422 research outputs found

    The impact of pre- and post-image processing techniques on deep learning frameworks: A comprehensive review for digital pathology image analysis

    Get PDF
    Recently, deep learning frameworks have rapidly become the main methodology for analyzing medical images. Due to their powerful learning ability and advantages in dealing with complex patterns, deep learning algorithms are ideal for image analysis challenges, particularly in the field of digital pathology. The variety of image analysis tasks in the context of deep learning includes classification (e.g., healthy vs. cancerous tissue), detection (e.g., lymphocytes and mitosis counting), and segmentation (e.g., nuclei and glands segmentation). The majority of recent machine learning methods in digital pathology have a pre- and/or post-processing stage which is integrated with a deep neural network. These stages, based on traditional image processing methods, are employed to make the subsequent classification, detection, or segmentation problem easier to solve. Several studies have shown how the integration of pre- and post-processing methods within a deep learning pipeline can further increase the model's performance when compared to the network by itself. The aim of this review is to provide an overview on the types of methods that are used within deep learning frameworks either to optimally prepare the input (pre-processing) or to improve the results of the network output (post-processing), focusing on digital pathology image analysis. Many of the techniques presented here, especially the post-processing methods, are not limited to digital pathology but can be extended to almost any image analysis field

    The impact of pre- and post-image processing techniques on deep learning frameworks: A comprehensive review for digital pathology image analysis.

    Get PDF
    Recently, deep learning frameworks have rapidly become the main methodology for analyzing medical images. Due to their powerful learning ability and advantages in dealing with complex patterns, deep learning algorithms are ideal for image analysis challenges, particularly in the field of digital pathology. The variety of image analysis tasks in the context of deep learning includes classification (e.g., healthy vs. cancerous tissue), detection (e.g., lymphocytes and mitosis counting), and segmentation (e.g., nuclei and glands segmentation). The majority of recent machine learning methods in digital pathology have a pre- and/or post-processing stage which is integrated with a deep neural network. These stages, based on traditional image processing methods, are employed to make the subsequent classification, detection, or segmentation problem easier to solve. Several studies have shown how the integration of pre- and post-processing methods within a deep learning pipeline can further increase the model's performance when compared to the network by itself. The aim of this review is to provide an overview on the types of methods that are used within deep learning frameworks either to optimally prepare the input (pre-processing) or to improve the results of the network output (post-processing), focusing on digital pathology image analysis. Many of the techniques presented here, especially the post-processing methods, are not limited to digital pathology but can be extended to almost any image analysis field

    Cancer diagnosis using deep learning: A bibliographic review

    Get PDF
    In this paper, we first describe the basics of the field of cancer diagnosis, which includes steps of cancer diagnosis followed by the typical classification methods used by doctors, providing a historical idea of cancer classification techniques to the readers. These methods include Asymmetry, Border, Color and Diameter (ABCD) method, seven-point detection method, Menzies method, and pattern analysis. They are used regularly by doctors for cancer diagnosis, although they are not considered very efficient for obtaining better performance. Moreover, considering all types of audience, the basic evaluation criteria are also discussed. The criteria include the receiver operating characteristic curve (ROC curve), Area under the ROC curve (AUC), F1 score, accuracy, specificity, sensitivity, precision, dice-coefficient, average accuracy, and Jaccard index. Previously used methods are considered inefficient, asking for better and smarter methods for cancer diagnosis. Artificial intelligence and cancer diagnosis are gaining attention as a way to define better diagnostic tools. In particular, deep neural networks can be successfully used for intelligent image analysis. The basic framework of how this machine learning works on medical imaging is provided in this study, i.e., pre-processing, image segmentation and post-processing. The second part of this manuscript describes the different deep learning techniques, such as convolutional neural networks (CNNs), generative adversarial models (GANs), deep autoencoders (DANs), restricted Boltzmann’s machine (RBM), stacked autoencoders (SAE), convolutional autoencoders (CAE), recurrent neural networks (RNNs), long short-term memory (LTSM), multi-scale convolutional neural network (M-CNN), multi-instance learning convolutional neural network (MIL-CNN). For each technique, we provide Python codes, to allow interested readers to experiment with the cited algorithms on their own diagnostic problems. The third part of this manuscript compiles the successfully applied deep learning models for different types of cancers. Considering the length of the manuscript, we restrict ourselves to the discussion of breast cancer, lung cancer, brain cancer, and skin cancer. The purpose of this bibliographic review is to provide researchers opting to work in implementing deep learning and artificial neural networks for cancer diagnosis a knowledge from scratch of the state-of-the-art achievements

    3D Convolutional Neural Networks for Tumor Segmentation using Long-range 2D Context

    Full text link
    We present an efficient deep learning approach for the challenging task of tumor segmentation in multisequence MR images. In recent years, Convolutional Neural Networks (CNN) have achieved state-of-the-art performances in a large variety of recognition tasks in medical imaging. Because of the considerable computational cost of CNNs, large volumes such as MRI are typically processed by subvolumes, for instance slices (axial, coronal, sagittal) or small 3D patches. In this paper we introduce a CNN-based model which efficiently combines the advantages of the short-range 3D context and the long-range 2D context. To overcome the limitations of specific choices of neural network architectures, we also propose to merge outputs of several cascaded 2D-3D models by a voxelwise voting strategy. Furthermore, we propose a network architecture in which the different MR sequences are processed by separate subnetworks in order to be more robust to the problem of missing MR sequences. Finally, a simple and efficient algorithm for training large CNN models is introduced. We evaluate our method on the public benchmark of the BRATS 2017 challenge on the task of multiclass segmentation of malignant brain tumors. Our method achieves good performances and produces accurate segmentations with median Dice scores of 0.918 (whole tumor), 0.883 (tumor core) and 0.854 (enhancing core). Our approach can be naturally applied to various tasks involving segmentation of lesions or organs.Comment: Submitted to the journal Computerized Medical Imaging and Graphic

    Brain Tumor Detection and Segmentation in Multisequence MRI

    Get PDF
    Tato práce se zabývá detekcí a segmentací mozkového nádoru v multisekvenčních MR obrazech se zaměřením na gliomy vysokého a nízkého stupně malignity. Jsou zde pro tento účel navrženy tři metody. První metoda se zabývá detekcí prezence částí mozkového nádoru v axiálních a koronárních řezech. Jedná se o algoritmus založený na analýze symetrie při různých rozlišeních obrazu, který byl otestován na T1, T2, T1C a FLAIR obrazech. Druhá metoda se zabývá extrakcí oblasti celého mozkového nádoru, zahrnující oblast jádra tumoru a edému, ve FLAIR a T2 obrazech. Metoda je schopna extrahovat mozkový nádor z 2D i 3D obrazů. Je zde opět využita analýza symetrie, která je následována automatickým stanovením intenzitního prahu z nejvíce asymetrických částí. Třetí metoda je založena na predikci lokální struktury a je schopna segmentovat celou oblast nádoru, jeho jádro i jeho aktivní část. Metoda využívá faktu, že většina lékařských obrazů vykazuje vysokou podobnost intenzit sousedních pixelů a silnou korelaci mezi intenzitami v různých obrazových modalitách. Jedním ze způsobů, jak s touto korelací pracovat a používat ji, je využití lokálních obrazových polí. Podobná korelace existuje také mezi sousedními pixely v anotaci obrazu. Tento příznak byl využit v predikci lokální struktury při lokální anotaci polí. Jako klasifikační algoritmus je v této metodě použita konvoluční neuronová síť vzhledem k její známe schopnosti zacházet s korelací mezi příznaky. Všechny tři metody byly otestovány na veřejné databázi 254 multisekvenčních MR obrazech a byla dosáhnuta přesnost srovnatelná s nejmodernějšími metodami v mnohem kratším výpočetním čase (v řádu sekund při použitý CPU), což poskytuje možnost manuálních úprav při interaktivní segmetaci.This work deals with the brain tumor detection and segmentation in multisequence MR images with particular focus on high- and low-grade gliomas. Three methods are propose for this purpose. The first method deals with the presence detection of brain tumor structures in axial and coronal slices. This method is based on multi-resolution symmetry analysis and it was tested for T1, T2, T1C and FLAIR images. The second method deals with extraction of the whole brain tumor region, including tumor core and edema, in FLAIR and T2 images and is suitable to extract the whole brain tumor region from both 2D and 3D. It also uses the symmetry analysis approach which is followed by automatic determination of the intensity threshold from the most asymmetric parts. The third method is based on local structure prediction and it is able to segment the whole tumor region as well as tumor core and active tumor. This method takes the advantage of a fact that most medical images feature a high similarity in intensities of nearby pixels and a strong correlation of intensity profiles across different image modalities. One way of dealing with -- and even exploiting -- this correlation is the use of local image patches. In the same way, there is a high correlation between nearby labels in image annotation, a feature that has been used in the ``local structure prediction'' of local label patches. Convolutional neural network is chosen as a learning algorithm, as it is known to be suited for dealing with correlation between features. All three methods were evaluated on a public data set of 254 multisequence MR volumes being able to reach comparable results to state-of-the-art methods in much shorter computing time (order of seconds running on CPU) providing means, for example, to do online updates when aiming at an interactive segmentation.
    corecore