19 research outputs found

    Millimeter-Wave Transmitarray and Reflectarray Antennas for Communications Systems

    Get PDF

    High gain dual parasitic patch loaded wideband antenna for 28 GHz 5G applications

    Get PDF
    Proceedings of: 2021 International Symposium on Antennas and Propagation (ISAP), 19-22 October, 2021, Taipei, Taiwan.This work presents the design of a high gain wideband antenna for 28 GHz band application. The antenna structure was inspired from a conventional circular patch which is modified using consecutive loading of two parasitic patch. The presented antenna offers a wideband to completely cover the globally allocated band spectrum for 28 GHz 5G applications. Moreover, the broad side radiation pattern, relatively compact size and high gain makes the proposed work potential candidate for future 5G applications.This project has received funding from Universidad Carlos III de Madrid and the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant Agreement No 801538. Also, this work is partially supported by Antenna and Wireless Propagation Group (AWPG). https://sites.google.com/view/awpgrp

    A Review of Broadband Low-Cost and High-Gain Low-Terahertz Antennas for Wireless Communications Applications

    Get PDF
    Low-terahertz (Low-THz, 100 GHz-1.0 THz) technology is expected to provide unprecedented data rates in future generations of wireless system such as the 6th generation (6G) mobile communication system. Increasing the carrier frequencies from millimeter wave to THz is a potential solution to guarantee the transmission rate and channel capacity. Due to the large transmission loss of Low-THz wave in free space, it is particularly urgent to design high-gain antennas to compensate the additional path loss, and to overcome the power limitation of Low-THz source. Recently, with the continuous updating and progress of additive manufacturing (AM) and 3D printing (3DP) technology, antennas with complicated structures can now be easily manufactured with high precision and low cost. In the first part, this paper demonstrates different approaches of recent development on wideband and high gain sub-millimeter-wave and Low-THz antennas as well as their fabrication technologies. In addition, the performances of the state-of-the-art wideband and high-gain antennas are presented. A comparison among these reported antennas is summarized and discussed. In the second part, one case study of a broadband high-gain antenna at 300 GHz is introduced, which is an all-metal model based on the Fabry-Perot cavity (FPC) theory. The proposed FPC antenna is very suitable for manufacturing using AM technology, which provides a low-cost, reliable solution for emerging THz applications

    Design of a Dual Band SNG Metamaterial Based Antenna for LTE 46/WLAN and Ka-Band Applications

    Get PDF
    The non-existing properties of the metamaterial surfaces can be utilized to improve the antenna radiation characteristics. In this article, a design and performance analysis of a Single Negative (SNG) metamaterial based antenna is imparted for LTE 46/WLAN and Ka-band (like in satellite communication for the receiving side) applications. The unit cell of the metamaterial surface exhibits negative permittivity and positive permeability; yielding a high magnitude positive refractive index, is used to improve and analyze the performance of the proposed monopole antenna element. The proposed SNG based antenna covers a -10 dB bandwidth from 5.35-5.69 GHz (LTE 46/WLAN) and 17.81-20.67 GHz (Ka-band). The total size of the proposed antenna element is 20.2 x 28 .4 mm(2) while a 2 x 3 SNG metamaterial surface is used at the back of the antenna element which improves the gain from 4.52 dB to 9.13 dB for the desired Ka band and 1.17 to 5.04 dB for the LTE 46/WLAN band. Furthermore, for the LTE 46/WLAN frequency band, the impedance matching also gets better, resulting in the return loss improvement from -11 dB to -32.4 dB. Moreover, the radiation efficiency is also improved by more than 10 % for the Ka band after employing the SNG metamaterial surface. The measured results fall in good agreement with the simulated one and make the proposed SNG metamaterial based antenna design competent for the LTE 46/WLAN and Ka-band (like in satellite communication for the receiving side) applications

    A Broadband Meta surface Based MIMO Antenna with High Gain and Isolation For 5G Millimeter Wave Applications

    Get PDF
    This paper proposes a Broadband Meta surface-based MIMO Antenna with High Gain and Isolation For 5G Millimeter applications. A single antenna is transformed into an array configuration to improve gain. As a result, each MIMO antenna is made up of a 1x2 element array supplied by a concurrent feedline. A 9x6 Split Ring Resonator (SRR) elongated cell is stacked above the antenna to improve gain and eliminate the coupling effects between the MIMO components. The substrate Rogers 5880 with a thickness of 0.787mm and 1.6mm is used for the antenna and meta surface. Furthermore, antenna performance is assessed using S-parameters, MIMO characteristics, and radiation patterns. The final designed antenna supports 5G applications by embracing the mm-wave frequency spectrum at Ka-band, there is a noticeable increase in gain. In addition, once the meta surface is introduced, there is an improvement in isolation.&nbsp

    Statistical Review Evaluation of 5G Antenna Design Models from a Pragmatic Perspective under Multi-Domain Application Scenarios

    Get PDF
    Antenna design for the 5G spectrum requires analysis of contextual frequency bands, design of miniaturization techniques, gain improvement models, polarization techniques, standard radiation pattern designs, metamaterial integration, and substrate selection. Most of these models also vary in terms of qualitative & and quantitative parameters, which include forward gain levels, reverse gain, frequency response, substrate types, antenna shape, feeding levels, etc. Due to such a wide variety in performance, it is ambiguous for researchers to identify the optimum models for their application-specific use cases. This ambiguity results in validating these models on multiple simulation tools, which increases design delays and the cost of deployments. To reduce this ambiguity, a survey of recently proposed antenna design models is discussed in this text. This discussion recommended that polarization optimization and gain maximization are the major impact factors that must be considered while designing antennas. It is also recommended that collocated microstrip slot antennas, fully planar dual-polarized broadband antennas, and real-time deployments of combined slot antenna pairs with wide-band decoupling are very advantageous. Based on this discussion, researchers will be able to identify optimal performance-specific models for different applications. This discussion also compares underlying models in terms of their quantitative parameters, which include forward gain levels, bandwidth, complexity of deployment, scalability, and cost metrics. Upon referring to this comparison, researchers will be able to identify the optimum models for their performance-specific use cases. This review also formulates a novel Antenna Design Rank Metric (ADRM) that combines the evaluated parameters, thereby allowing readers to identify antenna design models that are optimized for multiple parameters and can be used for large-scale 5G communication scenarios

    Advanced Radio Frequency Antennas for Modern Communication and Medical Systems

    Get PDF
    The main objective of this book is to present novel radio frequency (RF) antennas for 5G, IOT, and medical applications. The book is divided into four sections that present the main topics of radio frequency antennas. The rapid growth in development of cellular wireless communication systems over the last twenty years has resulted in most of world population owning smartphones, smart watches, I-pads, and other RF communication devices. Efficient compact wideband antennas are crucial in RF communication devices. This book presents information on planar antennas, cavity antennas, Vivaldi antennas, phased arrays, MIMO antennas, beamforming phased array reconfigurable Pabry-Perot cavity antennas, and time modulated linear array

    Dual-band, dual-sense textile antenna with AMC backing for localization using GPS and WBAN/WLAN

    Get PDF
    A wearable textile antenna with dual-band and dual-sense characteristics is presented in this work. It operates at the 2.45 GHz band for WBAN and WLAN applications, and at the 1.575 GHz band for Global Positioning System (GPS) applications. An antenna backing based on an artificial magnetic conductor (AMC) plane operating at 2.45 GHz band is introduced to reduce the backward radiation and to improve antenna gain. It consists of a 3×3 array of square patch unit cells, where each unit cell is integrated with four square slits and a square ring. A square-shaped patch is then located on top of the substrate as its radiator. To enable dual-band operation, two corners of this radiator are truncated, with each of the four corners incorporated with a rectangular slit to enable its circular polarization characteristic in the GPS band. Simulation and experimental results are in good agreement and indicate proper antenna operation with linear polarization in the 2.45 GHz band and circular polarization in the 1.575 GHz band, with realized gain of 1.94 dBi and 1.98 dBic, respectively
    corecore