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Heterogeneous nucleation is the most effective mechanism for the inception of phase
transformation. Solid walls and impurities act as a catalyst for the formation of a new
thermodynamic phase by reducing the activation energy required for a phase change,
hence enhancing nucleation. The formation of vapour bubbles close to solid, ideally flat,
walls is addressed here by exploiting a mesoscale description that couples diffuse interface
modelling of the two-phase vapour–liquid system with fluctuating hydrodynamics,
extending previous work by the authors on homogeneous nucleation. The technical
focus of this work is to directly account for hydrophobic or hydrophilic walls through
appropriate boundary conditions compliant with the fluctuation–dissipation balance, a
crucial point in the context of fluctuating hydrodynamics theory. This methodology
provides access to the complete dynamics of the nucleation process, from the inception
of multiple bubbles up to their long-time macroscopic expansion, on time and spatial
scales unaffordable by standard techniques for nucleation, such as molecular dynamics.
The analysis mainly focuses on the effect of wall wettability on the nucleation rate, and,
albeit qualitatively in agreement with classical nucleation theory predictions, it reveals
several discrepancies to be ascribed to layering effects in the liquid close to the boundary
and to bubble–bubble interactions. In particular, it is found that, close to moderately
hydrophilic surfaces, the most probable nucleation events occur away from the wall
through a homogeneous mechanism.

Key words: multiphase flow, bubble dynamics

1. Introduction

Equilibrium systems exhibit thermal fluctuations. At the macroscopic level, in the
so-called thermodynamic limit, such fluctuations are usually irrelevant. However, for
small systems, below the micrometre scale, fluctuations are always crucial. Given the
equilibrium configuration maximizing the system entropy under the relevant constraints,
the probability density function (p.d.f.) of a fluctuation can be taken to be proportional
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to the exponential of the entropy decrease brought about by the fluctuation (Einstein
1956). The p.d.f. gives access to the equilibrium correlation function of the fluctuating
field and provides information on the ensuing relaxation dynamics, which must obey
the relevant fluctuation–dissipation balance (see e.g. De Groot & Mazur 2013). Within
this general framework, under special circumstances, the effect of fluctuations emerges
to the macroscale and determines the large-scale dynamics. In these most interesting
cases, a (mesoscale) model able to bridge the gap between the macroscopic scale of
interest and the microscopic level governed by fluctuations is urgently needed. After
Landau & Lifshitz’s seminal work (see the reprinted version in Landau & Lifshitz (1980)),
several coarse-grained models have been proposed to include thermal fluctuations in
hydrodynamic descriptions, at both continuum (Fox & Uhlenbeck 1970) and discrete
(Español, Serrano & Öttinger 1999; Español, Anero & Zúñiga 2009) levels. These works
contributed significantly to the growing field of ‘fluctuating hydrodynamics’, fostering
interest in the numerical solution of the related stochastic partial differential equations
(SPDEs) (Donev et al. 2010, 2014; Balboa et al. 2012; Delong et al. 2013). Mesoscale
approaches, besides playing an important role in the theory of fluids, have significant
impact in cases where stochastic fluctuations are crucial, e.g. for microfluidic design,
biological systems like lipid membranes (Naji, Atzberger & Brown 2009), Brownian
engines and molecular motors (Peskin, Odell & Oster 1993; Detcheverry & Bocquet 2012).

Among the variety of fluctuation-induced effects, nucleation, the incipit of phase
transitions in metastable fluids, is ubiquitous. It occurs, for instance, during bubble
cavitation (Brennen 2013) and boiling (Carey 2018) as well as in freezing rain (Cao et al.
2009) and in crystal formation more generally (Lutsko 2019). Metastability implies that
the transition is an activated process, i.e. an amount of energy is required to overcome
the barriers separating different metastable basins. In particular, a liquid sustains a tensile
condition reaching pressures well below the equilibrium vapour tension without forming a
vapour phase. Equivalently, metastability is observed in superheated fluids, where bubble
formation occurs far above the boiling temperature. In these conditions, bubble nucleation
must be interpreted in statistical terms, with the probability of phase change related to the
level of superheating or stretching of the liquid (Brennen 2013). However, notwithstanding
the extremely large tensile strength of ultra-pure water, which is able to sustain up to
1 kbar tensions in specially designed experimental conditions (El Mekki Azouzi et al.
2013), bubbles are very common in real life. In fact, bubble nucleation is most often
favoured by impurities or dissolved gas nuclei, which strongly lower the energy barrier
and exponentially enhance the bubble formation rate. A similar effect is induced by solid
boundaries. Close to the wall, the reduction of the energy barrier to nucleation depends
on the wetting properties of the surface as measured by the contact angle. For instance,
recent experimental works show how the wettability of ultra-smooth surfaces influences
the onset temperature for pool boiling in superheated liquids (Bourdon et al. 2012, 2015;
Malavasi et al. 2015). In all the aforementioned cases, energy barrier crossing is due to
stochastic fluctuations, which activate the phase transition (Jones, Evans & Galvin 1999;
Kashchiev & Van Rosmalen 2003; Lohse & Prosperetti 2016). The accurate and thorough
modelling of thermodynamics (i.e. metastability) and thermal fluctuations is then crucial
to correctly reproduce nucleation dynamics.

With few exceptions (see e.g. Allen, Valeriani & ten Wolde 2009; Marchio et al.
2019), our current understanding of nucleation is built on quasi-static descriptions such
as classical nucleation theory (CNT) (Blander & Katz 1975) or more recent extensions
thereof (Lutsko & Durán-Olivencia 2015). CNT provides the basic interpretative
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Heterogeneous bubble nucleation dynamics 906 A20-3

framework in terms of simple energetic arguments and allows the estimation of energy
barriers and nucleation rates in homogeneous conditions. Although introducing substantial
simplifications, e.g. the shape of the embryo or the existence of a sharp interface between
phases that retain their bulk thermodynamic properties despite their nanometric size, CNT
is a powerful and predictive tool for the investigation of nucleation phenomena. It is easily
extended to heterogeneous conditions, e.g. solid boundaries (Ward et al. 1983). From
a thermodynamic standpoint, there are two major contributions to the work of vapour
bubble formation: (i) the (positive) energy spent to form the liquid–vapour interface,
the product of surface tension and interface area; and (ii) the (negative) work released in
transforming liquid into vapour, proportional to bubble volume and vapour–liquid pressure
difference. The (positive) surface energy prevails at small radii, whereas at larger radii the
negative volume contribution is dominant. The maximum work is achieved at the critical
radius, which, in the context of CNT, corresponds to the energy barrier to be overcome for
activating the phase change. As intuitively expected on geometrical grounds (see § 2 for a
more complete discussion), the surface contribution is lowered for wall-attached bubbles,
since the surface of a spherical cap is smaller than the corresponding full sphere, entailing
a larger probability of nucleating a bubble at the surface than in the bulk.

For vapour condensation and solidification from dilute solutions, the embryos grow
by aggregation of mother-phase molecules into the cluster, a process described in terms
of kinetic theory and attachment/detachment rates (Oxtoby 1992). Bubbles are more
elusive (Shen & Debenedetti 2003) since the embryo, basically a region depleted of
molecules, is more like a void than a molecular cluster. Since CNT describes microscopic
objects in macroscopic terms and deals with embryos as if they had the same uniform
thermodynamic properties as the stable phase (vapour for bubble nucleation), it cannot
predict the energy barriers vanishing at spinodal conditions. Other more fundamental
approaches like density functional theory (DFT) (Oxtoby & Evans 1988; Shen &
Debenedetti 2001) and CNT extensions (Lutsko & Durán-Olivencia 2015; Lutsko 2018)
have been proposed, addressing and correcting some CNT artifacts. Brute-force molecular
dynamics (MD) simulations, although in principle representing a powerful tool (Novak,
Maginn & McCready 2007; Diemand et al. 2014), can hardly cope with metastability,
given the large disparity between atomistic and nucleation time scales. Specialized
rare-event techniques (Bolhuis et al. 2002; Allen, Frenkel & ten Wolde 2006; Menzl et al.
2016) overcome the problem but are still limited to equilibrium, quasi-static conditions
excluding dynamic effects. Forward flux methods may (Wang, Valeriani & Frenkel
2008) partially remove the limitation of quasi-static approaches but share the problem
of being confined to extremely small spatial and time scales. Indeed, in general, atomistic
approaches, given their extremely high computational cost, are confined to small systems
of a few nanometres in extension, in many cases very far from the target technological
application.

Recently, a novel approach in the context of continuum mechanics, based on a diffuse
interface description of the two-phase vapour–liquid system endowed with thermal
fluctuations in the spirit of fluctuating hydrodynamics (Landau & Lifshitz 1980), has
been exploited to address the bubble nucleation process (Gallo, Magaletti & Casciola
2017, 2018; Gallo et al. 2020) in homogeneous conditions and the boiling process close
to neutrally wettable surfaces (Magaletti, Georgoulas & Marengo 2020). The model is
robust from both the thermodynamic and the statistical points of view. For equilibrium
systems, its deterministic ingredients can be traced back to the more fundamental DFT
description with a squared-gradient approximation of the excess energy (Lutsko 2011) and,
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in general, can be framed in the context of non-equilibrium statistical mechanics, e.g. the
GENERIC framework (Öttinger & Grmela 1997; Espanol 2001). The approach has been
shown to be able to capture the rich hydrodynamics of a multiphase system, such as phase
transformation, latent heat release, shock emission and topological changes (Magaletti,
Marino & Casciola 2015; Magaletti et al. 2016). The square-gradient approximation was
also used to address phase change and spreading of droplets (Teshigawara & Onuki
2010) or the thermodynamics of boiling (Laurila et al. 2012). The stochastic ingredients
introduced to model thermal fluctuations obey the fluctuation–dissipation balance (Fox
& Uhlenbeck 1970) and reproduce the statistics of the fluctuating fields (Chaudhri et al.
2014).

The aim of this work is to extend our previous studies to heterogeneous nucleation by
focusing on spontaneous vapour bubble nucleation on a flat solid surface. A detailed
derivation of the model and related boundary conditions is presented, and results of
numerical simulations are produced to demonstrate the potential of the proposed approach.
In doing so, some of the material discussed by the authors in previous papers – in
particular, the diffuse interface model for non-isothermal fluids with a general equation
of state (Magaletti et al. 2015, 2016) and fluctuating hydrodynamics for homogeneous
nucleation (Gallo et al. 2017, 2018, 2020) – is reviewed to present a comprehensive
description of the model. The paper is structured as follows. In § 2 a brief review of
CNT is provided, with a particular focus on heterogeneous conditions and nucleation
in the microcanonical NVE ensemble (constrained number, volume and energy). In
order to correctly take into account the solid–fluid interaction that determines the
wetting properties of the surface in the diffuse interface modelling, an analytic form
of the solid-wall free energy is derived in § 3. Its expression connects bulk-phase
thermodynamics and contact angle with the fluid density at the wall. Next, § 4 is
devoted to the Navier–Stokes equations with capillarity, with particular attention paid
to the constitutive relations induced by the new boundary terms. The new energetic
contribution associated with the solid–fluid interaction is found to modify the fluctuation
statistics (§ 5), still preserving the fluctuation–dissipation balance in the general setting
(§ 6). In (§ 7) explicit expressions are provided for a particular case. The whole model
is assembled together in § 8, combining deterministic and stochastic contributions. In
§ 9 numerical validation against theoretical statistical properties of thermal fluctuations
is provided and a detailed analysis of heterogeneous nucleation for changing surface
wetting characteristics is presented. Conclusions and the future perspective are finally
drawn in § 10.

2. Classical nucleation theory

Classical nucleation theory (CNT) (Ward et al. 1983; Kashchiev 2000; Brennen 2013)
provides the fundamental understanding of bubble nucleation in a metastable liquid, for
both homogeneous (bubble forming inside the bulk liquid) and heterogeneous conditions
(bubble forming in contact with an extraneous phase, usually a solid with given geometry
and chemical properties). Although classical, it is reviewed here to put the new material
discussed in the paper in the proper perspective.

For a vapour bubble nucleating on a flat solid surface with prescribed contact angle φ
(and neglecting gravity), CNT models the bubble as a spherical cap of radius R on top of
the flat solid surface (figure 1a). The system is described in terms of free energy difference
with respect to the pure liquid,

ΔΩ(R, φ) = −Δp VV(R, φ)+ γLVALV(R, φ)+ γSVASV(R, φ)+ γLSALS(R, φ), (2.1)
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FIGURE 1. (a) Sketch of a vapour bubble on a flat solid surface, illustrating some geometrical
parameters. (b) Energy landscapes of a vapour bubble as a function of the radius, at different
contact angles φ. The solid line shows the homogeneous case, as a reference. Both energy and
radius are rescaled with their critical values, ΔΩ∗ and R∗, respectively.

where liquid (outside) and vapour (inside) are assumed to be in their respective bulk
states and are separated by sharp interfaces from the neighbouring phases. In the above
expression, the subscripts L, V and S refer to liquid, vapour and solid phases, respectively,
Δp = pV − pL is the vapour–liquid pressure difference (the Laplace pressure), VV is the
bubble volume, ALV , ASV and ALS are the liquid–vapour, solid–vapour and liquid–solid
interface areas, respectively, with γLV , γSV and γLS the corresponding surface energies. The
other relevant parameter is the equilibrium (or Young) contact angle φ = cos−1((γSV −
γLS)/γLV) sketched in figure 1(a), which, according to the standard convention, is
measured from the liquid–solid interface, i.e. φ < π/2 means hydrophilic. The contact
angle allows the relevant geometric quantities to be re-expressed as ASV = πR2 sin2 φ,
ALV = 2πR2(1 + cosφ), ALS = Aw − ASV and VV(R, φ) = VV(R,π)Ψ (φ), where Aw is
the total area of the solid surface and Ψ (φ) = 1

4(1 + cosφ)2(2 − cosφ), representing a
geometric factor that accounts for the contact angle. As φ → 0 the free energy reduces
to the homogeneous case where the work required to form a bubble with radius R is
ΔΩhom = −Δp VV(R, 0)+ γLVALV(R, 0).

It should be noted that the energy required to form a spherical cap at the wall is the
fraction Ψ (φ) of that required to nucleate a bubble with the same radius in the bulk,

ΔΩ(R, φ) = ΔΩhom(R)Ψ (φ). (2.2)

Since the free energy consists of two contributions – a volume term scaling with R3 and
a surface term scaling with R2 – a free energy maximum (critical state) is attained at the
critical radius

R∗ = 2γLV

Δp
, (2.3)

which is intrinsic to the fluid and independent of surface wettability. The corresponding
free energy barrier, i.e. the free energy difference between the critical and pure liquid
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states, is

ΔΩ∗ = ΔΩ(R∗, φ) = ΔΩ∗
homΨ (φ) = 16

3
π
γ 3

LV

Δp2
Ψ (φ). (2.4)

At variance with the critical radius, which is the same under both homogeneous and
heterogeneous conditions, irrespective of the contact angle, the energy barrier ΔΩ∗ is
lowered by the contact-angle-dependent factor Ψ (φ) ≤ 1 with respect to nucleation in the
bulk. The free energy profiles ΔΩ(R) are shown in figure 1(b) for two contact angles,
hydrophilic and hydrophobic, respectively, and compared with the homogeneous case.
The role of the surface in reducing the free energy barrier below ΔΩ∗

hom is apparent, and
nucleation over a hydrophobic wall is favoured, as expected.

Together with the energy barrier, the other crucial quantity in nucleation processes is
the nucleation rate, i.e. the normalized number of supercritical bubbles formed per unit
time. In the heterogeneous context, the nucleation rate is normalized per unit surface (as
opposed to unit volume, as used in homogeneous conditions). The classical expression for
the nucleation rate is (Blander & Katz 1975; Debenedetti 1996)

JBK = n2/3
L
(1 + cosφ)

2

√
2γLV

πm
exp

(
−ΔΩ∗

kBθ

)
, (2.5)

where nL is the number density of liquid molecules and m their mass.

2.1. Critical bubble in the grand canonical ensemble
After retracing the main features of the classical theory of the nucleation of vapour bubbles
in a liquid, the analysis is now specialized for the grand canonical μVθ ensemble (with
parameters the chemical potential μ, system volume V and temperature θ ). Here, at fixed
volume, the two different phases (liquid and vapour) exhibit the same chemical potential
and the same temperature. The analysis is explicitly conducted for the homogeneous case,
the extension to the heterogeneous case being simply obtained using the geometrical
functionψ(φ) that rescales the energy barrier and the critical volume. The grand canonical
ensemble is particularly suitable for addressing vapour bubble nucleation, since it imposes
only mechanical and thermodynamical equilibrium between phases, without enforcing
macroscopic constraints. Within this setting, the liquid and vapour densities, ρL and
ρV , respectively, follow from the temperature and chemical potential, μL(ρL, θ) = μ and
μV(ρV, θ) = μ, and the critical vapour bubble radius is determined by (2.4).

2.2. Critical bubble in the microcanonical ensemble
The microcanonical NVE ensemble requires, by definition, mass, M (or equivalently
number of particles N), volume V and energy E to be constrained. Clearly, when the system
is large in comparison with the typical bubble size, the μVθ and the NVE ensembles
are equivalent. However, for confined and crowded systems with many bubbles, the
nucleation processes can be different. In fact, this difference will turn out to be important
to understand the numerical results in § 9, suggesting the need to review NVE nucleation
explicitly.
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Heterogeneous bubble nucleation dynamics 906 A20-7

In the NVE ensemble the equations to be solved to determine the critical bubble are
more complicated than in the previous case:

R∗ = 2γLV

pV(ρV, θ)− pL(ρL, θ)
, μV(ρV, θ) = μL(ρL, θ),

UL(ρL, θ)+ UV(ρV, θ)+ Ec = E, VVρV + (V − VV)ρL = M.

⎫⎬⎭ (2.6)

The unknowns here are the liquid and vapour densities, the temperature and the bubble
radius. In the equation expressing the energy constraint, Ec is the interfacial (capillary)
energy, which in the case of a single nucleated bubble is given by γLV4πR∗2. Here, it is left
as an additional parameter for reasons to be discussed in § 9. The equations of state for the
internal energy of the liquid and vapour UL/V and the corresponding chemical potentials
μL/V and pressures pL/V are assumed to be given.

The ‘free energy landscape’, for different levels of confinement, is reported in figure 2.
The thermodynamic potential of the NVE ensemble, i.e. the entropy, is plotted as a function
of the bubble radius, taken as reaction coordinate for the process (stability corresponds
to entropy maximum). The overall picture corresponds quite well to the phenomenology
observed in the μVθ system: at extreme confinement the liquid remains stable, similar to
what is found in Marti et al. (2012) and Vincent & Marmottant (2017). When the available
volume is large enough, a barrier separates the metastable liquid from the equilibrium
state featuring a bubble. The radius of the equilibrium bubble is also reported in figure 2
as a function of confinement. The equilibrium radius increases monotonically, consistently
with the familiar result that full vapour is the equilibrium state in the μVθ ensemble. The
critical radii in the NVE and μVθ ensembles are substantially identical as long as the
confinement is not extreme, as in the simulations to be discussed in § 9.

3. Thermodynamics of liquid–vapour systems at solid walls

The purpose of the present section is modelling hydrophilic/hydrophobic walls in the
context of a capillary fluid à la van der Waals. In particular, the surface free energy
density at the wall is explicitly determined consistently with the thermodynamics of the
bulk fluid and the prescribed equilibrium contact angle. To this end, the van der Waals
square-gradient approximation of the (Helmholtz) free energy functional (van der Waals
1979) is extended as

F[ρ, θ ] =
∫

V
f (ρ,∇ρ, θ) dV +

∮
∂V

fw(ρ, θ) dS, (3.1)

where f = fb + fc, with fb the free energy density (per unit volume) of the bulk fluid
at mass density ρ and temperature θ and fc = (λ/2)∇ρ · ∇ρ the capillary contribution.
As detailed below, in equilibrium, this free energy model describes a smooth density
profile transitioning between liquid and vapour on a typical scale ε, the thickness of the
interface. As discussed in Anderson, McFadden & Wheeler (1998) and Lutsko (2011),
this corresponds to a gradient approximation of more general, non-local descriptions, like
those exploited in DFT (Tarazona & Evans 1984). The free energy contribution fw arises
from the fluid–wall interactions and accounts for the wetting properties of the surface.
Its explicit expression, provided by Cahn (1977) in the context of the isothermal phase
field model for immiscible liquids, is extended here to the non-isothermal van der Waals
square-gradient model relevant for liquid–vapour phase transitions.
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R/R∗
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V/V ∗
R
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/R

∗
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0

5
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FIGURE 2. Main panel: The NVE CNT for homogeneous fluids, showing entropy profiles
ΔS θ0/ΔΩ

∗ (normalized with the μVθ free energy (grand potential) barrier ΔΩ∗ at θ = θ0)
versus bubble radius R (normalized with the μVθ critical radius R∗) at changing confinement
V/V∗, where V∗ = 4

3πR∗3 is the critical bubble volume. For volumes below V/V∗ = 481 no
critical bubble exists: confinement is strong enough to stabilize the liquid. Above this limiting
confinement, a barrier separates the metastable liquid from the stable configuration featuring a
finite size bubble (maximum in the entropy, explicitly appearing in the plot only for relatively
small confinement volumes). Please note that with entropy as thermodynamic potential, the
sign of stable and unstable extrema are reversed with respect to the more usual cases involving
free energies. Inset: Radius of the equilibrium bubble versus confinement (log scale). As the
confinement is reduced (available volume increased), the size of the equilibrium bubble grows
larger, to eventually grow unbounded for infinite volume to meet the μVθ prediction. Note that
the curve in the inset starts at a finite (small) V/V∗.

It is instrumental to introduce the entropy functional S, obtained as the functional
derivative of the free energy with respect to the temperature,

S[ρ, θ ] =
∫

V
−δF
δθ

dV = −
∫

V

∂fb

∂θ
dV −

∮
∂V

∂fw

∂θ
dS

=
∫

V
sb(ρ, θ) dV +

∮
∂V

sw(ρ, θ) dS, (3.2)

where the third equality holds for a temperature-independent λ (assumed here for
the only purpose of simplifying the exposition). The last identity follows from the
definition of the bulk entropy density sb and after the introduction of the surface entropy
density sw.
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Heterogeneous bubble nucleation dynamics 906 A20-9

For a closed and isolated thermodynamic system of given energy E0 and mass M0, the
constrained entropy functional (Sc) reads

Sc = S + l1

(
M0 −

∫
V
ρ dV

)
+ l2(E0 − U), (3.3)

where l1 and l2 are the Lagrange multipliers enforcing mass and energy constraints. The
internal energy U is

U = F + θS =
∫

V
(ub(ρ, θ)+ uc(∇ρ)) dV + Uw[ρ, θ ]

=
∫

V

(
ub(ρ, θ)+ 1

2λ∇ρ · ∇ρ) dV +
∮
∂V
( fw + θsw) dS, (3.4)

with ub = fb − θ∂fb/∂θ and uc = (λ/2)∇ρ · ∇ρ. By maximizing the constrained entropy,

δSc[ρ, θ ] = δ

∫
V
(sb − l2u(ρ,∇ρ, θ)− l1ρ) dV

+ δ

∮
∂V

[sw − l2( fw + θsw)] dS = 0, (3.5)

the Lagrange multipliers are identified as l1 = −(μb
c − λ∇2ρ)/θ and l2 = 1/θ , where

μb
c = ∂fb/∂ρ is the bulk chemical potential. It follows that, at equilibrium, the temperature

and the (generalized) chemical potential μc must be constant:

θ = const. = θeq, (3.6)

μc = μb
c − λ∇2ρ = const. = μeq

c . (3.7)

The boundary term produces the additional requirement(
λ∇ρ · n̂ + ∂fw

∂ρ

)∣∣∣∣
∂V

= 0, (3.8)

where n̂ is the outward normal, to be read as a (nonlinear) boundary condition for the
density.

The above equilibrium conditions provide the relationship between density distribution
and system thermodynamics. It is first illustrated for a flat interface away from solid
walls (and constant λ) to set the stage for the discussion of the boundary condition at
the solid surface. For a flat interface the inhomogeneous direction is ŝ (i.e. ρ = ρ(s)) and
the equilibrium condition (3.7) reads

μc = μb
c(ρ, θ)− λd2ρ

ds2
= μeq. (3.9)

After multiplying (3.9) by dρ/ds and integrating between ρ∞ = ρV (the saturation vapour
density) and ρ, one has

wb(ρ, θ)− wb(ρV(θ)) = λ
2

(
dρ
ds

)2

, (3.10)

with wb = fb − μeqρ the bulk Landau free energy density (grand potential). The grand
potential of this unbounded inhomogeneous system is defined, as usual, as the Legendre
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906 A20-10 M. Gallo, F. Magaletti and C. M. Casciola

transform of the free energy,

Ω = F −
∫

V
ρ
δF
δρ

dV =
∫

V
w dV, (3.11)

where w = fb + (λ/2)∇ρ · ∇ρ − μcρ is the grand potential density (it is worth stressing
that wb and w are different, unless the system is homogeneous, the latter including
interfacial effects). The surface tension is the excess grand potential density is

γLV =
∫ si

−∞
(w[ρ, θ ] − w[ρV]) ds

+
∫ ∞

si

(w[ρ, θ ] − w[ρL]) ds =
∫ ∞

−∞
(w[ρ, θ ] − w[ρV]) ds, (3.12)

where si denotes the position of the Gibbs dividing surface, and the equilibrium property
w[ρV] = w[ρL] has been used. The definition of w[ρ], (3.11) and the equilibrium condition
(3.9) provide

γLV =
∫ ∞

−∞

[
fb + 1

2
λ

(
dρ
ds

)2

− μeqρ − wb(ρV)

]
ds

=
∫ ∞

−∞

[
wb + 1

2
λ

(
dρ
ds

)2

− wb(ρV)

]
ds, (3.13)

which, combined with (3.10), yields

γLV =
∫ +∞

−∞
λ

(
dρ
ds

)2

ds =
∫ ρL

ρV

√
2λ(wb(ρ, θ)− wb(ρV)) dρ. (3.14)

It should be noted that, besides the capillary coefficient λ, the surface tension depends
only on the bulk grand potential density in the coexistence mass density range ρV(θ) ≤
ρ ≤ ρL(θ).

The model is complete after determining the explicit expression for the fluid–surface
interaction term fw. The resulting expression will generalize the one proposed by Cahn
(1977) for two immiscible fluids of equal density that has been exploited in several
phase-field-based numerical simulations (see e.g. Jacqmin 2000; Yue, Zhou & Feng
2010; Sartori et al. 2015). The starting point to derive the proper expression for fw is the
geometrical relation ŝ · n̂ = cosφ, involving the (contact) angle between the wall-normal
and interface-normal directions (see figure 3), and (3.8), which is rearranged as

dfw

dρ
+ λdρ

ds
cosφ = 0, (3.15)

using ∇ρ = (dρ/ds)ŝ.
At equilibrium the interface-normal density variation follows from (3.10), allowing one

to integrate the above equation as

fw(ρ, θ) = − cosφ
∫ ρ

ρV

√
2λ(wb(ρ̃, θ)− wb(ρV)) dρ̃ + fw(ρV). (3.16)

This form of fw is consistent with the surface free energy of a pure vapour with density
ρV in contact with the wall, given by the solid–vapour surface tension, fw(ρV) = γSV .
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Heterogeneous bubble nucleation dynamics 906 A20-11

Liquid

Vapour

φ

γSV

γLS

γLV

ŝ

n̂

FIGURE 3. Sketch of the capillary forces originating at the triple contact line. The vector normal
to the wall is indicated with n̂, while ŝ indicates the vector normal to the interface, in the direction
of the density gradient. The geometrical relation ŝ · n̂ = cosφ holds between the vectors and the
contact angle φ.

Similarly, for a pure liquid with density ρL, (3.16) yields

fw(ρL) = γLS = − cosφ
∫ ρL

ρV

√
2λ(wb(ρ̃, θ)− wb(ρV)) dρ̃ + γSV = −γLV cosφ + γSV,

(3.17)
which is the well-known Young equation for the equilibrium contact angle.

The expression (3.16) for the surface energy differs from the usual recipes found
in the literature. Seppecher (1996), for example, proposed a linear dependence on the
density, while Sibley et al. (2013) considered a third-order polynomial (see also Shen
et al. 2017). The cubic ansatz is particularly tricky, since it turns out to be consistent
with the present equation (3.16) for the special case of a quartic, Ginzburg–Landau,
double-well potential ωb(ρ) = α(ρ − ρL)

2(ρ − ρV)
2, which is the most common free

energy model for the Cahn–Hilliard equation (Anderson et al. 1998; Jacqmin 2000;
Carlson, Do-Quang & Amberg 2010; Magaletti et al. 2013), as also noted in Laurila
et al. (2012), where the authors comment that for a van der Waals fluid the third-order
polynomial is just an approximation. Equation (3.16) suggests that fw cannot in general be
assigned independently of fluid bulk free energy fb(ρ), a prescription that is often ignored
in applications. In figure 4 we show the equilibrium configurations of a two-dimensional
vapour bubble laying on a flat wall with two different wettabilities. In both cases the
contact angle φ has been imposed through the boundary condition for the density field,
(3.8). The critical density isoline forms the prescribed contact angle with the solid wall,
as expected.

The proposed fluid–solid free energy describes density layering at the solid surface for
non-neutrally wettable surfaces (cosφ /= 0). Layering is a common feature for liquids in
contact with solid walls. At nanoscale, oscillations of the density field close to the wall
are known to occur, as observed through X-ray scattering experiments (Huisman et al.
1997; Yu et al. 2000) or MD simulations (Sikkenk et al. 1987). They are well captured
by the intrinsically non-local DFT (Tarazona & Evans 1984; Tarazona, Marini Bettolo
Marconi & Evans 1987; Evans, Stewart & Wilding 2017). The possible effect on nucleation
of these near-wall density oscillations cannot be addressed in the present framework,
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z

z

ρ
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(a) (b)

FIGURE 4. (a) Adsorption/depletion of the density field occurring in the wall-normal direction,
z, as a function of the contact angle. In the main panel the bulk liquid density is ρb = 0.48. All
the quantities are expressed in Lennard-Jones units, as will be explained in § 9. Hydrophobic
walls, φ > 90◦, show a reduction of the density close to the wall; the opposite behaviour is
provided by hydrophilic walls. The inset shows that this layering effect is amplified when the
degree of metastability is increased. (b) Vapour–liquid contact angle for hydrophobic (top) and
hydrophilic (bottom) solid surfaces.

which, due to the intrinsic limitations of purely local theories, should be understood as a
coarse-grained description of the actual phenomenology, resulting in a monotonic density
layering at the wall. A related approach is described in (Carey & Wemhoff 2005), where
the fluid–solid interaction is accounted for through an interaction potential between solid
and fluid particles, leading, through a mean-field theory, to a disjoining pressure, which
induces a similar monotonic density stratification at the wall.

In the hydrophilic case, the liquid–solid interaction accumulates fluid at the wall,
resulting in a local increase of density. Conversely, the lower affinity of hydrophobic
walls produces a depletion region with layers of the order of a few nanometres – see
figure 4 reporting the density profiles obtained by applying the boundary condition (3.8)
for different wetting properties of the surface. This aspect is important for heterogeneous
nucleation, since it facilitates the process at hydrophobic walls while discouraging it on
hydrophilic surfaces (see the more detailed discussion in § 9).

4. The capillary Navier–Stokes model

Aim of the present section is deriving constitutive relations for stresses and energy
fluxes consistent with the Clausius–Duhem formulation of thermodynamic irreversibility
(De Groot & Mazur 2013) for non-homogeneous, wall-bounded capillary systems – see
Magaletti et al. (2016) for the case of a homogeneous fluid.

The theory explicitly takes into account capillary effects occurring in the fluid, not only
at the vapour–liquid interface but also in the stratified layer close to a substrate (typically,
a solid wall). Stratification at a substrate is induced by the combination of capillarity (the
λ|∇ρ|2 contribution to the free energy (3.1)) and surface free energy fw(ρ, θ) included
in the boundary contribution. Associated with the surface free energy term there is a
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Heterogeneous bubble nucleation dynamics 906 A20-13

surface entropy with density sw = −∂fw/∂θ . In order to account for possible additional
entropy production terms arising from the wall potential, the system can be thought of
as comprising fluid, solid and a concentrated, zero-thickness layer separating fluid and
solid. In total generality the layer may possess a (concentrated) mass density ρw (units
of mass per unit area) and a velocity vw, hence a kinetic energy density 1

2ρL|vw|2, and a
total surface energy density, the sum of internal, uw = fw + θ∂fw/∂θ , and kinetic energy
density. The surface free energy density is assumed to depend on the mass density of
the fluid in contact with the layer ρ, on the concentrated mass density associated with
the layer ρw and on temperature. The equations for the layer establish mass, momentum
and energy conservation, and will be used in the limit of vanishing layer mass density,
ρw, such that, in the limit, the surface potential recovers the form fw(ρ, θ). In order not
to burden the discussion, the governing equations inside the layer will be described in
detail in appendix A. Here, only the results of the procedure are reported, consisting of a
relaxation condition for the contact angle in the diffuse capillary context.

For a capillary fluid enclosed in a volume D, the conservation laws for mass M,
momentum P and total energy E are (the inclusion of mass forces is straightforward)

dM
dt

= d
dt

∫
D
ρ dV = 0,

dP
dt

= d
dt

∫
D
ρv dV =

∫
∂D

Σ · n dS,

dE
dt

= d
dt

∫
D

e dV =
∫
∂D
(Σ · v − q) · n dS,

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(4.1)

where n is the outward unit vector normal to the boundary, v is the fluid velocity,
e = u + 1

2ρ|v|2 is the total energy density, with u = ub + uc the internal energy density
defined in (3.4), and Σ and q the are stress tensor and heat flux, respectively, to be
determined in the following. The local form of the conservation laws is obtained by
applying Green’s theorem, and take the classical form

∂ρ

∂t
+ ∇ · (ρv) = 0,

∂ρv

∂t
+ ∇ · (ρv ⊗ v) = ∇ · Σ,

∂e
∂t

+ ∇ · (ve) = ∇ · (Σ · v − q).

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(4.2)

Under the assumption of local equilibrium, the above equations can be manipulated, as
usual in the context of non-equilibrium thermodynamics (De Groot & Mazur 2013), to
obtain an evolution equation for the entropy density. Namely, the internal energy evolution
is first derived by subtracting the kinetic energy contribution from the total energy density,

ρ
Dũ
Dt

− Σ : ∇v + ∇ · q = 0, (4.3)

where D/Dt = ∂/∂t + v · ∇ is the material derivative and ũ = u/ρ is the specific internal
energy. By definition ũ = f̃ + θ s̃, with f̃ = ( fb + (λ/2)|∇ρ|2)/ρ – see (3.1) and comments
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906 A20-14 M. Gallo, F. Magaletti and C. M. Casciola

below – and hence its differential reads

dũ = ∂ f̃
∂ρ

dρ + ∂ f̃
∂∇ρ · d∇ρ + θ ds̃. (4.4)

The partial derivatives of the specific free energy are derived from its definition, (3.1),
providing

ρ
Dũ
Dt

= 1
ρ

(
p − λ

2
|∇ρ|2

)
Dρ
Dt

+ λ∇ρ · D∇ρ
Dt

+ ρθ
Ds̃b

Dt
, (4.5)

with p the pressure. The material derivative of the density gradient (second term on the
right-hand side of (4.5)) is evaluated from the mass conservation equation (Magaletti et al.
2016),

λ∇ρ · D∇ρ
Dt

= ∇ ·
(
λ∇ρDρ

Dt

)
− λ∇2ρ∇ρDρ

Dt
− λ∇ρ ⊗ ∇ρ : ∇v. (4.6)

After substitution of (4.5) and (4.6) into (4.3), a few more elementary steps isolate the
entropy time derivative as

ρ
Ds̃
Dt

= −∇ ·
[

1
θ

(
λ∇ρDρ

Dt
+ q

)]
−
[
λ∇ρDρ

Dt
+ q

]
· ∇θ
θ 2

+
[
Σ +

(
p − λ

2
|∇ρ|2 − λρ∇2ρ

)
I + λ∇ρ ⊗ ∇ρ

]
:

∇v

θ
, (4.7)

where the divergence of the entropy flux (first term on the right-hand side) and two entropy
production terms appear. By requiring a positive entropy production (Clausius–Duhem
inequality) and by restricting the analysis to linear constitutive prescriptions for stress

Σ = Σ rev + Σv

=
(

−p + λ
2
|∇ρ|2 + λρ∇2ρ

)
I − λ∇ρ ⊗ ∇ρ + η

[
(∇u + ∇uT)− 2

3
∇ · uI

]
(4.8)

and energy flux

q = qc + qh = −λ∇ρDρ
Dt

− k∇θ, (4.9)

capillary effects are explicitly included in the model. The irreversible part of the stress
is the classical Newtonian viscous tensor, where η > 0 is the dynamic viscosity. Since
viscosity is not expected to play a crucial role in nucleation (e.g. in CNT it is completely
neglected), the simplest choice −2η/3 is made here for the second viscosity coefficient.
A general value can be, however, straightforwardly included in the model as needed,
e.g. to describe damping in nonlinear bubble oscillations (Scognamiglio et al. 2018).
Similarly, the classical Fourier’s heat flux, with k > 0 the thermal conductivity, provides
the irreversible part of the energy flux. It is worth noting that the capillary (square density
gradient) term in the free energy leads to capillary stresses included in the reversible part
of the dynamics (no entropy production), as expected from the general thermodynamic
definition of surface tension.

The field equations for a capillary fluid, (4.2), (4.8) and (4.9), require an additional
boundary condition for the density field. The equilibrium considerations of § 3 suggest
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Heterogeneous bubble nucleation dynamics 906 A20-15

the density normal derivative as the appropriate prescription, (3.8). This result can be
extended to non-equilibrium conditions through a procedure strictly similar to that just
reviewed for the bulk, applied in this case to the layer adjoining the fluid and solid surface.
The layer is described in terms of suitable fields defined on the manifold supporting the
layer that are energetically, mechanically and kinematically coupled with the neighbouring
fluid. By prescribing that each entropy production term is non-negative (Clausius–Duhem
inequality combined with Curie principle), linear constitutive laws for the layer stress
tensor Qπ and for the layer tangential heat flux qw are derived (see appendix A for
derivation details).

The requirement that the entropy production associated with the layer should, in general,
be non-negative leads to relaxing the equilibrium wetting condition. In this more general
setting, the prescription of the equilibrium (Young) contact angle, (3.8), is replaced by the
boundary equation

Dρ
Dt

= −Dw

(
∂fw

∂ρ
+ λ∂ρ

∂n

)
, (4.10)

where Dw is a mobility coefficient determining the relaxation time scale. Notice that
the surface free energy fw, as an equilibrium property of the system, keeps the form
(3.16) obtained in § 3. This equation describes the relaxation of the contact angle towards
equilibrium and can be understood as a generalization to the non-isothermal case and to
general equations of state for the bulk fluid of the contact angle dynamics proposed in
Jacqmin (2000), Carlson, Do-Quang & Amberg (2009, 2011) and Ren & E (2011). In what
follows, the boundary term associated with (4.10) will be assumed to provide a negligible
contribution to the entropy, implying the equilibrium Young’s law (3.15).

5. Equilibrium thermal fluctuations of a wall-bounded capillary fluid

Fluids at a mesoscopic scale are subject to thermal fluctuations that need to be
included in the hydrodynamic equations. The purpose of this section is discussing thermal
fluctuations for a capillary fluid in contact with a solid surface. What follows falls within
the theoretical framework of fluctuating hydrodynamics, first proposed by Landau &
Lifshitz (1980 reprint) and systematically developed since then (Fox & Uhlenbeck 1970;
Zubarev & Morozov 1983; Español et al. 2009). The theory was retraced and exploited
in the context of liquid–vapour systems far from boundaries to address homogeneous
bubble nucleation in a recent work (Gallo et al. 2018). The extension of this theory to
heterogeneous systems bounded by solid walls is presented here. The focus here is on a
fluid enclosed between two fixed rigid solid walls to provide the static correlation functions
of the fluid-phase fluctuations. In comparison with the unbounded cases, the interaction
with the solid influences the fluctuating fluid field through the boundary conditions.

Equilibrium thermal fluctuations were originally described by Einstein (1956), who
provided the static correlation functions as a result of the entropy deviations ΔS from
equilibrium, where the entropy Seq is a maximum. For the system described in § 4, the
entropy consists of two contributions: the fluid, Sf , and the layer entropy, Sw, respectively.
In § 3 the entropy deviation was expressed as a functional of mass density, δρ(x, t),
velocity, δv(x, t), and temperature, δθ(x, t), fluctuations (see (3.3)).

Assuming small fluctuations with respect to the mean field, the entropy – a functional
of the mass density, velocity and temperature fields – can be Taylor-expanded to second
order around equilibrium (second order at least is required, since at equilibrium the first
variation vanishes altogether). Explicitly, using the variables U = (ρ,∇ρ, θ, v)T, where
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906 A20-16 M. Gallo, F. Magaletti and C. M. Casciola

field derivatives higher than the density gradient will not be needed since the free energy
(3.1) is quadratic in the density gradients, the entropy functional is

ΔSc = Sc − Seq =
∫

V
Δscf (ρ,∇ρ, θ, v) dV +

∮
∂V

Δscw(ρ, θ, v) dS

=
∫

V

1
2

∑
i,j

∂2Δsc

∂Ui∂Uj

∣∣∣∣∣
eq

δUiδUj dV +
∮
∂V

1
2

∑
i,j

∂2Δscw

∂Ui∂Uj

∣∣∣∣∣
eq

δUiδUj dS

= ΔScf + ΔScw. (5.1)

Exploiting the well-known relations (the subscript b stands for homogeneous bulk
conditions where capillary contributions do not appear)

dsb = 1
θ

dub − μb

θ
dρ,

dub = ρcv dθ +
(
μb + θ

∂sb

∂ρ

∣∣∣∣
θ

)
dρ,

dμb = c2
T

ρ
dρ +

(
1
ρ

∂p
∂θ

∣∣∣∣
ρ

− sb

ρ

)
dθ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(5.2)

where cv is the constant-volume specific heat and cT is the isothermal speed of sound, (5.1)
can be rearranged as

ΔSc = −1
2

∫
V

[
c2

T,eq

θeqρeq
δρ2 − λ

θeq
δρ(∇2δρ)

]
dV

− 1
2

∫
V

[
ρeq

θeq
δv · δv + ρeqcv,eq

θ 2
eq

δθ 2

]
dV

− 1
2

∮
∂V

1
θeq

[
λδ

(
∂ρ

∂n

)
eq

δρ + ∂2fw

∂ρ2

∣∣∣∣
eq

δρ2

]
dS − 1

2

∮
∂V

1
θeq

∂sw

∂θ

∣∣∣∣
eq

δθ 2 dS. (5.3)

The first two rows are the volume contributions already discussed in
Gallo et al. (2018). The new terms on the third line arise from the solid–liquid interaction

due to the layer entropy. The first integral in the third row of (5.3) has two different
contributions: the first one arises from the integration by parts of the square gradient,
and the second comes from the solid–liquid energy fw. As a consequence of the static
boundary condition, (3.8), the whole first integral vanishes (see the comments at the end
of § 4 and appendix A):

∮
∂V
λδ

(
∂ρ

∂n

)
δρ + ∂2fw

∂ρ2
δρ2 dS =

∮
∂V

δ

δρ

[(
λ∇ρ · n̂ + ∂fw

∂ρ

)]
δρ dS = 0. (5.4)
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Heterogeneous bubble nucleation dynamics 906 A20-17

Fluctuating field correlations are most easily obtained after recasting the entropy in a
form more appropriate to operational manipulations:

ΔSc = −1
2

∫
V

∫
V

dVx dVx̃

{
δv(x)

ρeq

θeq
δ(x − x̃) · δv(x̃)

+ δρ(x)

[
c2

T,eq

θeqρeq
δ(x − x̃)− λ

θeq
∇2

xδ(x − x̃)

]
δρ(x̃)

+ δθ(x)ρeqcv,eq

θ 2
0

δ(x − x̃)δθ(x̃)
}

− 1
2

∮
∂V

∮
∂V

dSxw dSx̃w

[
δθ(xw)

∂sw

∂θ

∣∣∣∣
eq

δw(xw − x̃w)δθ(x̃w)

]
. (5.5)

In the above equation, δ(x − x̃) is the ordinary three-dimensional Dirac delta function and
δw(xw − x̃w) denotes the Dirac delta function on the manifold,∮

∂V
f (x̃w)δw(xw − x̃w) dSx̃w :=

∫
S

dSξ̃ f (ξ̃)δ2D(ξ − ξ̃), (5.6)

where xw = xw(ξ) ∈ R
3, ξ = (ξ 1, ξ 2) ∈ S ⊂ R

2 is the parametric equation (locally)
describing the boundary and δ2D is the ordinary two-dimensional Dirac delta function.
Integration by parts is used twice to move the Laplacian ∇2 from the density fluctuation
δρ to the Dirac delta function. In a compact operator form, (5.5) reads

ΔSc = ΔScf + ΔScw = − 1
2

∫
V
Δ†Hf Δ dV − 1

2

∮
∂V
δθ †Hw δθ dS, (5.7)

with Δ = (δρ, δv, δθ) denoting the fluctuating fields, and Hf and Hw are diagonal,
positive definite operators, defined as

(Hf Δ)(x) =
∫

V
H f (x, x̃)Δ(x̃) dVx̃ =

∫
V

Ĥ f (x)δ(x − x̃)Δ(x̃) dVx̃, (5.8)

(Hwδθ)(xw) =
∮
∂V

Hw(xw, x̃w)δθ(x̃w) dSx̃w =
∮
∂V

Ĥw(xw)δw(xw − x̃w)δθ(x̃w) dSx̃w,

(5.9)

where

Ĥ f =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

c2
T,eq

θeqρeq
− λ

θeq
∇2

x 0 0

0
ρeq

θeq
I 0

0 0
ρeqcv,eq

θ 2
eq

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(5.10)

involves differential operators with I the 3 × 3 identity matrix and

Ĥw = ∂sw

∂θ

∣∣∣∣
eq

. (5.11)
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906 A20-18 M. Gallo, F. Magaletti and C. M. Casciola

The probability distribution functional for the fluctuating fields Δ (Einstein 1956),

Peq[Δ] = 1
Z

exp
(

ΔSc

kB

)
= 1

Zf
exp

(
ΔScf

kB

)
1

Zw
exp

(
ΔScw

kB

)
, (5.12)

can be approximated by exploiting the second-order approximation, (5.7),

Peq[Δ] = 1
Zf

exp
(

− 1
2kB

∫
V
Δ†Hf Δ dV

)
1

Zw
exp

(
− 1

2kB

∮
∂V
δθ †Hw δθ dS

)
. (5.13)

Owing to the exponential form of the probability distribution functional, the diagonal
nature of the operator Ĥ f together with the local dependence on temperature of the entropy,
Peq can be factorized as

Peq[Δ] = Pf [Δ]Pw[δθ ] = Pf [δρ]Pf [δv]Pf [δθ ]Pw[δθ ], (5.14)

which implies that the fluctuations of temperature in the fluid and in the layer are
statistically independent. Focusing on the fluid domain, the relevant property of the
probability distribution functional is the correlation function

C f (x, x̃) = 〈Δ(x)⊗ Δ†(x̃)〉 = 1
Z

∫
DΔΔ(x)⊗ Δ†(x̃)Peq[Δ], (5.15)

where the integral over all the possible field fluctuations is understood on the right-hand
side (path integral). It can be evaluated in closed form given the quadratic approximation
for the entropy, which leads to Gaussian path integrals. The final expression is (see Gallo
et al. (2018) for details)

C f (x, x̃) = kBH−1
f (x, x̃), (5.16)

implying the following identity:∫
V

H f (x, x̂)C f (x̂, x̃) dVx̂ = IkBδ(x − x̃). (5.17)

From a practical standpoint, the correlation functions are obtained by solving the
equivalent equation

Ĥ f (x)C f (x, x̃) = IkBδ(x − x̃) (5.18)

(recall that H f (x, x̂) and Ĥ f (x) are slightly different objects, (5.8)). The velocity and
temperature correlations at equilibrium are straightforwardly obtained as

Cδvδv
f (x, x̃) = kBθeq

ρeq
δ(x − x̃)I, (5.19)

Cδθδθ
f (x, x̃) = kBθ

2
eq

cv,eq
δ(x − x̃), (5.20)

respectively. The density correlation involves instead a differential operator, calling for the
solution of the differential equation(

c2
T,eq

θeqρeq
− λ

θeq
∇2

x

)
Cδρδρ

f (x, x̃) = kBδ(x − x̃), (5.21)
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Heterogeneous bubble nucleation dynamics 906 A20-19

complemented with the boundary conditions specifying the wall wettability. Since the
linearized form of (3.8) reads

λ
∂δρ

∂n
+ ∂2fw

∂ρ2

∣∣∣∣
eq

δρ = 0, (5.22)

the boundary conditions for the density–density correlation Cδθδθ
f = 〈δρ(x)δρ(x̃)〉, i.e. the

Green’s function in (5.21), is

λ
∂Cδρδρ

f (x, x̃)

∂nx
+ ∂2fw

∂ρ2

∣∣∣∣∣
eq

Cδρδρ

f (x, x̃) = 0. (5.23)

At variance with the unbounded system (Gallo et al. 2018), a closed-form solution
of (5.21) is not readily available in the presence of the solid wall, because of the
inhomogeneity of the coefficients (CT,eq = CT,eq(x)) in the linear equation for the Green’s
function, due to the stratification of the equilibrium density at the wall, ρeq = ρeq(x),
which exists whenever the equilibrium contact angle differs from 90◦ (neutral wettability).

6. Fluctuation–dissipation balance for wall-bounded capillary fluids: general theory

In a nutshell, fluctuating hydrodynamics amounts to including suitable stochastic
forcing terms into the linearized version of the field equations. The noise is assumed
to be generated by a linear operator (noise operator) acting on a zero-mean,
delta-correlated-in-time Gaussian process (white noise). The equilibrium solution of the
resulting system of SPDEs is a Gaussian field, completely determined by the correlations.
After the noise operator is determined in such a way to generate the equilibrium
correlations independently defined in terms of the entropy functional, the resulting
SPDEs will sample the Gaussian equilibrium probability functional Pf [Δ] discussed
in the previous section. In other words, once the equilibrium correlation functions of
the fluctuating fields are known, the fluctuation–dissipation balance (FDB) provides the
explicit form of the stochastic forcing. Eventually, the capillary Navier–Stokes equations
(4.2) and (4.8) completed with the additional stochastic contributions (4.9) result in
a model that could be dubbed the capillary Landau–Lifshitz–Navier–Stokes (CLLNS)
system. The purpose of the present section is to extend this model to the case of a
wall-bounded capillary fluid. As will be shown in detail, the FDB can be satisfied keeping
the noise in the form of a standard white noise. The noise terms act on momentum and
energy and, also in the presence of walls, keeps the divergence form, consistently with
the expected conservation properties. Special care is devoted to include the appropriate
boundary conditions in the relevant operators, a crucial point in order to avoid the need to
modify the structure of the noise.

The three-dimensional CLLNS system augmented with noise is

∂ρ

∂t
+ ∇ · (ρv) = 0,

∂ρv

∂t
+ ∇ · (ρv ⊗ v) = ∇ · Σ + f Σ,

∂E
∂t

+ ∇ · (vE) = ∇ · (v · Σ − q)+ v · f Σ + fq,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(6.1)
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where E is the total energy density, E = U + 1
2ρ|v|2 + 1

2λ|∇ρ|2, with U the internal
energy density. In the momentum and energy equations, respectively, Σ and q are the
classical deterministic stress tensor and energy flux (derived in § 4), respectively. The
boundary conditions consist of the no-slip/impermeability condition for velocity, zero heat
flux and prescribed wall wettability at the solid surface:

ρv = 0, qh · n̂ = 0, λ∇ρ · n̂ + ∂fw

∂ρ
= 0. (6.2a–c)

The stochastic forces, whose statistical properties are to be inferred from the
fluctuation–dissipation theorem, are f Σ and fq. After introducing the equilibrium
state U eq = (ρeq(x), 0, θeq) and denoting the fluctuating fields by Δ = (δρ, δv, δθ), as
previously, the state is described by U = Δ + U eq. With this notation, equations (6.1)
written in a compact form are

∂U
∂t

= N[U] + f , x ∈ D,
B[U] = 0 x ∈ ∂D,

⎫⎬⎭ (6.3)

with B the operator that specifies the boundary conditions. Linearization around the
equilibrium state U eq leads to

∂δρ

∂t
= −∇ · (ρeqδv),

∂ρeqδv

∂t
= −ρeq∇

(
c2

eq

ρeq
− λ∇2

)
δρ + η∇2δv + 1

3
η∇∇ · δv − ∇(∂θp|eqδθ)+ f Σ,

∂cv,eqρeqδθ

∂t
= −θeq∂θp|eq∇ · δv + k∇2δθ + fq.

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(6.4)

The linearized system can be rewritten in conservative (divergence) form with the change
of variables Δ′ = (δρ, ρeqδv, cv,eqρeqδθ) = (δρ, δπ, δι),

∂Δ′

∂t
= LΔ′ + f , x ∈ D,

BΔ′ = 0, x ∈ ∂D,

⎫⎬⎭ (6.5)

where the (linearized) hydrodynamic operator L is

L =

⎛⎜⎜⎜⎜⎜⎝
0 −∇· 0

−ρeq∇
(

c2
T,eq

ρeq
− λ∇2

)
η

(
∇2 + 1

3
∇∇·

)
1
ρeq

−∇
(
∂θp|eq

1
ρeqcv,eq

)
0 −θeq∂θp|eq∇ · 1

ρeq
k∇2 1

ρeqcv,eq

⎞⎟⎟⎟⎟⎟⎠ , (6.6)

and B is the (linearized) boundary conditions operator

λ
∂δρ

∂n
+ ∂2fw

∂ρ2

∣∣∣∣
eq

δρ = 0, δπ = 0, λ
∂ρeq

∂n
∇ · δπ + k

∂

∂n

(
δι

cveqρeq

)
= 0. (6.7a,b)
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Heterogeneous bubble nucleation dynamics 906 A20-21

The stochastic contribution can be written through the linear operator K acting on
independent white noise processes Ξ , as f = KΞ , where

K =
⎛⎝ 0 0 0

0 σπ 0
0 0 σι

⎞⎠ . (6.8)

In three dimensions σπ is a 3 × 3 matrix whose components are scalar linear operators to
be determined. The vector Ξ = (Ξρ,Ξπ ,Ξι)T collects the white noise processes for the
fluctuating fields, with Ξπ = (Ξπx , Ξπy , Ξπz)T. The Gaussian process Ξ has zero mean
and correlations given by

〈Ξ( ỹ, s)⊗ ΞT( ŷ, q)〉 = Iδ( ỹ − ŷ)δ(s − q), (6.9)

with I now indicating a (5 × 5) identity matrix in Ξ space, ỹ and ŷ denoting space points,
and s and q time instants. It may be worth recalling that spatial and temporal Dirac delta
functions carry dimensions of reciprocal space and time, respectively. Hence the noise Ξ
has dimensions of reciprocal square root of time per volume.

Introducing the operator L, which accounts for the differential operator (6.6) completed
with the boundary conditions (6.7a,b), problem (6.5) is compactly rewritten as
dΔ′/dt = LΔ′ + f (in other words, the action of the operator L′ is restricted to the
subspace of fluctuations that satisfy the boundary conditions). The solution can then be
expressed in terms of the propagator

Pt = exp(Lt). (6.10)

Considering that PtP−t = U , with U the relevant identity operator, and using the
propagator as functional integrating factor, system (6.5) becomes

∂

∂t
(P−tΔ

′) = P−t f (t), (6.11)

where d(P−t)/dt = −LP−t and the obvious commutation LP−t = P−tL has been used.
This equation can be now integrated in time, leading to the so-called mild solution (Da
Prato 2012)

Δ′(x, t) =
∫ t

0
Pt−s f (s) ds + PtΔ

′
0, (6.12)

where the last term retains memory of the initial conditions and vanishes for large times
since L is a dissipative operator. Consistently, the equilibrium correlations take the explicit
form

〈Δ′(x̃, t)⊗ Δ′†(x̂, t)〉 =
∫ t

0
Pt−s Q P†

t−s ds, (6.13)

where the stochastic force correlation

Q = 〈 f (x, s)⊗ f †(x̃, q)〉 = Q(x, x̃)δ(s − q) (6.14)

is straightforwardly expressed in terms of the noise operator K and the stochastic process
Ξ . Note that it should be stressed that the delta correlation in time for the stochastic forces
is always adopted in fluctuating hydrodynamics based on the assumption of a clear scale
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906 A20-22 M. Gallo, F. Magaletti and C. M. Casciola

separation between molecular and hydrodynamic time scales (Markovian dynamics) – see
e.g. Duque-Zumajo et al. (2019) for additional comments.

In view of producing the explicit correlation (6.13), the Hermitian non-singular operator
E−1 is assumed to exist and is able to factorize Q as

Q = −(LE−1 + E−1L†). (6.15)

In this case the integrand in (6.13) would be the s derivative of Pt−s E−1 P†
t−s, implying

that the exact integral

lim
t→∞

〈Δ′ ⊗ Δ′†〉 = E−1 = C ′
f . (6.16)

Hence the operator E−1 does indeed exist and is the correlation matrix C f (5.16), resulting
in

C ′
f =

⎛⎜⎝ Cδρδρ

f (x, x̃) 0 0

0 kBθeqρeqδ(x − x̃)I 0

0 0 kBθ
2
eqρeqcv,eqδ(x − x̃)

⎞⎟⎠ , (6.17)

By combining (6.15) and (6.16) the stochastic force correlation follows:

Q = −(LC ′
f + C ′

f L
†) = (M + M†) = 2kBO, (6.18)

where M = −LC ′
f and O is the Onsager matrix. Relationship (6.18) is the form

the celebrated FDB takes for the present system highlighting the connection between
fluctuation intensity and dissipation mechanisms. The physical interpretation is that, in
thermodynamic equilibrium, the response of a system to a perturbation is equivalent to
the evolution of a spontaneous fluctuation. One is then enabled to infer non-equilibrium
properties of a physical system from equilibrium properties.

7. Fluctuation–dissipation balance: explicit expression for neutrally wettable
surfaces

The present section is devoted to obtain the explicit form of the stochastic forces
following the general procedure outlined in the previous section. For the sake of simplicity,
the contact angle φ = π/2 is assumed, in order to deal with homogeneous equilibrium
fields. In this case the boundary conditions operator B, besides enforcing vanishing
velocity (δπ = 0) and zero heat flux at the walls (∂δι/∂n = 0), also requires vanishing
density normal derivative (∂δρ/∂n = 0) (see (6.7a,b)). These boundary conditions
describe the evolution of a closed and isolated system, in the spirit of the NVE ensemble
of statistical mechanics.

Compared with the general case, the above assumptions lead to homogeneous
equilibrium fields (no stratification at the wall) with the advantage of facilitating the
mathematical treatment. The extension to the case of generically wettable surfaces – albeit
of greater complexity from the mathematical point of view – is not expected to alter the
structure of stochastic forces. In fact, the wall wettability does not introduce an additional
dissipation mechanism, and, as such, does not produce entropy. Hence a general solid–fluid
energy is expected not to alter the fluctuation–dissipation balance.
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Heterogeneous bubble nucleation dynamics 906 A20-23

Following the general procedure illustrated in § 6, the operators σπ and σι can be
identified from the FBD (6.18),

Q = K〈ΞΞ †〉K† = 2kBOδ(s − q), (7.1)

leading to

KK† = 2kBO = M + M†
. (7.2)

It should be stressed that the operator entering the definition of M is L. In practice, to
solve the problem, one may start from the differential operator L, (6.6), and the correlation
matrix C f , (5.16). Since the correlation matrix satisfies the boundary conditions, this leads
to the same result that the actual operator L, i.e. L completed with boundary conditions,
would imply. One finds

M =
⎛⎝ 0 m12 0

m21 m22 m23
0 m32 m33

⎞⎠ . (7.3)

The entries of the matrix M are

m12 = ∇ · [ρeqkBθeqδ(x − x̂)I], (7.4)

m21 = ρeq∇[kBθeqδ(x − x̂)], (7.5)

m23 = ∇[kBθ
2
eq∂θp|eqδ(x − x̂)], (7.6)

m32 = ∂θp|eq∇ · [kBθ
2
eqδ(x − x̂)I], (7.7)

m22 = −η(I∇2 + 1
3∇ ⊗ ∇)kBθeqδ(x − x̂), (7.8)

m33 = −k0∇2kBθ
2
eqδ(x − x̂). (7.9)

Thus, the sum of M and its hermitian conjugate M† provides the explicit expression for
the square of the unknown matrix operator K, (6.8), i.e. the explicit form of the FDB,

KK† = M + M† =
⎛⎝ 0 0 0

0 2m22 0
0 0 2m33

⎞⎠ . (7.10)

In deriving (7.10), one needs to take into account that the differential operators ∇ and
∇2 are effectively (and not purely formally) anti- and self-adjoint, respectively, thanks to
the boundary conditions (∇† = −∇· and (∇2)† = ∇2; appendix B). After recalling (6.8),
determining K amounts to solving (7.10) component-wise,

σισ
†
ι = −2kBθ

2
eqk∇2δ(x̂ − x̃), (7.11)

σπ ⊗ σ †
π = −2ηkBθeq(I ∇2 + 1

3∇ ⊗ ∇)δ(x̂ − x̃). (7.12)

The explicit solution for the stochastic forces is

f Σ = ∇ · δΣ, fq = ∇ · δq, (7.13a,b)
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where δΣ and δq are

δΣ = √
2ηkBθeq Ξ̃

π − 1
3

√
2ηkBθeq Tr(Ξ̃

π
)I, (7.14)

δq =
√

2kkBθ 2
eq Ξ ι, (7.15)

with Ξ̃
π = (Ξπ + Ξπ T)/

√
2 a stochastic symmetric tensor field, and Ξ ι a stochastic

vector, with correlations

〈Ξπ
αβ(x̂, t̂)Ξπ

γ δ(x̃, t̃)〉 = δαγ δβδδ(x̂ − x̃)δ(t̂ − t̃), (7.16)

〈Ξι
α(x̂, t̂)Ξι

β(x̃, t̃)〉 = δαβδ(x̂ − x̃)δ(t̂ − t̃). (7.17)

It is immediately shown that expressions (7.14) and (7.15) satisfy (7.11) and (7.12), namely

〈σιΞ ιΞ ι†σ †
ι 〉 = 〈∇ x̂ · δq(x̂, t)∇ x̃ · δq(x̃, t)〉 = −2kBθ

2
eqk∇2δ(x̂ − x̃) (7.18)

and

〈σπΞπ ⊗ Ξπ†σ †
π 〉 = 〈∇ x̂ · δΣ(x̂, t)⊗ ∇ x̃ · δΣ(x̃, t)〉

= −2ηkBθeq(I ∇2 + 1
3∇ ⊗ ∇)δ(x̂ − x̃). (7.19)

The covariance of the stochastic process corresponding to the fluctuating stress is

〈δΣ(x̂, t̂)⊗ δΣ†(x̃, t̃)〉 = QΣδ(x̂ − x̃)δ(t̂ − t̃), (7.20)

with
QΣ
αβνη = 2kBθη(δανδβη + δαηδβν − 2

3δαβδνη). (7.21)

Analogously, the covariance of the fluctuating heat flux is

〈δq(x̂, t̂)⊗ δq†(x̃, t̃)〉 = Qqδ(x̂ − x̃)δ(t̂ − t̃), (7.22)

with
Qq
αβ = 2kBθ

2
eqkδαβ. (7.23)

Several comments are in order: (i) The stochastic forcing terms are in divergence form
for momentum and energy (temperature) equations, and absent for mass, consistently
with integral conservation principles. (ii) The correlation between the thermodynamic
force of different tensor ranks is zero, consistently with the Curie–Prigogine principle,
i.e. (〈δq†(x̃, t̃)⊗ δΣ(x̂, t̂)〉 = 0). (iii) The formal expressions of the FDB, (6.18), and
of the stochastic forces, (7.13a,b), are exactly the same as obtained in free space, Gallo
et al. (2018), i.e. they are independent of the specific boundary conditions, as long as no
additional entropy production mechanisms is implied. (iv) The presence of the wall is
intrinsic to the functional representation of the operators, hence the statistical properties
of the fluctuating fields will be affected by the boundary conditions, as already pointed out
when commenting on the density correlation equation, (5.21).

As a final remark before closing the section, the reader should be aware that the FDB,
as derived here, is strictly valid in the limit of small fluctuations about the equilibrium
state, as follows from the original Landau–Lifshitz approach, which starts from the
linearized Navier–Stokes equations. As common, the extension to the nonlinear case is
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Heterogeneous bubble nucleation dynamics 906 A20-25

based on the local equilibrium assumption (Bogoliubov 1946; De Zarate & Sengers 2006).
The assumption consists in assuming that out-of-equilibrium fluctuation statistics can be
obtained from an equilibrium state corresponding to the local hydrodynamic field. A more
complete derivation of the nonlinear fluctuating hydrodynamics model for a simple fluid
has been provided by Español (1998), obtaining the same noise terms as discussed here.

8. The capillary Landau–Lifshitz–Navier–Stokes model

One of the central results of the previous section is that the stochastic terms keep the
same form they have for a homogeneous capillary system (the interested reader is referred
to Gallo et al. (2017) for further details). The solid wall imposing no-slip conditions and
zero heat transfer and the solid–liquid free energy contribution fw do not affect the FDB
(although they do affect the fluctuations). This result is deeply rooted in the van der Waals
thermodynamics of non-homogeneous fluid systems, where capillary effects (both the
square-gradient volume term and the wall contribution, (3.1)) are included as free energy
contributions. As a result, the capillary stresses are generated by the reversible part of the
dynamics, without any entropy production. On the other hand, the fluctuation–dissipation
balance asserts that only the dissipative part of the dynamics (irreversible) contributes to
stochastic fluxes, and thus there are no capillary contributions to the stochastic part of
the equations. As a consequence, the form of the stochastic fluxes in both the bounded
and unbounded CLLNS model is exactly the same of the simpler classical fluctuating
Landau–Lifshitz–Navier–Stokes (LLNS) model (Fox & Uhlenbeck 1970).

The full CLLNS model reads

∂ρ

∂t
+ ∇ · (ρv) = 0,

∂ρv

∂t
+ ∇ · (ρv ⊗ v) = ∇ · Σ + ∇ · δΣ,

∂E
∂t

+ ∇ · (vE) = ∇ · [(Σ + δΣ) · v − q + δq],

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (8.1)

where the deterministic stress tensor was defined in (4.8) and the deterministic energy flux
in (4.9).

The presence of the wall is reflected in the boundary conditions, here the no-slip
condition for the fluid velocity at the solid surface and vanishing heat flux, i.e. ρv = 0 and
qh · n̂ = 0. The wall wettability is controlled by the condition ∂ρ/∂n = g(θ, φ), where
g = cosφ

√
(2/λ)(wb(ρ, θ)− wb(ρV)) is positive for hydrophilic walls and negative for

hydrophobic ones, (3.16).

8.1. Equation of state
Two additional relations are still needed to close the system of equations (8.1). They
are the two equations of state relating thermodynamic pressure and internal energy to
density and temperature, p = p(ρ, θ) and ub = ub(ρ, θ). Both follow from the (bulk) free
energy density fb = fb(ρ, θ) specified in (3.1). Here the free energy of a Lennard-Jones
fluid (Johnson et al. 1993) will be assumed in order to be able to compare the present
results with classical techniques, such as molecular dynamics simulations. Once the
appropriate thermodynamic potential is selected, the other thermodynamic properties
follow straightforwardly, e.g. the pressure p = −ρ2∂( fb/ρ)/∂ρ.

For a Lennard-Jones fluid, the relevant expressions are too cumbersome to be repeated
here, but it may still be interesting to recall the general aspects of a two-phase,
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FIGURE 5. Phase diagram for the Lennard-Jones equation of state (Johnson, Zollweg &
Gubbins 1993). In the main panel, the isotherm θ = 1.25 and the iso-chemical potentialμ = μsat
with the saturation value are reported with dashed and dash-dotted lines, respectively. The
saturation densities are identified as the two points with equal temperature, chemical potential
and pressure; the red circle represents the vapour saturation point and the orange circle the liquid
one. The other two circles, dark blue and light blue, represent the spinodal points, vapour and
liquid, respectively, identified on the isotherm where ∂p/∂ρ = 0. In the inset, the loci of all the
saturation and spinodal points at different temperatures are reported in the ρ–θ plane.

vapour–liquid, system. The phase diagram is reported in figure 5 with binodal and
spinodal lines shown in the inset. The binodal, as locus of saturation densities at changing
temperature, is obtained from the classical equilibrium conditions stating that identical
pressures p and chemical potential μc characterize bulk vapour and liquid. The saturation
densities ρV sat and ρL sat are evaluated by (numerically) solving, at given temperature, the
nonlinear system of equations

p(ρV sat, θ) = p(ρL sat, θ),

μc(ρV sat, θ) = μc(ρL sat, θ).

}
(8.2)

The two spinodals, as locus of the densities (ρV spin and ρL spin , respectively) where
∂p/∂ρ|θ = 0, represent the thermodynamic limit of metastability. All the thermodynamic
states placed between the binodal and the spinodal lines are metastable. In these states,
nucleation is a thermally activated process requiring an activation energy, as discussed in
§ 2. The closer the metastable state is to the spinodal, the smaller the activation barrier and
the higher the nucleation probability.

9. Numerical results

Heterogeneous vapour bubble nucleation is here simulated by numerically solving the
CLLNS system of equations presented in § 8. The configuration consists of a metastable
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FIGURE 6. Sketch of the simulation set-up.

liquid described by the equation of state of a Lennard-Jones fluid (Johnson et al. 1993)
which is enclosed in a box with two flat solid surfaces perpendicular to the z direction
where no slip, zero heat flux and given wettability are assigned, using periodicity in the
x–y plane. These boundary conditions globally enforce volume, mass and total energy
conservation.

In figure 6 a sketch of the simulation set-up is reported for the reader’s convenience.
The equations are made dimensionless using the following reference quantities: σ =
3.4 × 10−10 m as length, ε = 1.65 × 10−21 J as energy, m = 6.63 × 10−26 kg as mass,
Vr = (ε/m)1/2 as velocity, Tr = σ/Vr as time, θr = ε/kB as temperature, ηr = √

mε/σ 2

as shear viscosity, cvr = mkB as specific heat at constant volume and kr = ηrcvr as
thermal conductivity. The dimensionless fields are defined as ρ∗ = ρ/ρr, θ∗ = θ/θr and
v∗ = v/Vr. The dimensionless fluxes, (4.8), (4.9), (7.14) and (7.15), read

Σ∗ =
(

C
2

|∇∗ρ∗|2 + ρ∗∇∗ · (C∇∗ρ∗)
)

I − C∇∗ρ∗ ⊗ ∇∗ρ∗

+ η∗
[
(∇∗u∗ + ∇uT∗)− 2

3
∇∗ · u∗I

]
, (9.1)

q∗ = Cρ∗∇∗ρ∗∇∗ · u∗ − k∗∇∗θ∗, (9.2)

δΣ∗ =
√

2η∗θ∗ Ξ̃
π∗ − 1

3

√
2η∗θ∗ Tr(Ξ̃

π∗
)I, (9.3)

δq∗ =
√

2k∗θ∗2 Ξ ι∗, (9.4)

where C = λρr/σ
2V2

r is a capillary number. All throughout, the capillary number is fixed
at C = 5.244, in order to reproduce the surface tension expected of a Lennard-Jones fluid
(Gallo et al. 2018). Hereafter the symbol ∗ indicating dimensionless quantities is omitted,
for the ease of notation. The system volume V = 750 × 750 × 500 has been discretized
on a uniform grid, containing 50 cells in the z direction and 75 × 75 in the x–y plane.
The dimensionless viscosity and thermal conductivity of a Lennard-Jones fluid (Rowley
& Painter 1997) have been used to account for the variability of transport coefficients due
to the vapour–liquid density contrast.
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The system of equations (8.1) has been discretized in the spirit of the method of lines
with the numerical scheme proposed by Balboa et al. (2012) and recently adopted and
validated by these authors in Gallo et al. (2018). When dealing with stochastic equations,
particular attention must be paid to the discrete version of the fluctuation–dissipation
balance. In particular, the numerical scheme must reproduce the field statistics as predicted
by Einstein–Boltzmann theory. In order to cope with this particular requirement, Balboa
et al. (2012) proposed to exploit a staggered grid to spatially discretize the equations.
Special attention is here dedicated to the numerical treatment of the boundary conditions
at the wall – see details illustrated in appendix C. The time evolution has been performed
by means of a second-order Runge–Kutta scheme (Delong et al. 2013), with a constant
time step Δt = 0.1, which is small enough to accurately solve acoustic and viscous time
scales.

Several metastable conditions have been investigated: this section reports on four
different sets of simulations at initial temperature θ = 1.25 and five different initial bulk
densities, ρL = 0.47, 0.475, 0.48, 0.485, 0.4875, corresponding to a decreasing degree
of metastability, (μc(ρL)− μsat

c )/(μ
spin
c − μsat

c ), with μsat
c and μspin

c the saturation and
spinodal chemical potential, respectively (Shen & Debenedetti 2001). The simulations
explore the metastable range of density at the selected temperature, ρL ∈ [ρL spin, ρL sat] =
[0.44, 0.51]. It may be worth stressing that on decreasing the metastability parameter
the barrier height for nucleating vapour bubbles increases (e.g. the saturation line is
approached). As a main goal, the effect of changing the wall wettability is discussed
and the potential effect of liquid stratification (depletion/accumulation) at the wall is
investigated.

In order to correctly identify bubbles and evaluate the nucleation rate in the different
conditions, it is crucial to properly distinguish vapour bubbles from subcritical embryos.
Here the same technique (the string method; E, Ren & Vanden-Eijnden 2002; Bonella,
Meloni & Ciccotti 2012) adopted by Gallo et al. (2018) is exploited, with a slight
modification to take the wall into account. In a first step, the critical bubble is evaluated at
given metastable conditions (ρL and θ ). A spherical vapour bubble, with the corresponding
density profile ρcrit(r) in the radial direction, is found. Then, the critical volume Vc is
rescaled to account for the contact angle using the geometrical function ψ(φ) described
in § 2. This procedure provides the estimate of the critical volume to be used as reference
size discriminating bubbles from embryos. A few dedicated computations to determine the
critical bubble in the presence of the wall, adapting the string method approach to the case
of heterogeneous nucleation, showed that the use of the geometric factor is in excellent
agreement with the actual critical volume.

In the second step, a clustering algorithm detects the number of critical bubbles in
the domain, as follows: (1) A cell flagging procedure selects the vapour cells based
on density (ρ < ρcut identifies vapour). The threshold density, ρcut, is chosen as the
density where the critical profile ρcrit(r) exhibits the maximum slope, corresponding to
the interface centre. It turned out that, in the range of metastable states analysed here, ρcut
is in the range 0.35–0.36. A sensitivity analysis showed small effects of this threshold
value on the results. (2) A region growing procedure clusters vapour cells by examining
the neighbourhood of flagged cells. The procedure is iterated until all flagged cells are
processed. (3) The volume Vk of the kth cell aggregate (cluster), the sum of cell volumes
belonging to the cluster, is used as order parameter identifying supercritical bubbles when
Vk ≥ Vc.
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FIGURE 7. Snapshots during the nucleation process at thermodynamic condition ρL = 0.475,
taken at times t = 60 000, 80 000, 240 000 and 264 000 (a–d, respectively). The vapour bubbles
are represented by density isosurfaces. Close to the bottom wall we report a slice representing
the density field with the colour scale and where the regions with high density gradients are
indicated by the black isolines.

Before discussing the nucleation rate, snapshots at two different conditions are shown
in figures 7 and 8, at ρL = 0.475 and ρL = 0.485, respectively, to illustrate the evolution
at different degree of metastability. Starting from a homogeneous liquid mother phase,
thermal fluctuations produce regions of low density with a complex shape. Although
energy considerations may suggest that vapour bubbles should preferentially form close
to the walls, in both cases vapour embryos are observed all over the domain. After
reaching the critical size, a complex dynamics is initiated during which collapses and/or
coalescence events take place. In the long run, the bubbles surviving in the condition
with smaller metastability, figure 8, are all found attached to the wall. At large degree of
metastability (small nucleation barrier) several bubbles persist instead in the bulk liquid.

In general, bubble number and dimensions depend on the initial metastability, as shown
in figure 9, reporting the number of bubbles formed at the wall for the two previously
mentioned thermodynamic conditions. The time instants singled out in the panels of
figures 7 and 8 are indicated with circles and identified by the letters a, b, c, d in figure 9.
The evolution shows three main stages.

Initially the bubble number increases almost linearly with time (constant production
rate). At the lower degree of metastability (ρL = 0.485) the constant rate regime follows
after a relatively long incubation period with almost no bubble. This waiting time is related
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FIGURE 8. Snapshots during the nucleation process at thermodynamic condition ρL = 0.485,
taken at times t = 180 000, 190 000, 280 000 and 360 000 (a–d, respectively).

to the mean first passage time (Kramers 1940) of classical theory, where nucleation is
described as Brownian wandering on a free energy landscape, until the walker escapes the
barrier to nucleate the bubble. The constant rate stage persists until a maximum number of
bubbles accumulates in the domain (configurations denoted by the letter b). The higher the
degree of metastability, the lower is the energy barrier and, as a consequence, the larger is
the maximum number of bubbles in the domain.

The second stage consists of the expansion–coalescence dynamics where bubbles
increase their size evolving towards equilibrium while partially coalescing with
neighbouring ones. During this phase, the newly formed embryos typically collapse, since
the liquid gets compressed by the enlarging vapour phase, given the constraints of constant
mass and volume. This kind of event occurs more frequently for the more populated
condition at larger degree of metastability.

Finally, during the third stage, the evolution slows down while reaching a more stable
condition, where a small number of large vapour bubbles are in equilibrium with the
surrounding compressed liquid (see configurations d in the figures.

In the present numerical experiments, the nucleation rate J is accessed during the first
stage. The nucleation rate expresses the frequency of bubble formation normalized by the
system volume (in the context of homogeneous nucleation) or by the solid surface area (in
heterogeneous conditions). From an operative standpoint, there are two main procedures to
evaluate the bubble formation frequency: (i) When the simulated system is small and only
a single nucleation event occurs, as often happens in MD simulations, the waiting time
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FIGURE 9. Time evolution of the number of wall-attached supercritical bubbles at two different
thermodynamic conditions ρL = 0.475 (a) and ρL = 0.485 (b). In both panels, the insets report
a zoom in the time interval where a linear fitting was applied for calculating the nucleation rate.

for the appearance of the bubble is measured. A large number of independent simulations
are used to properly sample the statistics of the phenomenon, and the inverse of the mean
waiting time is used as bubble nucleation frequency (Menzl et al. 2016). (ii) When the
simulated system is large and the nucleation of a multitude of bubbles can be sampled
within a single simulation, the frequency is evaluated as the slope of the curve expressing
the time evolution of the number of bubbles in the system (Yasuoka & Matsumoto 1998;
Diemand et al. 2014). This linear fitting, expressing the number of bubbles formed per unit
time, is performed at the beginning of the nucleation process, and the so-called steady-state
rate is measured.

Here the second strategy has been exploited, and the slopes have been evaluated as in the
inset of figure 9. The calculated nucleation rates are shown in figure 10(a) in comparison
with CNT predictions. It might be worth noting that CNT in the μVθ ensemble (§ 2.1)
is here used as a reference theory in the entire range of metastability conditions. The
difference between the unknown actual rate and the CNT prediction is expected to vanish
asymptotically at larger density, close to saturation. The present results are in line with
this expectation, with the convergent trend apparent in the figure. Far from saturation,
only homogeneous nucleation has been plentifully analysed, finding that the results spread
over approximately eight orders of magnitude, at high temperature, and differ by up to 20
orders from CNT (see Diemand et al. (2014) for a summary of the literature data). To the
best of our knowledge, quantitative simulations of heterogeneous bubble nucleation rates
are not available for a direct comparison. Only few qualitative attempts can be found in
Nagayama, Tsuruta & Cheng (2006). The available MD simulations by Novak et al. (2007)
have instead been performed in an isothermal–isostress ensemble (NPzzθ ).

The standard application of CNT refers to the grand canonical (μVθ ) context, where
the liquid bulk density remains unaltered along the nucleation process in macroscopic
systems. The total mass and energy constraints (NVE ensemble) used in the present
simulations might lead to crucial differences, particularly when the system is small or
extremely crowded with several bubbles. As shown below, this explains the discrepancy
between simulation results and predictions found in figure 10.

By elaborating on the NVE model recalled in § 2.2, a system partially filled with a
given quantity of vapour to account for nucleation in the presence of multiple bubbles can

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 9
3.

42
.6

5.
69

, o
n 

13
 F

eb
 2

02
1 

at
 1

4:
15

:1
3,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
02

0.
76

1

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2020.761


906 A20-32 M. Gallo, F. Magaletti and C. M. Casciola
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FIGURE 10. Comparison of the nucleation rates between the fluctuating hydrodynamics (FH)
numerical results (square symbols) and the classical nucleation theory (CNT) prediction by
Blander & Katz (1975) (triangles) in the μVT setting. (a) Nucleation rates at different
degrees of metastability, and constant contact angle φ = π/2. (b) Different wall wettabilities
at thermodynamic condition ρL = 0.48.

be considered. In this case, the critical bubble radius and corresponding energy barrier are
found by solving equations (2.6) specialized as

R∗ = 2γLV

pV(ρV, θ)− pL(ρL, θ)
,

μV(ρV, θ) = μL(ρL, θ),

E = UL(ρL, θ)+ ŨV + Ububble(ρV, θ)+ Ẽc + γLVA∗,

M = M̃V + V∗ρV + (V − V∗ − ṼV)ρL.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(9.5)

In the above equations, R∗, A∗ and V∗ are the bubble critical radius, area and volume,
respectively. In the case of a neutrally wettable solid wall (90◦ contact angle), for example,
A∗ = 2πR∗2 and V∗ = 2

3πR∗3. Moreover, Ububble is the internal energy of the critical vapour
bubble, evaluated through the equation of state, as ub(ρV, θ)V∗. All terms highlighted with
a tilde are free parameters that allow one to take into account the vapour already formed
in the system. Specifically, ŨV is the total internal energy of the vapour phase, Ẽc is the
(total) surface energy, M̃V is the total mass of vapour and ṼV its total volume. In comparing
numerical results with the predictions of this extended NVE model, the free parameters
are measured from the simulation along the evolution. The time-dependent nucleation rate
JNVE(t) is evaluated by solving system (9.5) at each instant. Finally, the number of bubbles
is obtained by integrating the nucleation rate,

NB(t) = 2S
∫ t

t0

JNVE(τ ) dτ, (9.6)

where 2S is the area of the solid walls and t0 the nucleation waiting time, also extracted
from the simulation.

The remarkable agreement shown in figure 11 confirms that the constraints on mass
and energy strongly affect the nucleation rate, and fully justifies the order-of-magnitude
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FIGURE 11. Comparison of the number of bubbles predicted by the CNT NVE model proposed
in (9.5) (solid black curve) with the FH simulation data (solid red curve). The confidence interval
in the simulation results (light red band) corresponds to a change of the threshold density, ρcut,
in the bubble tracking procedure in the range 0.32–0.38. The blue dashed line corresponds to
the linearly growing number of bubbles predicted by the more common CNT model in the μVθ
setting.

difference in the rate when fluctuating hydrodynamics results are compared with standard
CNT in the μVθ setting. The modified NVE description envisaged here hinges on input
data from the simulation. As such, it is not a closed model of nucleation. Nevertheless, it
enlightens the physical mechanisms operating in the system, also capturing the progressive
reduction of nucleation rate, due to the progressive filling of the system with nucleated
vapour. On the contrary, the constant rate predicted by the CNT μVθ leads to a linearly
increasing number of bubbles (blue dashed line in figure 11), out of scale with respect to
the simulation results.

Wall wettability in the specific thermodynamic condition ρL = 0.48 is investigated
by changing the contact angle φ, (3.8). The numerical simulations span a range
of hydrophobic (φ > 90◦) and hydrophilic (φ < 90◦) conditions. The results shown
in figure 10(b) are consistent with the expected behaviour, based on energy barrier
considerations: the nucleation rate increases when the contact angle is increased, i.e.
the more hydrophobic the surface, the more likely is vapour formation close to the wall.
Quantitatively, the CNT prediction shows a more pronounced effect with respect to those
observed in the numerical simulations.

For a qualitative illustration, snapshots during nucleation at weakly hydrophilic and
weakly hydrophobic walls are reported in figure 12. It is clear that the number of embryos
formed at the wall is larger for hydrophobic surfaces. Eventually, figure 13, at moderate
and strong hydrophilicity, nucleation is mostly observed in the bulk in the same manner as
described for homogeneous nucleation.

In quantitative terms, figure 14 reports the number of vapour bubbles detected in
the domain for several hydrophilic wettability levels. Figure 14 (a) and (b) compare
the number of wall-attached and the total number of bubbles, respectively. When
the contact angle decreases, heterogeneous nucleation events are drastically reduced.
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FIGURE 12. Snapshots during the nucleation process at the thermodynamic condition ρL =
0.48, and different wall wettabilities (as marked): (a,b) reports the case of a moderately
hydrophilic wall; (c,d) a moderately hydrophobic one. (a,b) φ = 85◦ and (c,d) φ = 96◦.

The sensitivity of bulk nucleation to contact angle observed in the data can be explained by
the enforced mass and volume constraints, which makes pressure and density responsive
to the overall volume of vapour phase, which is influenced by the number and size of
wall bubbles. Separating surface from bulk nucleation events allows the surface and bulk
nucleation rates to be compared. By comparing the slope in the constant-rate regime, the
homogeneous nucleation rate is found to be constant within the present statistical accuracy,
independently of wall wettability. The heterogeneous (surface) nucleation rate reduces at
increasing hydrophilicity and, when φ < φcrit with φcrit ≈ 60◦, almost all nucleation events
take place in the bulk.

This behaviour can be explained by the following considerations. (1) From a
thermodynamic point of view, the hydrophilic nature of the surfaces involves accumulation
of liquid to the wall, strongly preventing the formation of vapour nuclei in these zones.
(2) The homogeneous nucleation barriers are comparable to the heterogeneous one close
to moderately and strong hydrophilic surfaces, but the number of nucleation sites in the
bulk volume is clearly larger than those on the walls. As a consequence, the homogeneous
nucleation probability is higher. A similar behaviour was also observed in several MD
simulations of heterogeneous nucleation, both on flat solid walls (Nagayama et al. 2006;
Chen et al. 2018; Marchio et al. 2018) and close to structured surfaces (She et al. 2016). It
may be worth stressing that these results contradict the widespread opinion based on CNT
(see § 2) that solid surfaces should always act as bubble catalysts.
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FIGURE 13. Snapshots of the bubbles formed at the metastable condition ρL = 0.48 as a
function of the contact angle in a range of moderately hydrophilic conditions (as indicated).
(a) φ = 80◦, (b) φ = 70◦, (c) φ = 60◦ and (d) φ = 45◦.
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FIGURE 14. Time evolution of the number of supercritical bubbles at different contact angles φ.
(a) The number NB of bubbles nucleated at the solid wall. (b) The total number NTOT

B of
bubbles detected in the entire fluid domain. In the inset, the number of bubbles far from the wall,
NBULK

B = NTOT
B − NB, is reported for the reader’s convenience.
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FIGURE 15. Time evolution of the volume of individual vapour bubbles at the specific
thermodynamic condition ρL = 0.475 and contact angle φ = π/2. The sudden volume jumps
represent bubble–bubble coalescence events. The letters a, b, c, d refer to the time instants of the
snapshots reported in figure 16.

One of the major advantages of the mesoscale approach considered here consists in
the possibility to follow the complete bubble dynamics, from the inception of phase
transition to the late stage of macroscopic bubble evolution. The latter is analysed in
the following. The cluster analysis described at the beginning of this section enables
tracking of individual bubbles. Figure 15 concerns the volume histories of bubbles that
survive for the entire simulations. There, several curves (red and blue lines) feature sudden
volume jumps that correspond to coalescence events. One of those, see the event labelled
b captured in the snapshots of figure 16, involves the coalescence of two wall-attached
bubbles. The growth rate of the resulting bubble increases after coalescence, probably due
to the fusion process, which, by decreasing the interfacial curvature, tends to favour the
expansion.

The analysis is completed by the time evolution of mean temperature and pressure
inside the bubbles (figure 17). The saturation pressure and initial temperature are indicated
as references. Initially, both temperature and pressures are quite noisy, with a large
variance due to the small bubble dimensions. The temperature, which initially fluctuates
around the liquid temperature, starts decreasing during the expansion stage. Similarly the
pressure, which initially fluctuates around the saturation value, decreases together with
the temperature. All the bubbles experience a similar trend, with pressure that differs from
the saturation pressure up to 10 %.

10. Conclusions

This paper deals with the long-standing issue of heterogeneous nucleation in metastable
liquids. Common approaches deal with the problem using heuristic models in the context
of classical fluid mechanics or, more rigorously, simplified approaches like the classical
nucleation theory (CNT) or different kinds of more or less sophisticated simulations based
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(c) (d )

FIGURE 16. Snapshots during the nucleation process at the thermodynamic condition ρL =
0.48 and contact angle φ = π/2 taken at times t = 90 000, 165 000, 235 000 and 258 000
(a–d, respectively). The slices help to recognize the coalescence events.
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FIGURE 17. (a) Time evolution of the mean temperature inside the individual bubbles of
figure 16 (letters a, b, c, d respectively). (b) Time evolution of the mean pressure inside the same
bubbles. Both the initial temperature and the saturation pressure are reported as a reference.
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on atomistic descriptions of the fluid. Here a different path is followed, addressing the
nucleation process in the context of a formulation where thermal fluctuations are included
in the diffuse interface model in a physically consistent way. This leads to a system of
SPDEs that extends the capillary Navier–Stokes equations and includes a suitable random
forcing to model thermal noise. The diffuse interface model may be seen as originating
from the gradient expansion of more general non-local functionals in the context of density
functional theory (DFT). The result is an extension to heterogeneous nucleation of a
previous proposal based on fluctuating hydrodynamics that was originally used to deal
with nucleation in homogeneous conditions.

Technically, the issue was developing a theory of fluctuations in the presence of walls.
In this approach, the appropriate boundary condition describing the hydrophobic or
hydrophilic walls enters the Onsager operator that determines the noise intensity. Although
the theory is in several respects basically formal, specific examples allowed the noise
intensity operator to be explicitly determined. As a consequence, it is shown that there is
no need to modify the structure of the white noise when boundary conditions are suitably
included in the relevant operators. The issue is discussed also for the discrete system,
showing how the discrete model can be consistently derived from the original system
of SPDEs. The equivalence of the discrete model so derived with previous works that
addressed the problem in purely numerical terms by modifying the noise structure at the
wall is illustrated.

The proposed model is exploited to produce numerical simulations of bubble nucleation
at a solid wall with various degrees of wettability. By inducing layering effects in the
liquid close to the boundary, the wettability affects the heterogeneous nucleation rate.
At a qualitative level, the numerical data reproduce the predictions of CNT. There are,
however, significant differences with respect to the predictions of classical CNT extended
to heterogeneous conditions. The usual theory deals with the μVθ ensemble and provides
an estimate for the mean nucleation rate by considering a single bubble developing
in the metastable liquid. Direct comparison with this approach produces a small but
significant discrepancy in the rate, which decreases as the metastability level is reduced.
In order to better validate the present model, it was found crucial to take into account two
basic differences with the assumptions of the classical theory: (i) the simulations were
performed keeping the total system energy constant, making the NVE ensemble more
appropriate; and (ii) the system evolves in time, due to the accumulation of vapour in
the closed system. For this reason we adapted the NVE CNT to make it able to predict
the nucleation rate in a time-dependent state. The comparison of this extended model
turns out to be excellent. Although care must be exerted when comparing heterogeneous
and homogeneous nucleation rates, since the former is a surface process and the latter a
volume process, the present results suggest that, already for moderately hydrophilic walls,
homogeneous nucleation may still result in the most effective mechanism, due to the liquid
layering at the wall.

The favourable computational cost of this methodology encourages its exploitation for
more complex conditions of nucleation in the presence of complex geometries, mean flow
and dissolved gas, all aspects left for future works.

One of the potentially interesting novelties obtained as a byproduct of the present
analysis concerns a systematic description of the interaction between a capillary fluid and a
solid wall in the context of a diffuse interface approach. The equation introduced to model
the wall wettability is related to the boundary condition introduced by Cahn in the context
of the Cahn–Hilliard model. Here such a relationship is extended to take into account the
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thermodynamics of a non-isothermal liquid–vapour system showing how to determine the
wall contribution to the free energy consistently with the specific equation of state used to
describe the bulk fluid. Based on the resulting expression of the wall free energy, it is also
shown how to include non-equilibrium effects in the contact angle relaxation dynamics.

Although the present contribution may constitute a basic step to develop mesoscopic
numerical models of nucleation for complex systems able to bridge the gap between
nucleation and macroscopic bubble dynamics, several important ingredients still need to
be considered. Among the most important in view of practical applications is the extension
of the numerics to complex geometries in order to take into account wall roughness
effects, which are known to be crucial in most cases. The presence of dissolved gas is
almost unavoidable in experiments and very important for applications. Both effects are in
principle easily included in the model, although at the price of some additional work.

At the microscopic level, slippage is known to occur at liquid–solid interfaces. At
mesoscopic scale, this effect is described by introducing a phenomenological slip length
in the Navier equation that replaces the no-slip condition at the wall. It turns out that,
apart from special systems, such as flow in carbon nanotubes, the slip length is of
the order of less than one nanometre. Its effect on nucleation may, however, need to
be included in the model. In principle, this can be easily considered, including also
non-equilibrium effects on the contact angle dynamics. This will, however, require
dedicated consideration, since any new dissipative effect is expected to alter the explicit
form of the fluctuation–dissipation balance that determines the noise intensity.

At a more fundamental level, the limit of the model is the very assumption of the
square-gradient form for the free energy functional. The consequence is a monotonic
density profile, which, although describing the correct trend in a coarse-grained sense,
does not capture the details of the density oscillations that are known to occur in liquids
both experimentally, via X-ray scattering, and numerically, via MD simulations. More
complex functionals derived in the context of DFT can capture these effects, which could,
in principle, affect the nucleation rate. A common characteristic of DFT is, however, the
non-local nature of the functionals. If included in the model in the spirit of a generalized
dynamic DFT, non-locality would make the computations much more demanding, spoiling
the the ability of the model to reach macroscopic scales. In this respect, the opinion of
the authors is that the square-gradient approximation could be considered as a very good
compromise between the ability to account for even the finest details and computational
feasibility.
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Appendix A. Boundary condition for the density field

In order to account for the interaction of the capillary fluid with the wall, the surface
contribution fw(ρw, θ) was added to the free energy, (3.1).

The relevant conservation laws for the mass, momentum and energy of the layer are
(Slattery, Sagis & Oh 2007)

dMw

dt
= d

dt

∫
∂D
ρw dS = 0,

dPw

dt
= d

dt

∫
∂D
ρwvw dS =

∫
∂D
(∇π · Qπ + [[t]]) dS,

dEw

dt
= d

dt

∫
∂D

(
uw + 1

2
ρw|vw|2

)
dS =

∫
∂D
(∇π · (Qπ · vw − qw)+ [[h]]) dS,

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(A 1)

where ∇π is the gradient operator in the directions tangent to the layer, Qπ is the
(surface) stress tensor in the layer, and qw is the (tangent) energy flux within the
layer. The symbol [[·]] indicates the jump of a quantity throughout the layer. Thus
[[t]] = tfluid − tsub = Σ · n − tsub is the stress exerted on the layer by the bulk fluid and the
substrate. Analogously, [[h]] = hfluid − hsub = q · n − hsub is the energy flux in the layer
from bulk fluid and substrate. In the above equations, the subscript w is used to specify the
fields defined on the layer, in general. Notice that ρw has the dimensions of mass per unit
surface (i.e. it is inherently different from a bulk mass density) and, in principle, vw may
differ from the velocity of the fluid in contact with the layer. In fact, the no-slip condition
v|∂D = vw will be explicitly assumed in the following, as natural.

The time derivative of a generic extensive variable Φ defined on the surface reads

dΦ
dt

= d
dt

∫
∂D
φw dS =

∫
∂D

[
∂φw

∂t
+ vn

∂φw

∂n
+ ∇π · (vφw)

]
dS

=
∫
∂D

[
δφw

δt
+ ∇π · (vφw)

]
dS, (A 2)

where the so-called displacement derivative, δ/δt = ∂/∂t + vn∂/∂n, has been introduced
in the last equality, with vn the normal velocity component. Notice that for a generic
moving surface the normal spatial derivative and the time derivative of fields defined on
the manifold happen to be singular when taken separated. The displacement derivative,
instead, is well defined for smooth fields (Trusdell & Toupin 1960).

After the application of the time derivative, (A 2), the layer conservation laws can be
rewritten in local form as

∂ρw

∂t
+ vn

∂ρw

∂n
+ ∇π · (vρw) = 0,

∂ρwv

∂t
+ vn

∂ρwv

∂n
+ ∇π · (ρwv ⊗ v) = ∇π · Qπ + [[t]],

∂uw

∂t
+ vn

∂uw

∂n
+ ∇π · (vuw) = [[h]] + ∇πv : Qπ − ∇π · qw,

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(A 3)
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where energy conservation is re-expressed in terms of internal energy by subtracting the
kinetic energy balance from the total energy equation, as standard – see e.g. (4.3) for
the bulk fluid. Following the definition of surface internal energy, uw = fw + θsw with sw
the entropy density per unit surface of the layer, its differential is given in terms of the
differential of the layer free energy. In general, fw may be taken to depend on the layer
mass density ρw, the temperature θ and the thermodynamic properties of the adjoining
fluid, e.g. the density ρ of the fluid locally in contact with the layer.

In the limit as the concentrated layer mass density vanishes, the mass conservation
equation becomes irrelevant, while momentum conservation turns into a local force
balance,

∇π · Qπ + [[t]] = 0, (A 4)

i.e. the tension on the fluid may differ from that acting on the solid due to a
surface-tension-like contribution in the concentrated layer. In the same limit, the free
energy of the layer becomes fw = fw(ρ, θ) and the differential of the related internal energy
becomes

duw = ∂fw

∂ρ
dρ + θ dsw, (A 5)

which implies that the left-hand side of the third equation in (A 4) is rewritten as

∂uw

∂t
+ vn

∂uw

∂n
+ ∇π · (vuw) = ∂fw

∂ρ

∂ρ

∂t
+ θ

∂sw

∂t
+ vn

(
∂fw

∂ρ

∂ρ

∂n
+ θ

∂sw

∂n

)
+ ( fw + θsw)∇π · v + v ·

(
∂fw

∂ρ
∇πρ + θ∇πsw

)
. (A 6)

It follows that the equation for the layer entropy density is

θ

[
∂sw

∂t
+ vn

∂sw

∂n
+ ∇π · (vsw)

]
= −∂fw

∂ρ

(
∂ρ

∂t
+ vn

∂ρ

∂n
+ v · ∇πρ

)
+ ∇πv : Qπ − fw∇π · v + [[h]] − ∇π · qw. (A 7)

Since v · ∇π = vπ · ∇π , the terms in round brackets on the right-hand side of (A 8)
correspond to the material derivative of the density, Dρ/Dt. By applying the definition of
[[h]] = q · n − hsub = −λ(Dρ/Dt)(∂ρ/∂n)− hsub (please refer to (4.9) for the expression
of the energy flux q), the entropy equation reduces to

∂sw

∂t
+ vn

∂sw

∂n
+ ∇π · (vsw) = −1

θ

Dρ
Dt

(
∂fw

∂ρ
+ λ∂ρ

∂n

)
− 1
θ

(
hsub + k

∂θ

∂n

)
+ 1
θ
(Qπ − fwIπ) : ∇πv − ∇π ·

(qw

θ

)
− 1
θ 2

qw · ∇πθ.

(A 8)

The right-hand side of this equation consists of the sum of a source term
ssource = −(hsub + k ∂θ/∂n)/θ , a flux term sflux = −∇π · (qw/θ) and an entropy production
term consisting of three contributions, sprod = (1/θ)(Qπ − fwIπ) : ∇πv − (1/θ 2)qw · ∇πθ
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− (1/θ)(Dρ/Dt)(∂fw/∂ρ + λ ∂ρ/∂n), i.e.

d
dt

∫
∂D

sw dS =
∫
∂D

[ssource + sflux + sprod] dS. (A 9)

Considering linear constitutive laws, the Clausius–Duhem inequality combined with
the Curie principle allows one to express the layer stress tensor Qπ as a function of the
layer velocity surface gradient, and the layer tangential heat flux qw as a function of
the temperature surface gradient. Although, in principle, a Newtonian viscous surface
stress and Fourier-type heat conduction can be included, the continuity of velocity
between the solid (assumed as rigid), concentrated layer and fluid, and a vanishing
surface conductivity, lead to Qπ = fwIπ and qw = 0. The remaining production process
associated with capillarity, sprod = −(1/θ)(Dρ/Dt)(∂fw/∂ρ + λ ∂ρ/∂n), suggests the
simplest contact angle dynamics relaxing to equilibrium, (3.8), consistent with positive
entropy production,

Dρ
Dt

= −Mw

(
∂fw

∂ρ
+ λ∂ρ

∂n

)
, (A 10)

with Mw ≥ 0. When the entropy generated by the relaxation process is negligible, Young’s
law (3.8) directly applies.

Appendix B. The Onsager tensor

The present appendix explicitly provides the Onsager tensor O = −(M + M†)/(2kB)
that is crucial to derive the FDB discussed in § 6. The central issue is obtaining the
adjoint operator M† properly accounting for the boundary conditions. Although the
general solution is quite complicated, luckily the adjoint operator can be worked out
easily for the particular, but significant, case where the boundary condition for the energy
reduces to zero heat flux, qh · n = −k ∂θ/∂n = 0. It may be noted that the above condition
corresponds to zero energy flux in the particular case of a neutrally wettable surface for
which no stratification at the wall occurs, ρeq = ρeq0, and the energy flux, (6.7a,b), contains
only the heat flux component.

It may be instrumental to express the operator M using a slightly different formalism to
highlight the link between fluctuation p.d.f. (related to the entropy functional) and system
relaxation dynamics. To this purpose, thermodynamic forces are introduced as functional
derivatives of the entropy (see (5.7)), with respect to the conjugate thermodynamic fluxes
Δ′. Since fluctuations are assumed to be Gaussian, the thermodynamic forces are linear in
the fluxes,

Y = δΔSc

δΔ′ = −H′ Δ′ = −
(
δμc

θeq
,
δv

θeq
,
δθ

θ 2
eq

)
, (B 1)

suggesting the analogy with Hookean springs, with Y acting to restore the thermodynamic
equilibrium corresponding to the entropy maximum.

As discussed in § 5, the thermodynamic force Y is related to fluctuations through the
correlation tensor as Y = −kBC ′ −1

f Δ′. Using the identity M Y = kBL Δ′, the equation of
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Heterogeneous bubble nucleation dynamics 906 A20-43

motion (6.5) can be recast as

∂Δ′

∂t
= 1

kB
MδΔSc

δΔ′ + f , (B 2)

where the operator M acts on functions Y ∝ Δ′, with Δ′ satisfying the boundary
conditions

∂δρ

∂n
= 0, δv = 0,

∂δθ

∂n
= 0. (B 3a–c)

The space S of fluctuations Y is equipped with the scalar product

(Y ,Y ∗) =
∫

V
Y (x) ◦ Y ∗(x) dV, (B 4)

where the symbol ◦ stands for the product of the homologous components of the vectors
Y and Y ∗. The adjoint of the linear operator M is the operator M† such that

(MY ,Y ∗) = (Y ,M†Y ∗), (B 5)

for all the fluctuation vectors Y and Y ∗.
By applying the definition of the inner product in (B 4), and by recalling the expression

for M in (7.3), one has

(Y ,Y ∗) = −kBθeqρeq[(∇ · δv, δμc
∗)+ (∇δμc, δv

∗)]

− kBθeq[η(∇2δv∗ + 1
3∇∇ · δv∗, δv)+ θeq∂θp(∇δθ, δv∗)]

+ kBθ
2
eq[∂θp(∇ · δv, δθ∗)− k(∇2δθ, δθ∗)], (B 6)

where the inner products on the right-hand side now involve products of scalars and
ordinary scalar products between vectors. The above equation can be integrated by parts
repeatedly. Integration by parts gives rise to boundary terms like, for example,

〈δμ∗
c, δv · n〉 =

∫
∂V
δμ∗

cδv · n dS (B 7)

(please note that 〈a, b〉 is the surface integral of ab, while 〈ab〉 – with no comma separating
the symbols a and b – denotes the average) with final result

(MY ,Y ∗) = kBθeqρeq[−(∇δμ∗
c, δv)+ 〈δμ∗

c, δv · n〉]
+ kBθeqρeq[−(∇ · δv∗, δμc)+ 〈δv∗ · n, δμc〉]

+ kBθeqη

[
−(∇2δv∗, δv)−

〈
∂δv

∂n
, δv∗

〉
+
〈
∂δv∗

∂n
, δv

〉]
+ kBθeqη[−(∇∇ · δv∗, δv)− 〈∇ · δv, δv∗ · n〉 + 〈δv · n,∇ · δv∗〉]
+ kBθ

2
eq∂θp[−(∇ · δv∗, δθ)+ 〈δv∗ · n, δθ〉]

+ kBθ
2
eq∂θp[−(∇δθ∗, δv)+ 〈δθ, δv∗ · n〉]

+ kBθ
2
eqk

[
−(∇2δθ∗, δθ)−

〈
∂δθ

∂n
, δθ∗

〉
+
〈
δθ,

∂δθ∗

∂n

〉]
. (B 8)

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 9
3.

42
.6

5.
69

, o
n 

13
 F

eb
 2

02
1 

at
 1

4:
15

:1
3,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
02

0.
76

1

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2020.761


906 A20-44 M. Gallo, F. Magaletti and C. M. Casciola

The boundary terms are due to the boundary conditions: δv|∂V = δv∗|∂V = 0 and
∂δθ/∂n|∂V = ∂δθ∗/∂n|∂V = 0. It is worth noticing that, as the velocity is zero at the walls,
no condition is required on the chemical potential boundary to make the corresponding
boundary term vanish.

As a consequence of the boundary conditions, (B 8) simplifies to

(MY ,Y ∗) = kBθeqρeq[−(δv,∇δμ∗
c)− (δμc,∇ · δv∗)]

− kBθeq[η(δv,∇2δv∗ + 1
3∇∇ · δv∗)+ θeq∂θp(δθ,∇ · δv∗)]

− kBθ
2
eq[∂θp(δv,∇δθ∗)+ k(δθ,∇2δθ∗)] = (Y ,M†Y ∗). (B 9)

As expected, all the odd-order differential operators, e.g. gradient or gradient of
Laplacian, are skew-adjoint, while the even-order ones, like Laplacian and gradient of
divergence, are self-adjoint. This explicit calculation shows that M† of relevance for the
FDB of (6.18) is

M† = kBθeq

⎛⎜⎝ 0 −ρeq∇· 0
−ρeq∇ −η(∇2 + 1

3∇ ⊗ ∇) −θeq∂θp∇
0 −θeq∂θp∇· −kθ 2

eq∇2

⎞⎟⎠ δ(x̂ − x). (B 10)

The Onsager tensor is readily obtained as

O = 1
2kB

(M + M†) =
⎛⎝0 0 0

0 −ηθeq(I ∇2 + 1
3∇⊗∇) 0

0 0 −θ 2
eqk∇2

⎞⎠ δ(x̂ − x), (B 11)

and, with the FDB (6.5), the equation of motion (B 2) takes the form

∂tΔ
′ = 1

kB
M δΔSc

δΔ′ +
√

2 M1/2
H Ξ , (B 12)

where MH = 1
2(M + M†) = kBO is the Hermitian part of M, and M1/2

H M† 1/2
H =

MH.

Appendix C. Numerical scheme

When dealing with stochastic equations, the numerical integration must reproduce the
correct statistics of the fluctuating fields, i.e. the discrete scheme needs to be consistent
with the fluctuation–dissipation balance. A necessary condition is that the scheme should
map operators that are mutually adjoint into mutually adjoint matrices (the discrete
operators); namely, if, for two operators A and B, B = A†, the matrix representing their
discrete form, AN and BN , should satisfy BN = A†

N (Atzberger 2010).
Entering in detail, equations (8.1) were discretized with the method of lines on

a uniform, staggered grid with differential operators approximated through central,
second-order, finite differences (Donev et al. 2010; Balboa et al. 2012). The simulation
domain is partitioned into N disjoint cubic cells Vn of volume ΔV = Δx3, i.e.
V = ⋃N

n=1 Vn and Vn ∩ Vm = ∅ if m /= n. All the scalar fields are located at cell
centres while cell face centres allocate the normal-to-face component of vectors.
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Heterogeneous bubble nucleation dynamics 906 A20-45

The (semi-)discrete noise is a Gaussian process delta-correlated in time identically and
independently distributed across the cells, with covariance

〈Ξ̂(τ1)n1 ⊗ Ξ̂(τ2)n2〉 = δ(τ1 − τ2)
δn1n2

ΔV
. (C 1)

In the spirit of the method of lines, the spatial discretization on the staggered grid turns
the SPDEs into stochastic ordinary differential equations, of the form

dΔ̂(t)
dt

= L̂Δ̂(t)+ K̂Ξ̂(t), (C 2)

where Δ̂ = (Δ̂, . . . , Δ̂N)
T is the vector built with the field variable coarse-grained on the

cells, i.e. for cell n,

Δ̂n(t) = 1
ΔV

∫
Vn

dV Δ(x, t) (C 3)

(where Δ̂n = (δ̂ρn, δ̂vn, δ̂θ n)
T contains the five coarse-grained variables). Here L̂ is the

discrete version of the continuum operator L. As for the continuum system, the discrete
spatial operator is equipped with a boundary condition which may be included in the
staggered formulation by considering suitable ghost nodes. In the above K̂ is the discrete
version of the continuum noise intensity operator K, which, apart from proportionality
factors, is essentially, but with some differences to be highlighted, a discrete divergence
operator. Adapting the formalism used in § 6, the FDB for the discrete system reads

M̂ + M̂
T = −(L̂〈Δ̂ ⊗ Δ̂〉 + 〈Δ̂ ⊗ Δ̂〉L̂T

) = K̂ K̂
T
. (C 4)

The discrete version of the entropy functional (5.7) provides the p.d.f. of discrete
variables. As discussed in § 5, the p.d.f. of fluctuations, (5.14), factorizes. This property is
inherited by the discrete version of the entropy written in terms of the coarse-grained
variables, implying that cross-correlations between different fields vanish. Indeed, the
discrete version of the entropy functional reads

ΔŜc = ΔŜρc + ΔŜv
c + ΔŜθc

= −1
2

∑
n1,n2

[(
c2

T,eq

θeqρeq

)
n1

δn1n2 − λ

θeq
∇̂2

n1n2

]
δ̂ρn1

δ̂ρn2
ΔV

− 1
2

∑
n1,n2

(
ρeq

θeq

)
n1

δn1n2 δ̂vn1 · δ̂vn2ΔV − 1
2

∑
n1,n2

(
ρeq

cv,eqθ 2
eq

)
n1

δn1n2 δ̂θ n1 δ̂θ n2ΔV,

(C 5)

where ∇̂2
n1n2

is the discrete Laplacian operator endowed with boundary conditions.
In rigorous terms, the additional contribution due to the boundary terms should also be

included, (5.14). However, as commented already for the continuum case, the boundary
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906 A20-46 M. Gallo, F. Magaletti and C. M. Casciola

terms do not contribute to the correlation in the fluid domain. The factorized p.d.f. reads

Peq(Δ1, . . . ,ΔN) = exp(ΔŜc/kB)

Z
= exp(ΔŜρc /kB)

Zρ
exp(ΔŜv

c/kB)

Zv

exp(ΔŜθc/kB)

Zθ
. (C 6)

The covariance matrix of the discrete density fields reads

〈δ̂ρn1
δ̂ρn2

〉 =
∫ N∏

ν3=1

Dδ̂ρν3
δ̂ρn1

δ̂ρn2

exp
(

−ΔV
2kB

∑N
ν1,ν2=1 δ̂ρν1

hν1ν2 δ̂ρν2

)
Zρ

, (C 7)

where, from (C 5),

hν1ν2 =
(

c2
T,eq

θeqρeq

)
ν1

δν1ν2 − λ

θeq
∇̂2
ν1ν2
. (C 8)

The p.d.f. in (C 7) is a multivariate Gaussian with covariance matrix Cν1ν2 = kBh−1
ν1ν2
/ΔV ,

hence

〈δ̂ρn1
δ̂ρn2

〉 = kB

ΔV
h−1

n1n2
. (C 9)

Using the same procedure one finds

〈δ̂vn1 ⊗ δ̂vn2〉 = kB

ΔV

(
θeq

ρeq

)
n1

Iδn1n2, (C 10)

〈δ̂θ n1 δ̂θ n2〉 = kB

ΔV

(
cv,eqθ

2
eq

ρeq

)
n1

δn1n2 . (C 11)

At discrete level, the fluctuating fields are zero-mean Gaussian processes, with covariance
matrix given by (C 9), (C 10) and (C 11). The fields are statistically independent of
each other (i.e. the cross-correlation of density and temperature is zero), velocity and
temperature are uncorrelated across cells, while the density field has a finite correlation
due to capillarity.

Given all the correlations, the overall correlation matrix 〈Δ̂ ⊗ Δ̂〉 is easily built and the
discrete noise intensity operator is found by solving (C 4). In order to provide the flavour of
this approach, it may be instrumental to describe a simple but illustrative one-dimensional
problem, given by the heat equation for a scalar field c on the interval [0,L]. The interval
is partitioned into N cells, from cell 0 to cell N − 1 with a ghost cell added to the right
and the left of the interval, to enforce boundary conditions; see figure 18 for a sketch. The
scalar is located at cell centres while fluxes are located at cell boundaries.

The prototype equation is

dĉ
dt

= L̂ĉ + K̂Ξ̂ . (C 12)

Here ĉ = (ĉ0, ĉ1, . . . , ĉN−1) is an N-dimensional vector, collecting the N discrete values of
the scalar field c(x, t); Ξ̂ = (Ξ̂−1/2, Ξ̂1/2, . . . , Ξ̂N−1/2) is the (N + 1)-dimensional vector
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x

ĉNĉN–1ĉ–1 ĉ1ĉ0

Ξ̂N –1/2
Ξ̂ –1/2 Ξ̂1/2

FIGURE 18. Staggered grid: the scalar field ĉ and the fluxes, the stochastic flux Ξ̂ in particular,
are located at cell centres and cell boundaries, respectively. The N field cells are coloured in dark
grey, and the ghost cells in light grey. Black circles and rhombuses represent the field collocation
points. There are N field variables, two ghost field variables and N + 1 stochastic fluxes.

of stochastic fluxes Ξ̂(x, t); and L̂ is the one-dimensional Laplacian,

L̂ = 1
Δx2

⎛⎜⎜⎜⎜⎜⎜⎝

α − 2 1 0 0 . . . . . .
1 −2 1 0 . . . . . .
0 1 −2 1 . . . . . .
...

...
...

. . .
...

...
. . . . . . 0 1 −2 1
. . . . . . . . . 0 1 α − 2

⎞⎟⎟⎟⎟⎟⎟⎠ , (C 13)

where α = −1 and 1 for homogeneous Dirichlet (field value assigned) and for Neumann
(normal derivative) boundary conditions, respectively.

For the present system the field correlation reduces to the identity matrix, 〈ĉn1 ĉn2〉 =
δn1n2 . As one may guess from the continuum theory illustrated in § 6, the noise intensity
operator is, basically, the discrete version of the divergence operator. However, it must be
properly modified at the first (−1/2) and last (N + 1/2) cell interface to account for the
effect of the boundary conditions. The ansatz for the discrete noise operator is

K̂ =
√

2
Δx

⎛⎜⎜⎜⎜⎜⎜⎝

β 1 0 0 . . . . . . . . .

0 −1 1 0 . . . . . . . . .
0 0 −1 1 . . . . . . . . .
...

...
...

. . .
...

...
...

. . . . . . . . . 0 −1 1 0

. . . . . . . . . . . . 0 −1 −β

⎞⎟⎟⎟⎟⎟⎟⎠ , (C 14)

where β is a free parameter needed to adapt the divergence operator to the boundary
conditions and the factor

√
2 has been added for convenience. For the present system,

since the correlation matrix is the identity, (C 4) is simply

− 2L̂ = K̂ K̂
T
, (C 15)

which is solved by the ansatz provided β = √
1 − α with α = −1, 1 (Dirichlet, Neumann),

respectively. This result reproduces, using a different philosophy, the prescription
suggested by Donev et al. (2010) and Balboa et al. (2012). In their case the noise operator
was postulated to be given by the present ansatz with β = −1 (i.e. the noise operator was
kept identical to that for an unbound domain) and the noise correlation was modified at end
points, 〈Ξ̂ 2

−1/2〉 = 〈Ξ̂ 2
N−1/2〉 = 2 and 0 for Dirichlet and Neumann boundary conditions,

respectively. The present choice is to leave the noise correlations unaffected (specifically,
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ρ

0.72 0.74 0.76 0.78
0

10

20

30

40

50
Theoretical

Numerical

θ

f (θ)f (ρ)

0.92 0.96 1.00 1.04 1.08
0

5

10

15

20(b)(a)

FIGURE 19. Probability distribution functions of the density (a) and of the temperature
(b) fields. In both panels the solid line represents the theoretical predictions (Gaussian
distributions) and the circles correspond to the numerical calculations.

2K/θ

f (
2

K
/θ

)

0 2 4 6 8

0.05

0.10

0.15

0.20

0.25
Theoretical

Numerical

p

f(
p)

0 0.2 0.4 0.6 0.8

1

2

3

4
(b)(a)

FIGURE 20. Probability distribution functions of kinetic energy K̂n = 1
2ρeqΔV(〈v̂n · v̂n〉)

normalized with kBθeq/2 (a) and pressure (b). Theoretical predictions are shown by the
solid lines.

〈Ξ̂ 2
−1/2〉 = 〈Ξ̂ 2

N−1/2〉 = 1) and suitably modify the noise intensity operator as explained
above. At the practical level, the two approaches are identical, but the present proposal
sticks more directly to the continuum formulation described in § 6.

Several equilibrium simulations have been performed in order to compare the numerical
results with the theoretical predictions. As an example, the fluctuations of a stable liquid
at 〈ρeq〉 = 0.75 and 〈θeq〉 = 1 (non-dimensional Lennard-Jones units) have been simulated
in a channel with two parallel plates as bottom and top boundaries. The contact angle
was φ = π/2, which implies ∂ρ/∂n = 0 at the solid boundaries. The variances of the
fluctuating fields were evaluated by averaging over time, 〈Δ̂2

n〉 = (1/T)
∫ T

0 Δ̂2
n dt (here Δ̂n

denotes one of the components of the fluctuating field at cell n), with a time window of
T = 100 (for the specific case of φ = π/2, the equilibrium field is homogeneous, hence
additional averaging over cells can be exploited to increase the statistics).
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The comparison of the probability distribution functions of the density and the
temperature is shown in figure 19. The numerical results are in excellent agreement
with the theoretical predictions. Figure 20 shows the normalized mean kinetic energy.
Since the normalized Cartesian velocity components at cell n, i.e. v̂k

n(ρeqΔV/kBθeq)
1/2,

are independent normal Gaussian processes, the mean kinetic energy normalized by
1
2 kBθeq is a chi-squared process with mean value 3. Again, the agreement between theory
and numerical results is remarkable. Pressure fluctuations are addressed in figure 20(b).
Although an exact theoretical prediction is not available, an estimate can be provided using
the pressure equation of state in terms of temperature and density, linearizing around the
mean value. Accordingly, pressure fluctuations can be estimated as

δ̂pn = ∂p
∂ρ

∣∣∣∣
eq

δ̂ρn + ∂p
∂θ

∣∣∣∣
eq

δ̂θ n, (C 16)

with variance

〈δ̂p2
n〉 =

(
∂p
∂ρ

∣∣∣∣
eq

)2

〈δ̂ρ2
n〉 +

(
∂p
∂θ

∣∣∣∣
eq

)2

〈δ̂θ 2
n〉. (C 17)
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