗p.

The WeTsim number is characterised by similar behaviour to ReTsim regarding the

distance from the pipe wall. In Figure 6.4, it is depicted that the WeTsim decreases

with small wall diameters (inertial forces lower than surface tension forces) and increases

with large wall diameters (inertial forces higher than surface tension forces). As a re-

sult, the bubble rising velocity is reduced significantly due to the increase of the drag

force with decreasing D∗p. The final ellipsoidal shape depends on the combined effects
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of inertial, surface tension and hydrostatic forces for the shape and size characteristics

of bubble, such as flattening, elongating and spherical shape. The inertial forces have

effect on the flattening, while the bubble elongation is affected by the hydrostatic force.

The conservation of the spherical shape (top of the bubble) based on the tension forces

(Mukundakrishnan et al., 2007).

In the case of oblate ellipsoidal cap bubble shape and D∗p = 5, the obtained bubble

shape holds the same ellipsoidal cap shape with an indentation at the bottom of the bub-

ble (shadowed part, Figure 6.2), as occurs for infinite medium conditions. The computed

ReTsim and WeTsim are equal to 19.92 and 42.17, respectively. At D∗p = 2, the bubble

shape is deformable on the top surface at ReTsim = 2.93 and WeTsim = 0.91, while for

D∗p = 3 the bubble shape is nearly spherical, presenting an indentation at the rear of the

bubble (shadowed part) at ReTsim = 11.15 and WeTsim =13.22 .

Figure 6.4: Values of the simulated terminal Reynolds number vs. the simulated Weber num-

ber.

On the other hand, at D∗p = 1.2 the wall effects are significant and the bubble achieves
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an elongated cylindrical shape. The simulated ReTsim and WeTsim were found to be equal

to 0.36 and 0.014, respectively, as shown in Figures 6.2-6.4. The low Weber number is

an indication of the surface tension forces dominance compared to the inertial forces.

6.3.3 Terminal velocities and drag coefficients

Figure 6.5 presents the dimensionless terminal velocities (UT/U∞) as a function of

the dimensionless ratio D∗p. It can be seen that the values of the UT/U∞ at D∗p = 1.2

correspond to spherical, oblate ellipsoidal and oblate ellipsoidal cap, were found to be

approximately equal to 0.013, 0.178 and 0.032.

AtD∗p=5, the corresponding UT/U∞ for the selected bubble regimes are 0.91 (spherical

bubble), 0.89 (oblate ellipsoidal or wobbling bubble) and 0.84 (oblate ellipsoidal cap

bubble). It is also observed that the increase in the pipe diameters displays larger values

for UT/U∞, up to a certain point (D∗p=5).

Figure 6.5: Values of the dimensionless terminal bubble velocity for various D∗p.
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At D∗p > 5, the values of UT/U∞, increase with very small rate until to achieve

the infinite medium velocities. Finally, it can be seen from Figure 6.5 that the UT/U∞

presents the largest decrease at D∗p < 2.5 for all the selected bubble regimes, at which

the wall effects are significant.

The present simulated terminal velocities were compared with the empirical equation

of Wallis (1969):

UT
U∞

= 1.13 e−λ (6.2)

where λ =
1

D∗p
. This correlation is valid for low Morton and high Reynolds systems.

For λ ≥ 0.125 the lateral effects are negligible while the correlation is valid for values of

λ ≤ 0.6. It is noticed that the predicted dimensionless terminal velocity is in reasonable

agreement for the spherical bubble regime at 3.5 ≤ D∗p ≤ 5. In the case of oblate

ellipsoidal bubble shape, the curve follows a similar pattern compared to the correlation

of Wallis (1969) with a fair agreement, up to a certain point (D∗p = 2.5) .

Similar deviation exhibits the values of the dimensionless terminal velocity for the

case of oblate ellipsoidal cap bubble shape. It should be noted that the value of Morton

number is higher (Mo = 1.31) compared to the other two cases (Mo = 2.52 ·10−11), while

the value of Reynolds number is small (Re = 20.4) which is against to the valid limits

of the Wallis correlation for low Mo and high Re numbers systems. However, Bhaga’s

results support that Eq. 6.2 can be used down to Re = 10 regardless of whether skirts

are being trailed (Clift et al., 1978).

Figure 6.6 depicts the computed drag coefficient CD vs. the dimensionless pipe di-

ameter. It is shown that the decrease in the wall distance increases the CD, while the

increase of the wall distance displays small CD values, approaching to a point of which the

CD is close to a constant value. The values of CD at D∗p = 1.2 are 8507 (spherical shape),

173.54 (oblate ellipsoidal) and 11130 (oblate ellipsoidal cap). At D∗p = 5, the values of CD

= 0.4, 1.67 and 3.67 correspond to the spherical, oblate ellipsoidal and oblate ellipsoidal

cap, respectively.
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Figure 6.6: Values of the drag coefficient (CD) for various D∗p.

In this section, we have also investigated the characteristics of the flow fluid regarding

the bubble motion and the wall effects on the bubble. It is observed that the increase

of the wall effects leads to squeeze of the bubble shape in the direction of the horizontal

axis of the oblate ellipsoidal bubble, as shown in Figures 6.7 (a) and (b) for D∗p = 1.2

and 1.6, respectively.

On the other hand, the increase of the D∗p leads to the weakness of the wall effects,

resulting to the the dominance of the wobbling bubble shape, as shown in Figure 6.7

(h). Figures 6.7 (a)-(d) illustrate the streamlines for the oblate ellipsoidal cap and oblate

ellipsoidal bubbles at terminal state and the selected D∗p = 2, 3.5, 4 and 5.

ForD∗p =5, the terminal bubble shape is close to spherical cap with a small indentation

at the bottom, as shown in Figure 6.7 (d). In Figure 6.7 (c), it is observed that the bubble

shape atD∗p =4 exhibits to a certain extent the reduction of the indentation at the bottom,

while a very small elongation occurs in the axial direction. At D∗p = 3.5 (Figure 6.7 (b)),

the bubble shape maintains a similar behaviour as in Figure 6.7 (c), however, a small
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flattening takes place at the rear of the bubble.

For D∗p =2, the bubble shape is more elongated, while the bottom of the bubble is

getting flatten, as shown in Figure 6.7 (a). All the Figures 6.7 (a)-(d) depict recirculation

effects at the rear of the bubble and the vorticity strength varies from the large to small

wall distances on the bubble.

Figure 6.7: Streamlines for oblate ellipsoidal cap regime at (a) D∗p=2, (b) D∗p=3.5, (c) D∗p=4,

(d) D∗p=5 and for oblate ellipsoidal or wobbling regime at (e) D∗p=2, (f) D∗p=3.5,

(g) D∗p=4 and (h) D∗p=5 .

Figures 6.7 (e)-(h) present the streamlines for the oblate ellipsoidal bubble regime.

It is seen that the bubble shape becomes almost spherical (Figure 6.7 (e)) and is accom-

panied with an asymmetry on the right top side surface due to the rectilinear motion of

the bubble. Further reduction of D∗p at 1.6 and 1.2 results in a very small elongation in
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the axial direction (see Figure 6.2). On the other hand, the increase of D∗p follows a more

ellipsoidal shape for the bubble, as shown in Figure 6.7 (e)-(h).

Figure 6.8: Further zooming for case (e) from Figure 6.7.

Similar to the oblate ellipsoidal cap regime, the presence of vortices at the rear of the

bubble was also observed for the oblate ellipsoidal regime, as shown in Figure 6.7 (e)-

(h). In our case, an important difference between the oblate ellipsoidal cap and oblate

ellipsoidal or wobbling bubble shapes is the presence of small left-right asymmetries due

to the high Reynolds number (Re = 1950 for infinite medium conditions) (see Figure 6.7

(e)-(h)). According to Magnaudet and Mougin (2007) bubbles at large Reynolds number

may exhibit path instability, resulting in a helical or zig-zag path. The critical Re number

for this phenomenon without the presence of wall effects was found to be just above 200.

In the present study, small asymmetries exist between the two vortices for different

pipe diameters in Figure 6.7 (e)-(h) and more detailed (zoom) is shown in Figure 6.8.
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This occurs due to the oscillations of the bubble motion and their effect shorten with

increasing the lateral wall effects. Sometime these oscillations may be so violent and

lead eventually simulation to stop, in particular for the 3-D Front Tracking method

without numerical treatment for bubble break up. The reason for that is the very fast

deformation rate of the surface grid (Dijkhuizen et al., 2005). However, these problems

are not present in VOF method and the current phase-field method, as well as in recent

versions of the Front Tracking method (Hua et al., 2008; Dijkhuizen et al., 2010) which

incorporate numerical “treatment” for capturing the topological change (Sussman and

Smereka, 1997; Hua et al., 2008).

6.3.4 Bubble shape deformation regimes

Figure 6.9 presents the contours for the oblate ellipsoidal bubble at terminal state for

D∗p = 1.2, 1.6, 2, 2.5, 3, 3.5, 4 and 5. Similar maps for different bubble regimes have also

been provided by Mukundakrishnan et al. (2007) and Clift et al. (1978). These regime

maps provide useful information for the bubble shape deformation on the lateral wall

effects.

In Figure 6.9, each graph depicts the relationship of terminal Reynolds number and

the Eotvos number, as well as the bubble shape for the three selected bubble regimes.

Due to the lack of data for the bubble shape for small values of D∗p, it was selected to

compare the current data for D∗p = 5 (Figure 6.9h). The lateral wall effects at D∗p = 5

are very small and can be compared with the terminal bubble shapes for infinite medium

conditions.

The terminal bubble shape for the oblate ellipsoidal cap is similar to the experimental

terminal bubble shape from the work of Bhaga and Weber (1981) (see Section 5.4.1.6,

pg. 113, Fig. 5.31a). In the case of oblate ellipsoidal bubble, the terminal shape was

compared to the terminal shapes from the numerical studies of Dijkhuizen et al. (2005)

(see Section 5, pg. 6172, Fig. 3), Yu and Fan (2008) (see pg. 273, Fig. 8b) and Hua et al.

(2008) (see Section 3.4, pg. 3376, Fig. 15), presenting good agreement. The numerical

predictions for the spherical bubble regime again were compared to the terminal bubble
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shapes from the work of Hua et al. (2008) (see Section 3.4, pg. 3376, Fig. 15), exhibiting

very good agreement.

Figure 6.9: Bubble shape regimes for D∗p = 1.2, 1.6, 2, 2.5, 3, 3.5, 4 and 5.
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6.4 Chapter summary

In this Chapter, an attempt was made to investigate the wall effects on the rise of a

three-dimensional bubble by means of a phase-field method combined with a GCIBM for

the reconstruction of the pipe wall.

Three different bubble regimes (spherical, oblate ellipsoidal or wobbling and oblate

ellipsoidal cap) and various ratios of the pipe diameter (D∗p = 1.2, 1.6, 2, 2.5, 3, 3.5, 4 and

5). In the present study, a parametric analysis was performed based on the dimensionless

number Re, We, Mo and Eo. The flow field was also investigated and illustrated for

the aforementioned bubble regimes, as well as bubble regime maps with reference to the

relationship of ReTsim and Eo numbers.

The proposed numerical model was validated against the available numerical and

experimental data of Mukundakrishnan et al. (2007) and Krishna et al. (1999), presenting

satisfactory agreement.
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Dynamics of 3-D Taylor bubbles in

viscous liquids

7.1 Introduction

The purpose of the present effort is to investigate the dynamics of three-dimensional

Taylor bubbles. A Taylor bubble is characterised as a bullet shape gas or vapor with a

length of several time of its diameter and a tailing edge.

The present numerical simulations are focused on the effects of Morton and Eotvos

numbers, as well as on the role of density and viscosity ratios in the formation of a Taylor

bubble rising in stagnant liquids. A second order ghost cell immersed boundary method

combined with a phase-field method were employed for simulating the interfacial region.

7.2 Literature survey

Over the decades, many studies have been devoted to investigating the dynamics of

Taylor bubbles in viscous liquids. Classical theoretical studies, such as those of Zukoski

(1966), Collins et al. (1978), Bendiksen (1985) and Batchelor (1987) have contributed

significantly to the understanding of the mechanisms involved in the formation of a Taylor

bubble.
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The motion of a Taylor bubble has also been studied experimentally by several scien-

tists and engineers. Some representative experimental studies were performed by Cam-

pos and Carvalho (1988), Polonsky et al. (1999b), Nogueira et al. (2006b), Mandal et al.

(2008), among others. Herein, the main focus is concentrated on the numerical investi-

gation, as it was selected to be the preferable method for studying the formation of a

Taylor bubble in stagnant liquids.

An early attempt to investigate numerically the dynamics of the Taylor bubbles was

presented by Mao and Dukler (1990). The set of Navier-Stokes equations for axisymmet-

ric flow, along with the appropriate boundary conditions, have been solved by means of

the Finite Difference Method (FDM). A QUICKER scheme was employed to descritise

the equations and the solution was obtained using an iterative algorithm for pressure-

correction, namely SIMPLE (semi-implicit method for pressure-linked equations). The

numerical predictions obtained for the rise velocity were compared with available exper-

imental data, presenting excellent agreement.

Tomiyama et al. (1996) performed numerical simulations to investigate the dynamics

of a Taylor bubble in a stagnant liquid using a VOF method. They investigated the

effects of Eotvos and Morton numbers on the flow field of a Taylor bubble. The rise

velocity and shape deformation of a Taylor bubble were predicted fairly well compared

with available experimental data.

Kawaji et al. (1997) conducted axisymmetric simulations to study the flow structure of

slug flow using a VOF interface tracking method. They predicted the velocity profile and

shape deformation of a Taylor bubble. They concluded that the drag force is decreased

as the Taylor bubble is moved laterally, which is of high importance for understanding

the effects on the coalescence and acceleration of a Taylor bubble in slug flow.

Bugg et al. (1998) and Bugg and Saad (2002) presented numerical results for the

motion of a Taylor bubble rising through stagnant liquids in vertical tubes. They exam-

ined the effects on the terminal velocity for different values of the Morton and Eotvos

numbers, as well as for the film thickness and the average velocity in film. The numerical

results obtained were compared with available experimental data, presenting satisfactory
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agreement.

Some years later, Son (2001) developed a numerical method for the simulation of

incompressible two-phase flows using a level-set (LS) method for the interfacial region.

The proposed method was implemented for simulating axisymmetric single Taylor bubble

and a train of Taylor bubbles rising in vertical tubes, under the effect of periodic or open

boundary conditions. The numerical results predicted fairly well the shape and rise

velocity of the Taylor bubble against available data from the literature.

Anglart and Podowski (2002) investigated numerically the dynamics of Taylor bubbles

rising in vertical channel using a VOF approach combined with an interface sharpening

algorithm. The model was implemented in the general commercial computer program

CFX 4.2. They examined the effects of flow conditions in relation to the bubble shape and

rise velocity. They also conducted numerical simulations for studying the phenomenon

of coalescence between two neighboring bubbles. The numerical results obtained were

compared with available experimental data, presenting excellent agreement.

Ndinisa et al. (2005) used the commercial computer program CFX 5.6 from ANSYS

in order to study the effects of three different numerical methods for the simulation of

the interfacial region of a Taylor bubble rising , namely volume of fluid (VOF), two Euler

two-fluid model and a combined model that combines the best features of both models.

The two-dimensional numerical results for both methods exhibited good agreement with

available experimental data from the literature.

Taha and Cui (2006) performed numerical simulations for the investigation of the

dynamics of single Taylor bubbles in vertical tubes. The capturing of interface was

obtained by using a VOF method. The proposed model was implemented in the general

computer program FLUENT. They predicted the shape, velocity field and wall shear

stress in both stagnant and flowing liquids. Numerical simulations were also presented in

order to demonstrate the effect of angle of inclination and turbulence effects using a k−ε

model. The numerical predictions obtained were compared with available experimental

data from the literature, exhibiting satisfactory agreement.

Zheng et al. (2007) presented numerical simulations for the investigation of the dy-
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namics of slug flow and the mechanism of the slug flow induced CO2 corrosion using a

VOF approach. The examined hydrodynamic characteristics such as the bubble shape,

the thickness of falling liquid film, terminal velocity, the wake length and shape, the

wall shear stress and the CO2 corrosion rate. The numerical predictions were compared

against experimental data with reasonable agreement. They also found that the wall

shear stress, resulting in the corrosion product scale fatigue cracking.

Lu and Prosperetti (2009) conducted axisymmetric numerical simulations for study-

ing the hydrodynamics of Taylor bubbles in a vertical tube, by means of the Finite Volume

Method (FVM). They investigated the effect of Eotvos and Morton numbers on the ris-

ing velocity of Taylor bubbles. The computational results were compared with available

experimental data from the literature, presenting good agreement.

Kang et al. (2010) studied numerically the motion of a Taylor bubble rising in stag-

nant liquids using a front tracking method. They investigated the effects of the Reynolds

number, Froude number, the Weber number, the density ratio, and the viscosity ratio

on the hydrodynamics of Taylor bubble (e.g. terminal velocity, wall shear stress and

wake length). They found that the effect of density and viscosity ratio is almost negligi-

ble. They also concluded that the Archimedes number affects the Taylor bubble shape,

terminal velocity, wall shear stress and the thickness of thin liquid film.

Recently, Ramdin and Henkes (2012) performed 2-D and 3-D numerical simulation

using a VOF method in the commercial CFD code (FLUENT). They investigated the

dynamics of Benjamin and Taylor bubbles which belong to the slug flow regime. The

numerical results were compared with the available experimental and analytical data,

exhibiting very good agreement.

Unlike the most previous efforts which mainly limited in axisymmetric simulations

using VOF and Front Tracking methods for capturing the interface, the present study

investigates for first time fully three-dimensional Taylor bubbles rising in stagnant liquids,

by using a GCIBM with a phase-field method with large density ratio (e.g. ρl
ρg

= 1000).

The present method is characterised by superiority for handling the topology changes

and omits the ambiguous gas-liquid interface reconstruction in VOF (Kang et al., 2010)
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or the numerical “treatment” of Front Tracking method for handling topological changes

(Sussman and Smereka, 1997; Hua et al., 2008).

A parametric analysis was performed for different properties of fluids and dimension-

less parameters relevant to the problem (e.g. Eo, Mo, ReB) in order to study the gas

entrainment at tail and its relation to maximum Taylor bubble sizes, as well as the effects

on the terminal shape of 3-D Taylor bubbles.

7.3 Results and discussion

In the present study, a substantial number of simulations was performed to investi-

gate the dynamics of Taylor bubbles in a vertical pipe. A number of fluid properties (e.g.

viscosity and density ratio) and dimensionless parameters relevant to the problems (e.g.

ReB, Eo and Mo). Numerical results for the validity of the model were compared with

available experimental data from the work of Nogueira et al. (2006b). For all the numer-

ical simulations, a computational domain has been selected, with pipe length 7.5 · Dp.

The pipe diameter Dp and the Taylor Bubble diameter DTB are taken to be equal to 1

and 0.84375, respectively. The length of the Taylor bubble is 2 ·DTB.

A grid of 1640x230x230 with a resolution ∆h = 0.0045 was adopted for all the Taylor

bubble simulations. This selection was made in order to ensure the highest available

accuracy corresponding to the available computer sources and CPU time from the High

Performance Computing (HPC). It should be noted that the present validation test is

also a tough test for the validity of the developed GCIBM, because the pipe wall plays

an important role to the evolution of the physical phenomenon.

7.3.1 Validation of the model

The current model was validated against the experimental findings reported by Nogueira

et al. (2006b). According to their work, a number of experiments were conducted for the

investigation of a Taylor bubble rising in stagnant liquid. A vertical tube with 0.032 m

internal diameter (D) and 6 m long was selected for the experiments.
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In the present study, the model was tested with one of the experiments for stagnant

flowing liquid (aqueous glycerol), with reference to the Froude number (Fr) and the liquid

film thickness (w). The experimental parameters are µl = 0.109 Pas, ρ = 1222 Kg/m3,

UL = 0.000 m/s, UB = 0.197 m/s and ReB = 200. According to the experimental

measurements, the Froude number (Fr) was found to be 0.35 and the liquid film thickness

(w) was 0.00327 m.

The computed Froude number was found to be around 0.38. The simulated Froude

number presents a deviation of 8.6 % compared to the experimental Froude number (Fr

= 0.35) of Nogueira et al. (2006b,a). However, the value of the simulated Froude number

is close to the reported values of Froude number which is known as constant “C” and is

expressed as (Dumitrescu, 1943):

UTB = C(gD)1/2 (7.1)

where D is the pipe diameter, g the gravitational force and UTB the terminal Taylor

bubble velocity. In the literature, there are several reported analytical and experimental

values for constant C, such as 0.328 (Davies and Taylor, 1950), 0.351 (Dumitrescu, 1943),

0.345 (White and Beardmore, 1962) 0.303 (Brown, 1965), 0.328 (Laird and Chisholm,

1956), 0.350 (Campos and Carvalho, 1988), and 0.351 (Polonsky et al., 1999b), among

others.

The simulated liquid film thickness (w) was also compared with the experimental

data of Nogueira et al. (2006b) and the theoretical equation reported by Brown (1965),

which is given by the following formula:

w = 3

√
3µlUT (R− w)

2ρlg
(7.2)

From Eq. 7.2, the calculated value of w is equal to 0.00319m. The dimensionless liquid

film thickness can be obtained by dividing Eq 7.2 with the pipe radius (R = 0.016)

according to Llewellin et al. (2012), as well as for the experimental value. As a result,

the value of dimensionless film thickness is 0.20 for the theoretical equation and 0.204375

for the experimental measurement. In the present study, the simulated value was found
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to be equal to 0.185, which is 7.5% and 9.5% less than the theoretical and experimental

values, respectively.

Figure 7.1: Shadow of the bottom of isolated Taylor bubbles rising in a stagnant solution,

ReB = 200 (Nogueira et al., 2006b)

Figure 7.1 presents experimental photographs of the bottom of isolated Taylor bubble

in a half and full domain, as shown in the work of Nogueira et al. (2006b) for ReB =

200. In Figure 7.2, it is observed that the simulated Taylor bubble captures satisfactory

the shadow of the bottom compared with the experimental photographs in Figure 7.1,

presenting encouraging agreement.

The difference can be explained mainly by the inadequate grid resolution for the

simulation which has also influence on the numerical errors by the FDM and the GCIBM.

It should be noted that a 3-D Taylor bubble simulation with the current grid resolution

and 64 CPU cores needs more than 1.5 month, and with 128 CPU cores around 20 days to

obtain a solution, depending also on the time step (large ratio of density needs small time

step). Therefore, a compromise between the grid resolution and the available computer

sources is unavoidable.
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Figure 7.2: Numerical simulation of a Taylor bubble according to the experimental data from

the work of Nogueira et al. (2006b) for ReB = 200 and Ar = 4 · 104 : a) Terminal

shape of the Taylor bubble and b) the shadow at the bottom of the Taylor bubble.

7.3.2 The role of density and viscosity ratio in the formation of

a Taylor bubble

The present section is devoted to investigate numerically the effects of density and

viscosity ratio in the formation of a Taylor bubble rising in stagnant liquid through a

vertical pipe. A number of selected viscosity and density ratios were adopted for the

present numerical simulations.

The values for the selected ratio of density ( ρl
ρg

) are taken to be equal to 50, 100

and 1000, respectively. The values of the viscosity ratio are taken to be equal to 50
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and 100. The other parameters for the numerical simulations are ReB = 1910, Eo = 7,

Mo = 2.6 · 10−11 and µl
µg

= 50. It should be noted that the value of the Morton number

represents the properties of air-water system. It is also important to point out that the

viscous effects are not so strong due to the low Morton number (White and Beardmore,

1962; Lu and Prosperetti, 2009).

Figure 7.3: Terminal Taylor bubble shapes and cross sections for ReB = 1910, Eo = 7,

Mo = 2.6 · 10−11 and different density ratios: at 50 for (a) and (d), at 100 for (b)

and (e), and at 1000 for (c) and (f).
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Figure 7.3 presents the Taylor bubble shapes for the selected density ratios along

with their cross sections. It is observed that the terminal bubble shapes for density ratio

50 and 100 are slightly different with a little wider sides at the bottom for the case (b).

However, the bubble shape for the high density ratio (case c) displays two small bulges

(left and right side) near to the bottom due to tail oscillations (weak viscous effects). It is

also observed that the tail of the bubble for case (c) appears a curved shape compared to

the other two cases (a) and (b) which display a flat tail. It is concluded that the bottom

of the Taylor bubble is affected with increasing the density ratio.

The nose of the Taylor bubble maintains a prolate spheroid shape for all the cases

without distinguishable differences, as shown in Figure 7.3. The value of the selected

density ratio for the specific Morton number does affect the terminal shape of the bubble.

However, the high density ratio requires a small time step, ∆t = 10−4 which increases

significantly the simulation time.

Figure 7.4: Film thickness vs. the pipe length for different density ratios.

Figure 7.4 depicts the film thickness (δ) for the three selected values of density ratio.
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It is shown that the difference between the values of density ratio, 50 and 100 are indis-

tinguishable, while for the value 1000 is slightly different only in few parts of the curve.

It should be noted that a finer grid might give larger variations between the low and high

density ratios regarding the film thickness.

Figure 7.5: Rise velocities of oscillating Taylor bubbles for different density ratios.

As mentioned above, the shape of the Taylor bubble indicates that the bubble tail

oscillates periodically due to weak viscous effects (Lu and Prosperetti, 2009). This is also

supported by the fluctuated rising dimensionless bubble velocity for the three cases, as

shown in Figure 7.5.

In order to investigate the effect of the viscosity ratio on the Taylor bubble shape,

two different values were examined, namely 10 and 100. The other parameters of the

simulations remain the same as above.

Figure 7.6 illustrates the Taylor bubble shapes for the two different values of the

selected viscosity ratio. It can be seen that the viscosity ratio has also influence on the

terminal bubble shape at the bottom, similar to the effects of density ratio, as well as to
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the streamline patterns at the bubble bottom.

Figure 7.6: Terminal Taylor bubble shapes and cross sections for ReB = 1910, Eo = 7,

Mo = 2.6 · 10−11 and different viscosity ratios: at 10 for (a) and (c) and at 100

for (b) and (d).

In Figure 7.7, it is depicted the relation of the dimensionless film thickness along

with the dimensionless pipe length for density ratio 10 and 100. It is shown that the film

thickness curve is almost identical without any important change.

It is also observed that the dimensionless velocity is fluctuated during the simulation
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for the two selected viscosity ratios, as shown in Figure 7.8. This occurs due to the

oscillations of the Taylor bubble bottom.

The presence of oscillations has been reported for low-viscosity fluids by Lu and Pros-

peretti (2009). They used the gravity-capillary theory in order to estimate the oscillations

frequency. However, their code did not take into account the topological changes (e.g.

break up).

Figure 7.7: Film thickness vs. the pipe length for different viscosity ratios.

This phenomenon has also been studied experimentally for air-water system by Polon-

sky et al. (1999a). The power spectra of the bubble oscillations were presented for various

bubble lengths in stagnant liquid. They concluded that the bottom oscillations of the

Taylor bubble depend on the bubble length and their amplitude increases with increasing

the Taylor bubble length.

According to the above results, the density and viscosity ratio are taken to be equal

to 1000 and 100 for the numerical simulations in the next sections. A time step, ∆t =

1.2 · 10−4 was also used for the following simulations.
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Figure 7.8: Rise velocities of oscillating Taylor bubbles for different viscosity ratios.

7.3.3 The role of Eotvos number in the formation of a Taylor

bubble

The Eotvos number expresses the relation between the body forces and surface tension

forces. As a result, a high Eotvos number decreases the surface tension effects on the

system, while a low Eotvos number is accompanied by the dominance of the surface

tension forces.

Many studies have been devoted to identify a critical Eo number at which the surface

tension forces are dominant and as a result the Taylor bubble cannot move and remains

stuck in the vertical pipe. The criterion for a zero bubble velocity is specified as Eo = 3.4

according to the work of White and Beardmore (1962) and in general express for Eo < 4

the bubble is not rising. Other researchers have also proposed a value of Eo = 0.58 by

Barr (1926), 3.37 by Bretherton (1961), 3.36 by Hattori (1935) and 4 given by Gibson

(1913). The phenomenon has also discussed in the work of Viana et al. (2003).
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According to the above mentioned values for the critical values Eo number, we have

selected two Eo values in order to investigate the phenomenon, namely 3.4 and 4. The

other parameters for the simulations are Mo = 2.6 · 10−11, µl
µg

= 100 and ρl
ρg

= 1000.

Simulations with Eo = 3.4 has also been conducted by Taha and Cui (2006) with

VOF and Lu and Prosperetti (2009) with a set of marker points linked by cubic splines.

According to the author’s knowledge, it is the first time that the present method is used

for the simulation of this phenomenon. For both cases of Eo numbers the code crashed

after a number of iterations, even with very small time steps (e.g. 10−4, 5 · 10−5 and

10−5). The bubble motion was prevented by the strong surface tension forces. In order to

release the strong surface energy, the bubble tends to stretch its initial shape to spherical

structure. As a result, this process leads to the rupture of the thin film at the bottom

of the bubble. The failure of calculations for Eo = 3.4 is also reported in the numerical

study of Lu and Prosperetti (2009).

When the surface tension forces are decreased, the value of Eo increases. Therefore,

two additional values of Eo, 7 and 28 are adopted for further investigation at Mo =

2.6 · 10−11. From Figure 7.9, it is shown that the streamlines for the two Eo numbers

give different patterns and bottom shapes. It is also seen that the configuration of the

two main vortices at the bottom with the strongest display for case (b). For case (a),

Eo number is four times lower than case (b). Therefore, case (a) is affected by higher

resistance of the surrounding fluid compare to case (b), resulting to a lower rising velocity,

as shown in Figure 7.11.

Figure 7.10 illustrates cross sections for the two cases in order to notice better the

final shape of the Taylor bubbles. For the first case the bubble shape is characterised

as a bullet with fatter sides at the bottom, resulting to spherical shape bottom. On the

other side, for Eo = 28, bubble can be described as a bullet shape with two lateral tail

edges (right and left) and in the middle a flat shape at the bottom.

It is also important to note that unlike the fluctuated dimensionless bubble velocity

for Eo = 7 due to the presence of tail oscillations, the case for Eo = 28 does not display

oscillations and seems to be more stable, as shown in Figure 7.11. In Figure 7.10, it is
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Figure 7.9: Taylor bubble shapes for Mo = 2.6 · 10−11, µl
µg

= 100, ρl
ρg

= 1000 and different

Eotvos number: (a) Eo = 7 and (b) Eo = 28.

Figure 7.10: Taylor bubble cross sections for Mo = 2.6 · 10−11, µl
µg

= 100, ρl
ρg

= 1000 and two

Eotvos values: (a) Eo = 7 and (b) Eo = 28.
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also seen that the Eo number affects the determination of tail elongation.

Figure 7.11: Dimensionless bubble velocities for Eo = 7 and 28.

7.3.4 The role of Morton number in the formation of a Taylor

bubble

Morton number along with Eotvos number can be used for the characterisation of the

bubble or drop shape. In this section, a detailed study is performed for investigating

the effects of Morton (Mo). Several cases were examined with the same density ratio of

1000, viscosity ratio of 100 and two Eotvos numbers of 7 and 200. The selected values of

Morton number is varied from O(10−11) to O(10−4).

Figure 7.12 illustrates the terminal shapes of Taylor bubbles for five different values

of the dimensionless Morton (Mo) number and Eotvos (Eo) value of 7. From Figure

7.12(a), it is seen that the terminal shape of the Taylor bubble is prolate spheroid shaped

with rounded trailing and leading edges. It is also interesting to point out that the length
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Figure 7.12: Terminal bubble shapes and streamlines for Eo = 7 and various values of Mo:

(a) Mo = 10−6, (b) Mo = 10−7, (c) Mo = 10−8, (d) Mo = 10−9 and (e)

Mo = 2.6 · 10−11.

Figure 7.13: Bubble cross sections for Eo = 7 and various values of Mo: (a) Mo = 10−6, (b)

Mo = 10−7, (c) Mo = 10−8, (d) Mo = 10−9 and (e) Mo = 2.6 · 10−11.
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of the Taylor bubble is the longest, resulting in the thickest liquid film among the other

cases.

With the decrease in Morton number, the viscous forces are not too strong. The

long shape of the Taylor bubble is reformed from a long and thin shape to a fatter and

shorter schema. These topological changes of the Taylor bubble squeeze and bound the

thin liquid film into a narrower region, as shown in Figure 7.12 (e).

Figure 7.13 present cross sections of the Taylor bubbles for the five different values

of Morton number and the selected Eotvos value of 7. Figures 7.13(a)-(e) also support

the previous findings for the terminal shape of the bubble and thin liquid film.

An interesting phenomenon that has been reported in previous studies such as, for

example, Lu and Prosperetti (2009) and Polonsky et al. (1999b). From the present

numerical predictions, it is found that there is a critical value of Morton number regarding

the presence of these oscillations, as shown in Figure 7.14. We do not refer to the initial

oscillations for dimensionless time between 0 and 0.4, but for the larger oscillations for

t∗ = 0.4−3. The value of Morton number was found to be ≤ 10−8 for the selected Eotvos

value of 7.

Figure 7.14 presents the dimensionless velocity of the Taylor bubbles for the consid-

ered cases. It is seen that the bubble velocity for the cases with Mo values of 2.6 · 10−11,

10−9 and 10−8 fluctuates, as shown in Figure 7.14. This expresses an indication of bubble

oscillations at the bottom. This is also supported by the bubble deformantion at the

bottom for different times, as shown in Figure 7.15 and 7.16 at Mo = 2.6 · 10−11 and

Mo = 10−9. In Figure 7.17, it is observed that the deformation of the bubble shape at

the botton is very small due to the attenuation of the oscillation effects compared to the

previous cases. Below the critical value of Mo = 10−8 there is no oscillation effects to

the bottom shape of the Taylor bubble.

The second group of simulations for Eotvos number of 200 is comprised by three

different values of Morton number, namely 10−3, 2.1 · 10−4 and 8 · 10−6. The other

parameters of the simulations are the same as above. The motivation of this attempt

is the further investigation of unsteady effects on thin liquid film such as, for example,

157



Chapter 7. Dynamics of 3-D Taylor bubbles in viscous liquids

Figure 7.14: Bubble velocity for Eo = 7 and various values of Morton number (Mo).

Figure 7.15: Cross section profiles for Eo = 7, Mo = 2.6 · 10−11 and different times.
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Figure 7.16: Cross section profiles for Eo = 7, Mo = 10−9 and different times.

Figure 7.17: Cross section profiles for Eo = 7, Mo = 10−8 and different times.
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appearance of waves at the bubble sides and break up of many small bubbles at the

bottom.

It should be noted that the latter case can not be simulated by numerical methods

such as the Front Tracking (Kang et al., 2010) or sharp methods using a set of marker

points linked by cubic splines, because they cannot handle topological changes (e.g. bub-

ble break up). The present method is characterised by superiority from the aspect of

handling the topological changes. However, the present method is not so accurate as

the previous methods and demands very fine grid in order to capture the above men-

tioned phenomena in detail. Therefore, a compromise between the grid resolution and

the available computer sources is necessary.

Figure 7.18: (a) Waves on the interface of the Taylor bubble rising in stagnant water in the

pipe of D = 26 mm, (b) Pair of images of a Taylor bubble rising in a pipe with D

= 44 mm in stagnant water. Horizontal lines mark corresponding individual wave

crests, propagating upwards. The Figures adopted from the work of Liberzon

et al. (2006).
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Polonsky et al. (1999b) and Polonsky et al. (1999a) claimed that while the nose of the

Taylor bubble remains constant, the bottom of the bubble presents quasi-periodic oscil-

lations. Similar findings were also reported from Nigmatulin and Bonetto (1997). They

found that the surface oscillations express standing capillary waves and their amplitudes

increase as the waves become shorter.

Kockx et al. (2005) also studied the disturbance on the surface of a long Taylor

bubble in a pipe. They concluded that the presence of the oscillations is related to the

entrainment of small gas bubbles from the Taylor bubble in the surrounding fluid.

Liberzon et al. (2006) presented an experimental study regarding the short capillary

waves on the surface of air Taylor bubble in water rising in vertical pipes of different

diameters (e.g. D = 14, 26, 44 mm) using particle image velocity (PIV) technique. One

of their conclusion is that the phenomenon occurs only for sufficient short bubbles only.

According to their experiments the generation of waves on the surface of Taylor bubbles

is attributed to the bubble bottom oscillations. They also predicated that the wave

frequencies at the bubble bottom range from 2 to 12 Hz. The frequencies depend on

the bubble diameter, bubble length and the water flow rate. Figure 7.18(a) depicts the

presence of capillary waves on the bubble surface, while Figure 7.18(b) illustrates that

the waves propagating upwards. Approaching the nose of the bubble the waves become

longer due to the variation of the film velocity.

As mentioned above, three different cases were considered for the investigation of

unsteady phenomena on the thin film. It is interesting to point out that the decrease of

the Morton number causes remarkable changes at the bottom of the Taylor bubbles at

Eo = 200, as shown in Figures 7.19. It is observed that the tail of the Taylor bubble at

Mo = 10−3 achieves a dimpled shape, as shown in Figure 7.19(a). The effect of viscous

force is strong, as reflected by a large Eo number (Eo = 200) and weak surface tension

forces.

This case similar to the case (13) from the work of Kang et al. (2010). In their study,

the tail of the Taylor bubble presents a further indentation compared to the present

results. This can be explained by the inadequate grid resolution and the selected method
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for simulations the interface (Phase-field) method. Their calculation for the Froude (Fr)

number gives a value of 0.33, while the present numerical predictions yield a value around

0.40. According to the following universal correlation of Viana et al. (2003) forReB > 200:

Fr = 0.34/(1 + 3805/Eo3.06)0.58 (7.3)

the estimated value of yields a value of 0.34.

Figure 7.19: Terminal bubble shapes and streamlines for Eo = 200 and various values of Mo:

(a) Mo = 10−3, (b) Mo = 2.1 · 10−4 and (c) Mo = 8 · 10−6.

With the further decrease of the Morton number (Mo = 2.1 · 10−4 the tail of the

Taylor bubble develops a gas “skirt” again due to the weak surface tension forces, as

shown in Figure 7.20(b). The bottom shape of the bubble presents similarities with the

case (14) from the study of Kang et al. (2010). The simulated Fr number was found to

be around 0.38, while for the case (14) is again 0.33. The theoretical prediction of the

Fr number from the above universal correlation of Viana et al. (2003) is again 0.34.
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In Figure 7.20, it is observed that the further decrease of Morton numberMo = 8·10−6

results in the break up of many small bubbles at the bottom, as shown in Figures 7.19(c)

and 7.20(c). It is important to mention that the mechanism of breaking up of many small

bubbles from the rear of the Taylor bubble is still not clear. However, a gas entrainment

mechanism has been proposed by Delfos et al. (2001) and Kockx et al. (2005). With the

decrease of the Morton number, the viscous effects are getting weaker and bubble tail

may oscillate. The large values of Eotvos number also affects the surface tension forces

which are getting smaller. When a wave on the thin film travels at the surface of the

bubble it generates a gravity wave. In order to enclosed the gas (e.g air), the slope of

the gravity wave should be large enough and at the same time the surface wave should

travel very fast. Then, the gravity wave crest contacts with the next wave on the bubble

surface and traps the air.

Figure 7.20: Bubble cross sections for Eo = 200 and various values of Mo: (a) Mo = 10−3,

(b) Mo = 2.1 · 10−4 and (c) Mo = 8 · 10−6.
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Figure 7.21 depicts a phase diagram for various values of Morton number versus the

Eotvos number with three regions for the bubble tail, namely steady, wavy and unstable

(break up). In the diagram, the empty geometrical schemes are numerical data from the

work of Lu and Prosperetti (2009), while the filled blue triangles and squares represent

the present results.

Figure 7.21: Phase diagram of the tail shape in Mo and Eo for a bubble rising in quiescent

liquids.

The numerical predictions are in good agreement with the numerical data of Lu and

Prosperetti (2009), excluding the case for Mo = 2.1 · 10−4. This occurs due to the

inadequate grid resolution.

7.4 Chapter summary

In this chapter, an attempt was made to study the dynamics of three-dimensional

Taylor bubbles rising in stagnant liquid through a vertical pipe. The numerical method
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was validated initially against the available experimental and numerical data from the

works of Nogueira et al. (2006b) and Kang et al. (2010).

Numerical simulations were conducted for different values of Morton (Mo), Eotvos

(Eo), buoyancy Reynolds (ReB) numbers, density and viscosity ratios in order to investi-

gate the final bubble shape, the gas entrainment at trail, liquid film thickness and rising

velocity. The numerical predictions were compared to other numerical data, wherever is

possible.
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Chapter 8

Conclusions and future directions1

8.1 Introduction

In this chapter, the main conclusions arising from the numerical predictions in the

present work are summarized and discussed. Future directions and general considera-

tions are also presented, including further development and improvement of the CFD

code, implementation of the proposed numerical method for other flow problems. Special

attention is also given to the available Direct Numerical Simulation (DNS) and Large

Eddy Simulation (LES) techniques for two-phase pipe flows and a brief literature review

is also introduced.

8.2 Main findings

8.2.1 Contributions of thesis

The contributions of the present thesis in the fields of Computational Fluid Dynamics

and two-phase pipe flows can be summarised in the following five points:

1The present Chapter contains material from the review paper entitled “Recent advances on the nu-

merical modelling of turbulent flows” by C.D. Argyropoulos and N.C. Markatos in Applied Mathematical

Modelling, 39 (2015) 693.
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1. A detailed literature review is presented of the available immersed boundary

methods and interface and capturing methods with main focus on the ghost-cell

immersed boundary method (CGIBM) and phase-field method, respectively.

2. A numerical method based on a combined ghost-cell immersed boundary/phase

field technique along with a finite difference method is presented for three-

dimensional two-phase pipe flows. The combination of the above methods is

implemented for first time.

3. The proposed numerical method is used to investigate the latteral wall effects

of a 3-D single bubble in a viscous liquid for different pipe diameters and bubble

flow regimes for high and intermediate Reynolds numbers.

4. The dynamics of 3-D Taylors bubbles is examined in vertical pipes for differ-

ent properties of fluids (e.g. air-water system) and dimensionless parameters

relevant to the problem (e.g. ReB, Eo and Mo). The numerical simulations

are also focused on the investigation of unsteady effects on thin liquid film

(e.g. waves at the bubble sides and break up for many small bubbles at the

bottom).

5. A literature review is also presented of the problems and successes of comput-

ing turbulent flow. The review is concerned with methods for turbulent flow

computer predictions and their applications, and describes several of them.

The successes and problems are demonstrated by listing and briefly discussing

several applications of DNS and LES to flows in pipes and free-surface flows.

A hard-copy of the review paper can be found in Appendix C.

The next sections outline the main findings of Chapters 5, 6 and 7.

8.2.2 Conclusions of Chapter 5

In Chapter 5, the numerical method along with the developed IBM methods were

verified and validated with available numerical and experimental data from the literature.

The developed IB algorithms are based on the penalty technique and ghost cell method,
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respectively. The GCIBM based on the main idea of Tseng and Ferziger (2003). The

method was also modified in order to incorporate the appropriate boundary conditions

for coupling the Phase-Field, momentum and pressure solvers for two-phase pipe flows.

Tseng and Ferziger (2003) used the GCIBM for turbulent single-phase flows, however,

the present version exhibits a continuation of the method for handling two-phase pipe

flows.

Two classical test cases were selected for the performance evaluation of the IB algo-

rithms, namely single- and two-phase Poiseuille flow. Both algorithms were compared

against the analytical solution for the velocity profile corresponding to the single- and

two-phase Poiseuille flow, respectively.

The GCIBM presents superior performance compared to the IB algorithm based on

the penalty technique regarding the velocity profile for the examined two test cases. In the

case of the single-phase Poiseuille flow, the umax % error value (∆h = 0.01) regarding the

velocity profile is 2.11% for the IB algorithm based on the penalty technique and around

0.5% for the GCIBM algorithm. It is also important to mention that the accuracy of the

GCIBM algorithm for the specific test case is around to the second order while for the

other algorithm the accuracy approaches the first order.

In the case of two-phase Poiseuille flow, again the GCIBM algorithm exhibits better

performance compared to the IB algorithm based on the penalty technique. The % error

(∆h = 0.005) for the umax compared to the analytical solution for the GCIBM is 4.79%,

while for the other IB algorithm is 5.74%. The accuracy of the GCIBM algorithm is

higher than first order corresponding to a slope of about 1.3, while for the IB algorithm

based on the penalty technique close to first order.

It is also important to point out that the IBM based on the penalty technique is

limited by two main constraints, namely time-step and the value of the user-defined

parameter. In order to achieve a converged solution, a small time step is necessary, which

increase sufficiently the computational time. The user-defined parameter leads to stability

and accuracy problems, especially with small values. A possible solution of the above

problem could be the use of a value of CIB (user define parameter, see Section 4.4.1)
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which compromises the need of approximating solid boundaries and the preservation of

the numerical stability at a reasonable computational cost.

The next validation test for the proposed numerical methods was the rise of a single

three-dimensional bubble in a vertical pipe. A detailed study has been performed for the

appropriate selection of the pipe length and pipe diameter, as well as for the suitable

grid resolution. The dimensionless parameter pipe length L∗p is taken equal to 10, while

the dimensionless parameter D∗p is taken equal to 7. The selection of the grid for the

numerical simulation was based on a grid sensitivity analysis among five different grids,

238x175x175, 286x210x210, 358x262x262, 408x300x300 and 476x350x350, respectively.

The results between the last three grids were found to be sufficiently close to each

other with deviation of 1.31, 1.24 and 1.09%, respectively, with reference to the terminal

Reynolds number. However, the finest grid was selected in order to achieve the highest

available accuracy. The selected grid was used for the simulation of four different bub-

ble flow regimes, namely spherical, oblate ellipsoidal, oblate ellipsoidal disk and oblate

ellipsoidal cap.

The numerical predictions with reference to the bubble shape and terminal Reynolds

number were compared with available experimental data from the works of Bhaga and

Weber (1981), Grace (1973) and Clift et al. (1978), presenting very good agreement for

the prediction of the bubble shape and satisfactory agreement for the terminal Reynolds

number.

The model was tested for the bubble volume conservation by examining the bubble

volume percentage error for a spherical and an oblate ellipsoidal bubble. The percentage

error is less than 1% for the spherical regime and less than 1.4% for the ellipsoidal bubble,

which indicate that the volume of rising bubble is satisfactory conserved.

The numerical method was also tested for the presence of parasitic or spurious cur-

rents. A static bubble was selected as a test case for investigating the parasitic currents

on the interfacial region. The results indicate that the magnitude of spurious velocity is

in the range of 10−6. It is also observed that for ε = 0.5∆h displays the minimum value

for the spurious velocity, which is also the selected interface thickness for the bubble
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simulations.

Other test case for the current model is the computation of the drag coefficient for a

single rising bubble and comparison with the obtained correlation from the experimental

data of Bhaga and Weber (1981). Three numerical simulations were performed with

three different Morton numbers, namely Mo = 5.48 · 10−3, 0.01 and 0.1. The numerical

predictions presented small deviation compared to the correlation of Bhaga and Weber

(1981). This behaviour can be explained by the numerical error of the method and the

need of a finer grid.

The CFD code was also validated against experimental data from the work of Brereton

and Korotney (1991) for the bubble coalescence of two rising bubbles in a vertical pipe

and showed good agreement.

8.2.3 Conclusions of Chapter 6

In Chapter 6, an attempt was made to investigate the wall effects on the rise of a three-

dimensional bubble, by means of a combined immersed boundary/phase-field method. A

GCIBM was employed for the reconstruction of the pipe wall, while a phase-field method

was used for the simulation of the interfacial region between the two fluids.

Numerical simulations were performed to investigate the wall effects for three bubble

regimes (spherical, oblate ellipsoidal and oblate ellipsoidal cap) and various ratios of the

pipe diameters (D∗p= 1.2, 1.6, 2, 2.5, 3, 3.5, 4 and 5). The numerical results indicate that

the presence of the wall effects on the rise of a single bubble for the considered values

of D∗p are significant compared to the infinite medium conditions, which are specified for

pipe length L∗p ≥ 8 and pipe diameter D∗p ≥ 6.

The proposed values of L∗p and D∗p for the infinite medium are in agreement with

the numerical predictions from the works of Mukundakrishnan et al. (2007) and Hua

et al. (2008). A parametric analysis was performed based on the dimensionless numbers

Re, We, Mo and Eo. The ratio of density and viscosity was selected to be equal to

ρl
ρg

= 1000 and µl
µg

= 100. It should be noted that the value of Mo = 2.52 · 10−11 for

the spherical and oblate ellipsoidal or wobbling regime represents fluid properties for air-
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water system, while for the oblate ellipsoidal cap the value of Mo selected to be equal to

116. The simulations of air-water system are characterised by great complexity due to

the instabilities at the interface and the need of small time step ( 10−5 − 10−6) for the

convergence, as well as high demand of fine grid resolution.

The numerical results predicted very good the terminal bubble shapes for the spher-

ical, oblate ellipsoidal and oblate ellipsoidal cap bubble regimes. The results regarding

the terminal bubble shape at D∗p = 5 are also in very good agreement with similar numer-

ical studies from the literature for infinite medium conditions. The predicted terminal

velocities, the values of terminal Re and We numbers decrease with the increase of the

lateral wall effects, while increase with increasing the wall distance on the bubble up to

reaching the infinite medium conditions (negligible wall effects).

The flow field was also investigated and illustrated for the aforementioned bubble

regimes. It is concluded that the strength of vortices decrease with small values of the

pipe diameter. It is also observed that the vortices for the oblate ellipsoidal present a

small asymmetry due to the oscillations of the zig-zag bubble motion, which characterises

air bubbles in water. As a result, the numerical method is capable to handle these type of

flows with satisfactory accuracy for bubble flows with high Reynolds numbers. However,

for flows with Re > 2000 the accuracy of method is lower and is dependent on the

grid resolution. Therefore, the use of an adaptive grid refinement method for very high

Reynolds number is necessary, in order to obtain high accuracy for the interfacial region.

Bubble regimes maps with reference to ReTsim and Eo numbers for different wall

distances were also illustrated. These regime maps provide useful information for the

bubble shape deformation on the lateral wall effects.

The proposed numerical model was compared with the available numerical and ex-

perimental data of Mukundakrishnan et al. (2007) and Krishna et al. (1999), exhibiting

encouraging agreement.
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8.2.4 Conclusions of Chapter 7

In this Chapter, a combined immersed boundary/phase-field method was used for

investigating the dynamics of Taylor bubbles rising in stagnant liquids through vertical

pipes. The mathematical model was validated with available experimental and numer-

ical data from the works of Nogueira et al. (2006b) and Kang et al. (2010), exhibiting

satisfactory agreement. The proposed numerical method was used in order to investigate

the effects of viscosity and density ratio, Eotvos and Morton numbers, on the creation of

a three dimensional Taylor bubble rising in vertical pipe.

Numerical predictions indicate that the density and viscosity ratio have significant

effects on the tail shape of the bubble, especially for high density ratio (e.g. ρl
ρg

= 1000).

The role of Eotvos number is significant regarding the elongation of the tail bubble

and the wake strength. As a result, the increase of Eo number results to decrease of the

surface tension of the bubble. All the considered Taylor bubbles maintain a well defined

spherical nose and retains its shape during the simulation.

Numerical simulations were also performed for studying the dominant role of the

surface tension forces for a Taylor bubble in a vertical pipe. Two values of Eotvos number

were examined, namely 3.4 and 4. For both cases of Eo number the code crash and the

calculations failed, even with very small time step. The bubble motion was prevented by

the strong surface tension forces. Subsequently, two additional values of Eo, 7 and 28

were selected for further study at Mo = 2.6 · 10−11. In the case of Eo = 7, there was

presence of oscillations at the bottom of the bubble.

The role of Morton number was also investigated for various values ranging from

O(10−11) to O(10−4) with two Eo numbers of 7 and 200. The terminal shape for Eo = 7

is characterised as prolate spheroidal shaped with rounded trailing and leading edges.

With the decrease in Mo number, the viscous forces are not too strong. As a result, the

long shape of the Taylor bubble is reformed from a long and thin shape to a fatter and

shorter structure. This behaviour is accompanied by squeezing and bounding the thin

liquid film into a narrower region.

It is also found that there is a critical value of Mo number regarding the presence of
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these oscillations. The value of Morton number is ≤ 10−8 for Eo = 7.

Numerical simulations were also conducted for the investigation of the unsteady ef-

fects on thin liquid film such as the appearance of waves at the bubble sides and break

up of many small bubbles at the bottom. The numerical method presented good perfor-

mance for the aforementioned phenomena, even if the current grid resolution was not fine

enough. A compromise between the grid resolution and the available computer sources

was unavoidable.

The numerical predictions were compared with numerical data from the works of

Kang et al. (2010) and Lu and Prosperetti (2009), exhibiting encouraging agreement.

8.3 Future directions and general considerations

In the present study, special attention is given to the future applications of the current

methodology but also for the further development of the CFD code. In the next sections,

are presented applications of the numerical code for the dynamic investigation of several

physical phenomena such as drops, bubble swarms and interfacial waves in core annular

flows. General consideration are also discussed for the turbulence modelling of single-

and two-phase flows, by means of LES and DNS techniques.

8.3.1 Improvement and further development of the CFD code

The existing CFD code has already been parallelised with Open Multi-Processing

(OMP) which is inefficient when a large number of processors is used. Therefore, for

the investigation of a rising Taylor bubble in a vertical pipe and in general for three-

dimensional flow problems, the present CFD code was extended with a Message Passing

Interface (MPI) to accommodate the increasing complexity of calculations. However, the

sustained performance (actual scaling) of the CFD code is below the ideal scaling which

is an indication for further improvement of the scalability of the CFD code. Scalability

stands for the ability of a parallel system to demonstrate the increase of the performance

in parallel speed up with additional number of cores.
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An alternative to increase the scalability of the present CFD code could be the imple-

mentation of Hybrid programming. A Hybrid scheme is characterised as the combination

of OMP and MPI. Thus, OMP (shared memory) is used inside of the symmetric mul-

tiprocessor (SMP) nodes, while MPI (distributed memory) is used between the nodes

via node interconnection. In the present CFD code, the pressure solver is responsible

for the poor performance of the code and also affects the parallelization process for the

Navier-Stokes. This is responsible for the delay because it needs the most time (more

iterations) among all the solvers of the CFD code in order to achieve converged solution.

More specifically, for the cases of DNS of two-phase flows the problem is focused on

the performance of the scalable Poisson solver combined with a preconditioner in order

to significantly increase the number of CPUs the solver can efficiently use. In these cases,

the modern architectures of HPC motivate the use of two-level Hybrid MPI and OMP

parallelization. In this study, the numerical solver is simple and based on the Gauss-

Seidel Successive Over Relaxation (SOR) method without preconditioner. However, the

introduction and testing of the appropriate preconditioner is not a trivial case and needs

a lot of effort in order to increase the performance of solver (e.g. less iterations, faster

convergence), as well as the performance of the parallelization process of the CFD code.

Further improvement could be achieved by implementing a multigrid algorithm in the

existing CFD code. The main idea behind the multigrid algorithms is the convergence

acceleration of an iterative method for a coarse problem and then the obtained solution is

interpolated to the fine grid in order to correct the fine grid approximation. A multigrid

algorithm comprises the three following steps, namely smoothing, restriction and interpo-

lation or prolongation. More details for the multigrid methods and their implementation

can be found in the textbook by Wesseling (1992). Multigrid algorithms present very

good performance for symmetric systems. They can also be adopted for the solution of

many sparse and realistic systems with high accuracy in a fixed number of iterations.

An increase of the current accuracy of the CFD code can be achieved by replacing the

first order in time Euler numerical scheme with a third-order Runge-Kutta scheme. This

upgrade will satisfy the appropriate accuracy for problems involving flows with turbulence
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because the Euler scheme is unstable for turbulent flows and as a result needs small

time step (Fishpool and Leschziner, 2009). Another alternative is the implementation of

an adaptive grid refinement which will be able to ensure much better accuracy for the

simulation of the interfacial region compared to the adopted Cartesian grid.

8.3.2 Implementation of the present numerical method for the

investigation of other flow problems

During the author’s PhD studies a substantial number of numerical simulations was

performed to investigate the dynamics of droplets, bubble swarms and interfacial waves

in core annular flows (CAF) in pipes. The main goal of these simulations was initially to

examine the capability of the numerical code to handle this type of flow problems and to

comprise the base for the extension of the numerical code for future applications.

The numerical code was shown to be capable of simulating the aforementioned prob-

lems with good agreement against available qualitative data for the topological changes

of the interface, wherever possible. However, limitations in computing resources and lack

of the desired performance of the numerical code to handle many CPU nodes efficiently

did not allow the further investigation of the above problems, in particular for the cases

of bubble swarms and interfacial waves in pipes.

8.3.2.1 Drop dynamics

Figure 8.1 illustrates the shape deformation and the velocity vectors of a three-

dimensional drop in a horizontal pipe. The characteristic parameters for the present

numerical simulations are: Rep = 40, Ca = 0.5, rv = 0.1, rd = 1 and Eo = 0.001.

The initial numerical predictions for the drop terminal shape are in very good agree-

ment with the numerical predictions from the work of Coulliette and Pozrikidis (1998)

(see Figures 8(a)-(b) and 13(a)-(b)), as well as to available micro-photographs of red

blood circulating in the mesentery of a dog (Fung, 1969) and travelling in capillary tube

(Gaehtgens, 1980). Hence, the obtained initial results indicate the capability of the
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proposed method to investigate the individual drop motion under the effect of different

parameters such as the Reynolds number, Eotvos number, ratio viscosity, ratio density,

among others.

The study of drop dynamics is of great importance for many physical problems (e.g.

oil recovery, blood flow) and could be one of the future directions for further research

with the current numerical method in the field of micro-hydrodynamics and in particular

for the tank-treating motion of the red-blood-cell membrane (Basu et al., 2011).

Figure 8.1: Shape deformation of a drop in a horizontal pipe for Rep = 40, Ca = 0.5, rv = 0.1,

rd = 1 and Eo = 0.001.

8.3.2.2 Bubble swarms

Another interesting physical problem for investigating with the present numerical

method is the dynamics of the bubble swarms. Dynamics of bubble flows is very im-

portant in order to control the efficiency and the hydrodynamics in bubble columns or

chemical and biological reactors (Roghair et al., 2011; Stewart, 1995). This type of flows is

difficult to simulate due to the high surface tension (e.g. air-water system), high Reynolds
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numbers, presence of parasitic currents and mass loss.

It is also known that the bubble swarm flow is dependent on the Morton number for

distinguishing the transition from “coalescing” to “non-coalescing” between “low-Mo”

and “high-Mo” liquids, a suggested value of Mo = 4 · 10−4 was proposed by (Stewart,

1995) for the transition, as well as by many others.

Initial numerical results showed that the present method is capable of handling this

type of flows. However, there is high demand of computational resources and time in

order to take even some results after some thousands of iterations due to the very small

time step ∆t = 4 · 10−5. The selected parameters for the simulation are Eo = 1.2,

Mo = 2.52 · 10−11, ρl
ρg

= 1000 and µl
µg

= 100. A fine grid of 500x260x260 and a number

of 30 bubbles were also selected for the present simulation. It is important to mention

that the grid resolution affects the capture of the bubble coalescence. Therefore, there

is a need for fine grid resolution. The current resolution is sufficient for capturing the

coalescence of bubble swarms, as shown in Figure 8.2.

Figure 8.2: Different time frames of a bubble swarm simulation for Eo = 1.2, Mo = 2.52 ·

10−11.

It should be noted that the Morton number is very small and it is expected multi-
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ple coalescence phenomena and mergers of the bubble array in a swarm, as previously

mentioned. Figure 8.2 illustrates time frames of the bubble swarm simulation for the

ellipsoidal regime which lead to coalescence all the bubble swarms at the end of the simu-

lation. However, in the current case only an initial part of the simulation was presented.

In Figure 8.2 (b) and (c), it can be seen the initial and intermediate stages of the coales-

cence between two bubbles of the bubble swarm at different time frames. The obtained

numerical results are in good agreement with quantitative experimental and numerical

data from the works of Stewart (1995) and Smolianski et al. (2008), respectively.

The current methodology looks promising for future simulations regarding the inves-

tigation of the drag force and the interaction between the bubbles of the bubble swarms.

8.3.2.3 Interfacial waves in core annular flows

Initial results for the investigation of interfacial waves in annular-core flow (CAF) are

also presented. CAF is attractive option for heating or diluting the oil. In lubricating

CAF the core (oil) is surrounded by less viscous annulus (water). It has been observed

by many scientists that the waves on the oil/water interface determine the stability of

the flow.

Numerical simulations of interfacial waves were performed for a less viscous core

surrounded by more viscous annulus. Interfacial waves were simulated for investigating

the propagating waves and the type of the waves (e.g. bamboo, snake, corkscrew, etc.).

Future numerical simulations for interface waves in core annular flow will be useful to

performed in order to identify flow patterns and the effects of gravity acceleration in the

wave formation.

Figure 8.3 presents the formation of interfacial waves for Rep = 20, rv = 0.1, rd = 1

and Ca = 0.5. According to the author’s knowledge this is the first application of 3-D

simulations for interfacial waves in CAF using an immersed boundary/phase-field method.

However, the limitations of computing resources and the high demands for CPU time did

not allow the further investigation of the physical phenomenon with the current version

of the CFD code.
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Figure 8.3: Formation of interfacial waves in horizontal pipe for Rep = 20 and Ca = 0.5.

8.3.3 Applications of DNS and LES to flows in pipes

Solutions of turbulent flow problems can be obtained by using various analytical or

numerical approaches, with different level of accuracy in each case. Among the latter

approaches, the Direct Numerical Simulation (DNS) has made a significant contribution

in turbulence research over the last decades (Moin and Mahesh, 1998), as it involves

the numerical solution of the above full three-dimensional, time-dependent NavierStokes

equations without the need of any turbulence model. DNS is indeed useful for the in-

vestigation of turbulence mechanisms, the improvement and development of turbulence

models and for assessing two-point closure theories.

Another modelling approach, promising to be more accurate and of wider applicability

than Reynolds-Averaged Navier Stokes (RANS) and less computationally demanding

than DNS, is the Large Eddy Simulation (LES) approach. In LES of turbulence, the

important large scales are fully resolved whilst the small sub-grid scales are modelled.

Wall resolving LES is a method that near to the wall, where the energy spectrum
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is made up of anisotropic currents, performs a direct numerical simulation; away from

the wall isotropic currents make up a large fraction of the energy spectrum and are

modelled by the use of sub-grid scale (SGS) model. Therefore, the mesh pitch away

from the walls may be greater and computational time is shorter than required by direct

numerical simulation. Hence, LES is only meaningful on a refined grid; on a regular grid

fine enough to resolve wall currents the sub-grid scale model is unnecessary.

The required resolution of a wall-bounded resolved LES should be sufficient in order

to resolve the wall layer according to Piomelli (2001). More specifically, ∆x+ ≈ 50 −

150,∆z+ ≈ 15 − 40 and the first point in the wall normal direction is at y+ < 1.

However, with the help of the appropriate wall model required resolution can be adjusted

to ∆x+ ≈ 100 − 160,∆z+ ≈ 100 − 300 and the first point in the wall-normal direction

should be at y+ = 30 − 150 (Piomelli, 2001). More details for wall modelling may be

found in the review paper by Piomelli and Balaras (2002).

LES on turbulent two-phase channel flows with flat interface combined with Van

Driest damping wall functions is an ordinary approach for the investigation of this type

of problems. However, this approach is not preferable for LES of turbulent two-phase

pipe flows, by means of a phase-field method for the interface, because of the following

obstacles: a) Cahn-Hilliard equation is difficult to solve on a stretched grid, b) Stretched

grid is static and therefore only suitable for simulations where interface is stationary, c)

Stretched grid is refined only in one direction and therefore is not suitable for simulations

where large waves are developed in the interface.

Adaptive grid refinement can be used to overcome the above mentioned obstacles, but

requires enormous amounts of computing sources especially for three-dimensional simula-

tions. In the present numerical code the Euler scheme is the selected time discretisation

scheme which can be used for the present type of problems (laminar flows) without any

issue. However, the Euler scheme is unstable for turbulent flow (needs very small time

step) and should be replaced by a 3rd order Runge-Kutta scheme. More details can be

found in the work of (Fishpool and Leschziner, 2009).

Another issue is the selection of the appropriate pipe length for obtaining the mini-
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mum amount of turbulence statistics. For a turbulent single-phase pipe flow, the literature

recommends a minimum length of 5 pipe diameters (D). Experimental evidence indicates

that for turbulent two-phase pipe flow a larger domain (e.g. 7− 10D) will be required in

order to obtain high quality statistics. However, the larger pipe domain requires larger

number of grid nodes and as a result there is a high demand for computing sources and

post-processing for large data files.

Due to space limitations, the interested reader is directed to the recent review paper

by Argyropoulos and Markatos (2015). This paper reviews the problem and successes

of computing turbulent flows. The review is primarily concerned with the most recent

methods for such computer predictions. The successes and problems are demonstrated by

listing and briefly discussing several applications of DNS and LES to flows in pipes and

free-surface flows. The relevant material is certainly to much to be presented in a single

section. For this reason, only the Table 8.1 and 8.2 with previous studies in DNS and

LES of turbulent single-phase pipe flows are presented. To the author’s best knowledge

two-phase pipe LES and DNS studies are not available except for the recent work of

Lakehal (2010). He performed Large Eddy Interface Simulation (LEIS) for modelling

the slug formation of a two-phase pipe flow and the emergency core cooling (ECC). A

BFC grid with block-mesh refinement (BMR) was adopted for the computational domain

and a level set method for the interfacial region. The numerical results were compared

with analytical and experimental data, predicting the slug speed (tail and centre) with

reasonable accuracy.

Some important DNS and LES works involving turbulent flows with free surfaces,

with and without shear can be found in the recent review by Argyropoulos and Markatos

(2015).

The LES approach appears, from the given referenced that describe its applications, to

have reached maturity. However, further work is required to improve the characteristics

of the method for more types of turbulent flow, in particular for complex industrial

flows. There are still challenges facing LES of turbulence such as the development of

advanced sub-grid scale models, high-order discretization techniques for eliminating the
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numerical errors, implementation on unstructured grids, control of the numerical errors,

interaction with other physical mechanisms and a “simple” wall stress model for wall-

bounded complex flows. LES is currently the most accurate method available for practical

computations and its use is expected to rise fast over the next few years.

The continuing progress of computer-hardware development is promising for DNS, in

the near future, with major improvements expected in statistical samples and in consid-

ering a variety of several physical parameters, for better understanding of the turbulence

nature. DNS is obviously the method that provides the most precise and detailed descrip-

tion of turbulence but it is still out of reach of the available everyday computer power, i.e.

it cannot be used for everyday engineering design. It is, however, even today very useful

as it serves as a “test” of the other model predictions and of any new ideas on turbulence

calculations. Until it becomes also a practical tool the author recommends the use of

“two-fluid” models (Argyropoulos and Markatos, 2015) that appear very promising (but

need further refinement), and LES along with its derivatives and the hybrid methods that

have already reached maturity.
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Table 8.1: Previous studies in DNS of turbulent single-phase pipe flows.

References Mesh Reb Geometry Method

Nikitin (1994) 43x64x43 2000-4000 Straight pipe FDM +

SM

Eggels et al. (1994) 96x128x256 5300 Straight pipe FVM

Zhang et al. (1994) 75x128x128 2500,4000 Straight pipe SM

Loulou et al. (1997) 72x160x192 5600 Straight pipe B-spline

spectra

Orlandi and Fatica (1997) 128x96x257 4900 Rotating pipe FDM

Orlandi and Ebstein (2000) 129x96x193 4900 Rotating pipe FDM

Schmidt et al. (2001)
Cyl:150 elements

Car: 64 elements
4910 Straight pipe SEM

Wagner et al. (2001) 70x240x486 10300 Straight pipe FVM

Fukagata and Kasagi (2002) 96x128x256 5300 Straight pipe FDM

Veenman (2004) 152x256x394 10300 Straight pipe SM

Nikitin and Yakhot (2005) 200x160x256 6000 Elliptical pipe FDM

Voronova and Nikitin (2006) 32x256x64 4000 Elliptical pipe FDM

Voronova and Nikitin (2007) 48x256x128 6000 Elliptical pipe FDM

Wu and Moin (2008) 300x1024x1048 44000 Straight pipe FDM

Boersma (2011) 430x512x1024 24500, 61000 Straight pipe SM +

FDM

Wu et al. (2012) 256x1024x2048 24580 Straight pipe FDM

Khoury et al. (2013)2 18.67x106, 121.4x106,

4374x106, 2.184x109

5300, 11700,

19000, 37700
Straight pipe SEM

FDM: Finite Difference Method; FVM: Finite Volume Method; SM: Spectral Method; SEM:

Spectral Element Method; Car: for Cartesian coordinates; Cyl: for Cylindrical coordinates; Reb:

Reynolds number based on bulk-mean velocity and pipe diameter of the pipe.

2Number of grid points for each considered Reb, respectively
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Table 8.2: Previous studies in LES of turbulent single-phase pipe flows.

References Mesh Reb Geometry SGS model Method

Unger and Friedrich (1991) 96x128x256 50000 Straight pipe Smagorinsky FVM

Eggels et al. (1993) 96x128x256 59500 Rotating pipe Smagorinsky FVM

Boersma and Nieuwstadt (1996) 40x114x200 20000 Curved pipe Smagorinsky FVM

Yang (2000) 192x64x128 20000 Rotating pipe
Smagorinsky

Dynamic
FVM

Rudman and Blackburn (1999) Car:192 36700 Straight pipe Smagorinsky SEM

Schmidt et al. (2001)
Cyl:80

Car:105
16000 Straight pipe Smagorinsky SEM

Feiz et al. (2003) 65x39x65
4900,

7400
Rotating pipe

Smagorinsky

Dynamic
FDM

Jordan (2003) 64x141x401 8000
Pipe roughened

(p/k = 5)
Dynamic FDM

Vijiapurapu and Cui (2004) 64x96x64
5000,

30000
Straight pipe

Smagorinsky

Dynamic
FDM

Vijiapurapu and Cui (2010) 96x128x128 100000
Pipe roughened

(p/k = 2, 5, 10)
Dynamic FVM

Jung and Chung (2012) 128x256x256
7000-

36000
Straight pipe Dynamic FDM

FDM: Finite Difference Method; FVM: Finite Volume Method; SEM: Spectral Element

Method; Car:elements for Cartesian coordinates; Cyl: elements for Cylindrical coordinates;

Reb: Reynolds number based on bulk-mean velocity and pipe diameter of the pipe; p/k: ratio

of rib periodicity where p is the distance between two successive ribs and k is the rib height.
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Appendix A

Non-dimensional analysis

A.1 Dimensionless variables and parameters

The dimensionless variables and parameters can be defined as:

u∗ ≡ u

uc
, t∗ ≡ t

uc
Lc
, x∗ ≡ xc

Lc
, p∗ ≡ p

ρAu2
c

M∗ ≡ M

Mc

, φ∗ ≡ φ

φc
, g∗ ≡ g

gc
, ∇∗ ≡ L−1

c ∇

where Lc is the characteristic length scale, uc the characteristic velocity, u is the velocity,

t is the time, p is the pressure, M is the mobility, Mc is the characteristic mobility, φ is

the chemical potential, φc is the characteristic chemical potential, g is the gravitational

acceleration and gc is the characteristic gravitational acceleration.

The dimensionless form for the viscosity and density is:

ρ∗ ≡ ρ

ρA
= (1− C) + rdC, µ∗ ≡ µ

µA
= (1− C) + rvC

where C is the volume fraction, ρA is the density of fluid A, µA is the viscosity of fluid

A, rd is the ratio of density and rv is the ratio of viscosity.

Additional dimensionless parameters are the Reynolds number, the Peclet number,

the Bond number, the Capillary number and Weber number, respectively.

Rec ≡
ρAucLc
µA

, P ec ≡
Lcuc
Mcφc

, Eo ≡ ρAgL
2
c

σ
, Cac ≡ µA

uc
σ
, Frc ≡

uc√
gLc
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Appendix A. Non-dimensional analysis

A.2 Derivation of the dimensionless governing equa-

tions

A.2.1 Cahn-Hilliard equation

Cahn-Hilliard equation:
∂C

∂t
+ u · ∇C −∇ · (M∇φ) = 0 (A.1)

The non-dimensional Cahn-Hilliard equation can be given in dimensionless form,

multiplying by Lcu
−1
c :

Lcu
−1
c

∂C

∂t
+ Lcu

−1
c u · ∇C − Lcu−1

c ∇ · (M∇φ) = 0⇔

Lcu
−1
c

∂C

∂(Lcu−1
c t∗)

+ Lcu
−1
c ∇∗L−1

c (u∗ucC)− Lcu−1
c ∇∗L−1

c (M∗Mc∇∗L−1
c φ∗φc) = 0⇔

∂C∗

∂t∗
+ u∗ · ∇∗C −McφcL

−1
c u−1

c ∇∗(M∗∇∗φ∗) = 0⇔

∂C∗

∂t∗
+ u∗ · ∇∗C − Pe−1

c ∇∗(M∗∇∗φ∗) = 0 (A.2)

A.2.2 Continuity equation

Continuity equation:

∇ · u = 0 (A.3)

The non-dimensional continuity equation can be expressed in dimensionless form,

multiplying by Lcu
−1
c :

Lcu
−1
c ∇∗L−1

c u∗uc = 0⇔

∇∗ · u∗ = 0 (A.4)

A.2.3 Navier-Stokes equations

Navier-Stokes equations:

ρ

(
∂u

∂t
+ u · ∇u

)
︸ ︷︷ ︸

(1)

= −∇p︸ ︷︷ ︸
(2)

+∇ · [µ(∇u +∇uT )]︸ ︷︷ ︸
(3)

+φ∇C︸ ︷︷ ︸
(4)

+ ρg︸︷︷︸
(5)

(A.5)
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Appendix A. Non-dimensional analysis

The above equation can be expressed in dimensionless form, multiplying by Lcρ
−1u−2

c

each term individually.

Inertia (per volume) term (1):

Lcρ
−1u−2

c ρ

(
∂u

∂t
+ u · ∇u

)
︸ ︷︷ ︸

(1)

= Lcu
−2
c

(
∂(u∗uc)

∂(t∗Lcu−1
c )

)
+ Lcu

−2
c u∗uc · ∇∗L−1

c u∗uc ⇔

Lcρ
−1u−2

c ρ

(
∂u

∂t
+ u · ∇u

)
︸ ︷︷ ︸

(1)

=
∂u∗

∂t∗
+ u∗ · ∇∗u∗ (A.6)

Pressure gradient term (2):

−Lcρ−1u−2
p −∇p︸ ︷︷ ︸

(2)

= −Lcρ−1u−2
p ∇∗L−1

c p∗ρAu
2
p = −(ρ∗ρA)−1ρA∇∗p∗ =

1

ρ∗
∇∗p∗ ⇔

−Lcρ−1u−2
p −∇p︸ ︷︷ ︸

(2)

=
1

ρ∗
∇∗p∗ (A.7)

Viscosity term (3):

Lcρ
−1u−2

c ∇ · [µ(∇u +∇uT )]︸ ︷︷ ︸
(3)

= Lcρ
−1u−2

c ∇∗L−1
c [µ∗µA(∇∗L−1

c u∗uc +∇∗L−1
c u∗TuTc )] ⇔

Lcρ
−1u−2

c ∇ · [µ(∇u +∇uT )]︸ ︷︷ ︸
(3)

= ∇∗L−1
c Lc(ρ

∗ρA)−1u−2
c [µ∗µA(L−1

c uc∇∗u∗ + L−1
c uTc∇∗u∗T )] ⇔

Lcρ
−1u−2

c ∇ · [µ(∇u +∇uT )]︸ ︷︷ ︸
(3)

= ∇∗ 1

ρ∗
ρ−1
A u−2

c µ∗µAL
−1
c (uc∇∗u∗ + uTc∇∗u∗T ) ⇔

Lcρ
−1u−2

c ∇ · [µ(∇u +∇uT )]︸ ︷︷ ︸
(3)

= ρ∗−1ρ−1
A u−2

c µ∗µAL
−1
c ∇∗(uc∇∗u∗ + uTc∇∗u∗T ) ⇔

Lcρ
−1u−2

c ∇ · [µ(∇u +∇uT )]︸ ︷︷ ︸
(3)

=
µ∗

ρ∗
µAρ

−1
A u−1

c L−1
c u−1

c (uc∇∗u∗ + uTc∇∗u∗T ) ⇔

Lcρ
−1u−2

c ∇ · [µ(∇u +∇uT )]︸ ︷︷ ︸
(3)

=
µ∗

ρ∗
Re−1

c u−1
c (uc∇∗u∗ + uTc∇∗u∗T ) ⇔

Lcρ
−1u−2

c ∇ · [µ(∇u +∇uT )]︸ ︷︷ ︸
(3)

=
1

ρ∗
Re−1

c (µ∗(∇∗u∗ +∇∗u∗T )) (A.8)
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Surface tension term (4):

Lcρ
−1u−2

c φ∇C︸ ︷︷ ︸
(4)

= Lcρ
−1u−2

c [−6
√

2εσ∇∗2L−2
c C + 6

√
2ε−1σψ′(C)]L−1

c ∇∗C ⇔

Lcρ
−1u−2

c φ∇C︸ ︷︷ ︸
(4)

= Lcρ
−1u−2

c [−6
√

2εσL−2
c ∇∗2C + 6

√
2ε−1σψ′(C)]L−1

c ∇∗C ⇔

Lcρ
−1u−2

c φ∇C︸ ︷︷ ︸
(4)

= Lcρ
−1u−2

c [−6
√

2CnσL−1
c ∇∗2C + 6

√
2ε−1σψ′(C)]L−1

c ∇∗C ⇔

Lcρ
−1u−2

c φ∇C︸ ︷︷ ︸
(4)

= ρ−1u−2
c [−6

√
2Cnσ∇∗2C + 6

√
2ε−1Lcσψ

′(C)]L−1
c ∇∗C ⇔

Lcρ
−1u−2

c φ∇C︸ ︷︷ ︸
(4)

= ρ−1u−2
c [−6

√
2Cnσ∇∗2C + 6

√
2Cn−1σψ′(C)]L−1

c ∇∗C ⇔

Lcρ
−1u−2

c φ∇C︸ ︷︷ ︸
(4)

= L−1
c ρ−1

A ρ∗−1u−1
c u−1

c µAµ
−1
A [−6

√
2Cnσ∇∗2C + 6

√
2Cn−1σψ′(C)]∇∗C ⇔

Lcρ
−1u−2

p φ∇C︸ ︷︷ ︸
(4)

= Re−1
c ρ∗−1u−1

c µ−1
A σ[−6

√
2Cn∇∗2C + 6

√
2Cn−1ψ′(C)]∇∗C ⇔

Lcρ
−1u−2

p φ∇C︸ ︷︷ ︸
(4)

=
1

ρ∗
Re−1

c Ca−1
c [−6

√
2Cn∇∗2C + 6

√
2Cn−1ψ′(C)]∇∗C ⇔

Lcρ
−1u−2

c φ∇C︸ ︷︷ ︸
(4)

=
1

ρ∗
Re−1

c Ca−1
c φ∗∇∗C (A.9)

In the present study for gravity driven flow the term Re−1
c Ca−1

c is replaced by the

Eo−1.

Gravity acceleration term (5):

Lcρ
−1u−2

c ρg = Lcρ
−1u−2

c ρg∗gc ⇔

Lcρ
−1u−2

c ρg = Lcu
−2
c g∗gc ⇔

Lcρ
−1u−2

c ρg =
1

Fr2
c

g∗ ⇔

Lcρ
−1u−2

c ρg =
1

Fr2
c

g∗ (A.10)
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Appendix B

Analytical solutions for pipe flows

B.1 Laminar single-phase Poiseuille flow

The governing equations for a steady state laminar pipe flow can be derived from the

Navier-Stokes equations in cylindrical polar coordinates as follows:

Continuity equation:

∂ρ

∂t
+

1

r

∂

∂r
(ρrur) +

1

r

∂

∂θ
(ρuθ) +

∂

∂z
(ρuz) = 0 (B.1)

Momentum equations:

r-component:

ρ

(
∂ur
∂t

+ ur
∂ur
∂r

+
uθ
r

∂ur
∂θ

+ uz
∂uz
∂z
− uθ

2

r

)
=

= −∂p
∂r

+ µ

(
∂

∂r

(
1

r

∂

∂r
(rur)

)
+

1

r2

∂2ur
∂θ2

− 2

r2

∂uθ
∂θ

+
∂2ur
∂z2

)
+ ρgr (B.2)

θ-component:

ρ

(
∂uθ
∂t

+ ur
∂uθ
∂r

+
uθ
r

∂uθ
∂θ

+
uruθ
r

+ uz
∂uθ
∂z

)
=

= −1

r

∂p

∂θ
+ µ

(
∂

∂r

(
1

r

∂

∂r
(ruθ)

)
+

1

r2

∂2uθ
∂θ2

+
2

r2

∂ur
∂θ

+
∂2uθ
∂z2

)
+ ρgθ (B.3)
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z-component:

ρ

(
∂uz
∂t

+ ur
∂uz
∂r

+
uθ
r

∂uz
∂θ

+ uz
∂uθ
∂z

)
=

= −∂p
∂z

+ µ

(
1

r

∂

∂r

(
r
∂uz
∂r

)
+

1

r2

∂2uz
∂θ2

+
∂2uz
∂z2

)
+ ρgz (B.4)

According to the following set of assumptions for incompressible flow:

• The flow is steady,
∂ρ

∂t
= 0 (B.5)

• The radical and swirl components of the fluid velocity are zero,

ur = uθ = 0 (B.6)

• The pressure gradient is constant,

∂p

∂z
= const. (B.7)

• The flow is axisymmetric,
∂u

∂θ
= 0 (B.8)

• The gravity is zero,

gr = gθ = gz = 0 (B.9)

From the aforementioned assumptions, the continuity equation (B.1) becomes,

∂uz
∂z

= 0 (B.10)

and with Eq.(B.10) and the axisymmetric hypothesis Eq.(B.8), we deduce that,

uz = uz(r, t) (B.11)

Moreover, the Navier-Stokes Eqs.(B.2)-(B.4) are simplified to:

r-component:
∂p

∂r
= 0 (B.12)
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θ-component:

−1

r

∂p

∂θ
= 0 (B.13)

z-component:

−∂p
∂z

+ µ
1

r

∂

∂r

(
r
duz
dr

)
= 0 (B.14)

Eq.(B.14) is an ordinary differential equation (ODE), with general solution for uz is:

uz(r) = − 1

4µ

(
∂p

∂z

)
r2 + c1 ln r + c2 (B.15)

The constants c1 and c2 of the general solution of ODE Eq.(B.15) can be calculated

by the boundary conditions of the flow problem. Therefore, the appropriate boundary

conditions are expressed as:

• The velocity, uz = umax at r = 0, which means
duz
dr

= 0.

• At the wall of the pipe, uz = 0 at r = R.

By applying the boundary conditions to Eq.(B.15), we have:

Boundary Condition (1):
duz
dr

∣∣∣∣
(r=0)

= 0. Hence the derivative for Eq.(B.15) gives:

d

dr

(
1

4µA

∂p

∂z
r2 + c1 ln r + c2

)
= 0⇔

1

2µA

∂p

∂z
r + c1

1

r
= 0⇔

c1 = 0 (B.16)

A solution is possibly, only if c1 = 0.

Boundary Condition (2): uz = 0 at r = R (no slip condition). Accordingly for Eq.(B.15):

0 = − 1

4µ

(
∂p

∂z

)
R2 + c1 ln r + c2 (B.17)

Substitution of Eq.(B.16) to Eq.(B.17) yields:

c2 = − 1

4µ

∂p

∂z
R2 (B.18)

If we replace the values of constants c1 and c2 in the initial Eq.(B.15), we get

uz(r) = − 1

4µ

∂p

∂z
R2

(
1− r2

R2

)
(B.19)
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Eq.(B.19) represents a parabolic velocity profile for laminar pipe flow. For the deriva-

tion of the dimensionless form of Eq.(B.19), it is necessary to introduce the following

normalizations:

u∗z =
uz
Up

Rep =
ρ · Up · 2R

µ

Up =

√
∂p

∂z

2R

ρ
⇒ ∂p

∂z
= −

ρU2
p

2R

where Up and 2R are the velocity-scale and length scale, respectively. Eq.(B.19) then

becomes:

u∗z = − 1

4µ

(
−
ρU2

p

2R

)
U−1
p R2

(
1− r2

R2

)
⇔

u∗z =
1

4µ

(
ρUp
2R

)
R2

(
1− r2

R2

)
⇔

u∗z =
1

4

Rep
4R2

R2

(
1− r2

R2

)
⇔

u∗z =
Rep
16

(
1− r2

R2

)
(B.20)

Eq.(B.20) expresses the analytical profile for a steady state laminar pipe flow in dimen-

sionless form.

B.2 Laminar two-phase annular pipe flow

According to the general solution of the ODE (Eq.(B.14)), we write Eq.(B.15) with

respect to µA and µB,

uz = − 1

4µA

(
∂p

∂z

)
r2 + c1 ln r + c2, if 0 ≤ r ≤ kR (B.21)

uz = − 1

4µB

(
∂p

∂z

)
r2 + c3 ln r + c4, if kR ≤ r ≤ R (B.22)

Similar to the single-phase case above, the constants c1, c2, c3 and c4 can be calculated

by the appropriate boundary conditions of the flow problem. The boundary conditions
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are specified as follows:

Boundary condition (1): uz = 0 at r = R. Accordingly for Eq.(B.22):

0 = − 1

4µB

(
∂p

∂z

)
R2 + c3 ln r + c4 (B.23)

Boundary condition (2):
∂uz
∂r

∣∣∣∣
(r=0)

= 0. Hence the derivative for Eq.(B.21) gives:

d

dr

(
1

4µA

∂p

∂z
r2 + c1 ln r + c2

)
= 0⇔

2
1

4µA

∂p

∂z
r + c1

1

r
= 0⇔

c1 = 0 (B.24)

Boundary condition (3): µA
∂uz
∂r

∣∣∣∣
A

= µB
∂uz
∂r

∣∣∣∣
B

µA
∂uz
∂r

∣∣∣∣
A

= µB
∂uz
∂r

∣∣∣∣
B

⇔

µA

(
1

4µA

∂p

∂z
2r + c1

1

r

)
= µB

(
1

4µB

∂p

∂z
2r + c3

1

r

)
⇔

1

4

∂p

∂z
2r + c1

µA
r

=
1

4

∂p

∂z
2r + c3

µB
r
⇔

c1 =
µB
µA

c3 ⇔

c3 = 0 (B.25)

Boundary condition (4):
1

4µA

∂p

∂z
k2R2 + c2 =

1

4µB

∂p

∂z
k2R2 + c4

1

4µA

∂p

∂z
k2R2 + c2 =

1

4µB

∂p

∂z
k2R2 + c4 ⇔

c2 =
1

4µB

∂p

∂z
k2R2 − 1

4µA

∂p

∂z
k2R2 + c4 ⇔

c2 =
1

4

∂p

∂z
k2R2

(
1

µB
− 1

µA

)
+ c4 (B.26)

Eq.(B.23) according to Eq.(B.25) takes the form:

c4 = − 1

4µB

∂p

∂z
R2 (B.27)
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Then the combination of Eq.(B.26) with Eq.(B.27) yields:

c2 =
1

4

∂p

∂z
k2R2

(
1

µB
− 1

µA

)
− 1

4µB

∂p

∂z
R2 ⇔

c2 =
1

4

∂p

∂z
R2

(
k2

(
1

µB
− 1

µA

)
− 1

µB

)
(B.28)

From the above Eqs.(B.24),(B.25),(B.28), the Eqs.(B.21) and (B.22), respectively, give:

uz =
1

4µA

∂p

∂z
r2 +

1

4

∂p

∂z
R2

(
k2

(
1

µB
− 1

µA

)
− 1

µB

)
, if 0 ≤ r ≤ kR (B.29)

uz =
1

4µB

∂p

∂z
r2 − 1

4µB

∂p

∂z
R2, if kR ≤ r ≤ R (B.30)

Then, it is introduced the following normalizations (critical velocity and Re number) in

order to derive the dimensionless form of the above equations. Thus, we have:

Up =

√
∂p

∂z

2R

ρA
⇒ ∂p

∂z
= −

ρAU
2
p

2R

u∗z =
uz
Up

Rep =
ρA · Up · 2R

µA

such that

u∗z = − 1

4µA
U−1
p

ρAU
2
p

2R
r2 − 1

4
µA
ρAU

2
p

2R
U−1
p R2

(
k2 1

µA

(
µA
µB
− 1

)
− 1

µA

µA
µB

)
⇔

u∗z = − 1

16

Rep
R2

r2 − 1

16

Rep
R2

µAR
2

(
k2 1

µA

(
µA
µB
− 1

)
− 1

µA

µA
µB

)
⇔

u∗z = −Rep
16

r2

R2
− Rep

16

(
k2

(
µA
µB
− 1

)
− µA
µB

)
, if 0 ≤ r ≤ kR (B.31)

Similarly, for Eq.(B.22) the dimensionless form is given by:

u∗z = − 1

4µB
Up
−1ρAUp

2

2R
r2 +

1

4µB
Up
−1ρAUc

2

2R
R2 ⇔

u∗z = − 1

4µB

RepµA
4R2

r2 +
1

4µB

RepµA
4R2

R2 ⇔

u∗z = − µA
16µB

Rep
R2

r2 +
µA

16µB
Rep ⇔

u∗z =
Rep
16

µA
µB

(
1− r2

R2

)
, if kR ≤ r ≤ R (B.32)

Finally, Eqs.(B.31) and (B.32) give the velocity profile for two-phase annular flow.
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Review paper

Recent advances on the numerical modelling of turbu-

lent flows by C.D. Argyropoulos and N.C. Markatos
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