103 research outputs found

    A Charge-Recycling Scheme and Ultra Low Voltage Self-Startup Charge Pump for Highly Energy Efficient Mixed Signal Systems-On-A-Chip

    Get PDF
    The advent of battery operated sensor-based electronic systems has provided a pressing need to design energy-efficient, ultra-low power integrated circuits as a means to improve the battery lifetime. This dissertation describes a scheme to lower the power requirement of a digital circuit through the use of charge-recycling and dynamic supply-voltage scaling techniques. The novel charge-recycling scheme proposed in this research demonstrates the feasibility of operating digital circuits using the charge scavenged from the leakage and dynamic load currents inherent to digital design. The proposed scheme efficiently gathers the “ground-bound” charge into storage capacitor banks. This reclaimed charge is then subsequently recycled to power the source digital circuit. The charge-recycling methodology has been implemented on a 12-bit Gray-code counter operating at frequencies of less than 50 MHz. The circuit has been designed in a 90-nm process and measurement results reveal more than 41% reduction in the average energy consumption of the counter. The total energy savings including the power consumed for the generation of control signals aggregates to an average of 23%. The proposed methodology can be applied to an existing digital path without any design change to the circuit but with only small loss to the performance. Potential applications of this scheme are described, specifically in wide-temperature dynamic power reduction and as a source for energy harvesters. The second part of this dissertation deals with the design and development of a self-starting, ultra-low voltage, switched-capacitor (SC) DC-DC converter that is essential to an energy harvesting system. The proposed charge-pump based SC-converter operates from 125-mV input and thus enables battery-less operation in ultra-low voltage energy harvesters. The charge pump does not require any external components or expensive post-fabrication processing to enable low-voltage operation. This design has been implemented in a 130-nm CMOS process. While the proposed charge pump provides significant efficiency enhancement in energy harvesters, it can also be incorporated within charge recycling systems to facilitate adaptable charge-recycling levels. In total, this dissertation provides key components needed for highly energy-efficient mixed signal systems-on-a-chip

    Анализ влияния расширенной конфигурации n-МОП транзистора на параметры 4x1 мультиплексора

    Get PDF
    Полный текст доступен на сайте издания по подписке: http://radio.kpi.ua/article/view/S0021347018030044В статье приведен анализ потребляемой мощности и величины задержки 4x1 мультиплексора на базе расширенной конфигурации n-МОП транзистора AT-NMOS (Augmented Transistor NMOS). Рассмотрено влияние различных уровней общей ширины канала транзистора на характеристики мощности утечки и задержки в случае 45 нм технологии. Установлено, что параметр эффективности улучшается в предлагаемой конструкции на основе расширенной конфигурации p-МОП транзистора с закороченным участком затвор–исток и n-МОП структурой ASG-S PMOS-NMOS (Augmented Shorted Gate-Source PMOS with NMOS) по сравнению с 4x1 мультиплексором на основе конфигурации расширенного n-МОП транзистора со статическим порогом ST-ATNMOS (Static Threshold AT-NMOS). При этой комбинации получены желаемые параметры рабочей характеристики проектируемой схемы. В работе рассмотрено два типа моделей для 4x1 мультиплексора. Показано, что мощность утечки существенно сокращается. Характеристика задержки также улучшается до 5% при источнике питания 1 В в случае рассмотрения многоуровневой ширины канала транзистора для оценки моделей 4x1 мультиплексора на основе различных конфигураций расширенного n-МОП транзистора AT-NMOS. Моделирование осуществлялось при использовании моделирующих программ Cadence Analog Virtuoso и Spectre Simulator применительно к 45 нм КМОП-технологии

    Energy efficient implementation of multi-phase quasi-adiabatic Cyclic Redundancy Check in near field communication

    Get PDF
    Ultra-low power operation in power-limited portable devices (e.g. cell phone and smartcard) is paramount. Existing conventional CMOS consume high energy. The adiabatic logic technique has the potential of rendering energy efficient operation. In this paper, a multi-phase quasi-adiabatic implementation of 16-bit Cyclic Redundancy Check (CRC) is proposed, compliant with the ISO/IEC-14443 standard for contactless smart cards. In terms of a number of CRC bits, the design is scalable and all generator polynomials and initial load values can be accommodated. The CRC design is used as a vehicle to evaluate a range of adiabatic logic styles and power-clock strategies. The effects of voltage scaling and variations in Process-Voltage-Temperature (PVT) are also investigated providing an insight into the robustness of adiabatic logic styles. PFAL and IECRL designs using a 4-phase power-clock are shown to be both the most energy-efficient and robust designs

    A Resolution-Reconfigurable 5-to-10-Bit 0.4-to-1 V Power Scalable SAR ADC for Sensor Applications

    Get PDF
    A power-scalable SAR ADC for sensor applications is presented. The ADC features a reconfigurable 5-to-10-bit DAC whose power scales exponentially with resolution. At low resolutions where noise and linearity requirements are reduced, supply voltage scaling is leveraged to further reduce the energy-per-conversion. The ADC operates up to 2 MS/s at 1 V and 5 kS/s at 0.4 V, and its power scales linearly with sample rate down to leakage levels of 53 nW at 1 V and 4 nW at 0.4 V. Leakage power-gating during a SLEEP mode in between conversions reduces total power by up to 14% at sample rates below 1 kS/s. Prototyped in a low-power 65 nm CMOS process, the ADC in 10-bit mode achieves an INL and DNL of 0.57 LSB and 0.58 LSB respectively at 0.6 V, and the Nyquist SNDR and SFDR are 55 dB and 69 dB respectively at 0.55 V and 20 kS/s. The ADC achieves an optimal FOM of 22.4 fJ/conversion-step at 0.55 V in 10-bit mode. The combined techniques of DAC resolution and voltage scaling maximize efficiency at low resolutions, resulting in an FOM that increases by only 7x over the 5-bit scaling range, improving upon a 32x degradation that would otherwise arise from truncation of bits from an ADC of fixed resolution and voltage.United States. Defense Advanced Research Projects AgencyNatural Sciences and Engineering Research Council of Canad

    Implementation of a 200 MSps 12-bit SAR ADC

    Get PDF
    Analog-to-digital converters (ADCs) with high conversion frequency, often based on pipelined architectures, are used for measuring instruments, wireless communication and video applications. Successive approximation register (SAR) converters offer a compact and power efficient alternative but the conversion speed is typically designed for lower frequencies. In this thesis a low-power 12-bit 200 MSps SAR ADC based on charge redistribution was designed for a 28 nm CMOS technology. The proposed design uses an efficient SAR algorithm (merged capacitor switching procedure) to reduce power consumption due to capacitor charging by 88 % compared to a conventional design, as well as reducing the total capacitor area by half. Sampling switches were bootstrapped for increased linearity compared to simple transmission gates. Another feature of the low power design is a fully-dynamic comparator which does not require a preamplifier. Pre-layout simulations of the SAR ADC with 800 MHz input frequency shows an SNDR of 64.8 dB, corresponding to an ENOB of 10.5, and an SFDR of 75.3 dB. The total power consumption is 1.77 mW with an estimated value of 500 W for the unimplemented digital logic. Calculation of the Schreier figure-of-merit was done with an input signal at the Nyquist frequency. The simulated SNDR, SFDR and power equals 69.5 dB, 77.3 dB and 1.9 mW respectively, corresponding to a figure-of merit of 176.6 dB.Från analogt till digitalt - snabba och strömsnåla omvandlare Dagens digitala samhälle ställer höga krav på prestanda och effektivitet. I samarbete med Ericsson i Lund har en krets för signalomvandling utvecklats. Genom smart design uppnås hög hastighet och låg strömförbrukning som ligger i forskningens framkant. Från analogt till digitalt Ett viktigt byggblock för telekommunikation och videoapplikationer är så kallade A/D-omvandlare, som översätter mellan analoga signaler (till exempel ljud) och digitala signaler bestående av ettor och nollor. En väldigt effektiv metod för A/D-omvandling bygger på så kallad successiv approximation. Metoden innebär att signalen som ska omvandlas jämförs med en referensnivå, som stegvis justeras för att närma sig signalens värde. Till slut har man en tillräckligt god uppskattning av värdet som ska mätas. Just en sådan omvandlare har utvecklats med höga krav på hastighet och energiförbrukning. Detta gjordes genom datorsimuleringar av modeller som beskriver kretsen. Referensnivån skapas ofta genom att styra ett nätverk som lagrar elektrisk laddning. Omvandlingens noggrannhet, eller upplösning, beror på hur många nivåer som finns tillgängliga det vill säga hur nära signalens värde man kan komma. I den designade kretsen finns hela 4096 nivåer! Det finns många källor till osäkerhet i systemet, bland annat hur exakta referensnivåerna är och hur bra jämförelsen med insignalen kan göras. Eftersom dessa eventuellt kan leda till en försämring av omvandlingens noggrannhet måste alla delar i kretsen utformas med detta i åtanke. Höga hastigheter Eftersom det krävs många steg för referensnivån att närma sig signalens värde är den maximala omvandlingshastigheten ofta begränsad. Med teknikens utveckling öppnas nya möjligheter i takt med att mikrochippens enskilda komponenter blir snabbare. Modern forskning visar att omvandlare baserade på successiv approximation kan uppnå hastigheter på flera miljoner mätvärden varje sekund, vilket även den utvecklade kretsen klarar av. Effektiv design Nya metoder för successiv approximation möjliggör stora besparingar när det gäller effektförbrukning, till exempel genom att effektivisera upp- och urladdningen av nätverket. Genom små ändringar kunde nätverkets energiförbrukning minskas med över 90 % samtidigt som dess area halverades. Eftersom produktionskostnaden för integrerade kretsar är hög medför varje minskning av kretsens area att kostnaden sjunker

    High Voltage and Nanoscale CMOS Integrated Circuits for Particle Physics and Quantum Computing

    Get PDF

    Ageing and embedded instrument monitoring of analogue/mixed-signal IPS

    Get PDF

    Adiabatic Approach for Low-Power Passive Near Field Communication Systems

    Get PDF
    This thesis tackles the need of ultra-low power electronics in the power limited passive Near Field Communication (NFC) systems. One of the techniques that has proven the potential of delivering low power operation is the Adiabatic Logic Technique. However, the low power benefits of the adiabatic circuits come with the challenges due to the absence of single opinion on the most energy efficient adiabatic logic family which constitute appropriate trade-offs between computation time, area and complexity based on the circuit and the power-clocking schemes. Therefore, five energy efficient adiabatic logic families working in single-phase, 2-phase and 4-phase power-clocking schemes were chosen. Since flip-flops are the basic building blocks of any sequential circuit and the existing flip-flops are MUX-based (having more transistors) design, therefore a novel single-phase, 2-phase and 4-phase reset based flip-flops were proposed. The performance of the multi-phase adiabatic families was evaluated and compared based on the design examples such as 2-bit ring counter, 3-bit Up-Down counter and 16-bit Cyclic Redundancy Check (CRC) circuit (benchmark circuit) based on ISO 14443-3A standard. Several trade-offs, design rules, and an appropriate range for the supply voltage scaling for multi-phase adiabatic logic are proposed. Furthermore, based on the NFC standard (ISO 14443-3A), data is frequently encoded using Manchester coding technique before transmitting it to the reader. Therefore, if Manchester encoding can be implemented using adiabatic logic technique, energy benefits are expected. However, adiabatic implementation of Manchester encoding presents a challenge. Therefore, a novel method for implementing Manchester encoding using adiabatic logic is proposed overcoming the challenges arising due to the AC power-clock. Other challenges that come with the dynamic nature of the adiabatic gates and the complexity of the 4-phase power-clocking scheme is in synchronizing the power-clock v phases and the time spent in designing, validation and debugging of errors. This requires a specific modelling approach to describe the adiabatic logic behaviour at the higher level of abstraction. However, describing adiabatic logic behaviour using Hardware Description Languages (HDLs) is a challenging problem due to the requirement of modelling the AC power-clock and the dual-rail inputs and outputs. Therefore, a VHDL-based modelling approach for the 4-phase adiabatic logic technique is developed for functional simulation, precise timing analysis and as an improvement over the previously described approaches

    A digital background calibration technique for pipeline ADCs

    Get PDF
    http://www.worldcat.org/oclc/4258158
    corecore